
This is a repository copy of On Testability of First-Order Properties in Bounded-Degree
Graphs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/166217/

Version: Accepted Version

Proceedings Paper:
Adler, I orcid.org/0000-0002-9667-9841, Köhler, N and Peng, P (2021) On Testability of
First-Order Properties in Bounded-Degree Graphs. In: SODA '21: Proceedings of the
Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms. SODA '21: ACM-
SIAM Symposium on Discrete Algorithms, 10-13 Jan 2021, Online. ACM , pp. 1578-1597.
ISBN 9781611976465

https://doi.org/10.1137/1.9781611976465.96

© 2021 by SIAM. This is an author produced version of a conference paper published in
SODA '21: Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

On Testability of First-Order Properties in Bounded-Degree Graphs∗

Isolde Adler† Noleen Köhler‡ Pan Peng§

Abstract

We study property testing of properties that are definable

in first-order logic (FO) in the bounded-degree graph and

relational structure models. We show that any FO property

that is defined by a formula with quantifier prefix ∃
∗

∀
∗

is testable (i.e., testable with constant query complexity),

while there exists an FO property that is expressible by

a formula with quantifier prefix ∀
∗

∃
∗ that is not testable.

In the dense graph model, a similar picture is long known

(Alon, Fischer, Krivelevich, Szegedy, Combinatorica 2000),

despite the very different nature of the two models. In

particular, we obtain our lower bound by a first-order

formula that defines a class of bounded-degree expanders,

based on zig-zag products of graphs. We expect this to

be of independent interest. We then prove testability of

some first-order properties that speak about isomorphism

types of neighbourhoods, including testability of 1-neigh-

bourhood-freeness, and r-neighbourhood-freeness under a

mild assumption on the degrees.

1 Introduction

Graph property testing is a framework for studying
sampling-based algorithms that solve a relaxation of
classical decision problems on graphs. Given a graph
G and a property P (e. g. triangle-freeness), the goal of
a property testing algorithm, called a property tester,
is to distinguish if a graph satisfies P or is far from
satisfying P , where the definition of far depends on
the model. The general notion of property testing was
first proposed by Rubinfeld and Sudan [RS96], with the
motivation for the study of program checking. Goldre-
ich, Goldwasser and Ron [GGR98] then introduced the
property testing for combinatorial objects and graphs.
They formalized the dense graph model for testing graph
properties, in which the algorithm can query if any pair
of vertices of the input graph G with n vertices are ad-
jacent or not, and the goal is to distinguish, with prob-
ability at least 2/3, the case of G satisfying a property
P from the case that one has to modify (delete or in-

∗A full version of the paper is available at: https://arxiv.

org/abs/2008.05800.
†University of Leeds, UK. Email: I.M.Adler@leeds.ac.uk.
‡University of Leeds, UK. Email: scnk@leeds.ac.uk.
§University of Sheffield, UK. Email: p.peng@sheffield.ac.uk.

sert) more than εn2 edges to make it satisfy P , for any
specified proximity parameter ε ∈ (0, 1]. A property P
is called testable (in the dense graph model), if it can be
tested with constant query complexity, i.e., the number
of queries made by the tester is bounded by a function
of ε and is independent of the size of the input graph.
Since [GGR98], much effort has been made on the testa-
bility of graph properties in this model, culminating in
the work by Alon et al. [AFNS09], who showed that a
property is testable if and only if it can be reduced to
testing for a finite number of regular partitions.

Since Goldreich and Ron’s seminal work [GR02] in-
troducing property testing on bounded-degree graphs,
much attention has been paid to property testing in
sparse graphs. Nevertheless, our understanding of testa-
bility of properties in such graphs is still limited. In the
bounded-degree graph model [GR02], the algorithm has
oracle access to the input graph G with maximum de-
gree d, which is assumed to be a constant, and is allowed
to perform neighbour queries to the oracle. That is, for
any specified vertex v and index i ≤ d, the oracle re-
turns the i-th neighbour of v if it exists or a special
symbol ⊥ otherwise in constant time. A graph G with
n vertices is called ε-far from satisfying a property P ,
if one needs to modify more than εdn edges to make it
satisfy P . The goal now becomes to distinguish, with
probability at least 2/3, if G satisfies a property P or
is ε-far from satisfying P , for any specified proximity
parameter ε ∈ (0, 1]. Again, a property P is testable in
the bounded-degree model, if it can be tested with con-
stant query complexity, where the constant can depend
on ε, d while being independent of n. So far, it is known
that some properties are testable, including subgraph-
freeness, k-edge connectivity, cycle-freeness, being Eule-
rian, degree-regularity [GR02], minor-freeness [BSS10,
HKNO09, KSS19], hyperfinite properties [NS13], k-
vertex connectivity [YI12, FNS+20], and subdivision-
freeness [KY13].

In this paper, we study the testability of proper-
ties definable in first-order logic (FO) in the bounded-
degree graph model. Recall that formulas of first-order
logic on graphs are built from predicates for the edge
relation and equality, using Boolean connectives ∨,∧,¬
and universal and existential quantifiers ∀, ∃, where the
variables represent graph vertices. First-order logic

can e. g. express subgraph-freeness (i. e., no isomorphic
copy of some fixed graph H appears as a subgraph)
and subgraph containment (i. e., an isomorphic copy of
some fixed H appears as a subgraph). Note however,
that there are constant-query testable properties, such
as connectivity and cycle-freeness, that cannot be ex-
pressed in first-order logic. We study the question of
which first-order properties are testable in the bounded-
degree graph model. Our study extends to the bounded-
degree relational structure model [AH18], while we fo-
cus on the classes of relational structures with binary
relations, i.e., edge-coloured directed graphs. In this
model for relational structures, one can perform neigh-
bour queries for each edge colour class, querying for
both in- and out-neighbours via edges in that class. This
model is natural in the context of relational databases,
where each (edge-)relation is given by a list of the tuples
it contains.

We consider the testability of first-order properties
in the bounded degree model according to quantifier
alternation, inspired by a similar study for dense graphs
by Alon et al. [AFKS00]. On relational structures of
bounded degree over a fixed finite signature, we have
the following simple observation: Any first-order
property definable by a sentence without quantifier
alternations is testable. This means the sentence either
consists of a quantifier prefix of the form ∃∗ (any finite
number of existential quantifications), followed by a
quantifier-free formula, or it consists of a quantifier
prefix of the form ∀∗ (any finite number of universal
quantifications), followed by a quantifier-free formula.
Basically, every property of the form ∃∗ is testable
because the structure required by the quantifier free
part of the formula can be planted with a small number
of tuple modifications if the input structure is large
enough (depending on the formula), and we can use an
exact algorithm to determine the answer in constant
time otherwise. Every property of the form ∀∗ is
testable because a formula of the form ∀x̄ϕ(x̄), where ϕ
is quantifier free, is logically equivalent to a formula of
the form ¬∃x̄ψ(x̄), where ψ is quantifier free. Testing
¬∃x̄ψ(x̄) then amounts to testing for the absence of
a finite number of induced substructures, which can
be done similar to testing subgraph freeness [GR02].
The testability of a property becomes less clear if it
is defined by a sentence with quantifier alternations.
Formally, we let Π2 (resp. Σ2) denote the set of
properties that can be expressed by a formula in the
∀∗∃∗-prefix (resp. ∃∗∀∗-prefix) class. We obtain the
following.

Every first-order property in Σ2 is testable in the
bounded-degree model (Theorem 5.1). On the other
hand, there is a first-order property in Π2, that is not

testable in the bounded-degree model (Theorem 4.4).
The theorems that we refer to in the above state-

ment are for relational structures, while we also give a
lower bound on graphs (Theorem 4.5), so the statement
also holds when restricted to FO on graphs. Interest-
ingly, the above dividing line is the same as for FO prop-
erties in dense graph model [AFKS00], despite the very
different nature of the two models. Our proof uses a
number of new proof techniques, combining graph the-
ory, combinatorics and logic.

We remark that our lower bound, i.e., the existence
of a property in Π2 that is not testable, is somewhat
astonishing (on an intuitive level) due to the follow-
ing two reasons. Firstly, it is proven by constructing
a first-order definable class of structures that encode a
class of expander graphs, which highlights that FO is
surprisingly expressive on bounded degree graphs, de-
spite its locality [Han65, Gai82, RFV95]. Secondly, it is
known that property testing algorithms in the bounded-
degree model proceed by sampling vertices from the
input graph and exploring their local neighbourhoods,
and FO can only express ‘local’ properties, while our
lower bound shows that this is not sufficient for testa-
bility. We elaborate this in more details in the follow-
ing. On one hand, Hanf’s Theorem [Han65] gives in-
sight into first-order logic on graphs of bounded degree
and implies a strong normal form, called Hanf Normal
Form (HNF) in [BK12], which we briefly sketch. For
a graph G of maximum degree d and a vertex x in G,
the neighbourhood of fixed radius r around x in G can
be described by a first-order formula τr(x), up to iso-
morphism. A Hanf sentence is a first-order sentence of
the form ‘there are at least ℓ vertices x of neighbour-
hood (isomorphism) type τr(x)’. A first-order sentence
is in HNF, if it is a Boolean combination of Hanf sen-
tences. By Hanf’s Theorem, every first-order sentence
is equivalent to a sentence in HNF on bounded-degree
graphs [Han65, RFV95, EF95]. Note that Hanf sen-
tences only speak about local neighbourhoods. Hence
this theorem gives evidence that first-order logic can
only express local properties. On the other hand, if
a property is constant-query testable in the bounded-
degree graph model, then it can be tested by approx-
imating the distribution of local neighbourhoods (see
[CPS16] and [GR11]). That is, a constant-query tester
can essentially only test properties that are close to be-
ing defined by a distribution of local neighbourhoods.
For these reasons1, a priori, it could be true that ev-

1Furthermore, previously, typical FO properties are all known
to be testable, including degree-regularity for a fixed given degree,
containing a k-clique and a dominating set of size k for fixed k

(which are trivially testable), and the aforementioned subgraph-
freeness and subgraph containment (see e.g. [Gol17]).

ery property that can be expressed in first-order logic is
testable in the bounded degree model. Indeed, the va-
lidity of this statement was raised as an open question
in [AH18]. However, our lower bound gives a negative
answer to this question.

Motivated by our above results, we further study
testability of graph properties described through Hanf
sentences or negated Hanf sentences, which are first-
order properties that speak about isomorphism types
of neighbourhoods. Given a bounded degree graph,
an r-ball around a vertex x is the neighbourhood of
radius r around x in the graph. We call the isomor-
phism types of r-balls r-types. We consider two basic
such properties, called τ -neighbourhood regularity and
τ -neighbourhood-freeness, that correspond to “all ver-
tices have r-type τ” and “no vertex has r-type τ”, re-
spectively. (Neighbourhood-regularity can be seen as a
generalisation of degree-regularity, which is known to
be testable [Gol17].) As we show in Lemma 6.1, there
exist 1-types τ, τ ′ such that neither τ -neighbourhood-
freeness nor τ ′-neighbourhood regularity can be defined
by a formula in Σ2. Thus, our previous tester for Σ2 can-
not be applied to these properties. We give constant-
query testers for them under certain conditions on τ
(Theorem 6.1, Theorem 6.2, Theorem 6.3). Both τ -
neighbourhood-freeness and τ -neighbourhood regular-
ity can be defined by formulas in Π2 for any neigh-
bourhood type τ . Thus, our results imply that there
are properties defined by formulas in Π2 \Σ2 which are
testable.

Our techniques To show that every property P
defined by a formula ϕ in Σ2 (i.e. of the form ∃∗∀∗) is
testable, we show that P is equivalent to the union of
properties Pi, each of which is ‘indistinguishable’ from
a property Qi that is defined by a formula of form ∀∗.
Here the indistinguishability means we can transform
any structure satisfying Pi, into a structure satisfying
Qi by modifying a small fraction of the tuples of the
structure and vice versa. This allows us to reduce the
problem of testing P to testing properties defined by
∀∗ formulas. Then the testability of P follows, as any
property of the form ∀∗ is testable and testable prop-
erties are closed under union [Gol17]. The main chal-
lenge here is to deal with the interactions between exis-
tentially quantified variables and universally quantified
variables. Intuitively, the degree bound limits the struc-
ture that can be imposed by the universally quantified
variables. Using this, we are able to deal with the ex-
istential variables together with these interactions by
‘planting’ a required constant size substructure in such
a way, that we are only a constant number of modifica-
tions ‘away’ from a formula of the form ∀∗.

Complementing this, we use Hanf’s theorem to ob-

serve that every FO property on degree-regular struc-
tures is in Π2 (see Lemma 4.1). Thus to prove that there
exists a property defined by a formula in Π2 which is
not testable, it suffices to show the existence of an FO
property that is not testable and degree-regular. For the
latter, we note that it suffices to construct a formula ϕ,
that defines a class of relational structures with binary
relations only (edge-coloured directed graphs) whose
underlying undirected graphs are expander graphs. To
see this, we use an earlier result that if a property is
constant-query testable, then the distance between the
local (constant-size) neighbourhood distributions of a
relational structure A satisfying the property ϕ and
a relational structure B that is ε-far from having the
property must be relatively large (see [AH18] which in
turn is built upon the so-called “canonical testers” for
bounded-degree graphs in [CPS16, GR11]). We then ex-
ploit a result of Alon (see Proposition 19.10 in [Lov12]),
that the neighbourhood distribution of an arbitrarily
large relational structure A can be approximated by
the neighbourhood distribution of a structure H of small
constant size. Thus, for any A in ϕ, by taking the union
of “many” disjoint copies of the “small” structure H, we
obtain another structure B such that the local neigh-
bourhood distributions of A and B have small distance.
If the underlying undirected graphs of the structures
in ϕ are expander graphs, it immediately follows that
B is far from the property defined by the formula ϕ,
from which we can conclude that the property ϕ is not
testable. We remark that for simple undirected graphs,
it was known before that any property that only consists
of expander graphs is not testable [FPS19].

Now we construct a formula ϕ, that defines a class
of relational structures with binary relations only whose
underlying undirected graphs are expander graphs, aris-
ing from the zig-zag product by Reingold, Vadhan and
Wigderson [RVW02]. For expressibility in FO, we hy-
bridise the zig-zag construction of expanders with a tree
structure. Roughly speaking, we start with a small
graph H, which is a good expander, and the formula
ϕ expresses that each model 2 looks like a rooted k-ary
tree (for a suitable fixed k), where level 0 consists of the
root only, level 1 contains G1 := H2, and level i contains
the zig-zag product of G2

i−1 with H. The class of trees
is not definable in FO. However, we achieve that every
finite model of our formula is connected and looks like
a k-ary tree with the desired graphs on the levels. This
structure is obtained by a recursive ‘copying-inflating’
mechanism, to mimic the expander construction locally

2When the context is clear, we use “model” to indicate that
a structure satisfies some formula. This should not be confused

with the names for our computational models, e.g., the bounded-
degree model.

between consecutive levels. For this we use a constant
number of edge-colours, one set of colours for the edges
of the tree, and another for the edges of the ‘level’ graphs
Gi. On the way, many technicalities need to be tackled,
such as encoding the zig-zag construction into the local
copying mechanism (and achieving the right degrees),
and finally proving connectivity. We then show that
the underlying undirected graphs of the models of ϕ are
expander graphs. Finally, we extend this construction
to simple undirected graphs, by using carefully designed
gadgets to encode the different edge-colours and main-
tain degree regularity.

To give our testers for τ -neighbourhood regular-
ity and τ -neighbourhood-freeness, we show that if a
graph G is ε-far from having the property, it contains
a linear fraction of constant-size neighbourhoods cer-
tifying that G does not satisfy the property. Such a
statement may be intuitively true, but it is tricky to
prove. Assume we want to test for τ -freeness, for some
fixed r-neighbourhood type τ , and assume a graph G
has one vertex x with forbidden neighbourhood of type
τ . Changing the r-neighbourhood of x by edge mod-
ifications, in order to remove τ , might introduce new
forbidden neighbourhoods around vertices close to x,
triggering a ‘chain reaction’ of necessary modifications.
This means that a graph might be ǫ-far from being τ -
free, but we do not see it by sampling constantly many
neighbourhoods in the graph. Such a subtle difficulty
has already been observed for testing degree-regularity
(see Claim 8.5.1 in [Gol17]). We show that under ap-
propriate assumptions, such a ‘chain reaction’ can be
bypassed by carefully fixing the neighbourhood of x
without changing the neighbourhood type of the ver-
tices surrounding x. Though fairly simple, it provides
non-trivial analysis, handling the subtle difficulty of re-
lating local distance to global distance without trigger-
ing a ‘chain reaction’.

Other related work Besides the aforementioned
works on testing properties with constant query com-
plexity in the bounded-degree graph model, Goldreich
and Ron [GR11] have obtained a characterisation for a
class of properties that are testable by a constant-query
proximity-oblivious tester in bounded-degree graphs
(and dense graphs). Such a class is a rather restricted
subset of the class of all constant-query testable prop-
erties. Fichtenberger et al. [FPS19] showed that every
testable property is either finite or contains an infinite
hyperfinite subproperty. Ito et al. [IKN19] gave charac-
terisations of one-sided error (constant-query) testable
monotone graph properties, and one-sided error testable
hereditary graph properties in the bounded-degree (di-
rected and undirected) graph model.

In the bounded-degree graph model, there are

also properties (e.g. bipartiteness, expansion, k-
clusterability) that require Ω(

√
n) queries, and proper-

ties (e.g. 3-colorability) that require Ω(n) queries. We
refer the reader to Goldreich’s recent book [Gol17].

Property testing on relational structures was re-
cently motivated by the application in databases.
Besides the aforementioned work [AH18], Chen and
Yoshida [CY19] studied the testability of relational
database queries for each relational structure in the
framework of property testing.

Further discussions and open problems The
question whether first-order definable properties are
testable with a sublinear number of queries (e.g.

√
n)

in the bounded-degree model is left open.
We believe it is natural to study the problem of

testing properties of neighbourhood types. Firstly,
our previous results can be seen as an indication that
quantifier prefix classes are perhaps less suitable when
searching for a dividing line between testable and non-
testable first-order properties in the bounded-degree
model. Since subgraph-freeness and subgraph contain-
ment are testable, Hanf’s normal form suggests study-
ing testability of Hanf sentences and their negations,
i. e. neighborhood properties, as a next step. Secondly,
studying such properties helps us gain more insights on
which properties that are defined by distributions of
neighbourhood types are testable, which is crucial to
solve one of the most important open questions in this
area, namely to characterise the combinatorial structure
of testable properties in the bounded-degree model.

Furthermore, we remark that our testers for neigh-
bourhood properties have one-sided error, i. e. the
testers always accept the graphs that satisfy the
property. We note that in contrast to subgraph-
freeness and induced subgraph-freeness, the proper-
ties τ -neighbourhood regularity and τ -neighbourhood-
freeness are neither monotone nor hereditary, which
are properties that are closed under edge deletion and
closed under vertex deletion, respectively. As we men-
tioned before, Ito et al. [IKN19] recently characterised
one-sided error (constant-query) testable monotone and
hereditary graph properties in the bounded-degree (di-
rected and undirected) graph model. In order to give a
full characterisation of one-sided error testable proper-
ties in the bounded-degree graph model, it is important
to take a step beyond monotone and hereditary graph
properties.

Structure of the paper Section 2 contains the
preliminaries, including logic, property testing and the
zig-zag construction of expander graphs. In Section 3
we construct the FO formula ϕ and prove properties
of its models. In Section 4, we prove that there is a
Π2-property that is not testable, by proving that the

property Pϕ defined by ϕ on bounded-degree structures
is not constant-query testable. We also provide a
Π2-property of simple, undirected graphs that is non-
testable. In Section 5, we show that all Σ2 properties
are testable. In Section 6 we give positive results for
some first-order properties speaking about isomorphism
types of neighbourhoods.

2 Preliminaries

We refer the reader to the full version of the paper for
basics on graphs, relational structures and first-order
logic.

2.1 The bounded-degree relational structure
model Let σ = {R1, . . . , Rℓ} be a relational signature
and let A be a σ-structure with universe A. The degree
of an element a ∈ A denoted by degA(a) is defined to
be the number of tuples in A containing a. We define
the degree of A denoted by deg(A) to be the maximum
degree of its elements. For any d ∈ N we let Cd be
the class of all σ-structures of bounded degree d. Let
us remark that deg(A) and the degree of the Gaifman
graph of A only differ by at most a constant factor (cf.
e. g. [DG07]), so the definitions are equivalent in the
sense that the same classes have bounded degree. A
property on any class of structures C is a subset P ⊆ C
of structures that is closed under isomorphism. We say
that a structure A ∈ C has property P if A ∈ P . On
Cd, every FO-sentence ϕ defines a property Pϕ ⊆ Cd,
where Pϕ = {A ∈ Cd | A |= ϕ}.

We describe the model for bounded-degree rela-
tional structures as defined in [AH18]. This extends
the bounded-degree model for undirected graphs intro-
duced in [GR02] and conforms with the bidirectional
model of [CPS16].

An algorithm that processes a σ-structure A ∈ Cd
does not obtain an encoding of A as a bit string in
the usual way. Instead, we assume that the algorithm
receives the number n of elements of A, and that the
elements of A are numbered 1, 2, . . . , n. In addition, the
algorithm has direct access to A using an oracle which
answers neighbour queries in A in constant time. That
is, the oracle accepts queries of the form (i, j, k), for
i ∈ {1, . . . , n}, j ∈ {1, . . . , ℓ} and k ∈ {1, . . . , d}, to
which it responds with the k-th tuple in RA

j containing
i, or with ⊥ if i is contained in less than k tuples.

The running time of the algorithm is defined as
usual, i. e. with respect to the size of the structure n.
We assume a uniform cost model, i. e. we assume that all
basic arithmetic operations including random sampling
can be performed in constant time, regardless of the size
of the numbers involved.

Distance. For two σ-structures A and B, both

of size n, dist(A,B) denotes the minimum number
of tuples that have to be modified (i. e. inserted or
removed) in A and B to make A and B isomorphic. For
ǫ ∈ (0, 1], we say A and B, both of size n and with degree
bound d, are ǫ-close if dist(A,B) ≤ ǫdn. If A,B are not
ǫ-close, then they are ǫ-far. Note that in particular, A
and B are ǫ-far if their size differs. A σ-structure A is
ǫ-close to a property P if A is ǫ-close to some B ∈ P .
Otherwise, A is ǫ-far from P .

Definition 2.1. (ǫ-tester) Let P ⊆ Cd be a property
and ǫ ∈ (0, 1]. An ǫ-tester for P is a probabilistic
algorithm with oracle access to an input A ∈ Cd and
auxiliary input n := |A|. The tester does the following.

1. If A ∈ P , then the ǫ-tester accepts with probability
at least 2/3.

2. If A is ǫ-far from P , then the ǫ-tester rejects with
probability at least 2/3.

The query complexity of an ǫ-tester is the maximum
number of oracle queries made. A property P is testable,
if for each ǫ ∈ (0, 1] and each n, there is an ǫ-tester
for P ∩ {A ∈ Cd | |A| = n} on inputs from {A ∈
Cd | |A| = n} with constant query complexity, i. e. the
query complexity is independent of n. A property P is
uniformly testable, if for each ǫ ∈ (0, 1] there is an ǫ-
tester for P , that has constant query complexity. Note
that ‘uniformly’ emphasises that this tester must work
for all n.

2.2 Quantifier alternations of first-order formu-
las Let σ be any relational signature and Cd the set
of σ-structures of bounded degree d. We use the fol-
lowing recursive definition, classifying first-order formu-
las according to the number of quantifier alterations in
their quantifier prefix. Let Σ0 = Π0 be the class of
all quantifier free first-order formulas over σ. Then
for every i ∈ N>0 we let Σi be the set of all FO
formulas ϕ(y1, . . . , yℓ) for which there is k ∈ N and
a formula ψ(x1, . . . , xk, y1, . . . , yℓ) ∈ Πi−1 such that
ϕ ≡ ∃x1 . . . ∃xkψ(x1, . . . , xk, y1, . . . , yℓ). Analogously,
Πi consists of all FO formulas ϕ(y1, . . . , yℓ) for which
there is k ∈ N and a formula ψ(x1, . . . , xk, y1, . . . , yℓ) ∈
Σi−1 such that ϕ ≡ ∃x1 . . . ∃xkψ(x1, . . . , xk, y1, . . . , yℓ).

Example. [Substructure freeness] Let B be a σ-
structure, and let d ∈ N. The property

P := {A ∈ Cd | A does not contain B as substructure}
is in Π1 and is uniformly testable on Cd with constant
running time which can be proven similar to substruc-
ture freeness in simple graphs [GR02].

As discussed in the introduction, every FO property in
Σ1 or Π1, i.e., without quantifier alternation, is testable.

2.3 Expansion and the zig-zag product In this
section we recall a construction of a class of expanders
introduced in [RVW02]. This construction uses undi-
rected graphs with parallel edges and self-loops. We
therefore encode a graph G as a triple (G,E, f) where
V is a finite sets of vertices, E is a finite set of edges, and
f is the incidence map from E to {x ⊆ V | 1 ≤ |x| ≤ 2}.

Let G = (V,E, f) be an undirected D-regular graph
on N vertices. We follow the convention that each
self-loop counts 1 towards the degree. Let I be a set
of size D. Then a rotation map of G is a function
ROTG : V × I → V × I such that for every two not
necessarily different vertices u, v ∈ V

|{(i, j) ∈ I × I | ROTG(u, i) = (v, j)}|
= |{e ∈ E | f(e) = {u, v}}|

and ROTG is self inverse, i.e. ROTG(ROTG(v, i)) =
(v, i) for all v ∈ V, i ∈ I. A rotation map is a
representation of a graph that additionally for every
vertex v fixes an order on all edges incident to v. We
let the normalised adjacency matrix M of G be

Mu,v :=
1

D
· |{e | f(e) = {u, v}}|.

Let 1 = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ −1 denote the
eigenvalues of M . Since M is real, symmetric, contains
no negative entries and all columns sum up to 1, all
its eigenvalues are in the real interval [−1, 1]. We let
λ(G) := max{|λ2|, |λN |}. Note that these notions do
not depend on the rotation map. We say that a graph
is an (N,D, λ)-graph, if G has N vertices, is D-regular
and λ(G) ≤ λ. We will use the following lemma.

Lemma 2.1. ([HLW06]) The graph G is connected if
and only if λ2 < 1. Furthermore, if G is connected,
then G is bipartite if and only if λN = −1.

For any S, T ⊆ V let 〈S, T 〉G := {e ∈ E | f(e) ∩ S 6=
∅, f(e) ∩ T 6= ∅} be the set of edges crossing S and T .

Definition 2.2. For any S ⊆ V , let h(S) := |〈S,S〉G|
|S|

be the expansion of S. We let h(G) be the expansion
ratio of G defined by h(G) := min{S⊂V ||S|≤N/2} h(S).

For any constant ǫ > 0 we call a sequence {Gm}m∈N>0

of graphs of increasing number of vertices a family of
ǫ-expanders, if h(Gm) ≥ ǫ for all m ∈ N>0. There exists
the following connection between h(G) and λ(G).

Theorem 2.1. ([Dod84, AM85]) Let G be a
D-regular graph. Then h(G) ≥ D(1 − λ(G))/2.

This implies that for a sequence of graphs {Gm}m∈N>0

of increasing number of vertices, if there is a constant
ǫ < 1 such that λ(Gm) ≤ ǫ for all m ∈ N>0, then
{Gm}m∈N>0

is a family of D(1 − ε)/2-expanders.

Definition 2.3. Let G be a D-regular graph on N
vertices with rotation map ROTG and I a set of
size D. Then the square of G, denoted by G2, is
a D2-regular graph on N vertices with rotation map
ROTG2(u, (k1, k2)) := (w, (ℓ2, ℓ1)), where

ROTG(u, k1) =(v, ℓ1) and ROTG(v, k2) = (w, ℓ2),

and u, v, w ∈ V , k1, k2, ℓ1, ℓ2 ∈ I.

Note that the edges of G2 correspond to walks of length
2 in G and the adjacency matrix of G2 is the square
of the adjacency matrix of G. Note here that if G is
bipartite then G2 is not connected, which can be easily
explained by using Lemma 2.1.

Lemma 2.2. ([RVW02]) If G is a (N,D, λ)-graph then
G2 is a (N,D2, λ2)-graph.

Definition 2.4. Let G1 = (V1, E1, f1) be a D1-regular
graph on N1 vertices, I1 a set of size D1 and ROTG1

:
V1 × I1 → V1 × I1 a rotation map of G1. Let G2 =
(I1, E2, f2) be a D2-regular graph, let I2 be a set of
size D2 and ROTG2 : I1 × I2 → I1 × I2 be a rotation
map of G2. Then the zig-zag product of G1 and G2,
denoted by G1 z G2, is the D

2
2-regular graph on V1 × I1

with rotation map given by ROTG1 z G2
((v, k), (i, j)) :=

((w, ℓ), (j′, i′)), where

ROTG2(k, i) = (k′, i′), ROTG1(v, k′) = (w, ℓ′),

ROTG2(ℓ′, j) = (ℓ, j′)

and v, w ∈ V1, k, k
′, ℓ, ℓ′ ∈ I1, i, i

′, j, j′ ∈ I2.

The zig-zag productG1 z G2 can be seen as the result of
the following construction. First pick some numbering
of the vertices of G2. Then replace every vertex in G1

by a copy of G2 where we colour edges from G1, say, red,
and edges from G2 blue. We do this in such a way that
the i-th edge inG1 of a vertex v will be incident to vertex
i of the to-v-corresponding-copy of G2. Then for every
red edge (v, w) and for every tuple (i, j) ∈ I2×I2 we add
an edge to the zig-zag product G1 z G2 connecting v′

and w′ where v′ is the vertex reached from v by taking
its i-th blue edge and w′ can be reached from w by
taking its j-th blue edge. Figure 1 shows an example,
where in the graph on the right hand side we show the
4 edges that are added to the zig-zag product for the
highlighted edge of the graph on the left hand side.

Theorem 2.2. ([RVW02]) If G1 is an (N1, D1, λ1)-
graph and G2 is a (D1, D2, λ2)-graph then G1 z G2 is a
(N1 ·D1, D

2
2, g(λ1, λ2))-graph, where

g(λ1, λ2) =
1

2
(1 − λ22)λ1 +

1

2

√

(1 − λ22)2λ1 + 4λ22.

This function has the following properties.

z =

Figure 1: Zig-zag product of a 3-regular grid with a triangle

1. If both λ1 < 1 and λ2 < 1 then g(λ1, λ2) < 1.

2. g(λ1, λ2) < λ1 + λ2.

Definition 2.5. ([HLW06]) Let D be a sufficiently
large prime power (e.g. D = 216). Let H be a
(D4, D, 1/4) expander (explicit constructions for H ex-
ist, cf. [RVW02].) We define {Gm}m∈N>0

by

G1 := H2, Gm := G2
m−1 z H for m > 1.(2.1)

Proposition 2.1. ([HLW06]) For every m ∈ N>0,
the graph Gm is a (D4m, D2, 1/2)-graph.

In the next section we will use the following lemma. For
a proof of Lemma 2.3 see the full version of the paper.

Lemma 2.3. Let G be a D-regular graph, S the vertices
of a connected component of G2. Then λ(G2[S]) < 1.

3 A class of expanders definable in FO

In this section we define a formula such that the
underlying graphs of its models are expanders. We
start with a high-level description of the formula. Let
{Gm}m∈N>0

be as in Definition 2.5. Loosely speaking,
each model of our formula is a structure which consists
of the disjoint union of G1, . . . , Gn for some n ∈ N>0

with some underlying tree structure connecting Gm−1

to Gm for all m ∈ {2, . . . , n}. For illustration see
Figure 2. The tree structure enables us to provide an
FO-checkable certificate for this construction. The tree
structure is a D4-ary tree, that is used to connect a
vertex v of Gm−1 to every vertex of the copy of H which
will replace v in Gm.

We use D4 relations {Fk}k∈([D]2)2 to enforce an
ordering on the D4 children of each vertex. We use
additional relations to encode rotation maps. For i, j ∈
[D]2 let Ei,j be a binary relation. For every pair
i, j ∈ [D]2 we represent an edge {v, w} in Gm by the
two tuples (v, w) ∈ EA

i,j and (w, v) ∈ EA
j,i. This allows

us to encode the relationship ROTGm
(v, i) = (w, j) in

first-order logic using the formula ‘Ei,j(v, w)’.
We use auxiliary relations R and Lk for k ∈ ([D]2)2,

to force the models to be degree regular. The relation

R contains the tuple (r, r) for the root r of the tree, and
Lk will contain (v, v) for every leaf v of the tree.

We now give the precise definition of the formula.
We use [n] := {0, 1, . . . , n− 1} for n ∈ N. Let

σ := {{Ei,j}i,j∈[D]2 , {Fk}k∈([D]2)2 , R, {Lk}k∈([D]2)2},
where Ei,j , Fk, R and Lk are binary relation symbols
for i, j ∈ [D]2 and k ∈ ([D]2)2. For convenience we
let E :=

⋃

i,j∈[D]2 Ei,j and F :=
⋃

k∈([D]2)2 Fk. Note
that we can express the relations E and F in our
language, by replacing formulas of the form ’E(x, y)’ by
’
∨

i,j∈[D]2 Ei,j(x, y)’ and formulas of the form ‘F (x, y)’

by ‘
∨

k∈([D]2)2 Fk(x, y)’ below. We use the following

formula to identify the root ϕroot(x) := ∀y¬F (y, x).
We now define a formula ϕtree, which expresses that

the model restricted to the relation F locally looks like a
D4-ary tree. More precisely, the formula defines that the
structure has exactly one root, that every other vertex
has exactly one parent and every vertex has either no
children or exactly one child for each of the D4 relations
Fk. It also defines the self-loops used to make the
structure degree regular.

ϕtree := ∃=1xϕroot(x) ∧ ∀x
(

(

ϕroot(x) ∧R(x, x)
)

∨
(

∃=1yF (y, x) ∧ ¬∃yR(x, y) ∧ ¬∃yR(y, x)
)

)

∧

∀x
(

[

¬∃yF (x, y) ∧
∧

k∈([D]2)2

Lk(x, x)∧

∀y
(

y 6= x→
∧

k∈([D]2)2

[

¬Lk(x, y) ∧ ¬Lk(y, x)
])

]

∨

[

¬∃y
∨

k∈([D]2)2

(

Lk(x, y) ∨ Lk(y, x)
)

∧

∧

k∈([D]2)2

∃yk
(

x 6= yk ∧ Fk(x, yk)∧

(
∧

k′∈([D]2)2

k′ 6=k

¬Fk′(x, yk)) ∧ ∀y(y 6= yk → ¬Fk(x, y))
)]

)

.

The formula ϕrotationMap will define the properties the
relations in E need to have in order to encode rotation

G1

Gm

Gn

Figure 2: Schematic representation of a model of ϕ z ,

where the parts in red (grey) only contain relations in E.
Relations in F are blue (black). R and L are omitted.

maps of D2-regular graphs. For this we make sure that
the edge colours encode a map, i.e. for any pair x and
i ∈ [D]2 there is only one pair y and j ∈ [D]2 such that
Ei,j(x, y) holds, and that the map is self inverse, i.e. if
Ei,j(x, y) then Ej,i(y, x).

ϕrotationMap := ∀x∀y
(

∧

i,j∈[D]2

(Ei,j(x, y) → Ej,i(y, x))
)

∧

∀x
(

∧

i∈[D]2

∨

j∈[D]2

(

∃=1yEi,j(x, y) ∧
∧

j′∈[D]2

j′ 6=j

¬∃yEi,j′(x, y)
))

We now define a formula ϕbase which expresses that the
root r of the tree has a self-loop (r, r) in each relation
Ei,j and that the D4 children of the root form G1.
Let H be the (D4, D, 1/4)-graph from Definition 2.5.
We assume that H has vertex set ([D]2)2. We then
identify vertex k ∈ ([D]2)2 with the element y such that
(x, y) ∈ FA

k for the root x. Let ROTH : ([D]2)2× [D] →
([D]2)2 × [D] be any rotation map of H. Fixing a
rotation map for H fixes the rotation map for H2.
Recall that G1 := H2. We can define G1 by a
conjunction over all edges of G1.

ϕbase := ∀x
(

ϕroot(x) →
[

∧

i,j∈[D]2

(Ei,j(x, x)∧

¬∃yEi,j(x, y)) ∧
∧

ROT
H2 (k,i)=(k′,i′)

k,k′∈([D]2)2

i,i′∈[D]2

∃y∃y′
(

Fk(x, y)∧

Fk′(x, y
′) ∧ Ei,i′(y, y′)

)

])

.

We will now define a formula ϕrecursion which will ensure
that level m of the tree contains Gm. Recall that
Gm := G2

m−1 z H. We therefore express that if there
is a path of length two between two vertices x, z then
for every pair i, j ∈ [D] there is an edge connecting

the corresponding children of x and z according to the
definition of the zig-zag product. Here it is important
that x and z either both have no children in the
underlying tree structure or they both have children.
This will also be encoded in the formula.

ϕrecursion := ∀x∀z
[

(

¬∃yF (x, y) ∧ ¬∃yF (z, y)
)

∨
∧

k′1,k
′
2∈[D]2

ℓ′1,ℓ
′
2∈[D]2

(

∃y
[

Ek′1,ℓ′1(x, y) ∧ Ek′2,ℓ′2(y, z)
]

→

∧

i,j,i′,j′∈[D],k,ℓ∈([D]2)2

ROTH(k,i)=((k′1,k
′
2),i

′)

ROTH((ℓ′2,ℓ
′
1),j)=(ℓ,j′)

∃x′∃z′
[

Fk(x, x′) ∧ Fℓ(z, z′)∧

E(i,j),(j′,i′)(x
′, z′)

]

)

]

We finally let ϕ z := ϕtree ∧ ϕrotationMap ∧ ϕbase ∧
ϕrecursion. This concludes defining the formula. Let
d := 2D2 + D4 + 1, which is chosen in such a way to
allow for any element of a σ-structure in Cd to be in
2D2 E-relations (Gm is D2 regular and every edge of
Gm is modelled by two directed edges), to have either
D4 F -children or D4 L-self-loops and to either have one
F -parent or be in one R-self-loop.

To each model A of ϕ z we will associate an

undirected graph U(A) with vertex set A. For every
tuple in each of the relations of A, the graph U(A)
will have an edge. We will define U(A) by a rotation
map, which extends the rotation map encoded by the
relation E. For this let I := {0} ⊔ ([D]2)2 ⊔ [D]2

be an index set. Formally, we define the underlying
graph U(A) of a model A of ϕ z to be the undirected

graph with vertex set A given by the rotation map
ROTU(A) : A× I → A× I defined by

ROTU(A)(v, i) :=

(v, 0) if i = 0 and (v, v) ∈ RA

(w, j) if i = 0 and (w, v) ∈ FA
j

(w, 0) if i ∈ ([D]2)2 and (v, w) ∈ FA
i

(v, i) if i ∈ ([D]2)2 and (v, v) ∈ LA
i

(w, j) if i ∈ [D]2 and (v, w) ∈ EA
i,j .

We can understand this rotation map as labelling the
edges incident to a vertex v as follows: (v, v) ∈ RA or
(w, v) ∈ FA

k respectively is labelled by 0, (v, w) ∈ FA
k

or (v, v) ∈ LA
k respectively is labelled by k and (v, w) ∈

EA
i,j is labelled by i. Note that U(A) is (D2 +D4 + 1)-

regular. We chose the notion of an underlying graph
here instead of the Gaifman graph, and it is more
convenient in particular for using results from [RVW02].
However the Gaifman graph can be obtained from the

underlying graph by ignoring self-loops and multiple
edges. We use A |= ϕ to denote that A is a model
of an FO sentence ϕ and we show the following.

Theorem 3.1. There is an ǫ > 0 such that the class
{U(A) | A |= ϕ z } is a family of ǫ-expanders.

In the rest of this section, we give the proof of The-
orem 3.1. Let A be a model of ϕ z . Let A|F :=

(A, (FA
k)k∈([D]2)2) be an {(Fk)k∈([D]2)2}-structure. Re-

call that we denote the Gaifman graph of A|F by
G(A|F). Let A|E be the {(Ei,j)i,j∈[D]2}-structure
(A, (EA

i,j)i,j∈[D]2). We further define the underly-
ing graph U(A|E) of A|E as the undirected graph
specified by the rotation map ROTU(A|E) defined by
ROTU(A|E)(v, i) := (w, j) if (v, w) ∈ EA

i,j . This is well
defined as A |= ϕrotationMap. We use the substructures
G(A|F) and U(A|E) to express the structural proper-
ties of models of ϕ z . More precisely we want to prove

that G(A|F) is a rooted complete tree and U(A|E) is
the disjoint union of the expanders G1, . . . , Gn for some
n ∈ N (Lemma 3.3). To prove this we use two technical
lemmas (Lemma 3.1 and Lemma 3.2). Lemma 3.1 intu-
itively shows that the children in G(A|F) of each con-
nected part of U(A|E) form the zig-zag product with H
of the square of the connected part. Lemma 3.2 shows
that G(A|F) is connected. To prove Theorem 3.1 we use
that a tree with an expander on each level has good ex-
pansion. Loosely speaking, this is true because cutting
the tree ‘horizontally’ takes many edge deletions and
for cutting the tree ‘vertically’ we cut many expanders.
We define isomorphism for undirected graphs with par-
allel edges and self-loops in the usual way, and we use
G1

∼= G2 to denote that G1 is isomorphic to G2.

Lemma 3.1. Let A be a model of ϕ z and assume

S is the set of all vertices belonging to a connected
component of (U(A|E))2 not containing the root and
let S′ := {w ∈ A | (v, w) ∈ FA, v ∈ S}. If S′ 6= ∅
then U(A|E)[S′] is a connected component of U(A|E)
and U(A|E)[S′] ∼= ((U(A|E))2[S]) z H.

We use connected components of (U(A|E))2, as the
square of a connected component of U(A|E) may not
be connected, in which case the zig-zag product with
H of the square of the connected component cannot be
connected.

Proof of Lemma 3.1. Assume that S′ 6= ∅. We first
show that U(A|E)[S′] ∼= ((U(A|E))2[S]) z H. For this
we use the following two claims.

Claim 3.1. If ROT(U(A|E))2[S] z H((u, k), (i, j)) =

((w, ℓ), (j′, i′)) for some u,w ∈ S, k, ℓ ∈ ([D]2)2,
i, j, i′, j′ ∈ [D] then there is v ∈ S such that

(u, v) ∈ EA
k′1,ℓ

′
1
and (v, w) ∈ EA

k′2,ℓ
′
2
where ROTH(k, i) =

((k′1, k
′
2), i′) and ROTH((ℓ′2, ℓ

′
1), j) = (ℓ, j′).

Proof. By definition of the zig-zag product the assump-
tion of the claim imply ROT(U(A|E))2[S](u, (k

′
1, k

′
2)) =

(w, (ℓ′2, ℓ
′
1)) for ROTH(k, i) = ((k′1, k

′
2), i′) and

ROTH((ℓ′2, ℓ
′
1), j) = (ℓ, j′). Since ROT(U(A|E))2[S] is

equal to ROT(U(A|E))2 restricted to elements of the
set S, we have that ROT(U(A|E))2(u, (k′1, k

′
2)) =

(w, (ℓ′2, ℓ
′
1)). By definition of squaring

ROT(U(A|E))2(u, (k′1, k
′
2)) = (w, (ℓ′2, ℓ

′
1)) implies

that there is v such that ROTU(A|E)(u, k
′
1) = (v, ℓ′1)

and ROTU(A|E)(v, k
′
2) = (w, ℓ′2).

Claim 3.2. If (u, v) ∈ EA
k′1,ℓ

′
1
, (v, w) ∈ EA

k′2,ℓ
′
2

for

u, v, w ∈ A, k′1, k
′
2, ℓ

′
1, ℓ

′
2 ∈ ([D]2)2 and there is u′ ∈ A

with (u, u′) ∈ FA then there is w′ ∈ A with (w,w′) ∈
FA. Moreover for any i, i′, j, j′ ∈ [D] there are ũ, w̃ ∈
A, k, ℓ ∈ ([D]2)2 such that (ũ, w̃) ∈ EA

(i,j),(j′i′) for

(u, ũ) ∈ FA
k and (w, w̃) ∈ FA

ℓ where ROTH(k, i) =
((k′1, k

′
2), i′) and ROTH((ℓ′2, ℓ

′
1), j) = (ℓ, j′).

Proof. We only use that A |= ϕrecursion. Since ϕrecursion

has the form ∀x∀zψ(x, z) we know that A |= ψ(u,w).
Then A 6|=

[

¬∃yF (x, y) ∧ ¬∃yF (z, y)
]

(u,w) as (u, u′) ∈
FA. Since A |= ∃y

[

Ek′1,ℓ′1(x, y) ∧ Ek′2,ℓ′2(y, z)
]

(u,w)

A |=
∧

i,j,i′,j′∈[D],k,ℓ∈([D]2)2

ROTH(k,i)=((k′1,k
′
2),i

′)

ROTH((ℓ′2,ℓ
′
1),j)=(ℓ,j′)

∃x′∃z′
[

Fk(x, x′)∧

Fℓ(z, z
′) ∧ E(i,j),(j′,i′)(x

′, z′)
]

(u,w).

Since H is D-regular, for every k′1, k
′
2 ∈ [D]2 and

i, i′ ∈ [D], there is k ∈ ([D]2)2 such that ROTH(k, i) =
((k′1, k

′
2, i

′) (and the same for ℓ′1, ℓ
′
2, j, j

′). Thus, the
above conjunction is not empty. This further implies
that for any i, i′, j, j′ ∈ [D] there are ũ, w̃ ∈ A, k, ℓ ∈
([D]2)2 as claimed. In particular there is w′ ∈ A such
that (w,w′) ∈ FA.

We will argue that for every element w ∈ S there is
a w′ ∈ S′ such that (w,w′) ∈ FA. For this pick
any u′ ∈ S′. Let u ∈ S be the element such that
(u, u′) ∈ FA. By combining Lemma 2.3 and Theorem
2.2 and Lemma 2.1 it follows that ((U(A|E))2[S]) z H
is connected. Therefore, there is a path (u′0, . . . , u

′
m) in

((U(A|E))2[S]) z H from u′0 = (u, (k1, k2)) to u′m =
(w, (ℓ1, ℓ2)) for some k1, k2, ℓ1, ℓ2 ∈ [D]2. By Claim
3.1 there is a path (u0, v0, u1, v1, . . . um−1, vm−1, um)
in U(A|E) from u0 = u to um = w. By inductively
using Claim 3.2 on the path we find w′ such that
(w,w′) ∈ FA.

Combining this with A |= ϕtree implies that the
map f : S × ([D]2)2 → S′, given by f(v, k) = u

if (v, u) ∈ FA
k , is well defined. Furthermore, as a

consequence of Claim 3.1 and Claim 3.2 imply that if
ROT(U(A|E))2[S] z H((u, k), (i, j)) = ((w, ℓ), (j′, i′)) then

ROT(U(A|E))[S′](f((u, k)), (i, j)) = (f((w, ℓ)), (j′, i′)).
This proves that f maps each edge in
((U(A|E))2[S]) z H injectively to an edge in
U(A|E)[S′]. Then the map f together with the
corresponding edge map is an isomorphism from
((U(A|E))2[S]) z H to U(A|E) as both are D2-regular.

Moreover, U(A|E)[S′] ∼= ((U(A|E))2[S]) z H im-
plies that U(A|E)[S′] is connected and D2-regular.
Since A |= ϕrotationMap enforces that U(A|E) is D2-
regular, no vertex v ∈ S′ can have neighbours which
are not in S′ and therefore U(A|E)[S′] is a connected
component of U(A|E).

Lemma 3.2. Let A ∈ Cd be a model of ϕ z . Then

G(A|F) is connected.

Proof. Assume that this is false and G(A|F) has more
than one connected component. Since A |= ϕtree

there is exactly one element v such that A |= ϕroot(v).
Therefore we can pick G′ to be a connected component
of G(A|F) which does not contain v. Let V be the set
of vertices of G′. For the next claim we should have
in mind that (A|F)[V] can be understood as a directed
graph in which every vertex has in-degree 1 and the
corresponding undirected graph G′ is connected. Hence
(A|F)[V] must consist of a set of disjoint directed trees
whose roots form a directed cycle. Consequently G′ has
the structure as given in the following claim.

Claim 3.3. G′ contains a cycle (c0, . . . , cℓ−1) and
for every vertex v of G′ there is exactly one path
(p0, . . . , pm) in G′ with p0 = v, pm on the cycle and
pi not on the cycle for all i ∈ [m].

Proof. Let v0 be any vertex in G′ and let S0 = {v0}. We
will now recursively define vi to be the vertex of G′ such
that (vi, vi−1) ∈ FA. Such a vertex always exists by the
choice of G′ (i.e. that the root is not in G′) and the fact
that A |= ϕtree. Furthermore, such a vertex is unique
as A |= ϕtree. We also let Si := Si−1 ∪ {vi}. Since A is
finite the chain S0 ⊆ S1 ⊆ · · · ⊆ Si ⊆ . . . must become
stationary. Let i ∈ N be the minimum index such that
Si−1 = Si and let j < i be such that vi = vj . Then
(vi, vi−1, . . . , vj+1, vj) is a cycle in G′ as by construction
(vk, vk−1) ∈ FA which implies that {vk, vk−1} is an edge
in G(A|F). Let C = {c0, . . . , cℓ−1} be the vertices of
the cycle. Since G′ is connected a path that satisfies
the property as described in the assertion of the claim
always exists. Let us argue that such a path is unique.
Assume there are two different such path (p0, . . . , pm)
and (p′0, . . . , p

′
m′) and assume pm = ci and p′m′ = cj .

Let k ≤ min{m,m′} be the minimum index such that
pk 6= p′k. Such an index must exist as the paths are
different and as p0 = p′0 = v we also know that k ≥ 1.
Since A |= ϕtree for every vertex w of G′ there can only
be one vertex w′ of G′ such that (w′, w) ∈ FA. As
pm−1 /∈ C and (c(i−1) mod ℓ, pm) ∈ FA this means that
(pm, pm−1) ∈ FA. Applying the argument inductively
we get that (pk, pk−1) ∈ FA. The same argument works
for the path (p′0, . . . , p

′
m′) and therefore (p′k, p

′
k−1) ∈ FA.

By the choice of k we know that pk−1 = p′k−1 and
pk 6= p′k which contradicts A |= ϕtree.

Let S0 be the vertex set of the connected component
of U(A|E) with c0 ∈ S0. Note that S0 might not be
contained in G′. We define the infinite sequence Si :=
{w ∈ A | (v, w) ∈ FA, v ∈ Si−1} for every i ∈ N>0. Let
mi := maxv∈Si∩V minj∈{0,...,ℓ−1}{distG′(cj , v)} and let
vi ∈ Si ∩ V be a vertex of distance mi from C in G′.
Note here that mi is well defined as ci mod ℓ ∈ Si.

Claim 3.4. U(A|E)[Si] = (U(A|E)[Si−1])2 z H.

Proof. We prove that U(A|E)[Si] is a connected com-
ponent of U(A|E), (U(A|E)[Si])

2 z H = U(A|E)[Si+1]
and λ(U(A|E)[Si]) < 1 for i ∈ N by induction.

U(A|E)[S0] is a connected component of U(A|E) by
choice of S0. Let S̃ := {w ∈ A | (w, v) ∈ FA, v ∈ S0}.

We now argue that (U(A|E))2[S̃] is a connected
component of (U(A|E))2. Assuming the contrary, ev-
ery connected component of (U(A|E))2 either contains
vertices from both S̃ and A \ S̃, or (U(A|E))2[S̃] splits
into more than one connected component. Let S′ be the
vertices of a connected component as in the first case.
Then |S′| > 1 and hence S′ can not contain the root as
the root is not in any E-relation. Hence by Lemma 3.1
we get a connected component of U(A|E) on the chil-
dren of S′ both containing vertices from S0 and from
A \ S0 which contradicts S0 being a connected compo-
nent of U(A|E). Now let S′ be a connected component
as in the second case, and pick S′ such that it does not
contain the root. Then by Lemma 3.1 S0 must have
a non-empty intersection with at least two connected
components of U(A|E) which is a contradiction.

Thus, by Lemma 2.3 λ((U(A|E))2[S̃]) < 1. Since
U(A|E)[S0] = ((U(A|E))2[S̃]) z H by Lemma 3.1, The-
orem 2.2 and λ(H) < 1 ensure that λ(U(A|E)[S0]) < 1.

By induction we get λ(U(A|E)[Si−1]) < 1 for i >
1, which, together with Lemma 2.2 and Lemma 2.1,
implies that (U(A|E)[Si−1])2 is a connected component3

of (U(A|E))2 and (U(A|E))2[Si−1] = (U(A|E)[Si−1])2.

3We remark that the statement that (U(A|E)[Si−1])
2 is a

connected component does not directly follow from the fact that

U(A|E)[Si−1] is a connected component of U(A|E), as the square
of a connected bipartite graph is not necessarily connected.

C

c0

S0
S1

S2

Sℓ−1

Sℓ = S0

Figure 3: Illustration of the proof of Lemma 3.2.

Since ci mod ℓ ∈ Si, by Lemma 3.1, we have that
U(A|E)[Si] is a connected component of U(A|E) and
U(A|E)[Si] = (U(A|E)[Si−1])2 z H. Using Lemma 2.2
and Theorem 2.2 this proves λ(U(A|E)[Si]) < 1.

Claim 3.5. For every v ∈ Si there is w ∈ V such that
(v, w) ∈ FA.

Proof. U(A|E)[Si+1] = (U(A|E)[Si])
2 z H by Claim

3.4 . Therefore by definition of squaring and the zig-
zag product we know that |Si+1| = D4 · |Si|. Since
additionally A |= ϕtree we know that every v ∈ Si will
contribute to no more then D4 elements to Si+1. This
means by construction of Si+1 that for every element in
Si there must be w ∈ V such that (v, w) ∈ FA.

Therefore there is wi ∈ V such that (vi, wi) ∈ FA.
Let (u0, . . . , umi

) be the path in G′ from u0 = vi to
umi

∈ C. Note that it is impossible that wi = u1.
This is true as for the path (u0, ..., umi

), we have that
(uj+1, uj) ∈ FA for all j ∈ [mi]. Furthermore, since
vi = u0 6= u1, assuming that wi = u1 would imply
(vi, u1), (u2, u1) ∈ FA, which contradicts A |= ϕtree.
Then (wi, u0, . . . , umi

) is a path in G′ from wi to C.
Since wi ∈ Si+1 by construction, Claim 3.3 implies that
mi+1 ≥ mi+1. Therefore mi ≥ i+m0 inductively. But
this yields a contradiction since ℓ+m0 ≤ mℓ = m0 and
ℓ > 0. See Figure 3 for illustration. Therefore G(A|F)
must be connected.

Lemma 3.3. Let A ∈ Cd be a (finite) model of ϕ z .

Then |A| =
∑n
m=0D

4m for some n ∈ N, G(A|F) is
a D4-ary complete rooted tree, where the root is the
unique element v ∈ A for which A |= ϕroot(v), and
U(A|E)[Tm] ∼= Gm where Gm is defined in Defini-
tion 2.5 and Tm is the set of vertices of distance m to v
in G(A|F) for any m ∈ {1, . . . , n}. Moreover for every
n ∈ N there is a model of ϕ z of size

∑n
m=0D

4m.

Proof. Lemma 3.2 combined with A |= ϕtree proves that
G(A|F) is a rooted tree. Let n be the greatest distance
of any vertex in G(A|F) to the root and let Tm be the
vertices of distance m to the root for m ≤ n. Then
U(A|E)[T1] ∼= G1 because A |= ϕbase. Now assume
towards an inductive proof that U(A|E)[Tm] ∼= Gm for
some fixed m ∈ N>0. As λ(Gm) < 1 by Lemma 2.2
and Lemma 2.1 we get (U(A|E))2[Tm] is a connected
component of (U(A|E))2. Hence Lemma 3.1 implies
U(A|E)[Tm+1] ∼= Gm+1. Since Gm has D4m vertices
this also shows that A has

∑n
m=0D

4m vertices.

Now we are ready to finish the proof of Theorem 3.1.

Proof of Theorem 3.1.

We prove that for ǫ = D2/12 the claimed is true.
Let A be the model of ϕ z of size

∑n
m=0D

4m and S ⊆ A

with |S| ≤ (
∑n
m=0D

4m)/2. Let Tm be the vertices
of distance m to the root of the tree G(A|F) and let
Sm := Tm ∩ S.

We can assume that S > 1 as every vertex has
degree at least ǫ. Let us first assume that |Sm| ≤ D4m/2
for all m ∈ [n]. Because Gm is a D2/4-expander (this
follows directly from Theorem 2.1 as λ(Gm) ≤ 1/2 by
Proposition 2.1) and U(A|E)[Tm] ∼= Gm we know that

|〈S, S〉U(A)| ≥
n
∑

m=1

D2

4
|Sm| ≥ D2

12

n
∑

m=0

|Sm| =
D2

12
|S|.

Now assume the opposite and choose m′ to be the
largest index such that

|Sm′ | > |Tm′ |
2

=
D4m′

2
.(3.2)

Claim 3.6.
∑m̃−1
m=0 |Tm| ≤ 1

2 |Tm̃| for all m̃ ≤ n.

Proof. Inductively, we argue that
∑m̃−1
m=0 |Tm| =

∑m̃−2
m=0 |Tm| + |Tm̃−1| ≤ 1

2 (3|Tm̃−1|) ≤ 1
2 |Tm̃|.

Claim 3.6 implies that 3
4 · |Tn| ≥ 1

2 |Tn|+ 1
2

∑n−1
m=0 |Tm| =

1
2 |A| ≥ |S| ≥ |Sn|. In the case that m′ = n, using that
Gn is a D2/4-expander we get

|〈S, S〉U(A)| ≥
D2

4
(|Tn| − |Sn|) ≥

D2

16
|Tn| ≥

D2

12
|S|.

Assume now that m′ < n. Since S is the disjoint union
of all Sm we know that the set 〈S, S〉U(A) contains the
disjoint sets 〈Sm, Tm \ Sm〉U(A), 〈Tm′ \ Sm′ , Tm′〉U(A)

and 〈Sm′ , Tm′+1 \Sm′+1〉U(A) for all m′ < m ≤ n. Since
every vertex in Tm′ has D4 neighbours in Tm′+1 and on
the other hand every vertex in Tm′+1 has one neighbour
in Tm′ we know that |〈Sm′ , Tm′+1 \ Sm′+1〉U(A)| =

|〈Sm′ , Tm′+1〉U(A)| − |〈Sm′ , Sm′+1〉U(A)| ≥ D4|Sm′ | −
|Sm′+1| ≥ D4(|Sm′ | − D4m′

/2). Since additionally
|Tm′ |/2 ≥ |Tm′ \ Sm′ | = D4m′ − |Sm′ | and Gm is an
D2/4-expander for every m we get

|〈S, S〉U(A)| ≥
∑

m>m′

D2

4
|Sm| +

D2

4
|Tm′ \ Sm′ |

+D4(|Sm′ | − D4m′

2
)

=
D2

4

∑

m>m′

|Sm| +
(

D4 − D2

2

)

|Sm′ |

−
(

D4 − D2

2

)D4m′

2
+
D2

4
|Sm′ |

Equation 3.2

≥ D2

4

∑

m>m′

|Sm| +
D2

8
|Sm′ | +

D2

8

(|Tm′ |
2

)

Claim 3.6
≥ D2

4

∑

m>m′

|Sm| +
D2

8
|Sm′ | +

D2

8

∑

m<m′

|Tm|

|Tm|≥|Sm|

≥ D2

12
|S|.

4 On the non-testability of a Π2-property

In this section we that there exists an FO property on
relational structures in Π2 that is not testable. To do
so, we first prove that the property Pϕ z

defined by

the formula ϕ z in Section 3 is not testable. Later we

prove that ϕ z is in Π2. Finally, we extends our non-

testability result to simple graphs.
Non-testability of Pϕ z

. Recall that r-types are

the isomorphism class of r-balls and that restricted
to the class Cd there are finitely many r-types. Let
τ1, . . . , τt be a list of all r-types of bounded degree d.
We let ρA,r be the r-type distribution of A, i. e.

ρA,r(X): =

∑

τ∈X |{a ∈ A | NA
r (a) ∈ τ}|

|A|
for any X ⊆ {τ1, . . . , τt}. For two σ-structures A
and B we define the sampling distance of depth r
as δr⊙(A,B) := supX⊆{τ1,...,τt} |ρA,r(X) − ρB,r(X)|.
Note that δr⊙(A,B) is just the total variance distance

of ρA,r, ρB,r, and δr⊙(A,B) = 1
2

∑t
i=1 |ρA,r({τi}) −

ρB,r({τi})|. The sampling distance of A and B is de-
fined as δ⊙(A,B) :=

∑∞
r=0

1
2r · δr⊙(A,B).

The following theorem was proven for simple graphs
and easily extends to σ-structures.

Theorem 4.1. ([Lov12]) For every λ > 0 there is a
positive integer n0 such that for every σ-structure A ∈
Cd there is a σ-structure H ∈ Cd such that |H| ≤ n0

and δ⊙(A,H) ≤ λ.

We use the following definition of local properties.

Definition 4.1. ([AH18]) Let ǫ ∈ (0, 1]. A property
P ⊆ Cd is ǫ-local on Cd if there are numbers r := r(ǫ) ∈
N, λ := λ(ǫ) > 0 and n0 := n0(ǫ) ∈ N such that for any
σ-structure A ∈ P and B ∈ Cd both on n ≥ n0 vertices,
if
∑t
i=1 |ρA,r({τi}) − ρB,r({τi})| < λ then B is ǫ-close

to P , where τ1, . . . , τt is a list of all r-types of bounded
degree d. The property P is local on Cd if it is ǫ-local
on Cd for every ǫ ∈ (0, 1].

The following theorem relating testable properties and
local properties was proven in [AH18]

Theorem 4.2. ([AH18]) For every property P ∈ Cd,
P is testable if and only if P is local on Cd.

We let P z := Pϕ z
for the formula ϕ z from Section 3.

We also let σ and d be as defined in Section 3.

Theorem 4.3. P z is not testable on Cd.

Proof. We prove non-locality for P z and get non-

testability with Theorem 4.2. Let ǫ := 1/(144D2) and
let r ∈ N, λ > 0 and n0 ∈ N be arbitrary. We
set λ′ := λ/(t2r+1), where τ1, . . . , τt are all r-types of
bounded degree d, and let n′

0 be the positive integer
from Theorem 4.1 corresponding to λ′. We now pick
n ∈ N such that n =

∑k
i=0D

4i for some k ∈ N, n ≥ 4n0

and n ≥ 4(n′0/λ). Let A ∈ Cd be a model of ϕ z on n

vertices. By Theorem 4.1 there is a structure H ∈ Cd
on m ≤ n′

0 vertices such that δ⊙(A,H) ≤ λ. Let B
be the structure consisting of ⌊n/m⌋ copies of H and
n mod m isolated vertices. Note that we picked B such
that |A| = |B|.

We will first argue that B is in fact ǫ-far from
having the property P z . First we rename the elements

from B in such a way that A = B and the number
∑

R̃∈σ |R̃A∆R̃B| of edge modifications to turn A and
B into the same structure is minimal. Pick a partition
A = B = S ⊔ S′ in such a way that S × S′ ∩ R̃B = ∅,
S′ × S ∩ R̃B = ∅ for any R̃ ∈ σ and ||S| − |S′|| minimal
among all such partitions. Assume that |S| ≤ |S′|.
Since the connected components in B are of size ≤ m we
know that ||S|− |S′|| ≤ m because otherwise we can get
a partition B = T ⊔ T ′ with ||T | − |T ′|| < ||S| − |S′|| by
picking a connected component of B whose elements are
contained in S′ and moving them from S′ to S. Since
|S| ≤ |S′| and m ≤ n/4 we know that n/4 ≤ |S| ≤ n/2.
This implies that

∑

R̃∈σ

|R̃A∆R̃B| ≥ |〈S, S′〉U(A)|
Def 2.2
≥ |S| · h(A)

Thm 3.1
≥ n

4
· D

2

12
=

1

48
D2n ≥ 1

144D2
dn.

Therefore B is ǫ-far from being in P z . But the

neighbourhood distributions of A and B are similar as
the following shows, proving that P z is not local.

t
∑

i=1

|ρA,r({τi}) − ρB,r({τi})| =

t
∑

i=1

∣

∣

∣
ρA,r({τi})

− n mod m

n
· ρK1,r({τi}) −

⌊ n

m

⌋

· m
n

· ρH,r({τi})
∣

∣

∣

≤
t
∑

i=1

∣

∣

∣
ρA,r({τi}) − ρH,r({τi})

∣

∣

∣
+

t
∑

i=1

∣

∣

∣

n mod m

n
·

ρK1,r({τi})
∣

∣

∣
+

t
∑

i=1

∣

∣

∣
ρH,r({τi}) −

⌊ n

m

⌋

· m
n

· ρH,r({τi})
∣

∣

∣

≤
t
∑

i=1

∣

∣

∣
ρA,r({τi}) − ρH,r({τi})

∣

∣

∣
+

2m

n

≤ t · sup
X⊆Br

|ρA,r(X) − ρH,r(X)| +
2m

n

≤ t · 2r · δ⊙(A,H) +
2m

n
≤ λ

2
+
λ

2
= λ.

The last inequality holds by choice of λ′ and Theorem
4.1.

Every FO property on degree-regular struc-
tures is in Π2. We first give the following definition.

Definition 4.2. A Hanf sentence is a sentence of the
form ∃≥mxϕτ (x), which is short for

∃x1 . . . xm
(

∧

1≤i,j≤m,i 6=j

xi 6= xj ∧
∧

1≤i≤m

ϕτ (xi)
)

,

where τ is a neighbourhood type (say, of radius r) and
ϕτ (xi) expresses that xi has r-neighbourhood type τ .

Note that ϕτ (xi) can be expressed by an ∃∗∀-formula,
where the existential quantifiers ensure the existence of
the desired r-neighbourhood with all tuples in relations
or not in relations, as required by τ , and the universal
quantifier is used to express that there are no other
elements in the r-neighbourhood of xi. Hence by
definition, any Hanf sentence is in Σ2.

Lemma 4.1. Let d ∈ N and let ϕ be an FO sentence. If
every model of ϕ is d-regular, then ϕ is d-equivalent to
a Π2 sentence.

Proof. Before we begin, let us define an r-type τ to
be d-regular, if for all structures A and all elements
a ∈ A of r-type τ , every b ∈ A with dist(a, b) < r
has degA(b) = d. We first prove the following claim.

Claim 4.1. Let d ∈ N, let ϕ be an FO sentence, and
let ψ be in HNF with ψ ≡d ϕ such that ψ is in DNF,
where the literals are Hanf sentences or negated Hanf
sentences. Furthermore, assume that the neighbourhood
types in all (positive) Hanf sentences of ψ are d-regular.
Then ϕ is d-equivalent to a sentence in Π2.

Proof. Assume ψ is of the form ∃≥mxϕτ (x), where
τ is d-regular. As in Definition 4.2, we may assume
ϕτ (xi) is an ∃∗∀-formula, which is a conjunction of an
∃∗-formula ϕ′

τ (xi) (expressing that x has an ‘induced
sub-neighbourhood’ of type τ) and a universal formula
saying that there are no further elements in the neigh-
bourhood. We now have that ψ ≡d ∃≥mxϕ′

τ (x). To
see this, let A |= ∃≥mxϕ′

τ (x) and deg(A) ≤ d. Then
A |= ∃≥mxϕτ (x) because τ is d-regular. The converse
is obvious.

If ψ is of the form ¬∃≥mxϕτ (x), where ϕτ (xi) is
an ∃∗∀-formula, then ¬∃≥mxϕτ (x) is equivalent to a
formula in Π2. Since Π2 is closed under disjunction and
conjunction, this proves the claim.

Now the proof follows from Claim 4.1, because if ϕ only
has d-regular models, then by Hanf’s Theorem there is
ψ ≡ ϕ satisfying the assumptions of the claim.

Existence of a non-testable Π2-property.
With Lemma 4.1 and Theorem 4.3, we are ready to
prove the following theorem.

Theorem 4.4. There are degree bounds d ∈ N such
that there exists a property on Cd definable by a formula
in Π2 that is not testable.

Proof. Pick d = 2D2 +D4 +1 for any large prime power
D. Using the construction from [RVW02] we can find
a (D4, D, 1/4)-graph H. By Theorem 4.3, using this
base expander H for the construction of ϕ z we get a

property which is not testable on Cd. As all models of
ϕ z are d-regular by construction, Lemma 4.1 implies

that ϕ z is d-equivalent to a formula in Π2.

4.1 Extension to simple (undirected) graphs
By our previous argument, to show the existence of a
non-testable Π2-property for simple graphs, i. e. undi-
rected graphs without parallel edges and without self-
loops, it suffices to construct a non-testable FO graph
property of degree regular graphs. To do so, we care-
fully translate the edge-coloured directed graphs of our
previous example in Section 3 to simple graphs. We en-
code σ-structures by representing each type of directed
edge by a constant size graph gadget, maintaining the
degree regularity. We then translate the formula ϕ z

u0 v2

Figure 4: Illustration of P 6
2,1(u0, v2).

into a formula ψ z . We obtain a class of simple ex-

panders, that is defined by an FO sentence, and obtain
the analogous Theorem.

Theorem 4.5. There are d ∈ N and an FO property of
simple graphs of bounded degree d that is not testable.

In the rest of this section, we prove the above theorem.
Let d be as defined in Section 3. Let Gd(u, v) be

the graph with vertices {u, v, u0, . . . , ud−2} and edges
{{w, ui}, {v, ui}, {ui, uj} | i, j ∈ [d − 2], i 6= j}.
Additionally let Hd(u, v) be the graph with vertices
{

u, v, ui, u
′
j , vi, v

′
j | i ∈

[⌊

d−1
2

⌋]

, j ∈
[⌈

d−1
2

⌉]}

and edges

{

{u, ui}, {v, vi}, {ui, vi} | i ∈
[⌊d− 1

2

⌋]}

∪
{

{u, u′j}, {v, v′j}, {u′j , v′j}} | j ∈
[⌈d− 1

2

⌉]}

∪
{

{ui, uk}, {vi, vk} | i, k ∈
[⌊d− 1

2

⌋]

, i 6= k
}

∪
{

{u′j , u′k}, {v′j , v′k} | j, k ∈
[⌈d− 1

2

⌉]

, j 6= k
}

∪
{

{ui, v′j}, {u′j , vi} | i ∈
[⌊d− 1

2

⌋]

, j ∈
[⌈d− 1

2

⌉]

}.

For every ℓ ∈ N, 0 ≤ p ≤ ℓ, let
P dℓ,p(u0, vℓ) be the graph consisting of ℓ copies

Gd(u0, v0), . . . , Gd(up−1, vp−1), Gd(up+1, vp+1), . . . ,
Gd(uℓ, vℓ), one copy Hd(up, vp) and additional edges
{vi, ui+1} for each i ∈ [ℓ]. Note that P dℓ,p(u0, vℓ) has
ℓ · (d + 1) + 2d vertices, the vertices u0 and vℓ have
degree d − 1 and every other vertex has degree d, see
Figure 4 for an example.

Let A ∈ P z and let ℓ = 2 · (3D4 + 1). We obtain

an undirected graph G = (V,E) from A as follows.

1. For every i0, i1, i2, i3 ∈ [D] we define p =
∑3
k=0 ik ·

Dk and replace every edge (x, y) ∈ EA
(i0,i1),(i2,i3)

by P dℓ,p(u0, vℓ) and additional edges {x, u0} and

{vℓ, y}. Here all vertices of P dℓ,p(u0, vℓ) are pairwise
distinct and new, and we call them auxiliary ver-
tices. Call this gadget graph an E(i0,i1),(i2,i3)-arrow
with end-vertices x and y.

2. For every i0, i1, i2, i3 ∈ [D] we define p = D4 +
∑3
k=0 ik · Dk and replace every edge (x, y) ∈

FA
((i0,i1),(i2,i3))

by P dℓ,p(u0, vℓ) and additional edges

{x, u0} and {vℓ, y}. Here all vertices of P dℓ,p(u0, vℓ)
are pairwise distinct and new, and we call them
auxiliary vertices. Call this gadget graph an
F((i0,i1),(i2,i3))-arrow with end-vertices x and y.

3. For every i0, i1, i2, i3 ∈ [D] we define p = 2D4 +
∑3
k=0 ik · Dk and replace every edge (x, y) ∈

LA
((i0,i1),(i2,i3))

by P dℓ,p(u0, vℓ) and additional edges

{x, u0} and {vℓ, y}. Here all vertices of P dℓ,p(u0, vℓ)
are pairwise distinct and new, and we call them
auxiliary vertices. Call this gadget graph an
L((i0,i1),(i2,i3))-arrow with end-vertices x and y.

4. We define p = 3D4 and replace every edge (x, y) ∈
RA by P dℓ,p(u0, vℓ) and additional edges {x, u0} and

{vℓ, y}. Here all vertices of P dℓ,p(u0, vℓ) are pair-
wise distinct and new, and we call them auxiliary
vertices. Call this gadget graph an R-arrow with
end-vertices x and y.

All vertices, that are not auxiliary, are called original
vertices. Note that from the location p of the gadget
Hd(v0, vℓ) uniquely encodes the colour of the original
directed coloured edge. Also note that each arrow
defined above has a direction as the gadget Hd(v0, vℓ) is
always located in the first half of the path P dℓ,p(u0, vℓ).
The following is easy to observe from the construction.

Fact 4.1. For every x ∈ V , x is an original vertex iff
x is contained in no triangle.

We let δ(x) be a formula in the language of undirected
graphs, saying ‘x is an original vertex’, which is easy
to do by Fact 4.1. We further let β(x) be a formula
saying ‘x is an internal vertex of either an Ei,j-arrow,
or an Fk-arrow, or an Lk-arrow, or an R-arrow for any
i, j ∈ [D]2, k ∈ ([D]2)2’. Here an ‘internal vertex’ of
an arrow refers to any vertex on this arrow except the
two endpoints. We now translate the formula ϕ z into a

formula ψ z in the language of undirected graphs using

the following first-order formulas αEi,j , α
F
k , αLk and αR.

Let αEi,j(x, y) say ‘x and y are the end-vertices of an

induced Ei,j-arrow’ for i, j ∈ [D]2, similarly, let αFk (x, y)
say ‘x and y are the end-vertices of an induced Fk-arrow’
for k ∈ ([D]2)2. Furthermore let αLk (x, y) say ‘x and y
are the end-vertices of an induced Lk-arrow’ for k ∈
([D]2)2 and αR(x, y) say ‘x and y are the end-vertices
of an induced R-arrow’ . Given ϕ z , formula ψ z is

obtained as follows. In ϕ z we replace each expression

Ei,j(x, y) by αEi,j(x, y), each Fk(x, y) by αFk (x, y), each

Lk(x, y) by αLk (x, y) and each R(x, y) by αR(x, y). In
addition, we relativise all quantifiers to the original
vertices (replacing every expression of the form ∃xχ
by ∃x (δ(x) ∧ χ) and every expression of the form ∀xχ
by ∀x (δ(x) → χ)). Let us call the resulting formula
ψ′

z . Then we set ψ z to be the conjunction of the

formula ψ′
z and the formula ∀x(¬δ(x) → β(x)). Let

Pψ := {G ∈ Cd | G |= ψ z }. In the following, we show

that Pψ is a family of expanders to prove non-testability
of Pψ. We remark that one could also prove the non-
testability of Pψ by showing that the aforementioned
transformation (from σ-structures to simple graphs) is
a (local) reduction that preserves testability.

Lemma 4.2. The models of ψ z is a family of ξ-

expanders, for some constant ξ > 0.

Proof. Let G = (V,E) be a model of ψ z and let A
be the corresponding model of ϕ z . Let S ⊂ V such

that |S| ≤ |V |
2 . Let Voriginal ⊔ Vauxiliary = V be the

partition of V into original and auxiliary vertices. Let
Soriginal := Voriginal ∩ S and Sauxiliary := Vauxiliary ∩ S.

First note that by the above definitions every di-
rected coloured edge in A corresponds to a constant
number cD := 2 · (3D4 + 1) · ((d+ 1) + 2d) of auxiliary
vertices in Vauxiliary, where d = 2D2 +D4 + 1.

Assume |Soriginal| > 2
dcD

· |S|. Then there are

|S| − |Soriginal| < dcD−2
2 · |Soriginal| vertices in Sauxiliary.

Hence at least d
2 · |Soriginal| − dcD−2

2cD
· |Soriginal| of the

arrows have at least one vertex that is not in S. Hence

〈S, V \ S〉G ≥ d

2
· |Soriginal| −

dcD − 2

2cD
· |Soriginal|

=
1

cD
· |Soriginal| ≥

2

dc2D
· |S|.

Assume 1
2dcD

|S| < |Soriginal| ≤ 2
dcD

· |S|. Let ǫ = D2

12 as
defined in the proof of Theorem 3.1. Since each edge in
U(A) corresponds to exactly one arrow in G we get that
〈S, V \S〉G ≥ 〈Soriginal, Voriginal \Soriginal〉U(A). Since A
is d-regular and every edge gets replaced by cD auxiliary
vertices we get |V | = (1 + dcD

2)|A|. Then

|Soriginal| ≤
2

dcD
· |S| ≤ 1

dcD
· |V | =

2 + dcD
2dcD

|A|

and |A \ Soriginal| ≥ (2dcD
2+dcD

− 1)|Soriginal|. Then from
Theorem 3.1 we directly get

〈S, V \ S〉G ≥ 〈Soriginal, Voriginal \ Soriginal〉U(A)

= ǫmin{|Soriginal|, |A \ Soriginal|}

≥ ǫ · 1

2dcD
· dcD − 2

2 + dcD
· |S|.

Now assume |Soriginal| ≤ 1
2dcD

· |S|. Therefore there are

|S|− |Soriginal| ≥ |S|− 1
2dcD

· |S| vertices in Sauxiliary. Of

these, at least 2dcD−1
2dcD

·|S|−|Soriginal|cD ≥ 2dcD−1−cD
2dcD

|S|
vertices are not in a connected component with any el-
ement from Soriginal in the graph G[S]. Since any con-
nected component of G[S] with no vertices in Soriginal

contains at most cd vertices, we get that

〈S, V \ S〉G ≥ 2dcD − cD − 1

2dc2D
|S|.

By setting ξ = min{ 2dcD−cD−1
2dc2

D

, ǫ· 1
2dcD

· dcD−2
2+dcD

, 2
dc2

D

} > 0

we proved the claimed.

One can then prove that the property Pψ z
is not

testable by using analogous arguments as in the proof
of Theorem 4.3. In the full version of the paper we give
an alternative proof using a result from [FPS19].

5 On the testability of all Σ2-properties

In this section we let σ = {R1, . . . , Rm} be any re-
lational signature and Cd the set of σ-structures of
bounded degree d. We prove the following.

Theorem 5.1. Every first-order property defined by a
σ-sentence in Σ2 is testable in the bounded-degree model.

We adapt the notion of indistinguishability of [AFKS00]
from the dense model to the bounded degree model.

Definition 5.1. Two properties P,Q ⊆ Cd are called
indistinguishable if for every ǫ ∈ (0, 1) there exists
N = N(ǫ) such that for every structure A ∈ P with
|A| > N there is a structure Ã ∈ Q with the same
universe, that is ǫ-close to A; and for every B ∈ Q
with |B| > N there is a structure B̃ ∈ P with the same
universe, that is ǫ-close to B.
The following lemma follows from the definitions, and
is similar to [AFKS00], though we use the canonical
testers for bounded degree graphs ([CPS16, GR11]).

Lemma 5.1. If P,Q ⊆ Cd are indistinguishable proper-
ties, then P is testable on Cd if and only if Q is testable
on Cd.

Proof. We show that if P is testable, then Q is also
testable. The other direction follows by the same argu-
ment. Let ǫ > 0. Since P is testable, there exists an
ǫ
2 -tester for P with success probability ≥ 2

3 . Further-
more, we can assume that the tester (called canonical
tester) behaves as follows (see [CPS16, GR11]): it first
uniformly samples a constant number of elements, then
explores the union of r-balls around all sampled ele-
ments for some constant r > 0, and makes a determin-
istic decision whether to accept, based on an isomorphic

copy of the explored substructure. Let C = C(ǫ2 , d) de-
note the number of queries the tester made on the input
structure. By repeating this tester and taking the ma-
jority, we get a tester T with c1 · C queries and success
probability at least 5

6 for some integer c1 > 0.
Let N be a number such that if a structure B

with n > N elements satisfies Q, then there exists a
B̃ ∈ P with the same universe such that dist(B, B̃) ≤
min{ ǫ2 , 1

c2C·dC+2 }dn for some large constant c2 > 0.
Now we give an ǫ-tester for Q. If the input structure
B has size at most N , we can query the whole input to
decide if it satisfies Q or not. If its size is larger than
N , then we use the aforementioned ǫ

2 -tester for P with
success probability at least 5

6 . If B satisfies Q, then

there exists B̃ ∈ P that differs from B in no more than
1/(c2C ·dC+2)dn places. Since the algorithm samples at
most c1 · C elements and queries the r-balls around all
these sampled elements, for r < C, we have that with
probability at least 1− 1

6 , the algorithm does not query

any part where B and B̃ differ, and thus its output is
correct with probability at least 5

6 − 1
6 = 2

3 . If B is ǫ-
far from satisfying Q then it is ǫ

2 -far from satisfying P
and with probability at least 5

6 >
2
3 , the algorithm will

reject B. Thus Q is also testable.

High-level idea of proof of Theorem 5.1. Let
ϕ ∈ Σ2. We prove that the property defined by ϕ can
be written as the union of properties, each of which is
defined by another formula ϕ′ in Σ2 where the structure
induced by the existentially quantified variables is a
fixed structure M (see Claim 5.2). With some further
simplification of ϕ′, we obtain a formula ϕ′′ in Σ2

which expresses that the structure has to have M as
an induced substructure (see Claim 5.3) and every set
of elements of fixed size ℓ has to induce some structure
from a set of structures B, and – depending on the
structure from B – there might be some connections to
the elements of M. We then define a formula ψ in Π1

such that the property defined by ψ is indistinguishable
from the property defined by ϕ′′ in the sense that we can
transform any structure satisfying ψ, into a structure
satisfying ϕ′′ by modifying no more then a small fraction
of the tuples and vice versa (see Claim 5.6). The
intuition behind this is that every structure satisfying
ϕ′′ can be made to satisfy ψ by removing the structure
M while on the other hand for every structure which
satisfies ψ we can plant the structure M to make it
satisfy ϕ′′. Since it is a priori unclear how the existential
and universal quantified variables interact, we have to
define ψ very carefully. Here it is important to note
that the existence of occurrences of structures in B

forcing an interaction with M is limited because of the
degree bound (see Claim 5.4). Thus such structures

can not be allowed to occur for models of ψ, as here
the number of occurrences can not be limited in any
way. Since properties defined by a formula in Π1 are
testable, this implies with the indistinguishability of ψ
and ϕ′′ that the property defined by ϕ′′ is testable.
Furthermore by the fact that testable properties are
closed under union [Gol17], we reach the conclusion that
any property defined by a formula in Σ2 is testable.

Especially we will not directly give a tester for
the property Pϕ but decompose ϕ into simpler cases.
However, every simplification of ϕ used is computable,
and the proof below yields a construction of an ǫ-tester
for Pϕ for every ǫ ∈ (0, 1) and every ϕ ∈ Σ2.

For the proof of Theorem 5.1, we use the following.

Definition 5.2. Let A be a σ-structure with A =
{a1, . . . , at}. Let z = (z1, . . . , zt) be a tuple of variables.
Then we define ιA(z) as follows.

ιA(z) :=
∧

R∈σ

(

∧

(

ai1 ,...,aiar(R)

)

∈RA

R
(

zi1 , . . . , ziar(R)

)

∧

∧

(

ai1 ,...,aiar(R)

)

∈Aar(R)\RA

¬R
(

zi1 , . . . , ziar(R)

)

)

∧

∧

i,j∈[t]
i 6=j

(¬zi = zj).

For every σ-structure A′ and a′ = (a′1, . . . , a
′
t) ∈ (A′)t

we have that A′ |= ιA(a′) iff ai 7→ a′i, i ∈ {1, . . . , t} is an
isomorphism from A to A′[{a′1, . . . , a′t}]. In particular,
if A′ |= ιA(a′), then {a′1, . . . , a′t} induces a substructure
isomorphic to A in A′.

Proof of Theorem 5.1. Let ϕ be any σ-sentence in Σ2.
Therefore we can assume that ϕ is of the form ϕ =
∃x ∀y χ(x, y) where x = (x1, . . . , xk) is a tuple of k ∈ N

variables, y = y1, . . . , yℓ is a tuple of ℓ ∈ N variables and
χ(x, y) is quantifier free. We can further assume that
χ(x, y) is in disjunctive normal form and

ϕ = ∃x ∀y
∨

i∈I

(

αi(x) ∧ βi(y) ∧ posi(x, y) ∧ negi(x, y)
)

,

where αi(x) is a conjunction of literals only containing
variables from x, βi(y) is a conjunction of literals only
containing variables in y, negi(x, y) is a conjunction
of negated atomic formulas containing both variables
from x and y and posi(x, y) is a conjunction of atomic
formulas containing both variables from x and y. Now
note that if an expression ‘xj = yj′ ’ appears in a
conjunctive clause, then we can replace every occurrence

of yj′ by xj in that clause, which will result in an
equivalent formula.

We write the formula ϕ as a disjunction over all
possible structures in Cd the existentially quantified
variables could enforce. Since the elements realising
the existentially quantified variables have a certain
structure, it is a natural way to decompose the formula.

Let M ⊆ Cd be a set of models of ϕ, such that every
model A ∈ Cd of ϕ contains an isomorphic copy of some
M ∈ M as an induced substructure, and M is minimal
with this property.

Claim 5.1. Every M ∈ M has at most k elements.

Proof. Assume there is M ∈ M with |M | > k.
Since every structure in M is a model of ϕ there
must be a tuple a = (a1, . . . , ak) ∈ Mk such that

M |= ∀y∨i∈I
(

αi(a) ∧ βi(y) ∧ posi(a, y) ∧ negi(a, y)
)

.

This implies that for every tuple b ∈ M ℓ we have

M |= ∨i∈I
(

αi(a)∧βi(b)∧posi(a, b)∧negi(a, b)
)

. Since

{a1, . . . , ak}ℓ ⊆ M ℓ we get that M[{a1, . . . , ak}] is a

model of ∀y∨i∈I
(

αi(a)∧βi(y)∧posi(a, y)∧negi(a, y)
)

.

This means that M[{a1, . . . , ak}] |= ϕ. Hence by def-
inition, M contains an induced substructure M′ of
M[{a1, . . . , ak}]. But then M′ is an induced substruc-
ture of M with strictly fewer elements than M, a con-
tradiction to the definition of M.

Therefore M is finite. For M ∈ M let JM := {j ∈ I |
M |= αj(m) for some m ∈M ℓ} ⊆ I.

Claim 5.2. We have ϕ ≡d
∨

M∈M

(

∃x ∀y
[

ιM(x) ∧
∨

j∈JM

(

βj(y) ∧ posj(x, y) ∧ negj(x, y)
)])

.

Proof. Let A ∈ Cd be a model of ϕ. Then there is
a = (a1, . . . , ak) ∈ Ak such that A |= ∀yχ(a, y). Since
{a1, . . . , ak}ℓ ⊆ Aℓ this implies that A[{a1, . . . , ak}] |=
∀yχ(a, y) and hence A[{a1, . . . , ak}] |= ϕ. Furthermore
we may assume that we picked a such that for any tuple
a′ = (a′1, . . . , a

′
k) ∈ {a1, . . . , ak}k with {a′1, . . . , a′k} (

{a1, . . . , ak} we have A 6|= ∀y χ(a′, y). (The reason is
that if for some tuple a′ this is not the case then we just
replace a by a′ and so on until this property holds).
Hence A[{a1, . . . , ak}] cannot have a proper induced
substructure in M, and it follows that there is M ∈ M

such that M ∼= A[{a1, . . . , ak}]. By choice of JM we get

A |= ∀y
[

ιM(a)∧∨j∈JM
(

βj(y)∧posj(a, y)∧negj(a, y)
)]

and hence A |= ∨M∈M

(

∃x∀y
[

ιM(x)∧∨j∈JM
(

βj(y)∧
posj(x, y) ∧ negj(x, y)

)])

.

Now let A ∈ Cd be a model of
∨

M∈M

(

∃x∀y
[

ιM(x) ∧ ∨

j∈JM

(

βj(y) ∧ posj(x, y) ∧

negj(x, y)
)])

. Consequently there is M ∈ M and

a ∈ Ak such that A |= ∀y
[

ιM(a) ∧ ∨j∈JM
(

βj(y) ∧
posj(a, y) ∧ negj(a, y)

)]

. By choice of JM this implies

A |= ∀y∨j∈JM
(

αj(a)∧ βj(y)∧ posj(a, y)∧ negj(a, y)
)

and hence A |= ϕ.

Since the union of finitely many testable properties is
testable (see e.g. [Gol17]), it suffices to show that Pϕ
where ϕ is of the form ϕ = ∃x ∀y χ(x, y), where

χ(x, y) = ιM(x) ∧
∨

j∈JM

(

βj(y) ∧ posj(x, y) ∧ negj(x, y)
)

for some M ∈ M is testable. In the following, we
will enforce that for every conjunctive clause of the
big disjunction of χ, the universally quantified variables
induce a specific substructure.

For j ∈ JM let Hj ⊆ Cd be a maximal set of pairwise
non-isomorphic structures H such that H |= βj(b) for
some b = (b1, . . . , bℓ) ∈ Hℓ with {b1, . . . , bℓ} = H.

Claim 5.3. The following holds. ϕ ≡d ∃x ∀y
[

ιM(x) ∧
∨

H∈Hj ,

j∈JM

(

ιH(y) ∧ posj(x, y) ∧ negj(x, y)
)]

.

Proof. Let A ∈ Cd and a = (a1, . . . , ak) ∈ Ak. First
assume A |= ∀yχ(a, y). Hence for any tuple b ∈ Aℓ there
is j ∈ JM such that A |= βj(b) ∧ posj(a, b) ∧ negj(a, b).
Then A |= βj(b) implies that A[{b1, . . . , bℓ}] ∼= H for
some structure H ∈ Hj . Therefore A |= ιH(b) and

A |=
[

ιM(a)∧∨H∈Hj ,

j∈JM

(

ιH(b)∧posj(a, b)∧negj(a, b)
)]

.

For the other direction, assume that A is a model

of ∀y
[

ιM(a)∧∨H∈Hj ,

j∈JM

(

ιH(y)∧posj(a, y)∧negj(a, y)
)]

.

Then for every b ∈ Aℓ there is an index j ∈ JM and
H ∈ Hj such that H |= ιH(b) ∧ posj(a, b) ∧ negj(a, b).
Hence A[{b1, . . . , bℓ}] ∼= H and we know that A |= βj(b).
Therefore A |= βj(b) ∧ posj(a, b) ∧ negj(a, b) and since
this is true for any b ∈ Aℓ we get A |= ϕ.

Thus, it suffices to assume ϕ = ∃x ∀y χ(x, y), where

(5.3)

χ(x, y) :=
[

ιM(x)∧
∨

H∈Hj ,

j∈JM

(

ιH(y)∧

posj(x, y) ∧ negj(x, y)
)]

for some M ∈ M.
Next we will define a universally quantified formula

ψ and show that Pϕ is indistinguishable from the
property Pψ. To do so we will need the two claims
below. Intuitively, Claim 5.4 says that models of ϕ

of bounded degree do not have many ‘interactions’
between existential and universal variables – only a
constant number of tuples in relations combine both
types of variables. Note that for a structure A and
a ∈ Ak, b = (b1, . . . , bℓ) ∈ Aℓ the condition A |= ιH(b)∧
posj(a, b)∧ negj(a, b) can force an element of b to be in
a tuple (of a relation of A) with an element of a, even
if posj(x, y) only contains literals of the form xi = yi′

(e. g. it may be that for some tuple b
′ ∈ {b1, . . . , bℓ}ℓ,

every clause ιH
′

(y) ∧ posj
′

(x, y) ∧ negj
′

(x, y) for which

A |= ιH
′

(b
′
) ∧ posj

′

(a, b
′
) ∧ negj

′

(a, b
′
) enforces a tuple

to contain some element of b
′

and some element of a).
We will now define a set J to pick out the clauses that
do not enforce a tuple to contain both an element from
a and b. Note that we still allow elements from b to be
amongst the elements in a. In Claim 5.4 we show that
for every A ∈ Cd, a ∈ Ak with A |= ∀y χ(a, y) there
are only a constant number of tuples b ∈ Aℓ that only
satisfy clauses which enforce a tuple to contain both an
element from a and from b.

Let j ∈ M, H ∈ Hj and h = (h1, . . . , hℓ) ∈
Hℓ with H |= ιH(h). Let Pj,H := {hi | i ∈
{1, . . . , ℓ}, posj(x, y) does not contain yi = xi′ for any
i′ ∈ {1, . . . , k}}. Now we let J ⊆ JM × Cd be the set
of pairs (j,H), with H ∈ Hj with the following two
properties. Firstly posj(x, y) only contains literals of
the form xi′ = yi for some i ∈ {1, . . . , ℓ}, i′ ∈ {1, . . . , k}.
Secondly the disjoint union M ⊔ H[Pj,H] |= ϕ. J now
precisely specifies the clauses that can be satisfied by
a structure A, a ∈ Ak and b ∈ Aℓ where A does not
contain any tuples with both elements from a and b.

Claim 5.4. Let A ∈ Cd and a = (a1, . . . , ak) ∈ Ak. If
A |= ∀y χ(a, y) then there are at most k ·d tuples b ∈ Aℓ

such that A 6|= ∨(j,H)∈J(ιH(b) ∧ posj(a, b) ∧ negj(a, b)).

Proof. Since A |= ∀y χ(a, y), by Equation(5.3) it holds

that A |= ∀y∨H∈Hj ,

j∈JM

(

ιH(y) ∧ posj(a, y) ∧ negj(a, y)
)

.

Now let B := {b ∈ Aℓ | A 6|= ∨

(j,H)∈J(ιH(b) ∧
posj(a, b)∧negj(a, b))} ⊆ Aℓ. Then every b ∈ B adds at

least one to
∑k
i=1 degA(ai). Since A ∈ Cd implies that

∑k
i=1 degA(ai) ≤ k · d we get that |B| ≤ k · d.

Claim 5.5. Let ψ be a formula of the form ψ =
∀z∨i∈I ci(z) where z = (z1, . . . , zt) is a tuple of vari-
ables and ci is a conjunction of literals. Let A ∈ Cd with
|A| > d · ar(σ) · t and let b ∈ A be an arbitrary element.
Let A |= ψ and let A′ be obtained from A by ‘isolating’
b, i. e. by deleting all tuples containing b from RA for
every R ∈ σ. Then A′ |= ψ.

Proof. First note that A′ |= ∨

i∈I c
i(a) for any tuple

a = (a1, . . . , at) ∈ (A \ {b})t as no tuple over the set

of elements {a1, . . . , at} has been deleted. Let a =
(a1, . . . , at) ∈ At be a tuple containing b. Pick b′ ∈ A
such that distA(aj , b

′) > 1 for every j ∈ {1, . . . , t}.
Such an element exists as |A| > d · ar(R) · t. Let a′ =
(a′1, . . . , a

′
t) be the tuple obtained from a by replacing

any occurrence of b by b′. Hence aj 7→ a′j defines
an isomorphism from A′[{a1, . . . , at}] to A[{a′1, . . . , a′t}]
since b is an isolated element in A′[{a1, . . . , at}] and b′

is an isolated element in A[{a′1, . . . , a′t}]. Since A |=
∨

i∈I c
i(a′), it follows that A′ |= ∨i∈I ci(a).

Let J ′ ⊆ J be the set of all pairs (j,H) for which
posj(x, y) is the empty conjunction. J ′ contains (j,H)
for which we want to use ιH(y) to define the formula ψ.

Claim 5.6. The property Pϕ with ϕ as in (5.3) is
indistinguishable from the property Pψ where ψ :=
∀y∨(j,H)∈J ′ ιH(y).

Proof. Let ǫ > 0 and N(ǫ) = N := k·ℓ2·d·ar(R)
ǫ and

A ∈ Cd be any structure with |A| > N .
First assume that A |= ϕ. The strategy is to isolate

any element b which is contained in a tuple b ∈ Aℓ

such that A 6|= ∨

(j,H)∈J ′ ιH(b) by deleting all tuples
containing b. This will result in a structure which is
ǫ-close to A and a model of ψ.

Let a ∈ Ak be a tuple such that A |= ∀yχ(a, y).
Let B ⊆ Aℓ be the set of tuples b ∈ Aℓ such that
A 6|= ∨

(j,H)∈J(ιH(b) ∧ posj(a, b) ∧ negj(a, b)). Then

|B| ≤ ℓ · d · ar(R) by Claim 5.4. Hence the structure A′

obtained from A by deleting all tuples containing an el-
ement of C := {a1, . . . , ak, b1, . . . , bℓ | (b1, . . . , bℓ) ∈ B}
is ǫ-close to A. Since A |= ∀yχ(a, y) implies
A |= ∀y∨H∈Hj ,

j∈JM

ιH(y) by Claim 5.5 we know

that A′ |= ∀y∨H∈Hj ,

j∈JM

ιH(y). For any tuple

b = (b1, . . . , bℓ) ∈ (A \ C)ℓ we have by definition
of J ′ that A |= ιH(b) for some (j,H) ∈ J ′. Fur-
thermore A[{b1, . . . , bℓ}] = A′[{b1, . . . , bℓ}] and hence
A′ |= ∨

(j,H)∈J ′ ιH(b). Let b = (b1, . . . , bℓ) ∈ Aℓ be any
tuple containing element from C and let c1, . . . , ct ∈ C
be those elements. Pick t elements c′1, . . . , c

′
t ∈ A \ C

such that distA(ai, c
′
i′) > 1 and distA(c′i′ , bi) > 1 for

suitable i, i′. This is possible as |A| > (k+ 2ℓ) · d · ar(R)
which guarantees the existence of k + 2ℓ elements

of pairwise distance 1. Let b
′

= (b′1, . . . , b
′
ℓ) be

the vector obtained from b by replacing ci with c′i.

Since b
′ ∈ Aℓ there must be j′, H′ ∈ Hj such that

A |= ιH
′

(b
′
) ∧ posj

′

(a, b
′
) ∧ negj

′

(a, b
′
). By choice of

c′1, . . . , c
′
t we have that posj′(x, y) must be the empty

conjunction and hence (j′,H′) ∈ J ′. Since additionally
bi 7→ b′i defines an isomorphism of A[{b′1, . . . , b′ℓ}] and
A′[{b1, . . . , bℓ}] this implies that A′ |= ∨

(j,H)∈J ′ ιH(b)

for all b ∈ Aℓ and hence A′ |= ψ.

Now we prove the other direction. Let A |= ψ with
|A| > N . The idea is to plant the M somewhere in
A. While this takes less then an ǫ fraction of edge
modifications the resulting structure is a model of ϕ.

Take any set B ⊆ A of |M | elements. Let A′ be
the structure obtained from A by deleting all edges
incident to any element contained in B. Let A′′ be the
structure obtained from A′ by adding all tuples such
that the structure induced by B is isomorphic to M.
This takes no more then 2ℓ · d · ar(R) < ǫ · d · |A| edge
modifications Let a ∈ Bk be such that A |= ιM(a).
By Claim 5.5 we get A′ |= ψ. Therefore pick any
b = (b1, . . . , bℓ) ∈ (A \ B)ℓ. Since by construction we
have that all bi’s are of distance ≥ 1 from a we have that
A′′ |= ∨(j,H)∈J ′(ιH(b) ∧ negj(a, b)). By choice of M we

get A′′ |= ∨

H∈Hj ,

j∈JM

(

ιH(b) ∧ posj(a, b) ∧ negj(a, b)
)

for

all b ∈ Bℓ. Therefore pick b = (b1, . . . , bℓ) containing
both elements from B and from A \ B. Now pick

b
′

= (b′1, . . . , b
′
ℓ) ∈ (A \B)ℓ that equals b in all positions

containing an element from A\B. As noted before there

is (j,H) ∈ J ′ with A′′ |= (ιH(b
′
) ∧ negj(a, b

′
)). By defi-

nition of J, J ′ this implies A′′[{a1, . . . , ak, b′1 . . . b′ℓ}] |=
ϕ. As b ∈ {a1, . . . , ak, b′1 . . . b′ℓ}ℓ we get

A′′[{a1, . . . , ak, b′1 . . . b′ℓ}] |= ∨H∈Hj ,

j∈JM

(

ιH(b)∧posj(a, b)∧

negj(a, b)
)

. Then A′′ |= ∨

H∈Hj ,

j∈JM

(

ιH(b) ∧ posj(a, b) ∧

negj(a, b)
)

and hence A′′ |= ϕ.

Since ψ ∈ Π1 we have that Pψ is testable, and hence Pϕ
is testable by Claim 5.6.

6 Testing properties of neighbourhoods

In this section we only consider simple graphs, i. e. undi-
rected graphs without self-loops and without parallel
edges, and for any d ∈ N let Cd be the class of simple
graphs of bounded degree d. We view simple graphs
as structures over the signature σgraph := {E}, where
E encodes a binary, symmetric and irreflexive relation.
This allows transferring the notions from Section 2 to
graphs.

Let r ≥ 1 and let τ be an r-type and let ϕτ (x) be a
FO formula saying that x has r-type τ . We say that a
graph G is τ -neighbourhood regular, if G |= ∀xϕτ (x).
We say that a graph G is τ -neighbourhood free, if
G |= ¬∃xϕτ (x). Let τ1, . . . , τt be a list of all r-types
in Cd. If F ⊆ {τ1, . . . , τt} we say that G is F -free, if G
is τ -neighbourhood free for all τ ∈ F .

Observe that both τ -neighbourhood-freeness and τ -
neighbourhood regularity can be defined by formulas

in Π2 for any neighbourhood type τ . Hence the next
Lemma shows that there exist neighbourhood properties
that are in Π2, but not in Σ2. See the full version of the
paper for a proof.

Lemma 6.1. There exist 1-types τ, τ ′ such that neither
τ -neighbourhood freeness nor τ ′-neighbourhood regular-
ity can be defined by a formula in Σ2.

Note that the above lemma implies that we cannot
simply invoke the testers for testing Σ2 properties from
Theorem 5.1 to test these two properties.

Now we state our main algorithmic results in this
section. The first result shows that if τ is an r-type with
degree smaller than the degree bound of the class of
graphs, then the τ -neighbourhood-freeness is testable.

Theorem 6.1. Let τ be an r-type, where r ≥ 1. If
τ ⊆ Cd′ and d′ < d, then τ -neighbourhood freeness is
uniformly testable on the class Cd with constant running
time.

The second result shows if τ is a 1-type, then τ -
neighbourhood-freeness is testable.

Theorem 6.2. For every 1-type τ , τ -neighbourhood
freeness is uniformly testable on the class Cd with
constant time.

The third result says that τ -neighbourhood regularity is
testable for every 1-type τ consisting of cliques, which
only overlap in the centre vertex.

Theorem 6.3. Let τ be a 1-type such that vertex a
having 1-type τ in B implies that B \ {a} is a union of
disjoint cliques for every 1-ball B with centre a. Then
τ -neighbourhood regularity is uniformly testable on Cd
in constant time.

By previous discussions, the above theorems imply that
there are formulas in Π2 \ Σ2 which are testable. For
the proofs of Theorems 6.2, 6.2 and 6.3, we refer the
reader to the full version of the paper.

Acknowledgements. We thank Sebastian Ordy-
niak for inspiring discussions. The second author thanks
Micha l Pilipczuk and Pierre Simon for inspiring discus-
sions at the docCourse on Sparsity in Prague 2018.

References

[AFKS00] Noga Alon, Eldar Fischer, Michael Krivelevich,
and Mario Szegedy. Efficient testing of large graphs.
Combinatorica, 20(4):451–476, 2000. Preliminary ver-
sion in FOCS’99.

[AFNS09] Noga Alon, Eldar Fischer, Ilan Newman, and
Asaf Shapira. A combinatorial characterization of the
testable graph properties: it’s all about regularity.
SIAM Journal on Computing, 39(1):143–167, 2009.

[AH18] Isolde Adler and Frederik Harwath. Property test-
ing for bounded degree databases. In 35th Symposium
on Theoretical Aspects of Computer Science, STACS
2018, February 28 to March 3, 2018, Caen, France,
pages 6:1–6:14, 2018.

[AM85] Noga Alon and Vitali D Milman. λ1, isoperimetric
inequalities for graphs, and superconcentrators. Jour-
nal of Combinatorial Theory, Series B, 38(1):73–88,
1985.

[BK12] Benedikt Bollig and Dietrich Kuske. An optimal
construction of hanf sentences. Journal of Applied
Logic, 10(2):179–186, 2012.

[BSS10] Itai Benjamini, Oded Schramm, and Asaf Shapira.
Every minor-closed property of sparse graphs is
testable. Advances in mathematics, 223(6):2200–2218,
2010.

[CPS16] Artur Czumaj, Pan Peng, and Christian Sohler.
Relating two property testing models for bounded de-
gree directed graphs. In Proceedings of the 48th Annual
ACM SIGACT Symposium on Theory of Computing,
STOC 2016, Cambridge, MA, USA, June 18-21, 2016,
pages 1033–1045, 2016.

[CY19] Hubie Chen and Yuichi Yoshida. Testability of ho-
momorphism inadmissibility: Property testing meets
database theory. In Proceedings of the 38th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 365–382, 2019.

[DG07] Arnaud Durand and Etienne Grandjean. First-
order queries on structures of bounded degree are
computable with constant delay. ACM Trans. Comput.
Log., 8(4):21, 2007.

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric
inequality and transience of certain random walks.
Transactions of the American Mathematical Society,
284(2):787–794, 1984.

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite
model theory. Perspectives in Mathematical Logic.
Springer, 1995.

[FNS+20] Sebastian Forster, Danupon Nanongkai,
Thatchaphol Saranurak, Liu Yang, and Sorrachai
Yingchareonthawornchai. Computing and testing
small connectivity in near-linear time and queries via
fast local cut algorithms. SODA, 2020.

[FPS19] Hendrik Fichtenberger, Pan Peng, and Christian
Sohler. Every testable (infinite) property of bounded-
degree graphs contains an infinite hyperfinite subprop-
erty. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 714–
726, 2019.

[Gai82] Haim Gaifman. On local and non-local properties,
1982.

[GGR98] Oded Goldreich, Shari Goldwasser, and Dana
Ron. Property testing and its connection to learning
and approximation. Journal of the ACM (JACM),

45(4):653–750, 1998.
[Gol17] Oded Goldreich. Introduction to property testing.

Cambridge University Press, 2017.
[GR02] Oded Goldreich and Dana Ron. Property testing in

bounded degree graphs. Algorithmica, 32(2):302–343,
2002.

[GR11] Oded Goldreich and Dana Ron. On proximity-
oblivious testing. SIAM Journal on Computing,
40(2):534–566, 2011.

[Han65] William Hanf. The Theory of Models, chapter
Model-theoretic methods in the study of elementary
logic, pages 132–145. North Holland, 1965.

[HKNO09] Avinatan Hassidim, Jonathan A Kelner, Huy N
Nguyen, and Krzysztof Onak. Local graph partitions
for approximation and testing. In 2009 50th Annual
IEEE Symposium on Foundations of Computer Sci-
ence, pages 22–31. IEEE, 2009.

[HLW06] Shlomo Hoory, Nathan Linial, and Avi Wigder-
son. Expander graphs and their applications. BULL.
AMER. MATH. SOC., 43(4):439–561, 2006.

[IKN19] Hiro Ito, Areej Khoury, and Ilan Newman.
On the characterization of 1-sided error strongly-
testable graph properties for bounded-degree graphs.
(to appear) Journal of Computational Complexity.
arXiv:1909.09984, 2019.

[KSS19] Akash Kumar, C Seshadhri, and Andrew Stolman.
Random walks and forbidden minors ii: a poly (d ε-
1)-query tester for minor-closed properties of bounded
degree graphs. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages
559–567, 2019.

[KY13] Ken-ichi Kawarabayashi and Yuichi Yoshida. Test-
ing subdivision-freeness: property testing meets struc-
tural graph theory. In Proceedings of the forty-fifth an-
nual ACM symposium on Theory of computing, pages
437–446. ACM, 2013.

[Lov12] László Lovász. Large Networks and Graph Lim-
its, volume 60 of Colloquium Publications. American
Mathematical Society, 2012.

[NS13] Ilan Newman and Christian Sohler. Every property
of hyperfinite graphs is testable. SIAM Journal on
Computing, 42(3):1095–1112, 2013.

[RFV95] L. Stockmeyer R. Fagin and M. Vardi. On monadic
np vs. monadic co-np. Information and Computation,
120(1):78–92, 1995.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust charac-
terizations of polynomials with applications to program
testing. SIAM Journal on Computing, 25(2):252–271,
1996.

[RVW02] Omer Reingold, Salil Vadhan, and Avi Wigderson.
Entropy waves, the zig-zag graph product, and new
constant-degree expanders. Annals of mathematics,
pages 157–187, 2002.

[YI12] Yuichi Yoshida and Hiro Ito. Property testing on
k-vertex-connectivity of graphs. Algorithmica, 62(3-
4):701–712, 2012.

	Introduction
	Preliminaries
	The bounded-degree relational structure model
	Quantifier alternations of first-order formulas
	Expansion and the zig-zag product

	A class of expanders definable in FO
	On the non-testability of a 2-property
	Extension to simple (undirected) graphs

	On the testability of all 2-properties
	Testing properties of neighbourhoods

