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Abstract  

To be able to target health policies more efficiently, policymakers require knowledge about which 

individuals benefit most from a particular programme. While traditional approaches for subgroup 

analyses are constrained only to consider a small number of arbitrarily set, pre-defined subgroups, 

recently proposed causal machine learning (CML) approaches help explore treatment-effect 

heterogeneity in a more flexible yet principled way. This paper illustrates one such approach – 

‘causal forests’ – in evaluating the effect of mothers’ health insurance enrolment in Indonesia. 
Contrasting two health insurance schemes (subsidised and contributory) to no insurance, we find 

beneficial average impacts of enrolment in contributory health insurance on maternal health care 

utilisation and infant mortality. For subsidised health insurance, however, both effects were smaller 

and not statistically significant. The causal forest algorithm identified significant heterogeneity in the 

impacts of the contributory insurance scheme: disadvantaged mothers (i.e. with lower wealth 

quintiles, lower educated, or in rural areas) benefit the most in terms of increased health care 

utilisation. No significant heterogeneity was found for the subsidised scheme, even though this 

programme targeted vulnerable populations. Our study demonstrates the power of CML approaches 

to uncover the heterogeneity in programme impacts, hence providing policymakers with valuable 

information for programme design. 

Keywords: policy evaluation, machine learning, heterogeneous treatment effects, health insurance 

  

 



Who benefits from health insurance? Uncovering heterogeneous policy impacts using causal machine learning  1 

 

 

1. Introduction 

Policymakers around the world are implementing health system policies to promote access to 

essential health care and to meet the health-related Sustainable Development Goals (Sachs 2012). 

To assess the impact of these policies on population health and health inequalities, they require 

evidence that is explicit about the complexity of policy impacts, in particular with respect to the 

potential heterogeneity in their effects. Here, we focus on heterogeneity in terms of observed effect 

modifiers, i.e. covariates that can modify the causal effect of a policy. Some such evidence can be 

obtained from subgroup analyses, comparing the effects of interventions across different population 

groups, characterised, for instance, by their socio-economic status (Mackenbach 2003). However, 

impact evaluations tend not to present such disaggregate analysis, due to the concern that subgroup 

analysis, unless pre-specified in an analysis plan using pre-existing theory, may be viewed as post-

hoc ‘data dredging’, leading to spurious findings and publication bias towards significant estimates 

(Petticrew et al. 2012). Another common approach to assess treatment effect heterogeneity 

according to pre-specified covariates is by adding interaction terms in outcome regression models, 

but this implies making parametric assumptions (typically linearity), which may not be plausible 

(Hainmueller and Mummolo 2019).  

 

Recently developed machine learning (ML) approaches have been proposed as a way to pre-empt 

the criticism of arbitrariness and to estimate treatment effect heterogeneity based on an unbiased 

exploration of the data (Athey and Imbens, 2017). The ‘causal forests’ approach is one specific, 

increasingly popular ML approach, developed by Athey, Wager and colleagues (Nie and Wager 2017, 

Wager and Athey 2018, Athey et al. 2019a). The causal forest approach combines the flexibility of 

ML methods with the rigour of semi-parametric statistical theory. The method flexibly captures how 

treatment effects vary according to observed covariates, by nonparametrically estimating a so-called 

‘conditional treatment effect function’ (CATE). The algorithm reports individual treatment effects 

given observed covariates, and these individual treatment effects can be aggregated to provide 

average estimates for subgroups of interest. The first major benefit of this approach compared to 

traditional methods is in that researchers do not need to either split the data into many subgroups 

for stratified analysis or make parametric assumptions about interactions in an outcome model. The 

second advantage, which is unique to the ML component of the approach, is that it can describe 

CATEs for ex-ante unknown subgroups, whose importance is discovered by the algorithm, by 

providing a measure of the importance of a wide range of variables in predicting treatment effects. 

 

In this paper, we demonstrate how such an ML approach can provide beneficial information for 

health policymaking decisions aimed at improving overall health and reducing health inequalities. 

We apply the causal forests method to explore effect heterogeneity in two types of public health 

insurance programmes in Indonesia: subsidised health insurance targeting the poor and the near 

poor, and contributory health insurance for employees of the formal sector. We use the sequential 

implementation of health insurance that preceded the establishment of the unified National Health 

Insurance programme (Jamima Kesehatan National (JKN)) in 2014 as ‘natural experiments’ to 
investigate how changes in health insurance status have influenced health outcomes and health care 

utilisation. We first focus on infant mortality as the health outcome of interest, as this is arguably 

more sensitive to changes in access to health care services, compared to other health outcomes 

(Currie and Gruber 1996, Dow and Schmeer 2003). If health insurance is expected to reduce infant 

mortality, one of the channels through which this could occur is a differential increase in health care 

utilisation by insured mothers compared to uninsured ones. Birth assisted by a skilled health 

professional has been found to be a predictor of infant mortality in the neonatal stage (Lawn et al. 

2005). We first estimate average treatment effects for these outcomes, using regression and 

propensity score approaches.  
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Given the notable geographical, ethnic, and economic disparities within Indonesia, it is expected that 

average policy effects mask important heterogeneity in the effect of health insurance programmes. 

For optimal targeting of interventions, health policymakers need to know how the impact of health 

insurance varies across different subgroups, in particular for those groups most vulnerable in terms 

of disease burden and access to health care (Lagomarsino et al. 2012): mothers with low education, 

those in the bottom socioeconomic quintiles, and those living in remote, rural communities. We 

therefore also estimate individual treatment effects using the causal forests approach and aggregate 

these to estimate subgroup-average treatment effects. We do so both for ex-ante specified 

subgroups following traditional practice, and via a data-driven ML approach that characterises those 

variables most associated with heterogeneity. We use data from the Indonesian Family Life Survey 

(IFLS) (Strauss et al. 2004, Strauss et al. 2009, Strauss et al. 2016), a rich and high-quality longitudinal 

survey of Indonesian individuals and households that allows controlling for observed confounders of 

the causal relationship between health insurance and health care utilisation (and health outcomes).  

 

This paper makes three main contributions. First, through an evaluation of the impact of health 

insurance on health care utilisation, we illustrate the value of using novel causal ML methods for 

health policy evaluation. In particular, this is the first study that uses the causal forest approach in 

the context of a health policy evaluation to characterise the drivers of treatment heterogeneity for 

health insurance programmes. Second, we contribute to empirical evidence of health insurance 

expansions in Indonesia, by characterising its heterogeneous impacts on health care utilisation, by 

socioeconomic subgroups. Third, we add to the scarce rigorous evidence available about the effects 

of health insurance on health outcomes and health care utilisation in low- and middle-income 

countries (LMICs).  

 

In the following sections, we present the institutional setting in Indonesia (Section 2.1), briefly 

review the literature on the impact evaluations of health insurance, both worldwide and in 

Indonesia (Section 2.2), and present the data used in the study (2.3). Then we describe the methods 

(Section 3), with a focus on the theory and practical implementation of the causal forest approach, 

present the results (Section 4) and discuss the findings and future avenues of research (Section 5). 
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2.  The evaluation of the National Health Insurance expansion in Indonesia 

2.1 Institutional setting  

With an estimated population of over 270 million in 20191, Indonesia is the fourth most populous 

country in the world. Total health spending was 3.1% of gross domestic product (GDP) in 2016 (WHO 

2019), with a relatively small share of total health expenditures being publicly funded (39%) 

(Mahendradhata et al. 2017). While on average, health indicators have improved significantly over 

the last decades – life expectancy rising from 63 to 71, and infant mortality falling from 41 to 26 

deaths per 1000 live births, between 1990 and 2012 (Mahendradhata, Trisnantoro et al. 2017) – 

there remain considerable health inequalities (Agustina et al. 2019). To address unmet health care 

needs, and high out-of-pocket and catastrophic health spending, Indonesia launched an ambitious 

health system reform in 2014, the JKN, comprising a wide range of policies, including a unified 

benefit package, premium subsidies for the poor, a national formulary, and a provider contracting 

and payment system. The JKN reform was preceded by a series of subsidised health insurance 

expansions programmes – the focus of our study – starting from the 1990s. We briefly review the 

landscape of health insurance in Indonesia over our study period (2000-2014) (see Figure 1), 

describing the main contributory and subsidised health insurance schemes. 

 

Historically, health insurance in Indonesia was available as contributory schemes, for those 

employed in the formal sector and their family dependants (Achadi et al. 2014). Askes was a 

mandatory health insurance programme for active and retired civil servants, and military personal, 

with a contribution of 2% from payroll salary or pension (Thabrany 2001), while Jamsostek was an 

optional social security scheme for private employees, with a 3-6% salary contribution (Hidayat 

2004)2. For poor households that were not eligible for these health insurance programmes, from 

1994 a Health Card programme provided free basic health care at public health facilities (Johar 

2009). 

 

The Askeskin scheme, established in 2005, was the first national, subsidised health insurance 

programme, basing eligibility on a combination of geographic and individual-level criteria (Sparrow 

et al. 2013). The insurance scheme covered a comprehensive package of health services (outpatient 

care and inpatient care, mobile health services, immunisation and medications), with the premium 

fully subsidised by central government (Sparrow et al. 2013). The scheme left a large group of 

households without health coverage, i.e. those not poor enough to be eligible but also not having 

access to contributory health insurance in the formal sector. In 2008, the Askeskin programme was 

re-organised, and the resulting Jamkesmas expanded the eligible population, targeting the poor and 

‘near poor’, based on a combination of means testing (using 14 assets recorded in a National Poverty 

Census Survey indicators) and local government eligibility criteria (Harimurti, et al. 2013). However, 

not all households eligible for the programme possessed a membership card due to perceived 

stigmatisation from health care providers and concerns about long waiting times (Harimurti, et al. 

2013). Despite the means testing, a significant ‘leakage’ occurred, resulting in households in higher 

income quantiles also receiving free health insurance (Harimurti, et al. 2013). In principle, 

Jamkesmas continued to provide a comprehensive package, but in reality, the availability of services 

in the benefit package was limited, especially in rural areas, thereby contributing to large geographic 

inequalities in access (Harimurti, et al. 2013). To compensate for the large gaps in insurance status, 

district governments provided decentralised health care financing schemes offering subsidised 

                                                           
1 See http://worldpopulationreview.com/countries/indonesiahttp://worldpopulationreview.com/countries/indonesia, 

Retrieved 2019-08-07. 
2 Unlike Askes, it was possible to opt out of this scheme, and purchase private health insurance instead, leading to a 

relatively low overall coverage: only 1.5% of the population was covered by Jamsostek in 2001 (Thabrany 2001). 

about:blank
about:blank
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health insurance, known as Jamkesda) (Sparrow et al. 2017).3 In 2014, all health insurance schemes 

were absorbed into a single national health insurance scheme, JKN, aimed at continuing to expand 

health insurance coverage to the total population, with the original stated objective to achieve 

universal health coverage by 2019. 

 

2.2 Related literature on the impact of health insurance on health outcomes and 

utilisation 

There is a growing body of evidence that health care utilisation increases as a result of providing 

health insurance (e.g. Trujillo et al. 2010, Yilma et al. 2015), and there is some support for a financial 

protection enhancing impact (e.g. Cheng, et al. 2015, Bai and Wu 2014, Aryeeteyet al. 2016). While 

country-level analyses have found that increasing health coverage through national-level health 

spending is beneficial for health, particularly within a system of risk-pooling (Moreno‐Serra and 
Smith 2015), evaluations using micro data provide more mixed findings. For example, while in the 

USA and Taiwan, publicly funded health insurance programmes have been found to reduce infant 

and young children mortality (Currie & Gruber 1996, Chou et al., 2014), evidence from randomised 

insurance experiments suggest positive impacts to access and utilisation but little health benefit 

(Baicker et al. 2011). For LMICs, systematic reviews (Acharya et al. 2013, Erlangga et al. 2019a) found 

only a minority of evaluations that looked at health outcomes, with conclusive evidence of a health-

improving impact in less than half of the primary studies reviewed (e.g. on health-related quality of 

life (Wang et al. 2009), infant mortality (Mensah et al., 2010) and glucose control (Sosa-Rubi et al. 

2009)). The rest found either no evidence of a positive impact (e.g. Dow and Schmeer 2003, Chen 

and Jin 2012), or adverse impacts (Fink et al. 2013). 

 

For Indonesia, quantitative impact evaluations of the different stages of health insurance expansions 

also reveal a mixed picture. Johar (2009) finds that the Health Card programme did not significantly 

increase health care utilisation among the poor, and attributes this finding to inelastic demand 

amongst the recipients. Evaluations of the Askeskin programme found some increase in financial 

protection (Aji et al. 2013), but only a modest impact on health care utilisation among the 

beneficiaries (Sparrow et al. 2013). An evaluation of the early implementation of the JKN programme 

(between 2007 and 2014) found that while contributory health insurance increased both inpatient 

and outpatient utilisation, subsidised health insurance only increased inpatient utilisation, and to a 

smaller extent (Erlangga et. al. 2019b).  

 

There are various reasons why impact evaluations of health insurance expansions may not always 

demonstrate measurable improvements in health outcomes. First, establishing the causal effect of 

health insurance programmes is challenging due to selection into the health insurance programmes 

on observed and unobserved characteristics. Correcting for such selection bias requires exploiting 

‘natural experiments’ through quasi-experimental econometric techniques (Wagstaff 2010). Second, 

demand-side policies (e.g. via health insurance expansion) on their own may not improve health, 

due to contextual factors of the health system (e.g. supply side constraints in terms of health care 

providers) and ineffective implementation of insurance programmes (Moreno-Serra and Smith 

2012), and this concern has been thought to explain the modest impacts of Jamkesmas scheme in 

Indonesia (Harimurti et al. 2013). Third, the availability of health insurance may affect specific sub 

populations differently.  

 

                                                           
3 As of 2013, around 12% of the population was estimated to have been covered by the Jamkesda schemes (32 million 

covered in 2013 out of a population of 252 million in that year). http://gnhe.org/blog/wp-content/uploads/2015/05/GNHE-

UHC-assessment_Indonesia-1.pdf.http://gnhe.org/blog/wp-content/uploads/2015/05/GNHE-UHC-assessment_Indonesia-

1.pdf. A further subsidised scheme (Jampersal) aimed to cover uninsured pregnant women and newborns was launched in 

2011 with the specific aim of filling the gap in delivery services for maternal and neonatal health (Achadi, Achadi et al. 

2014), and this insurance status was universal and not means tested.   

about:blank
about:blank
http://gnhe.org/blog/wp-content/uploads/2015/05/GNHE-UHC-assessment_Indonesia-1.pdf
http://gnhe.org/blog/wp-content/uploads/2015/05/GNHE-UHC-assessment_Indonesia-1.pdf
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Understanding the impact of health insurance for different populations is crucial to inform current 

and future health policymaking in Indonesia, where a large segment of the population is still 

uninsured, and where the government intends to provide subsidised health insurance for the poor 

households. Previous evaluations tended not to conduct subgroup analysis, with the exception of a 

few studies. Erlangga et al. (2019b) looked at impacts by subgroups, and found that the lowest 

income quintiles did not benefit from improved in-patient utilisation, with no effects in areas with 

low density of healthcare facilities. Anindya et al (2020) identified significant impacts of the JKN 

programme on maternal health care utilisation (skilled birth attendance, institutional deliver, 

antenatal care visits), and – in a subgroup analysis by socioeconomic quintiles and geographical 

regions – found that mothers from lower socioeconomic quintiles and more deprived regions 

benefitted more from health insurance.   

 

2.3 Data 

The IFLS household dataset includes respondents living in 13 out of the 27 Indonesian provinces, 

initially using the sampling frame of the 1993 national household socioeconomic survey (Survei 

Sosial Ekonomi Nasional – Susenas) from the Central Bureau of Statistics4. The first round of the 

survey was in 1993 (IFLS1), covering 7,224 households. Subsequent rounds were conducted with 

the same respondents and their new household members in 1997 (IFLS2), late 1998 (IFLS2+ with a 

25% subsample), 2000 (IFLS3), 2007/2008 (IFLS4) and 2014/2015 (IFLS5). In order to exploit 

temporal variation in the availability of the health insurance schemes, we use the IFLS waves which 

were collected in the pre-Askeskin period (IFLS 3), in the pre-Jamkesmas period (IFLS4), and in the 

post-Jamkesmas period, covering the start of the JKN programme up to 2015 (IFLS5) (See Figure 1 

for the links between the various policy reforms and survey waves).  

 

Figure 1 Health insurance expansions in Indonesia and the IFLS household survey waves 

Notes: IFLS: Indonesia Family Life Survey, HI: health insurance, JKN: Jamima Kesehatan National (National Health 

Insurance) 

 

                                                           
4 The sample is stratified in provinces and rural-urban areas within provinces. There are some randomly selected 

enumeration areas (EA) within the strata and households within enumeration areas. The aim of the selection of the 

provinces was to be cost-effective given the size of the country without neglecting the representation of the population, 

the ability to illustrate the cultural and socioeconomic diversity of Indonesia. In addition, the survey was designed to have a 

panel structured at the household level. 
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We constructed a birth-level dataset, and linked outcome information on births to insurance 

information of the mother, as well as her demographic information, her household and community. 

Complete pregnancy histories are available for women aged 15 to 49, including the date of birth of 

each child, whether the child is still alive, and if not, the age at death. In line with conventions, the 

death of a child is classified as ‘infant death’, if the death occurred before the first birthday. 

Restricting the recall period to 6 years to minimise recall bias, we collated births between 2002 and 

2007 from IFLS4, and between 2008 and 2014 from IFLS5. We define an ‘assisted birth’ variable 

indicating whether the birth has been attended by either a midwife or a doctor, or both, regardless 

of place of delivery (both in and out of hospital). A mother can be ‘uninsured’, ‘have subsidised 

insurance’, and ‘have contributory insurance’ in the year of the birth. Subsidised insurance is defined 

as reporting enrolment in the Health card, Askeskin, Jamkesmas, Jamkesda or JKN schemes; 

contributory insurance is defined as reporting access to the Askes or Jamsostek or other employer 

provided insurance5 (see Figure 1). Finally, ‘uninsured’ is defined as not having reported any 
subsidised or contributory insurance. Those births for which a mother reports having both 

subsidised and contributory insurance were excluded from the analysis6, as such double insurance, 

while it did occur in practice, was not formally allowed7.  

 

We extracted a rich set of variables to control for confounding, focussing on the characteristics of 

the mothers, households and communities, which contribute to the eligibility and enrolment in the 

health insurance schemes, and which are also independently associated with health care utilisation 

or infant mortality8. Following previous studies (Dow and Schmeer 2003, Shrestha 2010), we 

included the following predictors of infant mortality: mother’s education (categorised as primary, 
senior, secondary, and university), mother’s literacy (ability to write a letter in Indonesian), age at 

birth, sex of the child, birth order of the child, and whether a household was urban or rural. To 

capture the means-testing eligibility criteria of the subsidised health insurance programmes (Johar 

2009), we construct an asset index (O'Donnell et al. 2007), using principal component analysis (PCA) 

to classify households into wealth quintiles based on asset ownership and household characteristics 

(see Appendix A for specific variables used in the PCA). We also created a binary variable from the 

self-reported health of the mother (1 if good or excellent, 0 otherwise). To capture further indicators 

of socioeconomic deprivation, which could play a role in the eligibility for subsidised health 

insurance, we capture participation in three major social assistance programs: a subsidised rice 

(‘Raskin’) programme, an unconditional cash transfer programme, and a ‘poor card’ programme. We 

also added a variable capturing whether the household had been seriously affected by a natural 

disaster in the preceding five years.  

 

 

 

 

 

 

                                                           
5 We have recoded mothers who have reported no health insurance if they were eligible based on the insurance status of 

their spouse or household head, and they reported being insured.  
6 Such double insurance constituted 5% of our overall sample. 
7 Because of the universal availability of the Jampersal programme, both insured and uninsured mothers may have 

reported “having” Jampersal. Hence, we did not include it in the definition of the health insurance variable. 
8 Variables that are only expected to affect enrolment in the subsidised or contributory health insurance schemes, but are 

unlikely to have a direct effect on infant mortality (or be affected by infant mortality themselves), were assessed as 

candidates for instrumental variables. However, none of them were found strong and valid at the same time. 
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Following previous work (Johar 2009), we also capture whether community members have access to 

a village midwife, a birth clinic, a hospital, a public health centre or private health care providers.9 

We have also extracted indicators for province of residence for the mother, at the time of the 

survey, to control for unobserved heterogeneity across provinces (e.g. in terms of geography), which 

may influence access to health care. A year of birth variable seeks to control for time trends 

affecting changes in infant mortality (e.g. technological innovations in neonatal intensive care), that 

may have coincided with the gradual expansion of health insurance. For the pre-specified subgroup 

analysis, we selected three widely used socioeconomic proxies to be able to assess the impact of 

insurance for those most vulnerable in terms of disease burden and access to health care 

(Lagomarsino et al. 2012): mothers with low education, those in the bottom socioeconomic 

quintiles, and those living in remote, rural communities. 

  

                                                           
9 In order to strengthen our causal assumptions, we require that the observable variables included in our regressions are 

measured before a child is born, but also before a decision about enrolling in health insurance has been made. Hence, for 

births recorded in IFLS4 (2002-2007), we take measurements of individual and household level variables from IFLS3 (2000). 

Similarly, for births recorded in IFLS5 (2008-2014), we measure individual and household level variables from IFLS4 

(2007/2008). For individuals who did not have a measurement in the previous wave, because they were not part of the IFLS 

sample yet (approximately 30% of the total sample), we take the current measurements as proxies. We follow a similar 

logic for missing household level covariates in the case of new people entering the IFLS sample (5% of the total sample 

missing). We construct indicator variables for these cases of missingness and include them in our analyses. 
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3. Methods 

3.1 Potential outcomes and causal parameters 

We are interested in estimating causal effects of a mother being enrolled in one of two health 

insurance types (subsidised or contributory) versus no health insurance, on one health outcome 

(infant mortality) and one health care utilisation outcome (assisted delivery) for a given birth, 

henceforth referred to as a unit. We conduct these analyses separately, and use a common notation 𝑌 for both outcomes, and 𝑊 for both health insurance schemes. Following the Neyman-Rubin 

potential outcomes framework (see e.g. Abadie and Cattaneo, 2018), the potential outcome for a 

given birth 𝑖 under no health insurance is denoted by 𝑌𝑖(0) and under a given health insurance 

programme by 𝑌𝑖(1). The causal individual treatment effect of health insurance for each unit is 

defined as the difference between the two potential outcomes,  𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0). Since for a given 

unit only one of the two potential treatment states is observed, this individual treatment effect 

cannot be estimated from the observed data. Therefore, we aim for average estimands which can be 

identified under no interference, consistency10, and no unobserved confounding after adjusting for 

the sufficient variable set 𝑋; is, that the potential outcomes are independent of the observed 

insurance status 𝑊, conditional on 𝑋: 

 𝑌(1), 𝑌(0) ⊥ 𝑊 | 𝑋  . 

 

Further, we require that the overlap assumption holds, that is, there must be a positive probability 

to be enrolled in a given health insurance programme, but this probability must be strictly smaller 

than 1: no covariate combination should fully determine a mother’s insurance status: 
 0 < Pr(𝑊 = 1| 𝑋) < 1 . 
 

Under these assumptions, the average treatment effect (ATE), the average treatment effect on the 

treated (ATT), and the average treatment effect on the controls (ATC) can be identified. These three 

estimands answer different policy evaluation questions. The ATE estimand, defined as 𝐸[𝑌(1) −𝑌(0)] contrasts the potential outcomes in a world where everyone has a given insurance, and where 

no one has insurance, and takes the average of these contrasts over the pooled population of the 

uninsured and the insured. The ATT, defined as 𝐸[𝑌(1) − 𝑌(0)|𝑊 = 1] answers the question: how 

much did those who had a certain insurance type benefit from having that health insurance, 

compared to not having insurance? Finally, the ATC, defined as 𝐸[𝑌(1) − 𝑌(0)|𝑊 = 0] aims to 

answer the question: how much the uninsured would have benefitted from having a given insurance 

type. The ATC estimand also allows us to contrast the impacts of the two insurance types, as the 

population for whom the benefits are calculated is held constant at the uninsured, representing a 

large portion of the population in Indonesia in the study period, including subgroups from all 

socioeconomic quintiles. 

 

Beyond population average treatment effects, we also aim to evaluate how treatment effects vary 

across different subpopulations, by estimating the conditional average treatment effect (CATE) 

function, defined as: 

 𝜏(𝑥) = 𝐸[𝑌(1) − 𝑌(0)|𝑋 = 𝑥]. 

 

                                                           
10 The no interference assumption requires that a unit’s outcome is not affected by the treatment received by other units 

(Tchetgen and VanderWeele 2012). The consistency assumption requires that the observed outcome corresponds to the 

potential outcome under the observed treatment (VanderWeele 2009). 
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The CATE can be conceptualised as a function that takes a combination of observed covariates that 

are assumed to modify the effect of the treatment, at a selected covariate profile 𝑥, and outputs a 

treatment effect that corresponds to this covariate profile. In the context of health insurance, we 

expect that a range of the observed covariates can modify the treatment effect, beyond the 

socioeconomic factors listed above. The geographical availability of health services may be one such 

example. 

 

3.2 Estimation of average treatment effects  

3.2.1 Linear outcome regression 

In the first set of analysis, we assume a linear probability model for each outcome of interest: 

 𝑌𝑖 = 𝛽𝑋𝑖 + 𝑊𝑖𝜏 +  𝜀𝑖 ,   [1] 

 

where 𝑌𝑖  indicates  (a) the survival status of infant 𝑖 born in year 𝑡 at 12 months after birth (b) 

whether the birth was attended by health professional, and the vector 𝑋𝑖 = (𝑍𝑚𝑡 , 𝑍ℎ𝑡 , 𝑍𝑐𝑡 , 𝛿𝑝, 𝛼𝑡) 

includes several components: 𝑍𝑚𝑡 denotes the characteristics of the mother (e.g. education) , 𝑍ℎ𝑡 captures household characteristics (e.g. household asset quintile, social assistance), 𝑍𝑐𝑡 

community level variables (e.g. availability of hospital or birth clinic in the neighbourhood, or 

availability of a village midwife in the year of birth), 𝛿𝑝 are the effects of unobserved time-constant 

factors at the province level, 𝛼𝑡 is the birth cohort indicator capturing shocks over time. 𝑊𝑖 is the 

treatment of interest, i.e. whether in birth year of child 𝑖, the mother had a given health insurance 

(𝑊 ∈ (0,1)), 𝜏 is the treatment effect of interest. The residual term 𝜀𝑖  is assumed normally 

distributed, mean zero, and captures a composite of any unobserved province, community, 

household, mother and child level shocks. It follows from the previously stated assumptions that 𝑊𝑖  is uncorrelated with the 𝜀𝑖  implying that any unobserved health shock to the mother, or income 

shock to the household, beyond those captured by the year fixed effects is unrelated to whether a 

mother is enrolled in health insurance in a given year. We employ separate regressions to estimate 

the impacts of subsidised and contributory health insurance, compared to no insurance, while in 

Appendix B we present an analysis where we pool the treatment groups, and estimate the impact on 

the outcomes of having any insurance vs. no insurance.  

 

3.2.2 Propensity score weighted outcome regression  

The outcome regression, eq. [1], assumes a homogenous additive treatment, hence 𝜏 cannot be 

directly interpreted as estimating either one of the ATE, ATT or ATC defined before. Moreover, the 

model relies on the linear relationship between the outcome and the covariates being correct (Ho et 

al. 2007). To address these restrictions, we also implement an inverse probability weighted (IPW) 

estimation of the outcome regression, using propensity scores (Rosenbaum and Rubin, 1983), 

defined as 𝑝(𝑋) = (𝑊 = 1|𝑋), estimated via logistic regression including all the sufficient covariates 

as in [1]11. We then use these inverse propensity scores to weight the linear outcome regression 

models, and obtain the estimated ATE, ATE and ATC by predicting both potential outcomes for each 

unit, and taking the relevant averages. This estimator is considered double-robust: consistent if 

either the regression or the propensity score model is correctly specified (Kang and Schafer, 2008). 

We implement this regression using the teffects command in Stata.  

 

                                                           
11 Instead of province dummies, we use region dummies to adjust for confounding due to geographic region, due to 

convergence issues experienced in the weighted parametric regression models used by the teffects package. The use 

of region vs. province dummies made no difference to the results.  
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3.3 Estimation of heterogeneous treatment effects using causal forests 

The ATE, ATT and ATC estimands allow for the causal effects to be different for those insured and 

uninsured, but do not capture their variation over the observed 𝑋 covariates. Therefore, we now 

focus on the CATE estimand 𝜏(𝑥) that allows the treatment effects to vary as a function of 

covariates. We begin by considering a partially linear model for the outcome of interest, as before, 

that is: 𝑌𝑖 = 𝑓(𝑋𝑖) + 𝑊𝜏 +  𝜀𝑖,          [2] 

 

with 𝑓(𝑋) an unspecified function, and initially, that 𝜏, the treatment effect, is constant in 𝑋. 

Following Robinson (1988), we can re write this model in a ‘centred’ or residualised form as follows 

 𝑌𝑖  −  𝑚(𝑋𝑖 ) = (𝑊𝑖 − 𝑝(𝑋𝑖))𝜏 +  𝜖𝑖 ,              [3] 

 

where 𝑝(𝑋𝑖) is the propensity score as before, and  𝑚(𝑋𝑖) = 𝐸[𝑌𝑖|𝑋𝑖]  the conditional expectation of 

the outcome, marginalised over the treatment. The expressions 𝑚(. ) and 𝑝(. ) are often referred to 

as ‘nuisance functions’, and they can be estimated with any prediction algorithm, including ML 

methods.  The causal effect 𝜏 can be estimated by solving eq. [3], and plugging in the predictions for 𝑚(𝑋𝑖) and 𝑝(𝑋𝑖) in the following formula: 

 𝜏̂ = 
∑ {(𝑊𝑖−𝑝̂(𝑋𝑖))(𝑌𝑖−𝑚̂(𝑋𝑖))}𝑛𝑖=1 ∑{𝑊𝑖−𝑝(𝑋𝑖)}2 .         [4] 

 

This corresponds to running a regression of the Y-residual on the W-residual. Such ‘residualising’ 
decreases the sensitivity of the resulting estimator to the errors in the estimates of the nuisance 

functions (Chernozhukov et al. 2018a). This can be extended to allow for heterogeneous treatment 

effects, assuming a sufficiently small neighbourhood  𝑁(𝑥) such that 𝜏(𝑥) is constant, which allows 

us to rewrite [4] as  

 𝜏̂(𝑥) = 
∑ {(𝑊𝑖−𝑝̂(𝑋𝑖))(𝑌𝑖−𝑚̂(𝑋𝑖))}{𝑖:𝑋𝑖𝜖 𝑁(𝑥)}∑ {𝑊𝑖−𝑝̂(𝑋𝑖)}2{𝑖:𝑋𝑖𝜖𝑁(𝑥) }     [5] 

 

The main challenge for CATE estimation is how to choose 𝑁(𝑥). To solve this, Athey et al. (2019a) 

propose a generalised random forest approach, which conceptualises these neighbourhoods as a 

locally weighted set of neighbouring observations for a given value of 𝑥. The weights are estimated 

by performing a modification of the Random Forest regression algorithm (Breiman, 2001). In short, 

random forests calculate a predicted outcome for a unit by averaging the outcome of other units 

that are similar enough in covariates. The group of similar units are referred to as a leaf of a tree, 

and leaves are decided on by splitting the data based on cut-off values of the predictors, where the 

predictors to split on and cut-offs are decided so that the resulting splits minimise the prediction 

error in the sample. To reduce the noise stemming from using individual trees as predictors, this is 

done many times over bootstrapped samples of the data, and final predictions for each observation 

are obtained as the average of predictions over the bootstrap samples.  

 

Generalised random forests build on this algorithm, but modify it in important aspects, to ultimately 

minimise the bias in the estimated CATE. First, the outcomes and treatment are residualised as 

described before. Second, the splits of the data (‘the causal trees’) are formed by running the local 

linear regressions (eq. [3]) in each candidate split. Instead of choosing splits to minimise prediction 

error, they are chosen so that within a leaf, estimated treatment effects are similar (corresponding 

to homogenous treatment effects within a leaf), while between leaves, they differ (capturing 

treatment effect heterogeneity across units with differing 𝑋 values). This procedure is performed on 

many bootstrap samples, thus forming causal forests. The causal forests are then used to calculate 
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𝛼𝑖(𝑥) weights for each observation, based on how frequently an observation was used to estimate 

the treatment effect at 𝑥. The resulting weights are employed in an estimator of the CATE that 

modifies [4] as follows: 

                             𝜏̂(𝑥) = 
∑ 𝛼𝑖(𝑥){(𝑊𝑖−𝑝(𝑋𝑖))(𝑌𝑖−𝑚(𝑋𝑖))}𝑛𝑖=1 ∑ 𝛼𝑖(𝑥){𝑊𝑖−𝑝(𝑋𝑖)}2  .                                        [6] 

 

Individual treatment effects  𝜏̂(𝑋𝑖) can be estimated by evaluating 𝜏̂(x)  at the covariate 

combination of each unit. Average treatment effects can also be obtained, by plugging in the 

estimated 𝜏̂(𝑋𝑖) in a variant of the augmented inverse probability weighting estimator (Robins, 

Rotnitzky, and Zhao, 1994): 

 𝜏̂ = ∑ 𝜏̂(𝑋𝑖)𝑛𝐷𝑖=1 +  𝑊𝑖−𝑝(𝑋𝑖)𝑝(𝑋𝑖)(1−𝑝(𝑋𝑖))    ((𝑌𝑖 − 𝑚(𝑋𝑖) − (𝑊𝑖 − 𝑝(𝑋𝑖))𝜏̂(𝑋𝑖)),             [7] 

 

where the summation is taken over 𝑛𝐷, that stands for the sample of the treated, the control or the 

treated plus control samples, depending on whether the causal estimand is the ATT the ATC or the 

ATE, respectively. This formula also provides the subgroup average treatment effects, constraining 

the summation for units in the subgroups of interest (e.g. women with primary education only). 

 

We apply the causal forest approach as implemented in the grf R package (Tibshirani et al. 2018) and 

follow the steps, suggested by Athey and Wager (2019b), below: 

 

1. Fit ‘traditional’ regression forests to estimate 𝑚(𝑋𝑖) and the 𝑝(𝑋𝑖), then calculate 

residualised outcomes using these quantities. We use 500 trees to select the tuning 

parameters, and 1000 trees to obtain the predictions.  

2. Grow a causal forest on 1000 bootstrap samples (with 500 trees to select tuning 

parameters). We rank variables used in terms of variable importance in the resulting causal 

forest (based on count of the proportion of splits on the given variable) and select those 

with higher than mean variable importance measure.  

3. Re-grow the causal forest, using only the selected effect modifiers, using 500 trees for 

tuning, and 3000 trees for predicting ITEs. The residualising step [1] ensures that using only a 

subset of the covariates will not result in incomplete adjustment for confounding.  

4. Estimate individual level treatment effects by evaluating the resulting 𝜏̂(𝑥) function for each 

unit’s own covariate values. We estimate ATE, ATT, ATC, and subgroup ATCs for each pre-

specified subgroup. 

5. Assess the heterogeneity captured by the resulting causal forests the following ways: 

a. Plot the estimated individual level CATEs, with their estimated confidence intervals.  

b. Perform a test for the presence of overall heterogeneity captured by the 𝜏̂(𝑥) estimate (Chernozhukov et al. 2018b). This test assesses whether 𝜏̂(𝑥) captures 

any further information than simply using the ATE, 𝜏̂ to “predict” the individual level 
treatment effects.  

c. Assess the final ranking of the variable importance measure, form further subgroups 

based on the top ranked variables, and contrast the differences in the average 

treatment effects across these subgroups. 

d. Split individuals into two groups based on their estimated CATEs (below and above 

median), and describe these groups in a number of key characteristics. 

 

We implement this approach for the skilled birth attendance outcome variable, and fit separate 

causal forests for the subsidised and contributory health insurance. The covariates used in Steps 1-2 

include all the individual, household, community level variables used in the previous analyses, as 

well as the year of birth dummies and province dummies.   
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4. Results 

4.1 Descriptive statistics 

Table 1 and Figure 2 highlight that while the majority of births recorded in our dataset were not 

covered by any insurance scheme, subsidised health insurance saw a steep increase from 2005, 

while infant mortality decreased and the proportion of births assisted by a midwife or physician 

demonstrated a clear upwards trend. In Table 3, we contrast the observed characteristics of the 

three groups: births insured by subsidised insurance, births insured by contributory insurance, and 

births not covered by health insurance in the year of birth, comparing the means and standardised 

differences for each treatment group to the control group. Most variables display large differences 

(standardised differences >10%), with births under subsidised insurance being more likely to be from 

a rural household and from mothers who are older at birth, less likely to have studied at university 

and more likely to have only elementary school education, belong to lower wealth quintiles, and 

receive social assistance programmes, compared to those without subsidised insurance. By contrast, 

while those mothers with contributory insurance are also somewhat older at the time of birth than 

the uninsured, they are also more likely to have a university education, and are overrepresented 

among households within the highest asset index quintiles. A quarter of these mothers received 

subsidised rice, while only a small fraction received cash transfer (7%) or held a ‘Poor card’ (4%). We 

interpret these large differences as indicative of a strong confounding of the relationship between 

health insurance and the outcomes of interest.  

 

 

 

Figure 2 Trends in the probability of infant mortality, health care utilisation, and in the proportion of births 

covered by subsidised and contributory insurance 

Notes: Left axis: proportion of births covered by each insurance type, in a given year, proportion of birth attended by 

skilled health professional; right axis: probability of infant mortality 
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Table 1 Panel A: Insurance status of the mother a year of birth, Panel B: Absolute infant mortality,                

by year of birth 

Panel A: insurance status by year of birth 

Year of birth Uninsured Subsidised insurance Contributory insurance Total 

2002 615 8 79 702 

2003 729 21 89 839 

2004 687 40 104 831 

2005 620 76 106 802 

2006 603 79 94 776 

2007 582 115 164 861 

2008 875 59 116 1,050 

2009 782 73 99 954 

2010 877 93 107 1,077 

2011 821 97 98 1,016 

2012 773 151 139 1,063 

2013 680 252 124 1,056 

2014 467 447 135 1,049 

Total 9,111       1,511       454    12,076 

Panel B: Outcomes by insurance status 

Infant mortality (%) 2.57 2.31 1.12 2.37    

Assisted birth (%) 82.46      85.37   95.24     84.4 
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Table 2 Descriptive statistics by insurance status, before and after propensity score reweighting 

  Uninsured Subsidised HI Contributory HI 

  

mean mean 
SMD 

(raw) 

SMD  

(PS 

weighted, 

ATE) 

SMD 

 (PS 

weighted, 

ATT) 

Mean 
SMD 

(raw) 

SMD  

(PS 

weighted, 

ATE) 

SMD 

 (PS 

weighted, 

ATT) 
 Mother characteristics  

Age 27.14 28.01 14.0% 0.5% -0.3% 29.10 34.4% -9.4% 0.3% 

Health (good) 0.87 0.83 -8.8% 3.4% -4.5% 0.87 2.0% 0.5% 0.4% 

Educ: primary 0.32 0.38 12.7% 5.9% -0.6% 0.09 -59.0% -1.6% 0.3% 

Educ: secondary 0.26 0.28 4.5% -2.0% -3.3% 0.14 -30.6% 3.6% -0.1% 

Educ: senior 0.33 0.29 -8.6% -1.1% 3.5% 0.41 17.1% -2.2% 1.0% 

Educ: higher 0.10 0.06 -15.4% -5.3% 0.9% 0.36 66.6% 0.7% -1.2% 

Writes 

(Indonesian) 
0.96 0.95 -2.8% -1.0% 0.4% 0.99 18.6% 5.0% -0.7% 

 Household characteristics  

Wealth quint 1 0.19 0.30 24.0% 2.6% -0.9% 0.04 -51.4% -0.3% 0.2% 

Wealth quint 2 0.21 0.25 9.1% 4.2% -3.4% 0.09 -34.5% 2.7% 0.3% 

Wealth quint 3 0.22 0.21 -2.1% 0.3% 1.5% 0.17 -14.0% -3.5% 0.2% 

Wealth quint 4 0.20 0.16 -11.1% 0.1% 1.9% 0.30 22.0% 0.9% -0.9% 

Wealth quint 5 0.17 0.08 -27.5% -8.7% 2.0% 0.41 55.3% 0.3% 0.4% 

Raskin 0.50 0.72 45.6% 10.8% -4.4% 0.26 -51.8% -2.0% -0.1% 

Cash transfer 0.23 0.45 47.0% 7.7% -5.2% 0.07 -46.1% -2.3% 0.2% 

Poor card 0.09 0.20 31.6% 5.3% -2.6% 0.04 -18.5% 1.7% 0.6% 

Rural 0.48 0.47 -2.3% 8.3% -1.3% 0.28 -43.3% -0.7% 0.7% 

Disaster 0.23 0.28 10.2% 7.8% -1.1% 0.24 1.5% -3.4% 0.4% 

 
 

 
Availability of health services in community 

Birth clinic  0.99 1.00 4.1% 4.3% 0.3% 0.99 0.4% 2.7% -0.4% 

Health centre 0.97 0.98 3.2% 5.0% -0.7% 0.97 -1.4% 5.1% -1.6% 

Private practice 0.96 0.95 -1.8% 1.2% -2.0% 0.94 -7.9% 2.2% 0.4% 

Hospital 0.90 0.93 9.9% -3.2% 0.3% 0.89 -4.6% 6.0% -2.0% 

Midwife 0.82 0.83 3.0% 12.4% -0.7% 0.76 -15.0% 1.8% 0.3% 
 Child characteristics  

1st child 0.68 0.52 -33.7% 1.0% 0.9% 0.64 -10.0% 6.3% -0.9% 

2nd child 0.25 0.36 22.9% -0.5% -1.5% 0.30 9.8% -3.0% 0.7% 

>= 3rd child  0.06 0.12 20.1% -1.0% 0.9% 0.07 1.5% -7.0% 0.4% 

Female 0.49 0.49 1.5% -0.1% 1.0% 0.49 1.5% 0.5% 0.3% 

 Regions  

Sumatera  0.27 0.23 -8.3% 5.5% 0% 0.22 -9.8% -8.9% 1.4% 

Jakarta  0.06 0.04 -5.1% -10.7% 2% 0.09 12.6% 1.0% -1.0% 

Jawa  0.44 0.44 -1.5% -6.6% 0% 0.46 2.9% 16.3% -2.7% 

Bali,NTB,NTT 0.13 0.19 15.7% 2.4% 1% 0.10 -8.9% -12.9% 1.5% 

Kalimantan 0.05 0.02 -14.7% 6.3% 0% 0.07 5.9% 3.3% 0.3% 

Sulawesi  0.05 0.08 10.4% 2.9% -1% 0.06 4.3% -6.6% 2.0% 

Notes: educ: education, quint: quintile, SMD: standardised mean difference, PS: propensity score, ATE: average treatment 

effect, ATT: average treatment effect among the treated, IPW: inverse probability of treatment weighting 
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4.2 Results: Average treatment effects  

Table 3 displays the linear regression estimates for the effect of health insurance on infant mortality 

and assisted birth. For subsidised health insurance, the unadjusted (naïve) results for infant 

mortality are small and insignificant, but adjustment for observed confounders leads to an increase 

in the magnitude of the estimates, in line with the expected sign of bias, given the worse 

socioeconomic profile of mothers enrolled into subsidised insurance, compared to the uninsured 

ones. Even after covariates adjustment, year and province dummies, there is no evidence that the 

estimated effects of subsidised insurance on infant mortality are different from the null. For the 

contributory health insurance, the estimated coefficients move in the opposite direction, and 

decrease after covariate adjustment; however, there is strong evidence that resulting point 

estimates still indicate a large protective (i.e. infant mortality-reducing) insurance effect of 0.9 

percentage point (p <0.01). When investigating the assisted birth outcome, the regression estimates 

show an evidence of increase in assisted births among mothers with contributory health insurance, 

with an estimated increase of 3 percentage points. At the same time, there is a somewhat weak 

evidence of an increase for those with subsidised health insurance (2 percentage points) (p<0.1). 

(Results of the regression analyses with 1) pooling the two insured and uninsured populations, using 

a categorical insurance variable, and 2) using an ‘any insurance’ treatment variable are reported 

Appendix Table 1.) 

 

Table 2 and Appendix Figure 1 describe the covariate balance achieved after inverse probability 

weighting using the estimated propensity scores for both treatment groups compared to the control 

group, and contrasts these to the unweighted balance. Using weights that aim to recreate the 

distribution for the treated (ATE, ATC and ATT weights), the balance improves for each covariate, 

and standardised differences stay above 10% for only a few covariates, and the ATE weights showing 

somewhat worse balance than the ATT and ATC weights. Appendix Table 2 displays the distributions 

of the estimated propensity scores. While there is a good overlap between the propensity score 

distributions for both insurance types, there is a large mass around zero for the uninsured, implying 

that many of those who did not get the insurance were unlikely to get it based on their observed 

covariates.  

 

Table 3 (Panel A) reports the IPW regression estimates for each estimand, for both outcomes. For 

infant mortality, there is no evidence of an effect of subsidised health insurance, while we found 

evidence of a somewhat larger (when compared to the regression estimates) effect of the 

contributory health insurance. Here, estimated ATE and ATC are larger than the ATT, indicating that 

the uninsured would have benefitted more from the insurance than those who were actually 

insured. This pattern repeats with the assisted birth outcome, for both insurance types: the benefit 

in terms of increased access is larger among the untreated than among the treated, while these 

estimated effects are significant (p<0.01) for the contributory health insurance, and not significant 

for the subsidised health insurance. As the populations of uninsured and those with the two health 

insurance types widely differ in terms of observed characteristics, we expect that the differences 

between the estimated ATTs, ATC, and ATEs can be explained with effect modification due to the 

observed covariates. We explore this in the next section. 
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Table 3 Linear regression results for the effect of health insurance on Infant mortality and assisted birth 

outcomes 
 

Panel A: Subsidised HI 
 

Unadjusted 1 Unadjusted 2 OLS1 OLS2 

Infant mortality         

Estimate -0.0025 -0.0020 -0.0056 -0.0055 

(SE) (0.0047) (0.0052) (0.0052) (0.0053) 

Observations 10,622 10,622 10,622 10,622 

     

Skilled birth attendance 
    

Estimate 0.0291*** -0.0295*** 0.0163 0.0183* 

(SE) (0.0104) (0.0110) (0.0108) (0.0108) 

Observations 9,834 9,834 9,834 9,834 

     
 

Panel B: Contributory HI 

 Unadjusted 1 Unadjusted 2 OLS1 OLS2 

Infant mortality     

Estimate -0.0126*** -0.0130*** -0.0088** -0.0093** 

(SE) (0.0034) (0.0035) (0.0038) (0.0039) 

Observations 10,565 10,565 10,565 10,565 

     

Skilled birth attendance     

Estimate 0.1279*** 0.1225*** 0.0237*** 0.0294*** 

(SE) (0.0079) (0.0080) (0.0080) (0.0081) 

Observations 9,732 9,732 9,732 9,732 

     

Year dummies N Y Y Y 

Covariates N N Y Y 

Province dummies N N N Y 

  Notes: HI: Health Insurance, OLS: Ordinary least squares, *** p<0.01, ** p<0.05, * p<0.1 
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Table 4 Estimates of average treatment effects. Panel A: Inverse probability of treatment weighted regression Panel B: Causal Forests 

Infant mortality Panel A1: IPW-Regression  

Subsidised health insurance Estimate (SE)    
 

ATE -0.0026 (0.0058)  

ATC -0.0058 (0.0055)  

ATT -0.0026 (0.0052)  

   

Contributory health insurance   

ATE -0.0147***(0.0033)  

ATC - 0.0157***(0.0033)  

ATT -0.0101**(0.0041)  

   

Assisted birth Panel A2: IPW-Regression Panel B: Causal Forests 

Subsidised health insurance Estimate (SE) Estimate (SE)   
 

ATE 0.0206 (0.0136) 0.016 (0.0115) 

ATC 0.0231 (0.0149) 0.016 (0.012) 

ATT 0.0120 (0.0111) 0.011 (0.0093) 

   

Contributory health insurance   

ATE 0.0584***(0.0159) 0.055 (0.0109) ***  

ATC 0.0639***(0.0176) 0.060 (0.012)*** 

ATT 0.0239***(0.0070) 0.024 (0.0058)*** 

Notes: SE: standard error, ATE: average treatment effect, ATT: average treatment effect among the treated, ATC: average treatment effect among the controls, IPW: inverse probability of 

treatment weighting, *** p<0.01, ** p<0.05, * p<0.1 
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4.3 Results: heterogeneous treatment effects 

Figure 3 presents the distribution of the estimated causal individual-level treatment effects: the 

histograms of the point estimates (left panel) and the ranked estimates (solid line) with their 95% 

confidence intervals. For the subsidised health insurance, the estimated confidence interval (CIs) 

includes zero for the whole distribution, while for contributory health insurance, a small fraction of 

CIs exclude zero. The formal test for treatment effect heterogeneity indicates the presence of 

heterogeneity for the contributory health insurance (p=0.003), but not for the subsidised health 

insurance (p=0.69). 

 

 

 

 

 

 

 

Figure 3 Estimated (conditional) individual level treatment effects. Top panel: subsidised health insurance; 

bottom panel: contributory health insurance. Left panel: distribution of the point estimates. Right panel: 

point estimates (black curve) and 95% confidence intervals, ranked 

Notes: IPWRA: inverse probability weighted regression adjustment, CF: causal forests, ATE: average treatment effect, ATT: 

average treatment effect among the treated, ATC: average treatment effect among the controls 
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Table 5 presents the ranking of covariates in terms of their importance in predicting treatment effect 

heterogeneity, in terms of utilisation of skilled assistance when giving birth. For the contributory 

health insurance scheme, these largely overlap with the pre-specified socioeconomic covariates: 

education, wealth quintiles, and the rurality of the household. The most important variable 

associated with the estimated heterogeneous effect was the indicator for East Java province: a 

relatively industrialised region of Indonesia. For the subsidised health insurance scheme, the most 

influential variables were mother’s age and the birth order of the child, followed by being in receipt 
of cash transfers and possessing a poor card.  

 

Panel B of Table 4 and Figure 4 present the average treatment effects reported by the causal forest 

estimator, which closely correspond to the IPW-regression estimates. Figure 5 and Table 6 presents 

the conditional average treatment effects among the controls for pre-specified subgroups (top 

panel) as well as subgroups constructed based on the variables suggested by the final causal forests 

variable importance (right panel). We detect large differences in subgroup ATCs for contributory 

health insurance corresponding to subgroups suggested by variable importance: there is a strong 

gradient in terms of wealth quintiles in the estimated subgroup effects, and there are also 

considerable differences in ATC reported between those with different education levels, and 

between rural and urban communities. The differences in the subgroup effects, while showing a 

similar direction, are much less pronounced for the subsidised health insurance, and there is no 

evidence in support of a subgroup ATCs being different from zero. Among the subgroups discovered 

by the causal forest algorithm, for the subsidised scheme we found some evidence (p<0.05) of 

treatment effect for the subgroup with the third or higher birth order. None of these results were 

found to be sensitive to the choice of tuning parameters for the causal forest algorithm, which were 

selected outside of the cross-validation algorithm (number of trees used for tuning, number of trees 

used for the final Causal Forests). We present the selected tuning parameters in the Appendix Table 

3. 

 

As a final, exploratory analysis, Appendix Table 2 compares the characteristics of mothers when they 

are grouped based on the estimated individual level CATEs, using the median value as the cut-off. It 

appears that mothers who benefitted relatively more from the subsidised health insurance are 

older, more likely to be in lower wealth quintiles, and more likely to have received cash transfer or 

rice subsidy, than those in the lower half of the treatment effect distribution. Those benefitting most 

from contributory health insurance are also more likely to belong to the lower wealth quintiles, less 

likely to have had higher levels of education, and twice as likely to have received subsidies, 

compared to those in the lower half of the distribution. There is no difference in the availability of 

health services among the two groups.  
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Table 5: Covariate importance in explaining treatment effect heterogeneity (10 highest importance covariates) 

 Subsidised HI Contributory HI 

Ranking Variable importance measure Variable Variable importance Variable 

1 0.126 Birth order >=3 0.127 Province East Java 

2 0.085 Birth year 2012 0.123 Higher education 

3 0.084 Age >=31 0.083 Wealth quantile 4 

4 0.075 Past covariates imputed 0.069 Province South Kalimantan 

5 0.066 Cash transfer 0.066 Rural community 

6 0.065 Poor card 0.060 Wealth quantile 5 

7 0.063 Birth year 2014 0.055 Province West Sumatra 

8 0.062 Birth order =2 0.049 Private practice in community 

9 0.054 Province West Nusa Tenggara 0.048 Senior education 

10 0.046 Natural disaster 0.045 Province Banten 

Notes: The variable importance measure is based on the count of the proportion of splits on the given variable 
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 Table 6: Estimated conditional average treatment effects, for pre-specified subgroups and subgroups discovered by the causal forest algorithm 

 Subsidised HI Contributory HI 
 

CATC SE CATC SE 

All (uninsured) 0.0162 0.0125 0.0596*** 0.012 

     

Pre-specified subgroups     

1-2nd quint 0.0313 0.0252 0.1299*** 0.0379 

3-4th quint 0.011 0.0147 0.0351*** 0.0121 

5th quint 0.0055 0.025 0.0009 0.0117 

No/primary educ  0.0206 0.0204 0.0985*** 0.0285 

Secondary educ 0.0232 0.0166 0.0408*** 0.0153 

Higher educ 0.0093 0.0328 0.008 0.0132 

Rural community 0.0182 0.0209 0.0844*** 0.0246 

Urban community 0.0143 0.0142 0.0375*** 0.0095 

     

Discovered subgroups     

<=31y 0.0115 0.0149   

>31y 0.0309 0.0225   

1st-2nd child 0.0132 0.0133   

3rd+ child 0.0602** 0.030   

Java   0.1324*** 0.0213 

Rest of Indonesia   0.0482*** 0.0137 

     

Notes: HI: health insurance, CATC: conditional average treatment effect among the controls, SE: standard error quint: quintiles, educ: education, *** p<0.01, ** p<0.05, * p<0.1 
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Figure 4 Estimated average treatment effects. Left panel: subsidised health insurance; right panel: contributory health insurance 

Notes: IPWRA: inverse probability weighted regression adjustment, CF: causal forests, ATE: average treatment effect, ATT: average treatment effect among the treated, ATC: average 

treatment effect among the controls 
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Figure 5 Estimated subgroup average treatment effects. Left panel: subsidised health insurance; right panel: contributory health insurance. Top panel: pre-specified 

subgroups. Bottom panel: subgroups discovered by the causal forest algorithm
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5. Discussion 

In this paper, we estimated the average and heterogeneous effects of two main Indonesian health insurance 

types on infant mortality, and on maternal health care utilisation at the time of delivery. We find that enrolment 

in contributory health insurance reduced infant mortality on average by 0.9 (p <0.05) percentage points, 

corresponding to a sizeable 30% reduction from the average infant mortality rate (i.e. infant deaths per 1000 live 

births) over the period. By contrast, we found no evidence of non-zero effect of subsidised health insurance. Our 

findings for the health care utilisation outcome may help explain these results: contributory insurance increased 

the expected probability of having a birth attended by a healthcare professional, but there was no evidence of 

such an effect for the subsidised scheme. Our findings mirror the previous evidence that found small to 

negligible impact of subsidised health insurance schemes on health services utilisation (Johar 2009, Sparrow et 

al. 2013, Erlangga et al. 2019a), and they are also consistent with the findings of Anindya et al. (2020) that found 

that the JKN programme significantly improved the utilisation of skilled birth attendance, in a population that 

pooled the recipients of subsidised and contributory insurance.  

 

We delved deeper into this, by examining the heterogeneity in the effects: for both insurance schemes, the 

estimated causal effects on health care utilisation among the uninsured appear to be higher than among the 

insured (that is, on average, we expect those uninsured in the study period would benefit from being insured 

more than the expected benefit estimated amongst those who are insured). Indeed, we found that the benefits, 

in terms of increased access to assisted birth, are relatively higher among the more vulnerable subgroups, for 

both insurance types – reflecting the findings of Anindya et al. (2020) - and these differences are more 

pronounced for the contributory health insurance. While pre-specified socioeconomic variables ranked high in 

terms of being associated with treatment effect heterogeneity, we found further variables that according to the 

variable importance of the causal forest algorithm were more strongly associated with treatment heterogeneity: 

for example, women residing in certain provinces (e.g. East Java) would have benefited more than other 

subgroups, had they been insured (contributory vs remaining uninsured). For subsidised health insurance, none 

of the pre-specified population subgroups had a significant causal treatment effect. However, the variable 

importance of the CF algorithm suggested the child’s birth order explains significant treatment heterogeneity, 

with the subgroup of children who were third born or higher having the highest causal average treatment effect, 

with a 95% CI that excluded zero.  

 

A significant limitation of our analysis is that we could not conduct a subgroup analysis for the IMR outcome due 

to the very rare nature of the outcome variable (approximately 300 events out of 12,000). Furthermore, because 

we use household survey data, covariate information was collected at discrete time points, which were assumed 

to provide valid baseline measurements for births that happened closer or further away from the survey dates. 

This measurement error can also lead to a downward bias in the estimated coefficients.  

 

This paper is the first study to characterise the effect heterogeneity of a health policy intervention by employing 

causal forests. We highlighted the role of such causal machine learning approaches in exploring the 

heterogeneity of policy impacts according to observed covariates, beyond what can be captured by pre-specified 

subgroup analyses. Our study also highlights a crucial challenge when using this approach to estimate treatment 

heterogeneity in an observational framework: the need to adjust for observed confounding (indicated by large 

baseline imbalances in individual, community and household characteristics). The close agreement between the 

average treatment effects reported by a parametric IPW regression model and causal forests provides some 

reassurance that the adjustment for observed confounding was successful in both cases. Nevertheless, it may be 

the case that despite the variety of methods we employed, we still may not have captured all unobserved 

confounding, leading to biased estimates. First, the eligibility assessment was complex, based on geographical 

and household level criteria that are not fully reflected in our dataset. Second, take-up of the insurance was 

ultimately voluntary, leaving the possibility that those who are somewhat better off were less likely to opt for 

subsidised insurance, due to the perceived stigma and potentially lower quality of services, compared to those 

to be obtained in the private sector. 
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Our study highlights two potential further avenues for research: First, generalised random forests can be used to 

report conditional average treatment effects even in the presence of unobserved confounding, where 

instrumental variables are available (Athey et al. 2019a). Second, the estimated individual level treatment 

effects can be used to formulate so-called ‘optimal policy rules’: treatment assignment mechanisms that 

maximise a pre-specified welfare function of the decision-maker (Athey and Wager 2020). For the Indonesian 

context, such optimal policy rules could inform health policymaking in the country by guiding the re-design of 

the eligibility criteria for subsidised health insurance, which may be needed given the fiscal challenges brought 

by the move towards Universal Health Coverage. Beyond the specific case of Indonesia, the method may be used 

to help target policy efforts towards where the greatest potential benefits can be realised, thereby helping to 

pinpoint where adaptation of policy may be needed, be it in terms of eligibility or otherwise. In doing so, this will 

enable researchers to move policy impact evaluations beyond simple binary judgements on whether something 

‘works’ or not, towards matters of for whom policies ‘work’ and how these can be improved. 
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Appendix A: Variables used in the principal component analysis to construct the wealth index 

 Whether the household has electricity,  

 Access to piped water,  

 Types of stove,  

 Toilet inside the house,  

 Refrigerator,  

 Television,  

 House and land owned by household,  

 Ownership of other house,  

 Vehicles,  

 Household appliances,  

 Savings,  

 Receivables,  

 Jewellery. 
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Appendix B: Tables 

Appendix Table 1: Regressions results for pooled analysis of health insurance variable 
 

Unadjusted 1 Unadjusted 2 OLS 1 OLS 2 Unadjusted 1 Unadjusted 2 OLS 1 OLS 2 

Infant mortality                 
         

Subsidised HI -0.0025 -0.0024 -0.0058 -0.0058 
    

 
(0.0047) (0.0051) (0.0052) (0.0052) 

    

Contributory HI -0.0126*** -0.0128*** -0.0084** -0.0087** 
    

 
(0.0034) (0.0035) (0.0038) (0.0038) 

    

Any insurance 
    

-0.0075** -0.0078** -0.0071** -0.0072** 
     

(0.0032) (0.0033) (0.0034) (0.0034) 

 Observations   12,076   12,076   12,076   12,076   12,076   12,076   12,076   12,076  
         

Skilled birth attendance 
        

         

Subsidised HI 0.0291*** -0.0229** 0.0209** 0.0227** 
    

 
(0.0104) (0.0109) (0.0106) (0.0106) 

    

Contributory HI 0.1279*** 0.1224*** 0.0272*** 0.0329*** 
    

 
(0.0079) (0.0080) (0.0079) (0.0080) 

    

Any insurance 
    

0.0767*** 0.0518*** 0.0241*** 0.0277*** 
     

(0.0074) (0.0076) (0.0071) (0.0071) 

Observations 11,202 11,202 11,202 11,202 11,202 11,202 11,202 11,202 

         

Year dummies N Y Y Y N Y Y Y 

Covariates N N Y Y N N Y Y 

Province dummies N N N Y N N N Y 

         

Notes: HI: Health Insurance, OLS: Ordinary least squares, *** p<0.01, ** p<0.05, * p<0.1 
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Appendix Table 2: Comparison of observed characteristics of mothers with low and high treatment effects 

 Subsidised health insurance Contributory health insurance 

 Below median 

CATE 

Mean (SE) 

Above median 

CATE 

Mean (SE) 

SMD1 Below median 

CATE 

Mean (SE) 

Above 

median 

CATE  

Mean (SE) 

SMD 

Age at birth <=23 0.34 (0.47) 0.26 (0.44) 0.167 0.22 (0.41) 0.35 (0.48) 0.299 

Age at birth 23- <=27 0.29 (0.45) 0.19 (0.39) 0.246 0.30 (0.46) 0.20 (0.40) 0.245 

Age at birth 27- <=31 0.23 (0.42) 0.20 (0.40) 0.067 0.23 (0.42) 0.21 (0.41) 0.063 

Age at birth >31 0.14 (0.35) 0.35 (0.48) 0.501 0.25 (0.43) 0.24 (0.43) 0.004 

1st wealth quintile 0.20 (0.40) 0.22 (0.41) 0.049 0.08 (0.27) 0.26 (0.44) 0.507 

2nd wealth quintile 0.20 (0.40) 0.23 (0.42) 0.07 0.11 (0.31) 0.28 (0.45) 0.451 

3nd wealth quintile 0.23 (0.42) 0.22 (0.42) 0.009 0.17 (0.37) 0.27 (0.44) 0.252 

4th wealth quintile 0.20 (0.40) 0.19 (0.39) 0.014 0.33 (0.47) 0.10 (0.31) 0.561 

5th wealth quintile 0.17 (0.38) 0.13 (0.34) 0.11 0.32 (0.47) 0.08 (0.27) 0.632 

No/primary education 0.28 (0.45) 0.38 (0.49) 0.216 0.09 (0.29) 0.48 (0.50) 0.964 

Secondary education 0.27 (0.44) 0.25 (0.44) 0.026 0.11 (0.31) 0.37 (0.48) 0.645 

Senior education 0.36 (0.48) 0.29 (0.45) 0.145 0.55 (0.50) 0.13 (0.34) 0.992 

Higher education 0.10 (0.30) 0.08 (0.27) 0.076 0.25 (0.43) 0.01 (0.12) 0.739 

Poor card 0.13 (0.33) 0.08 (0.28) 0.141 0.08 (0.27) 0.09 (0.28) 0.033 

Received cash transfer 0.22 (0.42) 0.31 (0.46) 0.205 0.12 (0.33) 0.31 (0.46) 0.46 

Received subsidised rice 0.49 (0.50) 0.57 (0.49) 0.157 0.34 (0.47) 0.60 (0.49) 0.535 

Writes in Indonesian 0.97 (0.17) 0.94 (0.24) 0.153 0.99 (0.11) 0.93 (0.25) 0.282 

Public health clinic in 

community 

0.99 (0.09) 0.99 (0.09) 0.009 0.99 (0.08) 0.99 (0.10) 0.049 

Hospital in community 0.91 (0.29) 0.90 (0.31) 0.046 0.89 (0.31) 0.90 (0.29) 0.053 

Private practice in 

community 

0.96 (0.21) 0.96 (0.20) 0.021 0.94 (0.23) 0.97 (0.17) 0.121 

Notes: SE: standard error, SMD: standardised mean differences 
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Appendix Table 3: Tuning parameters in the causal forest analysis 

Tuning parameter grf package argument in 

causal_forest() function 

Values (subsidised HI 

analysis) 

Values (contributory HI 

analysis) 

Fraction of the data used to 

build each tree 

Sample. fraction 0.472 0.500 

Number of variables tried 

for each split 

mtry 21 21 

Minimum number of 

observations in each tree 

leaf 

min.node.size 1 5 

The fraction of data used for 

determining splits 

honesty.fraction 0.620 .0500 

Prunes the estimation 

sample tree such that no 

leaves are empty 

honesty.prune.leaves TRUE TRUE 

Maximum imbalance of a 

split 

alpha 0.091 0.05 

Controls how harshly 

imbalanced splits are 

penalised 

Imbalance.penanty 0.061 0 
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Appendix C: Figures 

 

 

Appendix Figure 1: Overview of balance after propensity score weighting: standardised mean differences of covariates involved in the propensity score analysis



 

 

 

Appendix Figure 2: Estimated propensity score distributions 

Notes: The top panel shows the estimated probability of being insured among those who were in fact uninsured, while the 

bottom panel shows the corresponding probabilities for those who were insured. The right (top and bottom) panels show 

the corresponding estimates for the probability of contributory insurance.  

 

 

 


