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Abstract

In this paper, we introduce geometry optimization into an existing topology optimization workflow for truss structures with

global stability constraints, assuming a linear buckling analysis. The design variables are the cross-sectional areas of the bars

and the coordinates of the joints. This makes the optimization problem formulations highly nonlinear and yields nonconvex

semidefinite programming problems, for which there are limited available numerical solvers compared with other classes

of optimization problems. We present problem instances of truss geometry and topology optimization with global stability

constraints solved using a standard primal-dual interior point implementation. During the solution process, both the cross-

sectional areas of the bars and the coordinates of the joints are concurrently optimized. Additionally, we apply adaptive

optimization techniques to allow the joints to navigate larger move limits and to improve the quality of the optimal designs.

Keywords Geometry and topology optimization · Global stability · Nonlinear semidefinite programming ·

Interior point methods

1 Introduction

Truss design problems are often formulated based on the

so-called ground structure approach (Dorn et al. 1964), in

which a set of joints are distributed in the design space

and are connected by potential bars. We are here concerned

with a truss design problem where the goal is to optimize

both the topology and geometry of the structures, i.e.,

when the design variables are the cross-sectional areas of
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the bars and the coordinates of the joints. These problems

have been studied in many articles, for example by Dobbs

and Felton (1969), Kirsch (1990b), Ben-Tal et al. (1993),

Bendsøe et al. (1994), Pedersen (1972), Sergeyev and

Pedersen (1996), Achtziger (1998), Tejani et al. (2018),

and Miguel and Miguel (2012), to mention just a few. The

problems are highly nonlinear, mainly due to the variation

of the joint coordinates. However, the models are known to

obtain optimal designs that are more practically useful as

they require less post-processing and contain fewer joints

connecting bars in the design space. Alternatively, one can

also obtain efficient (least weight) structures by considering

many more joints with fixed coordinates and solving large-

scale linear or nonlinear topology optimization problems

(Bendsøe and Sigmund 2003; Jarre et al. 1998; Gilbert

and Tyas 2003; Sokół and Rozvany 2013). However, the

resulting designs usually have many active joints and bars,

and are thus often far from practical.

Due to the high nonlinearity of the geometry and topol-

ogy optimization problem formulations, several solution

techniques have been proposed, mainly to improve the com-

putation tractability of the problems, e.g., Imai and Schmit

(1981), Ringerts (1985), Svanberg (1981), Kočvara and

Zowe (1996), Achtziger (2007), and He and Gilbert (2015).

(2020) 62:1721–1737Structural and Multidisciplinary Optimization

Published online: 18 August 2020/

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-020-02634-z&domain=pdf
http://orcid.org/0000-0001-8696-8255
mailto: a.weldeyesus@ed.ac.uk


A. G. Weldeyesus et al.

One of the most common techniques is to use the so-

called alternating method, for example described in Ringerts

(1985) and Kočvara and Zowe (1996), where the problems

are solved for a fixed geometry but with a variation in

topology and vice versa. Such a technique involves a block-

coordinate type approach and obtains designs which satisfy

the optimality conditions for the solved subproblems, which

are often acceptable. In other studies, the topology and

geometry of the structure are optimized simultaneously (see

Achtziger (2007)), and it has been proved that the solution

is (locally) optimal. In both approaches, some studies also

use first-order information (e.g., Svanberg (1981)), while

others attempt to use the second-order primal-dual method

(e.g., Imai and Schmit (1981) and He and Gilbert (2015)) to

improve convergence properties. For an overview of these

approaches and other solution strategies, we refer the reader

to Achtziger (2007).

Many studies on the optimization of truss structures

incorporate far more constraints than the classical formu-

lations, where the weight or volume is minimized subject

to constraints on the compliance or the other way round,

to improve the practicality of the optimal designs. These

include constraints on stresses and/or on local buckling

based on Euler’s formula (e.g., Kirsch (1990a), Guo et al.

(2001a), Stolpe and Svanberg (2001), Stolpe and Svanberg

(2003), Zhou (1996), Achtziger (1999), Rozvany (1996),

Guo et al. (2001b), Guo et al. (2005), and Mela (2014)), the

indirect imposition of nodal stability via nominal forces and

associated constraints (e.g., Tyas et al. (2006) and Descamps

and Coelho (2014)), and direct imposition of global sta-

bility constraints (e.g., Ben-Tal et al. (2000), Levy and Su

(2004), Stingl (2006), Evgrafov (2005), and Tugilimana

et al. (2018)). There are also variants of these formulations

incorporating buckling constraints using frame structures

(Torii et al. 2015; Mitjana et al. 2019), beam modeling

(Madah and Amir 2017), and continuum structures (Ferrari

and Sigmund 2019).

In this paper, we address truss design problems with

global stability constraints using a linear buckling model

that is formulated as a nonlinear semidefinite programming

problem. Such problems have been extensively studied

by Ben-Tal et al. (2000), Kanno et al. (2001), Levy and

Su (2004), Kočvara (2002), Stingl (2006), and Evgrafov

(2005) and solved, for example by Fiala et al. (2013) and

Kočvara and Stingl (2003), but always for cases where the

nodes or joints are assumed to be fixed. In Weldeyesus

et al. (2019), an invariant large-scale problem formulation

similar to those in Kočvara (2002), obtained by relaxing

nonlinear kinematic compatibility constraints, but still for

fixed joints, has been solved using a customized primal-dual

interior point method by exploiting the sparsity and low-

rank properties of the associated element stiffness matrices

(Bendsøe et al. 1994; Ben-Tal 1993; Achtziger et al. 1992;

Bendsøe and Sigmund 2003), the use of column generation

(member adding) procedures (Gilbert and Tyas 2003; Sokół

and Rozvany 2013; Weldeyesus and Gondzio 2018), and a

warm-start strategy (Weldeyesus and Gondzio 2018).

The goal of this paper is to introduce geometry opti-

mization to existing truss topology optimization with global

stability constraints problems via nonlinear semidefinite

programming. In particular, the goal is to extend the models

proposed by Kočvara (2002) and Weldeyesus and Gondzio

(2018), and to show that there are problems of this type that

can be solved using a standard primal-dual interior point

method. This is perhaps surprising, considering the sever-

ity of the nonlinearity and nonconvexity of the problem

formulations. We refer the reader to Yamashita and Yabe

(2015) for a recent survey of numerical methods for nonlin-

ear semidefinite programming, and further discussions on

ongoing challenges in the field.

One drawback of the solutions obtained by applying

geometry optimization is that the resulting optimal designs

depend hugely on the initial positions of, and the number

of, joints. As an attempt to overcome this, and another

challenge associated with numerical instability, namely

when some joints come too close to each other leading

to singularity, we perform adaptive geometry and topology

optimization, inspired by He and Gilbert (2015). This is

an iterative procedure where the problems are initially

solved by restricting the movement of the joints to smaller

regions, and then progressively updating these. With this

approach, the joints can ultimately navigate larger regions,

which could be far beyond the design space defined

by the initial joint configuration. During the procedure,

inactive joints, i.e., the joints connected entirely to thin

bars that have cross-sectional areas below a prescribed

threshold, are removed. Moreover, we perform some of

the common techniques in geometry optimization such as

node merging when joints are too close, and node melting

when a joint just connects two active collinear bars. The

overall procedure can amount to a certain extent to post-

processing or rationalization of an optimal truss design

(He and Gilbert 2015).

The paper is organized as follows. In Section 2, we

present the essential mathematical background for geometry

optimization of trusses. In Section 3, the truss geometry

and topology optimization with global stability constraints

problem formulation is presented, modelled via nonlinear

semidefinite programming. We describe the general frame-

work of the primal-dual interior point method in Section 4.

The numerical experiments, and an adaptive geometry and

topology optimization scheme are described in Section 5.

Finally, conclusions and future research directions are pre-

sented in Section 6.
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2 Background

In this section, we describe the essential mathematical

concepts that are useful for modelling truss geometry

and topology optimization with global stability constraints

problems. Part of this section closely follows Weldeyesus

et al. (2019) and Kočvara (2002). We adopt the ground

structure approach (Dorn et al. 1964), i.e., a finite set of

joints are distributed in a given N-dimensional design space,

where N ∈ {2, 3}, and the joints are connected by some

potential bars. Let d be the number of the joints with

v̄j , j = 1, ..., d corresponding to the coordinates of the

positions of the joints. Hence, v̄j = (xj , yj ) if N = 2, and

v̄j = (xj , yj , zj ) if N = 3. Note that these coordinates

will be considered as the initial positions of the joints in this

paper. Let m be the number of bars with the cross-sectional

areas ai , i = 1, ..., m. In geometry optimization, the joints

are allowed to move within certain limits; we refer the

reader to Achtziger (2007) and He and Gilbert (2015) for a

brief discussion of various types of admissible move limits.

Throughout the course of the paper, we assume that the

positions of supported and loaded joints are always fixed,

and the other joints, say d0, are allowed to move within a

move limit defined by the neighborhood:

V = V1 ∩ V2 (1)

where V1 is a region defined by balls of radii r around the

joints and is given by:

V1 = {v ∈ R
d0N | ||vj − v̄j |

2 ≤ r2
j , j = 1, ..., d0}, (2)

where || · || is the Euclidean norm, and V2 is a region

described by a set of linear constraints defined by:

V2 = {v ∈ R
d0N |v̄j,k − vmin

j,k ≤ vj,k ≤ v̄j,k + vmax
j,k ,

j = 1, ..., d0, k = 1, ..., N}.
(3)

Note that, we have d0 < d .

Remark 1 For most joints, particularly those inside the

design domain, we set min{vmin
j,k , vmax

j,k } ≥ rj making the

interval constraints (3) inactive. In some cases, for example,

when the joints are required to remain in the design domain,

we set vmin
j,k or vmax

j,k to values that are less than rj , or even

to zero.

Let v
(2)
i and v

(1)
i denote the coordinates of the start

and end joints of the bar i, i = 1, · · · , m. In order

to avoid singularity (or non-differentiability, for example,

when v
(2)
i = v

(1)
i in (5)), the radius rj of each of the balls in

(2) is chosen to satisfy:

0 < rj =
1

2
min{||v̄j − v̄p||, p ∈ I } − ε, (4)

where I is the set of indices of the joints connected to joint

j , and ε > 0.

For every bar i, i = 1, · · · , m, its length li(v) is given by

li(v) = ||v
(2)
i − v

(1)
i ||, (5)

and the associated vector of direction cosines γ e
i (v) is

defined by

γ e
i (v) =

1

li(v)
(v

(2)
i − v

(1)
i )T . (6)

Let n = Nd−n0, where n0 is the number of fixed degrees of

freedom. Then, the corresponding global vector γi(v) ∈ R
n

can be appropriately constructed by embedding (−γ e
i (v),

γ e
i (v))T and setting all of the remaining entries to zero.

Now, given an external load f ∈ R
n, the resulting

displacement u ∈ R
n satisfies the (linear) elastic

equilibrium equation:

K(a, v)u = f, (7)

where the stiffness matrix K(a, v) is computed as:

K(a, v) =

m
∑

i=1

ai

E

li(v)
γi(v)γ T

i (v), (8)

with E being Young’s modulus of the material.

Next, we define the so-called geometrical stiffness matrix

G(a, v, u) as given by:

G(a, v, u) =

m
∑

i=1

aiEγi(v)T u

l2
i (v)

(δi(v)δi(v)T + ηi(v)ηi(v)T ).

(9)

The vectors δi(v) and ηi(v) are determined so that γi(v),

δi(v), and ηi(v) are mutually orthogonal (Kočvara 2002).

Hence, there are many possible ways of choosing these

vectors. When all of the joints are fixed, i.e., when solving

topology optimization, these have been computed as the

orthogonal basis of the null space of γ T
i in Kočvara (2002).

We follow a similar approach but additionally derive the

vectors δi(v) and ηi(v) explicitly as described in Section 2.1

since we need to compute the derivatives of these vectors

with respect to the coordinates of the joints during the

optimization process.

2.1 Computing the vectors δi (v) and ηi (v)

When N = 2 (in this case, there is no ηi(v)), then we have

δe
i (v) = A2×2γ

e
i (v), (10)

where the rotation matrix A2×2 is given by

A2×2 =

(

0 −1

1 0

)

. (11)

In this case, the set {γ e
i (v), δe

i (v)} is an orthonormal basis

for R2.
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When N = 3, first let us define the following three

rotation matrices:

A
(1)
3×3 =

⎛

⎝

0 0 0

0 0 −1

0 1 0

⎞

⎠ , A
(2)
3×3 =

⎛

⎝

0 0 −1

0 0 0

1 0 0

⎞

⎠ ,

A
(3)
3×3 =

⎛

⎝

0 −1 0

1 0 0

0 0 0

⎞

⎠ .

(12)

Then, we determine the non-zero entries of δi(v) and ηi(v)

using the following steps.

Step 1 Compute δe
i (v) as:

δe
i (v) =

A
(j)

3×3γ
e
i (v)

||A
(j)

3×3γ
e
i (v)||

, (13)

where j is the index of |(γ e
i (v))j | with the smallest

magnitude.

Step 2 Compute ηe
i (v) using the vector product:

ηe
i (v) = γ e

i (v)×δe
i (v). (14)

Remark 2 In the implementation, if vector γ e
i (v) contains

two entries with the same smallest magnitude, then we set j

in 2.1 to the smallest index of the corresponding entries. If

all entries are equal, then we use j = 1.

Remark 3 We compute δe
i (v) as given in (13), i.e., keep the

two largest absolute value entries, to ensure robustness.

Once the vectors δe
i (v) and ηe

i (v) are determined as in (13)

and (14), then it is straightforward to verify that the set

{γ e
i (v), δe

i (v), ηe
i (v)} forms an orthonormal basis for R3.

3 The problem formulation

In this section, we present the formulation for the minimum

weight truss geometry and topology optimization with

global stability constraints problem, which is:

minimize
a,v,u

l(v)T a

subject to f T u ≤ ζ

K(a, v)u = f

K(a, v) + τG(a, v, u) � 0

v ∈ V

a ≥ 0,

(15)

where ς is a given bound on the compliance, and the set V is

as in (1). The matrix inequality constraint addresses global

instability via a linearized buckling analysis in which the

design load factor τ should be at least 1. In that case, the

obtained optimal design is stable for the load τf .

If we additionally assume that a > 0 and using

(4), we have K(a, v) ≻ 0. Then, we can solve for

u in the elastic equilibrium equation (7) and remove it

from (15) to obtain other equivalent nested formulations.

Furthermore, by applying the so-called Schur complement

method, problem (15) could be rewritten as:

minimize
a,v

l(v)T a

subject to

(

ζ f T

f K(a, v)

)

� 0

K(a, v) + τG̃(a, v) � 0

v ∈ V

a ≥ 0,

(16)

where

G̃(a, v) =

m
∑

i=1

aiEγi(v)T K−1(a, v)f

l2
i (v)

(δi(v)δi(v)T +

ηi(v)ηi(v)T ).

However, in the numerical experiments presented in

Section 5, we only solve problem (15).

Remark 4 Problems (15) and (16) can be considered as a

natural extension of the model described by Kočvara (2002),

where it is formulated only for topology optimization with

global stability constraints, i.e., all nodal coordinates (or

joints) are fixed.

Remark 5 In Weldeyesus et al. (2019), a variant of formu-

lation (15) written based on member forces was addressed

for fixed joints. After relaxing nonlinear constraints, it is

shown that the problem can be solved for a very large num-

ber of bars by applying an adaptive method, i.e., a technique

in which a sequence of much smaller problems is solved to

obtain the solution of the original large-scale problem. The

computational gain is remarkable and the qualities of the

solution of the relaxed problem are good. However, since

the joints are fixed, a large number of nodes are required

to obtain least weight structures. This can lead to optimal

designs that contain many active joints and bars. In the

present contribution, the focus is on solving problems with

somewhat fewer nodes/joints, but on exploiting geometry

optimization to realize enhanced solutions.

Problem (15) (and (16)) is a highly nonlinear and

noncovex semidefinite program and is very difficult to solve

(Yamashita and Yabe 2015). To the best of the authors’

knowledge, no solutions to the problem have been proposed

in the current literature.

As mentioned in Section 1, it is generally a challenge

to solve truss geometry and topology optimization with
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or without stability constraints. In many studies, the so-

called alternating optimization method is used, in which

the optimization problem is split into two subproblems,

i.e., fixing joints and optimizing with respect to the cross-

sectional areas of the bars, and vice versa (Ringerts 1985;

Kočvara and Zowe 1996). This block-coordinate type

approach delivers acceptable optimal designs that satisfy the

optimality conditions of the subproblems. Another approach

is to solve the problem simultaneously and obtain some

local solutions (Achtziger 2007).

In this paper, we solve problem (15) simultaneously

for both geometry and topology optimizations, using

a second-order primal-dual interior point method for

nonlinear semidefinite programming described below, i.e.,

in Section 4.

4 The primal-dual interior point framework

In this section, we present an overview of the interior point

method and an algorithm we applied to solve problem

(15), which is in some sense similar to that described in

Section 3 of Weldeyesus and Stolpe (2015), except for some

slight reformulation of the general nonlinear semidefinite

programming and associated notations, now adopted from

Yamashita et al. (2012). This is to make the flow of the

presentation consistent with this paper.

Consider the nonlinear semidefinite programming prob-

lem of the form:

minimize
x∈Rm

f (x)

subject to g(x) = 0

A(x) � 0.

(17)

The functions f : R
m → R, g : R

m → R
k , and A :

R
m → S

n
+ are assumed to be sufficiently smooth, and S

n
+ is

the cone of positive semidefinite matrices in the space Sn of

symmetric n × n matrices.

After introducing a barrier parameter μ > 0, the

associated barrier problem is:

Minimize
x∈Rm

f (x) − μ ln(det(A(x))

Subject to g(x) = 0.
(18)

The Lagrangian to problem (18) is:

Lμ(x, λ) = f (x) − μ ln(det(A(x)) + λT g(x),

where λ ∈ R
k is a Lagrangian multiplier. Introducing the

additional matrix variable Z := μ(A(x))−1, we have:

∇xLμ(x, λ) = ∇xf (x) − G(x)Z + ∇xg(x)T λ (19)

where:

G(x)Z =

⎛

⎜

⎜

⎝

〈
∂A(x)
∂x1

, Z〉

...

〈
∂A(x)
∂xm

, Z〉

⎞

⎟

⎟

⎠

. (20)

Then, first-order optimality conditions of the barrier

problem (18) are:

∇xLμ(x, λ) = 0 (21a)

g(x) = 0 (21b)

A(x)Z − μI = 0. (21c)

To apply the Newton method to solve the system

of nonlinear equations (21), first we need to maintain

symmetry, which is done by replacing equation (21c) with

HP (A(x)Z) = μI, (22)

where the linear operator HP : Rn×n → S
n, introduced in

Zhang (1998), is defined as follows:

HP (Q) :=
1

2

(

PQP −1 + (PQP −1)T
)

with P ∈ R
n×n being some non-singular matrix. There are

various ways to choose the matrix P . In this paper, we use

NT direction (Nesterov and Todd 1997; 1998).

Now, to get the search directions (�x, �λ, �Z), we can

apply the Newton method to (21) with the last equation

replaced by (22), and solve the system:

∇2
xxLμ(x, λ)�x−G(x)�Z+∇xg(x)T �λ=−∇xLμ(x, λ)

∇xg(x)�x = −g(x)

E�X + F�Z = μI − HP (A(x)Z),

(23)

where E = E(x, Z) and F = F(x, Z) are the derivatives

of HP (A(x)Z) with respect to x and Z, and �X =
∑m

i=1 �xi
∂A(x)

∂xi
.

An overview of the interior point method is summarized

in Algorithm 1. It has two loops. The norm of the optimality

conditions in (23) is the stopping criteria, with μ = 0 for the

outer loop and μ = μk for the inner loop. The parameters

α and σ control step-length of search directions and the

centrality of the points, respectively.
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5 Numerical results

The interior point method has been implemented in

MATLAB (R2018a). All numerical experiments have been

performed on a PC equipped with an Intel(R) Core(TM) i5-

8350U CPU running at 1.90 GHz with 8 GB RAM. In all

examples, we use input data without units. We use the values

of Young’s modulus E = 1 and the design loading factor

τ = 1. In the plots showing optimal designs, only bars with

cross-sectional area ≥ 0.001amax are shown. Balls are used

to show the active joints connecting these bars.

In Algorithm 1, unless stated otherwise, we use σ = 0.5

and α = 0.8αmax , where αmax is the maximum step length

such that the current point is positive (definite).

5.1 Fixed versus moving joints

In this section, we present three examples to demonstrate

the use of geometry optimization (allowing the joints to

move) to help minimize the volume of the optimal design.

This is done by comparing solutions obtained with fixed and

moving joints. Moreover, even though it is not the primary

purpose the paper, we also demonstrate the importance of

global stability constraints in these examples. We do this

by comparing designs obtained with and without stability

constraints. For more details on such stability constraints,

see Kočvara (2002).

Example 1 We start with the L-shaped truss problem shown

in Fig. 1a that has 132 members and has previously been

solved by Levy and Su (2004) assuming fixed joints. It has

overall dimensions 1 × 3 × 4, including a cut-out region of

dimensions 1 × 2 × 3, with two point loads (0, 0, −0.001)

applied simultaneously. The bound on the compliance is

ς = 0.0005. When solving the topology optimization

problem for fixed geometry without stability constraints,

we obtain the design shown in Fig. 1b, consisting of two

disjoint parallel planar trusses of total volume 7.6880.

Now, including the stability constraints and solving the

problem again for fixed joints, we obtain the design shown

in Fig. 1c, where connectivity between the parallel planar

trusses is established. In this case, the optimal volume

is 7.8340.

Next, we allow the joints to move. In this case, we

consider two scenarios as follows.

(i) The joints are allowed to move in a ball of radius r =

0.4, but still remain within the L-shaped design space

of Fig. 1a. We obtain the design shown in Fig. 1d that

has volume 7.1557, which is approximately 9% lower

than that of the fixed joint design shown in Fig. 1c.

When the joints are allowed to move, a part of the

external envelope of the optimized structure appears

curved in form, as shown in Fig. 1d.

(ii) The joints are allowed to move in a ball of radius r =

0.4, but only the joints in the inner most surfaces are

required to remain within the design space (Fig. 1a).

In this case, we obtain the design shown in Fig. 1e that

has a volume of 6.1192, which is approximately 21%

lower than that of the fixed joint solution shown in

Fig. 1c. As can be seen in Fig. 1e, some of the joints on

the outermost edges have left the original design space

(Fig. 1a), such that the entire external envelope of the

optimized structure now appears curved in form.

The computational statistics for all cases are presented

in Table 1. The algorithm obtained the solution within a

reasonable number of iterations and CPU time.

Finally, we note that there can be seen some degree

of resemblance of the optimal designs for the L-shaped

problem in Fig. 1e to the solutions obtained by Schwarz

et al. (2018), Descamps and Coelho (2014), and Ohsaki and

Hayashi (2017), where solutions are reported for geometry

and topology optimization problems, but where other types

of stability constraints are employed.

Example 2 We now solve the bridge problem of dimensions

8 × 1 × 1 as shown in Fig. 2a. The nodal loads are

applied simultaneously and have magnitude (0, 0, −0.001);

the bound on the compliance is ς = 0.003. When we solve

the problem with and without stability constraints for fixed

joints, we obtain the designs shown in Fig. 2b and c, with

volumes of 10.3253 and 10.8904, respectively. The disjoint

planar trusses in Fig. 2b are now connected in Fig. 2c,
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Fig. 1 Example 1: a design

domain, boundary conditions,

and loads; b side (left) and 3D

(right) views of the optimal

design without stability

constraints; c–e same views of

the optimal designs with

stability constraints

which is obtained by solving the problem with stability

constraints. Next, we solve the problem for moving joints.

First, the joints are allowed to move in a neighborhood

of radius r = 0.4 but are restricted to remain within the

design space. In this case, we obtain the design shown

in Fig. 2d, with volume 8.5030, which is approximately

21% lower than that of the fixed joint design shown in

Fig. 2c. Moreover, the structure clearly becomes more

Table 1 Example 1 (L-shaped

problem): numerical results Fixed joints Moving joints

Joints allowed to move Joint allowed to move and can leave the design

within the design space space except along the innermost surfaces

Volume 7.8340 7.1577 6.1192

IPM iter. 76 76 88

CPU (s) 192 200 211
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Fig. 2 Example 2: a design

domain, boundary conditions,

and loads; b side (top left), top

(lower left), and 3D (right)

views of the optimal design

without stability constraints; c–e

same views of the optimal

designs with stability constraints

arch-like in form. Finally, when we remove the requirement

for the joints to remain in the design space, we obtain the

solution shown in Fig. 2e, with volume 5.7345, which is

47% lower than that of the original fixed joint design shown

in Fig. 2c. This large reduction is principally because the

arch has been able to extend upwards, above the original

extent of the design space. The computational statistics are

presented in Table 2; once again, the solution was found
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Table 2 Example 2 (bridge

problem): numerical results Fixed joints Moving joints

Joints allowed to move

within the design space

Joint allowed to move and

can leave the design space

Volume 10.8904 8.5030 5.7345

IPM iter. 74 68 62

CPU (s) 412 401 370

within a reasonable number of iterations and in a reasonable

CPU time.

Example 3 We now consider the tower problem shown

in Fig. 3a which utilizes a design domain of dimensions

2 × 2 × 4. The load is (0, 0, −0.001) and the bound on

compliance is ς = 0.00025. The goal of this example is

to consider a condition where compressive global buckling

is dominant. When the problem is solved assuming fixed

joints and without stability constraints, the resulting optimal

Fig. 3 Example 3: a design

domain, boundary conditions,

and load; b optimal design

without stability constraints; c–d

3D (left), middle (top), and side

(right) views of the optimal

design with stability constraints
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Table 3 Example 3 (tower problem): numerical results

Fixed joints Moving joints

Volume 0.1536 0.1230

IPM iter. 64 89

CPU (s) 626 865

design has a volume of 0.0640, and comprises a chain of

vertical bars with no bracing to connecting nodes, as shown

in Fig. 3b. Next, global stability constraints are included, but

the joints are kept fixed. In this case, the optimal design has

a volume of 0.1536, a 140% increase. This increase is much

more significant than observed in the previous examples

considered in the paper. The associated optimal design is

shown in Fig. 3c; here, all nodes are braced to ensure the

design is stable. Finally, we solve the same problem but now

allowing the joints to move in a ball of radius r = 0.3. The

resulting optimized design is shown in Fig. 3d; here, the on-

plan area of the tower reduces with increasing height. The

design has volume 0.1230, a 20% reduction compared with

fixed joint structure shown in Fig. 3c. The computational

statistics are reported in Table 3. The global buckling modes

for these structures are shown in Fig. 4a–c, respectively.

5.2 Adaptive geometry and topology optimization

We now consider development and application of an

adaptive geometry and topology optimization technique,

illustrated via a number of supporting numerical examples.

The proposed technique is iterative in nature.

As mentioned in Section 1, and as can be seen in Exam-

ples 1–2, the designs obtained by solving the geometry and

topology optimization problem (15) strongly depend on the

initial configuration of the joints. A natural observation is

that the designs can be improved if we allow the joints

to navigate much wider regions. However, due to impos-

ing the requirement that the joints should not come too

close to each other to avoid numerical instabilities, we had

to restrict the movement to smaller neighborhoods. The

approach now is to solve the problem over and over again,

with a view to obtaining improved (lower volume) designs.

This is achieved by an iterative procedure that involves

many strategies, using an overall process motivated by He

and Gilbert (2015).

First, any joints that are entirely connected to bars

with cross-sectional areas below 0.001amax, where amax is

the maximum attained cross-sectional area, are removed.

We call these joints inactive nodes. Moreover, any joints

connecting only two collinear bars of cross-sectional area

≥ 0.001amax are melted, i.e., set to vanish, resulting in the

collinear bars being merged to form a single bar. Note that

there are also other approaches described in the literature

that can be used to melt nodes, including that recently

proposed by Ohsaki and Hayashi (2017) based on the force

density method. We consider two bars as collinear if the

angle θ between them satisfies |π − θ | ≤ 0.01. The third

strategy is to merge joints that are too close to each other.

In our implementation, we perform node merging if the

distance between them is less than or equal to 0.25. If

the nodes constitute supported or loaded joints, then the

nodes are merged to these nodes. Otherwise, the nodes are

merged to the average of the coordinates of the merging

nodes. By choosing small positive values for ε in (4), we

determine joint dependent move limits, that is, balls of

radius rj given by:

rj = min{k min{||v̄j − v̄p||, p ∈ I }, 0.3}, (24)

where v̄j and v̄p are the coordinates of the joints, and I is the

set of indices of the joints connected to joint j . Moreover,

we use k = 1
3

except in Example 7, where we have used

k = 1
4

due to issues with convergence.

The iterative adaptive optimization procedure stops when

there is no significant change in the volume of the optimal

designs, and there is no bar with length less than or equal to

0.25.

The overall use of adaptive geometry and topology

optimization can also be considered as a post-processing

or rationalization technique, since designs with a small

number of joints and bars are achievable. The procedure is

summarized in Algorithm 2.

Fig. 4 Example 3: a–c buckling

modes for the designs shown in

Fig. 3b–d respectively
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Fig. 5 Example 4: a design

domain, boundary conditions,

and load; b optimal design

without stability constraints; c–i

optimal designs with stability

constraints obtained in seven

stages of the adaptive

optimization

Next, we present examples to demonstrate the benefits of

the adaptive geometry and topology optimization technique.

Example 4 We first solve the simple two-dimensional

bracket problem shown in Fig. 5a. The design domain has

dimensions 3 × 6, the load is (0, −0.001), and the bound on

the compliance is ς = 0.00025. Initially, the radius of the

move limits is set to r = 0.3. When we solve the problem

without stability constraints, we obtain the optimal design

shown in Fig. 5b. Next, when we solve the problem with

stability constraints and with the initial configuration of the

joints, we obtain the design shown in Fig. 5c. Now, we

apply Algorithm 2 to obtain the design shown in Fig. 5d.

Successively repeating the process allows us to find the

designs shown in Fig. 5e–i.

In this example, we have removed inactive nodes and

performed node melting (see Fig. 5d), and merged nodes

Table 4 Example 4 (2D bracket problem): numerical results

Stage number Volume IPM iter CPU

1 0.1597 87 40

2 0.1582 56 8

3 0.1574 55 7

4 0.1567 60 7

5 0.1562 70 8

6 0.1558 63 7

7 0.1554 56 7
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Fig. 6 Example 5: optimal

designs obtained in six stages of

of the adaptive optimization for

the L-shaped problem

that are too close (see Fig. 5h). The numerical statistics are

presented in Table 4. The CPU time for the last six problem

instances are shorter compared with that of the first. This

is because many inactive nodes and bars are removed while

applying adaptive optimization to the problem shown in

Fig. 5c. The designs shown in Fig. 5d–i look qualitatively

similar to a design reported by Ferrari and Sigmund (2019),

obtained by solving topology optimization with buckling

constraints for continuum structures.

Table 5 Example 5 (L-shaped problem): adaptive numerical results

Stage number Volume IPM iter CPU

1 6.1192 88 211

2 5.9323 54 186

3 5.9075 71 190

4 5.9024 110 257

5 5.8911 57 117

6 5.8911 56 119

Example 5 We now apply Algorithm 2 to the optimal L-

shaped design shown in Fig. 1e. The results are reported in

Fig. 6. Merged nodes can be observed in Fig. 6e and the

final design can be observed to have a volume of 5.8911,

which is 3.7% lower than that of the initial solution shown

in Fig. 6a. The curvature of the outer envelope is even more

pronounced, with even more bars connected to the joints in

the re-entrant corner. The computational statistics are given

in Table 5.

Table 6 Example 6 (bridge problem): adaptive numerical results

Stage number Volume IPM iter CPU

1 5.7346 62 372

2 4.8816 47 192

3 4.4699 47 201

4 4.2752 73 264

5 4.2141 52 204

6 4.2135 51 201
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Fig. 7 Example 6: optimal

designs obtained in the first six

stages of the adaptive

optimization for the revisited

bridge problem
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Example 6 Here, we start with the solution of the bridge

problem shown in Fig. 2e, where the top four corner nodes

in the design space of Fig. 2a are no longer present. The

entire process is demonstrated in Table 6 and Fig. 7. No

nodes are melted or merged in this case. The final design

shown in Fig. 7f has a volume of 4.2135, which is 26.5%

lower than the initial solution shown in Fig. 7a. Looking

at the final bridge design in Fig. 7f, the semicircular-like

side view is similar to the results presented by Kočvara and

Zowe (1996) and Achtziger (2007), which are reported for

Fig. 8 Example 7: a design

domain, boundary conditions,

and loads; b–f optimal designs

obtained in five stages of the

adaptive optimization
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two-dimensional topology and geometry optimization prob-

lems. Moreover, the side and top views show that the

structure is wider in the middle region and narrower near the

two end points, somewhat similar to a form shown in Jiang

et al. (2019).

Example 7 We solve the two-span bridge problem, shown

in Fig. 8a, supported at span end points at both edges. The

design space has dimensions 12 × 1 × 1 and all of the loads

have magnitude (0, 0, −0.001), applied simultaneously. The

bound on the compliance is set to ς = 0.005. The problem

has been solved in stages and the obtained designs are

shown in Fig. 8b–f. Once again, we see that the final design

(Fig. 8f) has a lower volume than that of the initial solution

(Fig. 8b), in this case 14% less. Looking at the final optimal

design (Fig. 8f), the side view can be compared to that

described in Kočvara and Zowe (1996), where we have

two large asymmetric semicircular-like geometries on both

sides, and with a smaller symmetric curved structure in the

middle. The computational results are reported in Table 7.

5.3 General comments based on the numerical
experiments

As expected, the nonlinear semidefinite programming truss

geometry and topology optimization problem given in (15)

is not easy to solve. However, in most cases, by setting

the radius ri of the move restrictions to a reasonable

value, the problems are solvable, mainly because short

bars are avoided. The designs can then be improved

by applying an adaptive optimization procedure. There

were some instances, mainly in the final stages of the

adaptive optimization, when problems became harder to

solve, due to an inevitable existence of short bars (e.g., see

Fig. 6d). However, this can be successfully resolved using

a significantly less aggressive update strategy of the barrier

parameter and the use of conservative step lengths at the

cost of more iterations; see Table 5. As a last comment, it is

also very important that the joints are constrained to always

remain within the prescribed restricted regions (2) and (3),

both initially and in subsequent iterations.

Table 7 Example 7 (two-span bridge problem): adaptive numerical

results

Stage number Volume IPM iter CPU

1 3.6980 64 2467

2 3.3650 57 1046

3 3.2151 60 1065

4 3.1796 78 1387

5 3.1796 78 1472

6 Conclusions

We have introduced geometry optimization to an existing

truss topology optimization with global stability constraints

formulation, posed as a nonlinear semidefinite program-

ming problem. We have demonstrated that these problems

can in fact be solved by a standard second-order primal-dual

interior point method, despite the associated challenging

mathematical properties, such as nonlinearity and noncon-

vexity. We have also presented an iterative adaptive geom-

etry and topology optimization procedure to improve the

quality of the optimized designs. The work is supported by

several numerical experiments, showing that allowing the

joints to move can lead to reduced material usage and to

designs that are more practically relevant.

There seems to be a high degree of similarity between

the solutions obtained in successive iterations near the final

stage of the presented adaptive optimization procedure.

Hence, this suggests that there could be an opportunity to

use a warm-start strategy (Weldeyesus and Gondzio 2018;

Weldeyesus et al. 2019) to improve the performance of the

interior point method further.
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Optimization of structures under buckling constraints using frame

elements. Eng Optim 51(1):140–159

Nesterov YE, Todd MJ (1997) Self-scaled barriers and interior-point

methods for convex programming. Math Oper Res 22(1):1–42

Nesterov YE, Todd MJ (1998) Primal-dual interior-point methods for

self-scaled cones. SIAM J Optim 8(2):324–364

Ohsaki M, Hayashi K (2017) Force density method for simultaneous

optimization of geometry and topology of trusses. Struct

Multidiscip Optim 56(5):1157–1168

Pedersen P (1972) On the optimal layout of multi-purpose trusses.

Comput Struct 2(2):695–712

Ringerts U (1985) On topology optimization for trusses. Eng Optim

9(3):209–218

Rozvany GIN (1996) Difficulties in truss topology optimization with

stress, local buckling and system stability constraints. Struct

Optim 11(3):213–217

Schwarz J, Chen T, Shea K, Stankoviċ T (2018) Efficient size and
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