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An Inexact Newton Method for Systems Arising from the

Finite Element Method

Philip J. Capon* Peter K. Jimack!

Abstract

In this paper we introduce an efficient and robust technique for approximating the Jacobian
matrix for a nonlinear system of algebraic equations which arises from the finite element dis-
cretization of a system of nonlinear partial differential equations. It is demonstrated that when
an iterative solver, such as preconditioned GMRES, is used to solve the linear systems of equa-
tions that result from the application of Newton’s method this approach is generally more efficient
than using matrix-free techniques: the price paid being the extra memory requirement for storing
the sparse Jacobian. The advantages of this approach over attempting to calculate the Jacobian
exactly or of using other approximations are also discussed. A numerical example is included

which is based upon the solution of a 2-d compressible viscous flow problem.

Key words. Nonlinear problems, finite element method, approximate Jacobian, iterative linear

solver, preconditioning.

1 Introduction

The numerical approximation of a variety of scientific and engineering problems requires the solution
of nonlinear systems of algebraic equations. A popular approach to solving these problems is via
inexact Newton methods where the Newton equations are solved approximately by an iterative solver.
In general the Jacobian matrix for the nonlinear system will be nonsymmetric and indefinite so a quite
general linear iterative solver is required.

In this paper we concentrate on the nonlinear equations arising from a finite element discretization
of the compressible Navier-Stokes equations and consider an inexact Newton method based upon the
use of preconditioned GMRES at each step ([1]). In particular we suggest that there are practical
advantages to be gained from actually calculating estimates of the Jacobian matrices used in the
Newton algorithm, rather than using matrix-free methods (as in [2] for example). Moreover we
suggest that, by using our knowledge of the finite element structure behind the nonlinear algebraic
equations, it is possible to obtain an extremely straightforward and reliable estimate of the Jacobian

for this particular class of nonlinear system.
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2 Nonlinear Equations

In [3] and [4] it is shown that the steady 2-d compressible navier-Stokes equations may be expressed
in the general form

2
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where U = (p,u, v, T)T is a vector of dependent variables and the domain, 2, and boundary conditions
are problem dependent.
Given a triangulation of Q into E elements, 2°, we may look for a piecewise linear finite element

solution of (1) by defining the following trial space:
Ut = {U" € (¢%(Q))* : U"|q- € (P1)* and U" satisfies the essential BCs} .

In order to ensure the stability of the discretization we use a variant of the Galerkin Least-Squares
approach of Hughes and co-workers (see [5] for example). This requires that we find U" € U" such
that

for all appropriate trial functions V*. Note that full discretization details may be found in [4] and a
thorough discussion on the possible choices of the tensor 7 may be found in [5]. It is clear however

that the finite element problem (2) leads to a system of nonlinear algebraic equations of the form
G(X)=0, (3)

where the unknowns, X represent the nodal approximations to the dependent variables (p,u,v,T).
(Note that if implicit time-stepping is used to reach steady-state, rather than attempting to solve the

steady problem directly, then a nonlinear system of this form must be solved at each time-step.)

3 Imnexact Newton’s Method
Newton’s method requires the solution of the linear system

J(XM)sm = —g(x ™) (4)
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at each step (n =0, 1,2, ...) where the Jacobian matrix, J, is such that J;; =
When an iterative method, such as GMRES [1], is used to solve (4) the main step in each iteration
is to find a matrix-vector product

w=J(X™)p. (3)



It may be observed however that

(n) _ (n)
s SET DO ©

and so the product (5) may be estimated without actually knowing J(K(”)), at the cost of an additional
evaluation of G. The advantages of this and similar matrix-free methods ([2]) are clear: no time is
spent at the start of the n'” Newton step calculating J(K(”)), and no memory is required to store
this matrix.

These advantages are perhaps not as overwhelming as one might immediately think however.
Firstly, there are very few preconditioners that one can apply when J is not known explicitly. In
addition, for finite element problems such as that being considered here, J is very sparse and need not
require an inordinate amount of memory. Hence, if a sufficiently efficient way of calculating (or esti-
mating) J can be found then it is clear that the potential for fewer iterations (due to preconditioning)
and the lower cost of each iteration (since no function evaluations are needed) can ensure that using

J explicitly is more efficient than a matrix-free method.

4 Calculation of Jacobians

Because our nonlinear system of equations, (2), has been derived from a finite element method it is
possible to assemble the Jacobian matrix by looping through each element, 2%, in turn and calculating
the small number of contributions to J from that element. In theory it is possible to calculate
these contributions to J(X(")) exactly be restricting equations (2) to the element in question and
differentiating with respect to each of the 12 nodal degrees of freedom associated with this element (4
for each vertex). Clearly this is likely to be extremely complicated to do in practice, especially when
T(Qh) is quite complex.

An alternative is to approximate the 12 x 12 element Jacobian on each triangle using a finite
difference formula similar to (6) and then to assemble these into a sparse global matrix in the usual
finite element manner. The cost of assembling an approximate Jacobian in this way is about the
same as the cost of 13 evaluations of the function G. This is because the j** column of the element
Jacobian, J(®) say, on Q¢ is found using

Q(e)(z(n) + 8e;) — Q(e)(i(n))
6 )
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where Q(e) is the contribution to G from Q¢ and ¢; € R'? is such that each entry is zero apart from
the 7* which is 1.

We now assume that the time required to take a single iteration of the linear solver is almost
exclusively taken up with the matrix vector multiply. It then follows that the cost of each iteration
using the matrix-free method (6) is approximately equal to the cost of a single evaluation of G, Tg

say. Hence, N iterations of the matrix-free method require approximately (1 + N)T¢ units of time.



Now suppose that when the sparse matrix J(X(")) is known explicitly a single matrix-vector multiply
can be achieved in time aTg (0 < a < 1). It therefore follows that, in this case, N linear iterations
will take approximately (134 aN)T¢ units of time. Hence, provided at least % linear iterations are
required at each Newton step the second algorithm will be faster (even without taking into account

the fact that this algorithm is far easier to precondition).

5 Numerical Example

For our test problem we consider one of the examples used in [2]. This requires the calculation of a
two dimensional steady viscous flow around a NACAQ012 aerofoil at an angle of incidence of 3°. The
free stream Mach number is 0.8 and the Reynold’s number, Re, is 5000. When the problem is solved
on meshes of 1617, 4146 and 8505 elements in turn we estimate o to be approximately 0.5 in each
case. This means that provided each step of Newton iteration requires more than about 24 linear
iterations our method, which explicitly estimates the Jacobian, will be superior. In our experience
this always turns out to be the case for all but the most trivial of problems (and is also the case in [2]
where over 80 function evaluations per step are reported).

In practice the nonlinear system (3) is actually solved using the software described in [6] which
combines the inexact Newton approach with a linesearch backtracking algorithm to improve the con-
vergence properties of the solver. For many problems this convergence to steady-state is obtained
most efficiently through the use of time-stepping. Finally, the fact that an approximation to the Jaco-
bian, J(X(”)), has been computed means that standard preconditioning techniques such as incomplete
LU factorization, [7], may be utilized. Such preconditioners have a significant effect on the rate of
convergence of the inner iterations.

For the problem described above it is possible to obtain convergence in a total of 35 nonlinear
iterations and 1385 linear iterations on the finest of the three grids. This is based upon the use of
local time-stepping with at most 6 Newton iterations per time step and at most 40 inner iterations
per Newton step (using an ILU(0) preconditioner: i.e. no fill-in is permitted). The initial guess to the
solution here is arbitrary and gives an initial residual of 8.5 x 1072 in the nonlinear system (3). The

final value of this residual is 1.5 x 10~°.

6 Summary

We have described an approach for estimating the Jacobian of a large nonlinear system which arises
from the finite element discretization of a nonlinear system of partial differential equations. Since this
estimate of the Jacobian is built in an element-by-element manner it is extremely computationally
efficient: costing about the same as just 13 nonlinear residual evaluations for 2-d compressible Navier-

Stokes problems. (In 3-d, using a tetrahedral mesh, the cost would be about the same as 21 residual



evaluations.) Because of the low computational overhead associated with building this Jacobian we
claim that it is more efficient to do this than to use matrix-free methods, such as those described in
[2] for example. The price to be paid is the extra memory requirement of storing the sparse Jacobian
at each Newton step.

In this paper we have not explicitly contrasted our approximation to the Jacobian with the use of an
exact Jacobian matrix. Whilst the latter approach is theoretically possible it is worth noting that it is
dramatically more complex to program than the approximate approach (and that an alteration to the
equation being solved or to the choice of 7(U") in (2) will mean significant additional programming).
Moreover, in [4], numerical results indicate that there is no significant advantage in taking the exact
approach since, even if an exact expression for the Jacobian can be encoded without error, it never

appears to cause fewer Newton iterations to be taken in practice.
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