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Abstract

Cognition is not always directed to the events in the here and now and we often
self-generate thoughts and images in imagination. Important aspects of these
self-generated experiences are associated with various dispositional traits. In this study,
we explored whether these psychological associations relate to a common underlying
neurocognitive mechanism. We acquired resting state functional magnetic resonance
imaging data from a large cohort of participants and asked them to retrospectively
report their experience during the scan. Participants also completed questionnaires
reflecting a range of dispositional traits. We found thoughts emphasising visual imagery
at rest were associated with dispositional tendency towards internally directed attention
(self-consciousness and attentional problems) and linked to a stronger correlation
between a posterior parietal network and a lateral fronto-temporal network.
Furthermore, decoupling between the brainstem and a lateral visual network was
associated with dispositional internally directed attention. Critically, these
brain-cognition associations were related: the correlation between parietal-frontal
regions and reports of visual imagery was stronger for individuals with increased
connectivity between brainstem and visual cortex. Our results highlight neural
mechanisms linked to the dispositional basis for patterns of self-generated thought, and
suggest that accounting for dispositional traits is important when exploring the neural
substrates of self-generated experience (and vice versa).

Introduction

Cognition is not always focused on events in the here and now; we often engage in
patterns of self-generated thoughts that are, at best, only loosely related to the events
in the here and now. Contemporary accounts of self-generated thought have identified
thematic patterns, or "dimensions" of thought [1], with a reproducible structure across
studies and tasks contexts [2–4]. Recurring themes in experience capture variation in
the content and form of our thoughts [5] and highlight stable patterns, such as thoughts
about the future or the past [3, 6, 7], the modality of experience, i.e. whether it is
dominated by imagery or inner speech [3, 8], or the level of subjective detail [3–5].

Using a variety of experience sampling techniques, such as the Experience Sampling
Method [9], Ecological Momentary Assessment [10], and Descriptive Experience
Sampling [11], as well as questionnaires, such as the Imaginal Processes Inventory [12],
previous studies have shown that patterns of self-generated thought have associations
with dispositional variables related to affect, attention, psychological well-being and
disorders. For example, visual imagery and inner speech, two of the most often reported
modalities of naturally occurring thoughts [13, 14], have both been related to multiple
psychopathologies. Negative mental images can accelerate the onset of depression and
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lengthen the duration of an episode [15], while intrusive, recurrent, spontaneous imagery
has been linked to psychiatric disorders, such post-traumatic stress disorder,
obsessive-compulsive disorder, health anxiety and social phobia (see [16] for a review).
Similarly, inner speech has been implicated in psychotic, mood, and anxiety disorders
([17] for a review). In addition to mental imagery, future thinking has been shown to
improve mood [6] and facilitate problem solving by refining future goals [2]. In contrast,
thinking about the past is associated with negative mood [6, 18] and in the case of
intrusive, ruminative thoughts, to depression and anxiety [19]. Finally, identified
patterns of spontaneous thought have been linked to creativity and intelligence
[1, 20, 21] as well as ADHD [22], neuroticism [23] and measures of self-consciousness
[24]. These studies demonstrate that different themes of ongoing thought may reflect
dispositional variation along a range of dispositional variables.

Our study set out to understand how patterns of neural organisation at rest underpin
the associations between dispositional traits and patterns of ongoing experience. It is
often assumed that the default mode network (DMN, [25]) plays a particularly
important role in self-generated thought (i.e. [26]). Consistent with this view, studies
combining experience sampling with online neural measures have shown that core
regions of the DMN, such as the posterior cingulate cortex (PCC) and the medial
prefrontal cortex (mPFC), can have greater activity when patterns of ongoing thought
shift from task relevant information ([27, 28], although see [4]). Studies suggest the
PCC may be an integrative hub associated with the content and form of thoughts [3],
while connectivity between the hippocampus and the mPFC has been linked to episodic
contributions to ongoing experience [7]. Likewise, increased low frequency fluctuations
in activity in the PCC have been associated with greater imagery [5]. However, studies
have also found that patterns of default mode network connectivity are predictive of
mindfulness [29], attention deficit disorder [30], depression [31], and life satisfaction and
unhappiness [32, 33], each of which have associations with patterns of ongoing thought
(for example, Mindfulness, [34]; ADHD, [22, 35]; Depression and unhappiness, [36]).
Together, such evidence establishes that regions within the DMN are important in both
patterns of ongoing experience, as well as many of the dispositional traits that are
associated with aspects of ongoing experience within the general population.

More recent studies have highlighted neural processes outside the DMN that make
an important contribution to ongoing cognition, either directly or indirectly by
supporting dispositional traits that are linked to patterns of experience. Executive
[28, 37] and attention systems [8, 38] have been related to variations in whether
attention is focused on an external task. At the same time, neural patterns within the
fronto-parietal system are linked to intelligence [39], a trait linked to the ability to
maintain focus during complex tasks [40] and to limiting self-generated thoughts to
periods of low external demands [21]. Likewise, functional networks associated with
social, affective, mnemonic and executive systems are linked to different personality
traits [41], which have been shown to relate to different patterns of ongoing thought
[42, 43]. Furthermore, alterations in whole-brain connectivity have also been linked to a
range of psychological disorders, like ADHD [44, 45], generalised anxiety [46], obsessive
compulsive disorder [47, 48] and major depression ([49], see [50] for a review).

Current study

This study set out to understand the relationship between trait variance in patterns of
ongoing thoughts, dispositional features and neural organisation. We acquired
retrospective descriptions of ongoing thoughts at rest after participants underwent a
resting state functional magnetic resonance scan (rs-fMRI). In a separate session, we
acquired measures of dispositional traits spanning both physical and mental health. We
then calculated the functional connectivity of whole-brain functional networks and
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investigated how they related to ongoing cognition and psychological traits, as well as
whether there are neural patterns common to both.

Methods

Participants

184 healthy participants were recruited by advert from the University of York. Written
consent was obtained for all participants and the study was approved by the York
Neuroimaging Centre Ethics Committee. 15 participants were excluded from analyses
due to technical issues during the neuroimaging data acquisition or excessive movement
during the fMRI scan (mean framewise displacement > 0.3 mm and/or more than 15%
of their data affected by motion) [51], resulting in a final cohort of N = 169 (111
females, µage = 20.1 years, σage = 2.3).

Behavioural methods

We asked participants to retrospectively report the experiences they had during the
resting state fMRI scan, using a series of self-report questions. These items were
measured using a 4-scale Likert scale, with the question order being randomised (all 25
questions are shown in Table 1). In order to identify the measures of experience with
the best reliability and thus the most trait-like features, we repeated the resting state
scanning session for a subset of our sample (N = 40) approximately 6 months later.

To assess the participants’ physical and mental health, we administered
well-established surveys at a later, separate session outside of the scanner. Quality of
life, physical and psychological health, social relationships and environmental well-being
were measured by the World Health Organization Quality of Life WHOQOL-BREF
instrument [52]. Private and public self-consciousness and social anxiety were assessed
using the Self-Consciousness scale [53], state and trait anxiety by the State-Trait
Anxiety inventory [54] and trait rumination by the Ruminative response scale [55].
Finally, symptoms related to depression, autism, and ADHD were measured using the
CES-D scale [56], the Autism Spectrum Quotient [57], and the World Health
Organization Adult ADHD Self-Report scale [58] respectively. To reduce the
dimensional structure of the measures of physical and mental health, we performed a
principal component analysis (PCA) decomposition with varimax rotation.

Neuroimaging methods

MRI data acquisition

MRI data were acquired on a GE 3 Tesla Signa Excite HDxMRI scanner, equipped with
an eight-channel phased array head coil at York Neuroimaging Centre, University of
York. For each participant, we acquired a sagittal isotropic 3D fast spoiled
gradient-recalled echo T1-weighted structural scan (TR = 7.8 ms, TE = minimum full,
flip angle = 20◦, matrix = 256x256, voxel size = 1.13x1.13x1 mm3, FOV = 289x289
mm2). Resting-state functional MRI data based on blood oxygen level-dependent
contrast images with fat saturation were acquired using a gradient single-shot
echo-planar imaging sequence with the following parameters: TE = minimum full (≈19
ms), flip angle = 90◦, matrix = 64x64, FOV = 192x192 mm2, voxel size = 3x3x3 mm3

TR = 3000 ms, 60 axial slices with no gap and slice thickness of 3 mm. Scan duration
was 9 minutes which allowed us to collect 180 whole-brain volumes per participant.
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fMRI data pre-processing

Functional MRI data pre-processing was performed using the Configurable Pipeline for
the Analysis of Connectomes [59]. Pre-processing steps included motion correction by
volume realignment (Friston 24-Parameter Model), nuisance signal regression of 24
motion parameters calculated in the previous step, plus five nuisance signals obtained
by running a principal component analysis on white matter and cerebrospinal fluid
signals using the CompCor approach [60], slice time correction, temporal filtering
0.009-0.1 Hz, spatial smoothing using a 6mm Full Width at Half Maximum of the
Gaussian kernel and normalisation to MNI152 stereotactic space (2 mm isotropic) using
linear and non-linear registration. No global signal regression was performed.

Group-ICA spatial maps

The resting state fMRI data were masked by a 20% probabilistic whole-brain grey
matter mask, temporally demeaned, had variance normalisation applied and were fed
into FSL’s MELODIC Incremental Group-PCA algorithm [61], and finally into

Table 1. Experience sampling questions asked at the end of the resting state fMRI scan.

Dimension
Question

(My thoughts)

Vivid ... were vivid as if I was there

Normal ... were similar to thoughts I often have

Future ... involved future events

Negative ... were about something negative

Detail ... were detailed and specific

Words ... were in the form of words

Evolving ... tended to evolve in a series of steps

Spontaneous ... were spontaneous

Positive ... were about something positive

Images ... were in the form of images

Other ... involved other people

Past ... involved past events

Deliberate ... were deliberate

Self ... involved myself

Stop ... were hard for me to stop

Distant time ... were related to a more distant time

Abstract ... were about ideas rather than events or objects

Decoupling ... dragged my attention away from the external world

Important ... were on topics that I care about

Intrusive ... were intrusive

Problem solving ... were about solutions to problems (or goals)

Here and now ... were related to the here and now

Creative ... gave me a new insight into something I have thought about before

Realistic ... were about an event that has happened or could take place

Theme ... at different points in time were all on the same theme

4/17



group-ICA [62], where spatial-ICA was applied, resulting in 16 distinct group-ICA
spatial maps. One component was marked as artefactual and removed. These group
spatial maps were mapped onto each subject’s pre-processed data by running the first
stage of a dual-regression analysis, which produced one time series per map per
participant. The 15 spatial maps were named based on the top-loading term acquired
from decoding each map on Neurosynth [63], and are shown in supplementary materials
(Figure S1).

Static functional connectivity

Network modelling was carried out by using the FSLNets toolbox. We calculated the
partial temporal correlation between the 15 ICA components’ time series, creating a 15
x 15 matrix of connectivity estimates for each participant and applied a small amount of
L2 regularisation [64]. The connectivity values were converted from Pearson correlation
scores into z-statistics with Fisher’s transformation (including an empirical correction
for temporal autocorrelation). For group-level analyses, we combined all participants’
network matrices and ran a univariate general linear model, combined with permutation
testing (FSL’s randomise, 5000 permutations) for each edge. Edge weight was the
dependent variable and behavioural measures (thought questions or component loadings
from the general and mental health PCA decomposition) were the independent variables.
We used FWE-correction to account for multiple comparisons and all analyses controlled
for age, gender and motion (mean frame-wise displacement) during the rs-fMRI scan.

Results

Describing experience and well-being

A test-retest reliability analysis revealed 6 questions, the responses to which were
consistent within individuals across sessions (Fig. 1a): normal thoughts (i.e. experiences
that I often have, intraclass correlation coefficient = 0.28, p = 0.035), deliberate vs
spontaneous thoughts (ICC = 0.27, p = 0.044), intrusive thoughts (ICC = 0.29, p =
0.034), thoughts that took the form of attempts at problem-solving (ICC = 0.454, p =
0.001), thoughts about the here and now (ICC = 0.281, p = 0.036) and thoughts in the
form of images (ICC = 0.3, p = 0.026). We used these items in subsequent analyses.

The principal component analysis (PCA) of the measures of physical and mental
health identified three principal components with eigenvalues greater than 1 (Fig. 1b).
Component 1, well-being, loaded positively on measures of quality of life and
psychological well-being and negatively on indices of depression and anxiety.
Component 2, internally directed attention, loaded on self-consciousness, attention
deficit hyperactivity disorder (ADHD) traits and rumination. Component 3, social
difficulties, loaded on social anxiety and autism.

Comparing common variance in disposition and descriptions of

ongoing experience at rest

We used canonical correlation analysis (CCA) to describe the relationship between the
PCA components of the physical and mental health scores and the six reliable
self-report items. This yielded one significant canonical component, or mode, (F(18,
453.03) = 1.795, p = 0.023), explaining 11.5% of the shared variance (see Fig. 1c). The
strongest experiential predictor was images (standardised canonical weight = 0.62, r2

s
=

47.53) and the strongest trait predictors were patterns of internally directed attention
(component 2, standardised canonical weight = 0.64, r2

s
= 41.4) and a relative absence

of social difficulties (component 3, standardised canonical weight = -0.62, r2
s

= 42.65).
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Figure 1. Behavioural variables and their relationship. a) Test-retest reliability of responses
to items at the end of two resting state fMRI scans for 40 participants. Intraclass correlation
coefficient (ICC) visualised using a word cloud. Font size represents the absolute ICC value
and font colour its sign (red for positive and blue for negative values). * p < 0.05, ** p = 0.001.
b) Component weights from a principal component analysis on the participants’ responses to
dispositional measures of physical and mental health. c) Heat map showing the standardised
canonical weights of each item for the significant canonical mode 1. The annotations indicate
the item variance explained by the CCA mode.

Comparing common variance in patterns of neural organisation

and descriptions of ongoing experience

To understand the links between whole-brain connectivity and both ongoing experience
and traits, we regressed the edges’ partial correlations against participants’ thoughts,
while controlling for age, gender and motion during the rs-fMRI scan. We used multiple
edge weight proportional thresholds (15%, 30%, 50% & no threshold) [65]. Taking into
account only the strongest edges on average across subjects (top 15% of partial
correlation weights, Fig. S2), we found more positive correlations between the
precuneus and the lateral fronto-temporal network for subjects reporting thinking more
in images (Fig. 2a) (p = 0.016, FWE-corrected). The pattern remained significant for a
lower correlation weight threshold that included weaker edges in the analysis (top 30%
of partial correlation weights) (p = 0.037, FWE-corrected). No significant relationship
was found for a threshold that kept the top 50% of connections and when no threshold
was applied at all.

Comparing common variance in patterns of neural organisation

and dispositional traits

Using the same connection thresholds, we found that a lower correlation between the
lateral visual and the brainstem networks was associated with increased internally
directed attention (PCA component 2) (Fig. 2b). The link was significant for the top
50% of connections (p = 0.021, FWE-corrected) and when no threshold was applied (p
= 0.05, FWE-corrected).

Examining the relationship between neural "fingerprints" of

disposition and patterns of ongoing experience

Together, our analyses suggest that reports of imagery at rest were associated with
traits of internally directed attention and that both features had reliable and distinct
neural correlates. To understand if the identified neural patterns moderated the
relationship between the psychological measures, we ran two multiple regression
analyses; in one, the dependent variable was reports of visual imagery and in the other,
dispositional internal focus (component 2, see Fig. 1). In each model, the remaining
three scores (connectivity between the lateral fronto-temporal and precuneus networks,
connectivity between the lateral visual and brainstem networks, and visual imagery or
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Figure 2. Static functional connectivity associated with behaviour. a) Left. The lateral fronto-
temporal and precuneus networks. The edge highlights an increase in their partial correlation
for people thinking more in images. Right. Scatter plot of thinking in images scores with
correlation values between these two networks for each participant. b) Left. The lateral visual
and brainstem networks. The edge highlights a decrease in their partial correlation for higher
internal attention scores (PCA Component 2). Right. Scatter plot of Component 2 scores from
the PCA of the physical and mental health questionnaires with correlation values between these
two networks for each participant.

internal focus scores respectively) were entered as predictors, and we modelled their
main effects and their three pairwise interactions (while controlling for age, gender, and
motion during the resting state fMRI scan). The analysis with visual imagery as the
dependent variable identified two main effects: thinking in images was positively
correlated with the connectivity between the lateral fronto-temporal and precuneus
networks (β = 0.19, p = 0.016) and with component 2 scores (β = 0.18, p = 0.026).
Critically, it also indicated an interaction (β = 0.16, p = 0.043) suggesting that the
correlations between the precuneus and lateral fronto-temporal regions and reports of
imagery were stronger for participants who also had higher lateral visual and brainstem
connectivity (associated with low loadings on internally directed attention). This is
displayed in Figure 3 in the form of a scatter plot. The second analysis, with
dispositional internal focus as the dependent variable, identified two main effects, but
not an interaction: internally directed attention was negatively correlated with the
connectivity between the lateral visual and brainstem networks (β = -0.25, p = 0.001)
and positively correlated with thinking in images (β = 0.17, p = 0.024).

Discussion

Our study set out to explore how associations between patterns of unconstrained
ongoing experience and dispositional traits are reflected in the underlying neural
architecture. We found a positive correlation between a style of thinking which
emphasises visual imagery and a pattern of dispositional internal focus. Both of these
psychological features had distinct neural correlates. Thinking more in images was
related to an increase in correlation between the precuneus and a lateral
fronto-temporal network, while a decreased correlation between the lateral visual and a
brainstem/cerebellar network was linked to internal attention and ADHD traits.
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Figure 3. Moderation effect of the

lateral visual - brainstem coupling on

the relationship between thinking in

images and lateral fronto-temporal

- precuneus functional connectivity.
The scatter plot shows the corre-
lation values between the lateral
fronto-temporal and precuneus net-
works and thinking in images scores
grouped, by a median split, into
higher and lower connectivity groups
between the lateral visual and brain-
stem networks.

Critically, we found a significant interaction between these two neural traits: the
correlation between precuneus - lateral fronto-temporal connectivity and visual imagery
was more pronounced for individuals who also had stronger coupling between the
brainstem/cerebellar network and visual cortex. Our results, therefore, indicate that
there are stable neural interactions that support ongoing experience as well as
dispositional traits, and highlight that there are indirect neural relationships linking
these phenomena together.

Precuneus interactions with lateral frontal and temporal

systems are important for visual imagery.

Prior studies have shown that thinking in the form of images is an important feature of
ongoing experience [66, 67] and our study suggests that this process is linked to a
functional organisation in which a network anchored in the precuneus was more
correlated with a network emphasising lateral regions of the temporal and frontal
cortices. Although posterior medial cortex is functionally heterogeneous [68], the
precuneus has been related to visuospatial mental imagery (for a review see [69]),
episodic memory retrieval of imagined pictures [70] and imagining past episodes related
to self [71]. Our analysis suggests that visual imagery is linked to functional connectivity
between the precuneus and a lateral fronto-temporal network that contributes to
multi-modal forms of semantic cognition [72]. Contemporary accounts suggest that the
anterior temporal lobe supports cognition with different representational features
(pictures versus words, [73] for a review). Generally therefore, our results are consistent
with the hypothesis that the production of visual imagery depends upon the integration
of a system important for visual processing (the precuneus) with regions supporting
multi-modal elements of cognition (lateral temporal and frontal cortex).

Lateral visual cortex and brainstem interactions relate to

rumination, self-consciousness and ADHD traits

Rumination, self-consciousness and ADHD characteristics loaded on the same
component derived from the PCA decomposition of the questionnaire data, in line with
previous studies investigating their relationships directly [74, 75] or through their shared
characteristics with different and often maladaptive types of self-generated thought
[22, 24, 76, 77]. Our neuroimaging analyses showed that this behavioural component
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was linked to reduced correlation between the brainstem/cerebellum and the lateral
visual cortex. Previous studies have shown that brainstem abnormalities can support
increased accuracy of diagnostic classification in ADHD [78]. Decreased axial diffusivity
(a marker of axonal degeneration in clinical cases, [79]) in the occipital lobe and
brainstem has also been associated with an ADHD diagnosis [80]. In addition, processes
within the brainstem have been related to rumination, worry and anxiety by influencing
heart rate variability [81] and by its functional interactions with the limbic network in
anxiety disorders [82]. Links between increased rumination, self-consciousness and
ADHD traits may highlight a functional neural configuration where visual input
becomes increasingly incoherent with the activity of a network regulating autonomic
functions and modulating global connectivity [83], potentially reflecting the reduced
processing of sensory input that is important for internal focused experience [84].

Interactions between neural correlates of disposition and

patterns of ongoing thought

Given the results from our behavioural analyses (see Fig. 1) and multiple evidence
linking ongoing thought and dispositional traits, we also investigated whether there was
an interaction between their unique neural correlates. Notably, our analyses highlighted
that the association between precuneus-lateral fronto-temporal connectivity and reports
of visual imagery was more pronounced for individuals who had stronger connectivity
between regions of the brainstem and lateral occipital cortex. We suggest this could
reflect a more integrated global brain state, given that contemporary views of the basal
ganglia, cerebellum, and the cortex emphasise that these discrete systems should be
seen as parallel features of an integrated system [85]. We speculate that stronger lateral
visual, brainstem coupling gives rise to more stable neural conditions, resulting in an
increase in integration between precuneal and lateral frontal and temporal systems, and
thus facilitating the production of visual imagery. More generally, our study suggests
that understanding the neural mechanisms underlying patterns of dispositional traits
may be improved by accounting for features of ongoing experiences that emerge when
neural activity is recorded (and vice versa). As well as the questionnaire administered in
our study, there is now an emerging number of measures of ongoing experience such as
the New York Cognition Questionnaire [5], the Amsterdam Resting State Questionnaire
[86] and Resting state questionnaire [67]. The low economic cost of these measures and
the ease of their administration suggest that collecting data on patterns of ongoing
thought can improve our understanding of neural correlates of specific dispositional
states. We recommend that these measures become part of standard resting state
protocols.

Limitations

Although our study highlights the complex relationship between dispositional traits,
patterns of ongoing thought and measures of functional connectivity, it leaves several
important questions unanswered. First and foremost, it is unclear why our analyses
identified correlates for imagery rather than the other self-report items we studied. As
well as issues with experimental power, it is likely that this was partly because we lack
an agreed upon ontology of ongoing thought upon which the selection of the appropriate
self-report items can be made. This means that there may well be aspects of ongoing
cognition that we failed to measure, and others that the wording of our questions may
have made the detection of neural correlates more difficult. Thus, although our study
suggests that there are likely to be important relationships between ongoing thought
patterns, dispositional traits and functional connectivity, it remains an important open
question what categories of experience are most important to study and with which
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self-report measures they should be assessed. In addition, we measured ongoing
thoughts retrospectively, an approach that is suitable for trait level inferences, but less
useful for detecting neural correlates which are short and/or occur infrequently [84, 87].
It is possible that our measure of brain activity was not optimal for determining
associations with certain types of experience. It may be that using metrics sensitive to
dynamic changes in neural activity [88] would increase our capacity to identify neural
correlates other than those identified in this study. Finally, it is important to note that
patterns of ongoing experience are at least partly context dependent [42, 89]. Although
the resting state is a well-recognised technique in the cognitive neuroscientists toolbox,
it is possible that the neural correlates of certain aspects of experience may be detected
more readily in a different tasks environment. For example, the neural correlates of
both patterns of off-task thought and detailed task focus were easier to determine using
machine learning during a demanding 1-back task [4]. It is also important to note that
our sample was of young university undergraduate and post graduate students and
measures of psychopathology and other disorders within such a population may not
generalise fully to clinical groups. Extending this work to clinical conditions, especially
those which are partly identifiable through their patterns of cognition, will be
important. For example, studies have found that patterns of repetitive verbal thoughts
can be a characteristic of anxiety [90]. Moving forward, it will be important to develop
better self-report measures, more generalisable populations and to use alternative
techniques for mapping neural activity to completely understand the neural correlates of
different aspects of ongoing thought.

Conclusion

In conclusion, our study highlights that neural functioning at rest provides information
related to ongoing experience, patterns of dispositional traits, and their association. Our
test-retest analyses revealed recurring themes of spontaneous thoughts that remain
relatively stable within individuals. We found that thoughts based on imagery were
related to stronger interactions between a network anchored in the precuneus and
lateral temporal regions of the temporal and frontal cortex, many of which are members
of the DMN. More generally, our findings complement previous studies investigating the
neural substrates of ongoing experience and suggest that the impact of the functional
interactions of the brain on the human condition can be better understood by
accounting for both dispositional traits and patterns of ongoing experience.

Data availability

The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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