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Solar cells can strongly benefit from optical strategies capable of providing the desired broadband absorption of sunlight
and consequent high conversion efficiency. While many diffractive light-trapping structures prove high absorption
enhancements, their industrial application rather depends on simplicity concerning the integration to the solar cell con-
cept and the process technology. Here, we show how simple grating lines can perform as well as advanced light-trapping
designs. We use a shallow and periodic grating as the basic element of a quasi-random structure, which is highly suitable
for industrial mass production. Its checkerboard arrangement breaks the mirror symmetry and is shown, for instance, to
enhance the bulk current of a 1µm slab of crystalline silicon by 125%. We explain its excellent performance by drawing
a direct link between a structure’s Fourier series and the implied photocurrent, derived from a large and diverse set of
structures. Our design rule thus meets all relevant aspects of light-trapping for solar cells, clearing the way for simple,
practical, and yet outstanding diffractive structures, with a potential impact beyond photonic applications.
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1. INTRODUCTION

Broadband absorption of sunlight is key for solar cell technologies,
so nanophotonic structures have emerged as a promising technique
for their efficiency improvement. For instance, surface textures
enable a reduction in surface reflection, enhancement of internal
reflections, and of optical path lengths in the active material [1].

One-dimensional (1D) surface gratings have become one of the
most studied diffractive structures. Simple grating lines now serve
as test vehicles for theoretical concepts and fabrication methods
[2,3]. For example, while their superposition facilitates the analysis
of more complicated designs [2,4], gratings are commonly used
in monochromators, spectrometers, wavelength-division multi-
plexing, cavity lasers, and sensors [5]. Some studies also proved
their suitability for broadband mirrors [6] and radiative cooling
applications [7].

Up to now, simple grating lines have only shown marginal
absorption improvements in solar cell materials. The belief that
they cannot be the pillar of advanced photonic concepts triggered
a new research field to analyze more and more complicated and
evermore efficient light-trapping schemes [8–10] at the expense of
their complexity. Yet, industry chooses (random) surface textures
on the basis of their easy processing and integration in photovoltaic
devices. Simple grating lines thus could take a leverage position in

large-scale implementations if they outperform state-of-the-art
approaches.

However, authors so far typically have focused on specific
natural textures or computational algorithms [11]. Even though
biological systems show a stunning diversity of surface structures
[12–15], they serve multiple functions and result from complex
morphological and chemical changes driven by natural selection.
To replicate a natural absorption enhancement scheme, we thus
first need to translate nature’s idea back into simplified terms that
are compatible with current farication and processing methods.
For example, the excellent antireflective properties of foliage
surfaces [16,17], insect wings [18], and the moth-eye [19,20] origi-
nate from densely packed, gradual-shaped structural features at
the subwavelength scale. Similarly, we can mimic these structures
with artificially nanostructured arrays of domes, pillars, cones, or
pyramids on solar cells [21–23].

The focus has recently moved from the actual texture to its
scattering and diffraction pattern. In fact, the absorption enhance-
ment by rose petals [24,25] and tropical butterfly wings [26–28]
originates from refractive and diffractive effects, respectively.
Some studies try to link the superiority of a structure to the lower
symmetry in its diffraction pattern [29,30], but others refrain
from conclusions based on symmetry group theory alone [31].
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For example, the comparison of the dimple and rose structure

in Ref. [29] shows that coupling to higher diffraction orders

does not necessarily translate to a greater current enhancement

than coupling to lower orders. The actual principle for efficient

light-trapping thus remains unclear.

If structural features cannot explain why some structures per-

form better than others, the research question must be approached

from a different perspective. Here, we outline how a basic principle

empowers grating lines to outperform state-of-the-art literature

proposals. Finally, from a survey of a large and diverse range of

structures, we derive four design criteria that directly link the

Fourier series of a structure to its implied photocurrent. They

enable us, in turn, to explain the excellent performance of our

design principle. It thus generally applies and is not restricted to

particular structural features or the material.

2. THEORETICAL CONSIDERATIONS

A. Grating Lines

Simple grating lines are often regarded as disadvantageous, because

one-dimensionality cannot address both polarization states

effectively at the same time. Lines mostly affect the absorption

enhancement of a plane of incident angles instead of the full

hemisphere. In addition, high periodicity leads to sharp and not

broad resonance peaks in the absorption spectrum, restricting the

absorption enhancement to only narrow wavelength intervals.

Once we look at two-dimensionality, such as crossed 1D grating

lines, we note a substantial gain in photocurrent compared to their

1D counterpart. Could two-dimensional (2D) periodicity cause

this effect? In fact, 2D periodic textures have received much inter-

est due to their potential for higher light-trapping improvement

over random textures [4,23,32]. Gjessing et al. optimized seven

different 2D periodic structures [29]. Although they found the

lattice period that gives optimal light trapping is comparable for

all structures, the light-trapping ability differs between them. 2D

periodicity thus cannot solely explain the high performance of a

light-trapping structure.

However, when an appropriate level of short-range disorder

is tuned into the structure via its Fourier-space representation, a

better light-trapping solution is found [2,33,34]. Accordingly,

the search for the optimum optical scheme has led to apparently

randomly distributed geometrical features arranged inside a large,

periodically repeated unit cell.

In principle, the light-trapping problem then appears as solved

by quasi-random (QR) nanostructures. However, a diffraction

pattern does not define the desired structure. The abstract concept

of Fourier-space engineering may not give clear guidance to a tech-

nologist, particularly in terms of simple fabrication and processing

techniques. The opposite is instead a more natural approach,

i.e., arranging simple periodic structures in a QR manner.

This proposal might be the way out for grating lines to over-

come the one-dimensionality issue and to gain a quasi-randomness

appearance at the same time. In fact, we can show that the two

approaches are complementary solutions to the light-trapping

problem. Yet, gratings show distinct advantages for solar cell

applications, as we highlight in the discussion section.

Fig. 1. Depiction of different arrangements of diffractive elements
(photonic domains) in square lattice structures. The rose (left) and zigzag
(center) structure are based on the same diffractive element, i.e., a mono-
pitched roof [29], which is rotated 90 deg four times. The checkerboard
structure (right) results from the simplification of the monopitched roof
as a nonslanted grating line. Since all photonic domains contain one
element, the computational unit cell encloses four.

B. Photonic Domain

Commonly, a unit cell defines the region of interest for optical
(electromagnetic) modeling. It encloses the surface structure in
a square or rectangle, to which periodic boundary conditions are
applied to ease the simulation. While a convenient technique for
computational analysis, this method does not highlight the rela-
tionship between the geometrical arrangement of the diffractive
features and their unit cell.

To simplify the following discussion, we introduce the concept
of the photonic domain. We define it as the region within a pho-
tonic structure in which a basic diffractive element is periodically
arranged in a 1D fashion. But the domain could comprise just a
single element, too. For example, Gjessing et al. [29] used a mono-
pitched roof as the building block, i.e., the photonic domain, for
the rose and zigzag structures shown in Fig. 1. Before displacing a
roof next to another one, it is rotated by 90 deg.

Therefore, it may not be difficult to increase the apparent ran-
domness of a design with periodic grating lines. When we replace
the monopitched roof of the rose or zigzag structure with lines,
we get the checkerboard pattern shown in Fig. 2(c). Such trellised
patterns were proposed to control the wetting properties of sur-
faces [35], but have so far not been analyzed for light-trapping
applications.

In addition, changing the shape of the photonic domain
increases the design freedom. Whereas triangular, rectangular, and
hexagonal domains have been studied in the field [30,36,37], only
a few authors proposed a pentagonal or heptagonal domain for
light-trapping despite their superior characteristics [38]. But as
the regular pentagon has a 72 deg rotational symmetry, it cannot
tile a plane alone [39]. In Fig. 2(d), we thus propose an irregular
pentagon with two different side lengths as the photonic domain
for efficient light trapping. Curiously, the alternate arrangement
of such pentagons enables butterfly wings to absorb more sunlight
[15,19,26,27].

Finally, modulating grating lines with a rotational operator, as
in the farrago design [Fig. 2(e)], allows one to quantify the intro-
duced level of “randomness” by the number of differing domains,
e.g., two for the zigzag, checkerboard, or pentagon, four for the
rose, and 72 for the farrago.

3. RESULTS

We first optimize the checkerboard structure shown in Fig. 2(c).
As its photonic domain comprises a 1D grating only, the structure
becomes defined solely by three design parameters: the side length
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Fig. 2. (a)–(e) Arrangement of a simple diffractive element controls the structural disorder. While periodicity can be disturbed via restructured pho-
tonic domains (bottom), this approach does not break mirror symmetry. Superior light-trapping structures repeat a (e) periodic element quasi-randomly or
a (f ) QR element periodically. Whereas the former case offers flexibility in its design, fabrication, and modification, the latter relies on accurate replication
techniques. Since the unit cell is also the photonic domain of the QR supercell, design (f ) from Ref. [33] cannot be generated from the QR arrangement of a
periodic element—in contrast to designs (c)–(e).

Fig. 3. (a) Representation of the checkerboard’s photonic domain and computational unit cell. (b) The parameter map shows the computed maximum
achievable photocurrent density Jmax as a function of the grating period and domain size. The inset shows the test cell with the checkerboard structure over
it. The linewidth is here kept at half the grating period. The red dot marks the optimal parameter set that maximizes the broadband absorption in the 1 µm
c-Si layer.

of the photonic domain, the grating’s line width, and its period; see

Fig. 3(a).

For a direct comparison of light-trapping performance, we fol-

low the strategy set out in previous works [33,37,40,41], employ-

ing a test solar cell structure composed of a crystalline silicon (c-Si)

absorber material [42] with an ideal back reflector:

• The thickness of the c-Si slab is set to 1µm. At this thickness,

light trapping has a great impact on absorption, and differences in

photocurrent will manifest noticeably in the comparison of differ-

ent textures [37].

• All photonic domains are etched on the front surface, whose

depth is fixed at 190 nm, which was found optimal in previous stud-

ies [33,40] for a 1µm thickness.

• The c-Si surface is coated with a transparent dielectric

medium of refractive index 1.65 and 70 nm thickness, conformally.

This layer acts both as a passivating film for the etched regions as

well as an antireflection coating.

The photocurrent density produced in the c-Si material is taken

as the figure of merit. It is equivalent to the maximum achievable

photocurrent density Jmax that would be generated by the cell.

Here, we use the software package Lumerical FDTD Solutions

to calculate Jmax (see Supplement 1 for a brief description of the

simulation) over the main spectral range of the AM1.5 G solar

spectrum, i.e., from 315 to 1150 nm wavelength.

From the parameter scan depicted in Fig. 3(b), we identify a

high photocurrent region for grating periods between 0.3 and

0.9µm, with the optimum period and domain size around 575 nm

and 0.925 × 0.925 µm2, respectively. Next, as the linewidth was

kept at half of the grating period, we now study the impact of

the linewidth on the Jmax. We find 242 nm as the best parameter

(see Fig. S1 in Supplement 1); that matches the linewidth of the

optimized crossed grating design. Surprisingly, the checkerboard

arrangement (28.4 mA/cm2) considerably outperforms the

crossed design (25.2 mA/cm2), as shown in Fig. 4, and demon-

strates an excellent angular insensitivity up to a 60-degree angle of

incidence, as shown in Fig. S2 (see Supplement 1). The structure

surpasses recent proposals [40,43–45] and even rivals the excep-

tional performance of the QR supercell [33]; see Tables 1 and 2 and

Figs. S3–S5 in Supplement 1. This sophisticated design is termed

supercell, because the superposition of multiple gratings (with

the same period) controls the phase shift between its diffraction

orders [2].

To verify that our parameter optimization was indeed uncon-

ditional, we extended our finite-difference time domain (FDTD)

calculations to different domain sizes, as reported in Fig. S6 of
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Fig. 4. Photocurrent depth profile, i.e., current generation per unit volume as a function of the absorber’s depth x , determined by segmenting the total
(1µm) c-Si slab in thin slices with a step size of 1x = 10 nm. All current density profiles are calculated for the AM1.5 G solar spectrum. While the current J
generated in the surface pattern (0–190 nm depth) is equal for the checkerboard, photonic crystal, and crossed grating lines, the current in the flat bulk layer
(190–1000 nm depth) is the same for the checkerboard and supercell design from Ref. [33]. Although the highest current is found within the QR supercell’s
surface texture, it will likely suffer the most from surface recombination effects (see Fig. S8 in Supplement 1).

Table 1. Recent Theoretical Proposals for

Light-Trapping in Thin-Film c-Si Solar Cells
a

Structure Name
Total c-Si Sslab
Thickness (µm) LTE

Maximum
Current

(mA/cm2)

Grating lines [this study] 1.0 0.31 19.5
Retina’s fovea [43] 3.1 0.65 21.6
1D periodic Fourier-series
profile [44]

1.3 0.66 24.6

Crossed lines [this study] 1.0 0.68 25.2
Photonic crystal [40] 1.0 0.73 25.9
Begonia’s spiral [45] 1.5 0.83 26.2
Leaf-inspired scheme [46] 20.0 0.87 28.0
Checkerboard [this study] 1.0 0.89 28.4
QR supercell [33] 1.0 0.96 29.5

aThe crossed grating lines have a 242 nm width. The light-trapping effi-

ciency (LTE) compares the actual current gain via surface structuring to the

theoretical current gain via Lambertian scattering [8]. It thus aims at assessing

the performance of the nanostructure itself, irrespective of the fabrication

method and technology used. Jmax not found in a reference were calculated

using the published absorption spectra.

Supplement 1. Furthermore, we also changed the domain geom-

etry from a square to an irregular pentagon with two different

side lengths, as shown in Fig. 2(d), effectively adding a degree of

freedom to the design. Yet, we optimized the pentagon only tenta-
tively due to computational restraints (see Fig. S7 in Supplement
1) because we preferred to focus on the checkerboard’s simpler
geometry. Additional optimization steps thus may well reveal the
pentagon’s benefit.

Four parameters thus define our proposed light-trapping
solution: the photonic domain size, the structural feature size,
their periodicity, and the etching depth. Table 2 summarizes the
transformative steps undergone by the photonic domain and
the resulting quantitative changes in the Jmax, which we cross-
checked with a different simulation method (rigorous coupled
wave analysis).

4. DISCUSSION

A. Real-Space Considerations

Just as hierarchical structures in biological systems often vary a cer-
tain building block [14], we generate a set of different domains via
the modulation of a basic photonic element. As such, a set defines
a unit cell dynamically; our simple principle introduces a new class
of light-trapping structures, like the checkerboard, farrago, or pen-
tagon patterns shown in Fig. 2.

Here, we focus on the checkerboard pattern that results from
the displacement and π/2 rotation of periodic grating lines. This
alternate arrangement increases the bulk current by twice as much

Table 2. Potential Impact of Surface Structures on the Carrier Generation under AM1.5 G Solar Spectrum
a

Domain Length
(µm)

Unit Cell Surface Current
(mA/cm2)

Bulk Current
(mA/cm2)Photonic Structure Size (µm2) FF (%) Surface Area Increase (%)

Planar reference NA NA 0 0 4.6 10.1
Grating lines 0.575 0.33 58 66 3.6 16.0
Crossed lines 0.575 0.33 34 77 5.9 19.3
Checkerboard 0.925 3.42 48 82 5.8 22.7
Photonic crystal [40] 0.600 0.36 35 66 6.1 19.9
QR supercell [33] 1.792 3.21 50 188 6.6 22.9

aAll grating lines have a 242 nm width. The filling factor FF is defined as the area of the etched regions over the entire area of the unit cell. The surface/bulk current

refers to carriers generated within/beyond 190 nm depth. Remarkably, grating lines can enhance the bulk current of a 1µm thin c-Si slab by 125% via the checkerboard

arrangement.
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as a crossing of the lines can do. Therefore, the checkerboard
light-trapping performance is close to that of the QR supercell
design.

However, although both structures use the same silicon volume,
the QR supercell has a 60% larger surface area (cf. Table 2) that
increases surface recombination effects [47], as evident from its
carrier generation profile (see Fig. S8 in Supplement 1). In a pre-
liminary experiment on commercial cells, we could also observe
how these effects scale with the surface area to volume ratio.
Therefore, we note the checkerboard’s ability to shift its carrier
generation further into the bulk, accomplished by

• choosing an up to 30% smaller linewidth (shown in Fig. S1 in
Supplement 1),

• using an up to 30% shallower etching depth (see Fig. S5 in
Supplement 1),

• extending its unit cell to three domains via π/3-rotated grat-
ing lines (see Fig. S9 in Supplement 1).

Consequently, the tolerance in width and depth of the large
rectangular features makes the checkerboard structure more robust
to fabrication imperfections. Noise in the linewidth may improve
its angular response [18,48], and tapered lines couple better to
incident light [49] as the optical density changes more gradually.
The checkerboard thus mainly depends on the grating period, as
shown in Fig. 3(b), permitting a fast turnaround from the design to
its implementation up to potential modifications.

Since light beyond 600 nm wavelength is not absorbed within a
double pass of the 1µm silicon slab, one could select λ0 = 600 nm
as the target wavelength, which in turn would define the grating
period P ≈ λ0. If the grating height h and duty cycle D are then
chosen such that the zero diffraction order cancels out, light will be
transmitted only at odd diffraction orders. So, the phase difference
1φ = 2π/λ0 ∗ h ∗ 1n of the interfering waves must be equal to π

and D = 50% [50,51], implicating h = λ0/(2·1n) ≈ 130 nm for
an index contrast of 1n = nSi − nARC = 2.29 at λ0 = 600 nm. We
note that these preliminary estimates are remarkably close to the
outcome of the intensive FDTD computations performed in this
work.

In addition, we also analyzed the checkerboard’s perform-
ance to nonstructural variations in Fig. S10 of Supplement 1 but
found only 3% to 4% differences when the coating and c-Si layer
thickness vary by 15% and 10%, respectively.

Finally, our study was motivated by the desire to reduce design
complexity without loss in light-trapping performances. While
the small 32 nm pixels of the QR supercell structure can raise
complications in all the here-mentioned lithography approaches,
the simplicity of the checkerboard structure does not rely on a
sophisticated fabrication technique: grating profiles are widely
manufactured by holographic techniques, such as laser interfer-
ence lithography, but also qualify for high-speed electron (multi)
beam lithography [52–54]. Submicrometer gratings can also be
imprinted [55]. For example, Hamamatsu uses nanoimprinted
gratings for its ultracompact minispectrometers, whereas Canon
teamed up with Toshiba to develop 15 nm nanoimprint lithogra-
phy for the high-volume manufacturing of semiconductor devices
[56]. Immersion lithography, deep UV lithography, and digital
planar holography are other industrial methods. We would like to
note that displacement Talbot lithography (DTL) [57,58] could be
a promising large-area lithography technique for the checkerboard
structure. However, as the current state of the art seems to focus

on strictly periodic patterns, it appears that only a direct writing
is capable of generating checkerboard patterns. As such, their
feasibility remains to be tested. While some QR [59] and complex
periodic structures [60] were already produced via DTL, prelimi-
nary simulations seem to indicate that DTL might in principle be
able to create the checkerboard structure as well [61].

B. Fourier-Space Considerations

After highlighting the practical advantages of the checkerboard
design, we now turn to the question of why its performance rivals
the one from the QR supercell approach, whose functionality was
tuned into its structure via Fourier-space considerations. In fact,
the Fourier spectrum of the QR supercell is rich, thereby giving
the appearance of continuity, and concentrates all its energy dis-
tribution function ED(kx , ky ) in a ring region between 10 µm−1

and 25 µm−1; see Fig. 5(a). In contrast, the checkerboard’s
Fourier spectrum is not very broad and is mainly distributed
along the principal axis; see Fig. 5(b). Still, both designs yield high
performances.

So, could the supercell concept ignore classes of structures
that fail its ring criteria? This question inspired us to analyze the
Fourier series of a vast range of diverse structures (see Table S1 in
Supplement 1), enabling us to identify four criteria that correlate
with current gains:

1. high number Nstrong of strong Fourier series components;
2. low contribution of strong components EDstrong to the total

diffracted energy EDtot—a component is defined as strong
(weak) if its Fourier energy exceeds (falls below) n% of the
series’ peak value;

3. low energy spread into the outer k region EDk>k∗ , i.e., beyond
the wavenumber k∗;

4. high surface area factor (SAF) of the pattern—the SAF quan-
tifies the increase in surface area compared to an unstructured
slab while respecting the periodic boundary conditions of the
unit cell.

It is EDweak + EDstrong = EDtot and EDk<k∗ + EDk>k∗ =

EDtot. Our extensive study reveals a direct link between the Fourier
properties of a light-trapping structure and its resulting theoreti-
cal current enhancement X = Jmax/J ref of a 1 µm c-Si slab, here
empirically defined by

X = 1 + (1 −

√

f )
p

with 1/ f = SAF ·

√

EDweak

EDk>k∗

· Nq
strong ·

(

EDk<k∗

EDstrong

)p

(1)

in which the function 1/ f evaluates the four criteria in k space,
quantitatively. We find a high correlation coefficient R = 0.97
between X and Jmax for p = 1.87 and q = 1.19, which is robust to
changes in n or k∗ and is maximal for n = 15 and k∗

= 21 µm−1

(see Table S2 in Supplement 1). According to Fig. 6, the point
X = 1.7 separates the surface structures with a single domain from
those that yield the highest Jmax.

Since our design principle meets the four criteria better than
(crossed) grating lines alone, the checkerboard rivals the QR
supercell structure, whose design does still fulfill them best:
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Fig. 5. Fourier energy spectrum in k space for (a) the QR supercell, (b) the checkerboard, and (c) the crossed lines. For comparison, the energy distribu-
tion ED(kx , ky ) is normalized to the total diffracted intensity, given by the sum of all Fourier components in k space. Here, each structure covers a 500 µm2

area in real space; it is sampled at 5 nm resolution and expressed as a binary data matrix. Its Fourier transformation yields the desired Fourier-series compo-
nents (after shifting the zero-frequency component to the center of the array). For their visualization only, they were appropriately smoothed.

Fig. 6. Analysis of 84 different surface structures that are etched
190 nm into a 1 µm thin c-Si slab (listed in Table S1 Supplement 1),
indicates a link between their Fourier properties [Eq. (1)] and the theo-
retical maximum achievable photocurrent Jmax = X ·J ref, with the planar
reference J ref = 15 mA/cm2. Some selected literature proposals are anno-
tated with their references in brackets. For a fair comparison, all Fourier
series are based on the same aperture area of ca. 500 µm2, sampled at
5 nm resolution and expressed as a binary data matrix. Although the root
mean square error RMSE (gray-toned area) implies a forecast that is often
greater than the mean absolute percentage error (4.2%), the correlation
coefficient R highlights a strong relationship between X and Jmax. In fact,
the mean absolute scaled error (63%) shows that our (red) trendline is
almost twice as good as the naïve model.

(a) uniformity in k space increases the number of strong compo-
nents Nstrong but also weakens their contribution (criteria 1
and 2);

(b) limiting the diffraction pattern to k = 24.5 µm−1, that is close
to k∗

= 21 µm−1 (criterion 3);
(c) the choice of small and squared pixels increases the SAF

(criterion 4).

However, suppressing the lowest orders, as in Fig. 5(a), is not
necessary (shown in Fig. S11 in Supplement 1): their inclusion
reduces the surface current by 0.5 mA/cm2 but increases the bulk
current by 0.2 mA/cm2 (cf. QR32_E0-E7 in Table S1), resulting
in only a 0.3 mA/cm2 lower photocurrent than the Jmax of the
original QR supercell design (cf. QR32b in Table S1).

Finally, since light-trapping structures inherently boost the
surface recombination [47], considering this effect in the analysis
relies on a full-device modeling approach and, therefore, greatly
complicates the comparison of multiple proposals. We argue that
the best light-trapping structure generates the greatest bulk current

with the smallest increase in surface area. As such, when using the
same surface passivation technology, the checkerboard structure
will likely outperform the QR supercell design.

5. CONCLUSIONS

Surface textures increase the absorption of sunlight in photovoltaic
materials. Although this strategy led to powerful designs, propos-
als often neglect their technological practicalities. For example,
engineering the desired diffraction pattern into a structure via its k
space representation may result in its arbitrary appearance in real
space, e.g., the QR supercell approach. Such a fine-tuned structure
then becomes difficult to fabricate on a large scale, to monitor for
imperfections, and to modify if needed later on.

Here, we move the focus from the structure to the arrangement
of its basic element. We outline how arranging grating lines yields
the same high performance of sophisticated designs but with prac-
tical advantages. We thereby introduce the concept of the photonic
domain and show how the combination of Fourier analysis and
current depth profile allows one to fully assess all relevant aspects
of light-trapping designs for solar cells. For example, the checker-
board pattern shows much simplicity in design, reduced surface
area, and high robustness to imperfections.

While we restricted our work to the cell level, any encapsulation
material and protective glass cover will unlikely affect our conclu-
sions. We expect their presence to reduce the charge generation
in the surface structures. In addition, our concepts were tested
on a 1 µm slab of c-Si. Therefore, changing the etching depth,
absorber thickness, or its material inevitably changes the optimal
design parameters in real and Fourier space; both will be subject to
a follow-up study. Whereas the supercell lacks a suitable parameter
set to track such modifications, because its design must always
be visualized and cannot be read off a current map, the checker-
board’s optimal parameters can be listed in a look-up table or even
intuitively found experimentally.

We expect our simple design principle to impact not only in the
solar cell or LED sector but also in applications where a disruptive
function is required on large areas, such as acoustic noise shields,
wind break panels, anti-skid surfaces, liquid control devices [35],
biosensors, and atomic cooling [62].
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