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Abstract 12 

Social interactions are thought to be a critical driver in the evolution of cognitive ability. 13 

Cooperative interactions, such as pair bonding, rather than competitive interactions have 14 

been largely implicated in the evolution of increased cognition. This is despite competition 15 

traditionally being a very strong driver of trait evolution. Males of many species track 16 

changes in their social environment and alter their reproductive strategies in response to 17 

anticipated levels of competition. We predict this to be cognitively challenging. Using a 18 

Drosophila melanogaster model, we are able to distinguish between the effects of a 19 

competitive environment versus generic social contact by exposing flies to same-sex same-20 

species competition vs different species partners, shown to present non-competitive 21 

contacts. Males increase olfactory learning/memory and visual memory after exposure to 22 

conspecific males only, a pattern echoed by increased expression of synaptic genes and an 23 

increased need for sleep. For females, largely not affected by mating competition, the 24 

opposite pattern was seen. The results indicate that specific social contacts dependent on 25 
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sex, not simply generic social stimulation, may be an important evolutionary driver for 26 

cognitive ability in fruit flies. 27 
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 30 

Introduction 31 

Cognition is defined as the neural processes needed to acquire, process, retain and use 32 

information [1], including processes such as learning, memory and decision making [2]. 33 

However, whilst the processes by which brains have evolved, and how the environment 34 

affects the cognition of animals has been widely researched, a consensus about the critical 35 

drivers of cognitive evolution has not yet emerged [3]. 36 

Social contact has long been hypothesised to affect the evolution of cognition [4]. 37 

The Social Brain Hypothesis postulates that the evolution of improved cognition is driven by 38 

increasing social group complexity [5]. However, types of social interactions are varied and 39 

which are important for cognition to evolve is controversial [5, 6]. The role for sexual 40 

competition, in particular, has proven to be problematic. In mammals an increase in sexual 41 

competition was shown to have no, or a negative effect on brain size, the notional proxy for 42 

cognitive ability [7]. However, in frogs [8] and pipefish [9], differing levels of sexual 43 

competition has been associated with morphological differences in brain structure. Similarly, 44 

in the rose bitterling, plastic male mating strategies are associated with cognitive 45 

performance [10], and in bowerbirds increased complexity of displays correlates with an 46 

enlarged cerebellum [11]. In addition, in species where females are under sexual selection 47 

instead of males they display heavier brains [9]. In the fruit fly (Drosophila melanogaster) 48 

and seed beetle (Callosobruchus maculatus), enforced monogamy over multiple generations 49 

reduces cognitive performance compared to males kept in polygamous conditions [12, 13]. 50 

As the social environment is dynamic, males need to assess and predict competition after 51 
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mating (sperm competition), which is likely cognitively challenging. Indeed, it is predicted to 52 

be an evolutionary driver of the ability to assess quantity i.e. the magnitude of competition 53 

within the environment  (quantity estimation [14]).  54 

In D. melanogaster, males alter their mating duration and ejaculate [15, 16] in 55 

response to exposure to other males, a cue of future sperm competition threat. Males can 56 

track changes in their social environment and are sensitive to the amount of time spent with 57 

other males [17]. Males also alter ejaculate depending on the number of males in the 58 

environment [18]. This sophisticated, multifaceted response requires males to assess the 59 

magnitude of competition akin to quantity estimation [14]. The response requires multiple 60 

sensory inputs [19] and utilises processes known to be important in learning and memory 61 

[17]. We therefore hypothesised that competitive sexual interactions may be a vitally 62 

important social driver of cognitive ability in male D. melanogaster. 63 

Any form of environmental enrichment could be cognitively stimulating [20], so to 64 

determine whether social reproductive competition cues are particularly important, we 65 

compared responses to conspecifics and heterospecifics. Drosophila live in multiple species 66 

groups [21], and this requires the ability to interpret different forms of social contact. D. virilis 67 

and D. melanogaster are generalists and are expected to compete for food and/or space 68 

[22], however they are very distantly related and are likely to be fully reproductively isolated 69 

as this is seen between more closely related species [23]. Indeed, D. melanogaster males 70 

do not make a sperm competition response to D. virilis males [24] indicating they do not 71 

perceive them as a reproductive threat. Therefore, any differences seen in D. melanogaster 72 

males after contact with conspecific males not seen due to contact with heterospecific 73 

contact are suggestive of the importance of sexual competition. 74 

Female and male social mechanisms are thought to differ [25], therefore we also 75 

studied the effects of conspecific and heterospecific same-sex social contact in females. As 76 

females do not undergo the same sperm competition pressures it was expected that any 77 



4 
 

difference shown by females in response to conspecific contact would be mirrored when 78 

exposed to heterospecific social contact. 79 

We used multiple assays of olfactory and visual learning and decision-making ability 80 

of males and female flies held in isolation or exposed to a conspecific or heterospecific 81 

social partner. To asses potential underlying molecular mechanisms, we measured changes 82 

in the expression of genes associated with synaptic plasticity at the neuromuscular junction 83 

(Neurexin-1 [26]), growth (Futsch [27]) or maintenance (Bruchpilot [28]) and that we had 84 

previously identified to be socially responsive in male-male contact [29]. We also assessed 85 

how activity patterns changed depending on the social environment, as this is associated 86 

with sleep and cognitive processes.  87 

 88 

Materials and Methods 89 

Fly stocks and rearing 90 

Drosophila melanogaster fruit flies were raised in a 25°C humidified room, with a 12:12 light 91 

dark cycle. Flies were maintained in plastic vials containing 7ml sugar-yeast-agar medium 92 

[30]. Wild-type flies are from a large laboratory stock population of the Dahomey strain [31]. 93 

Larvae were raised 100 per vial and supplemented with live yeast. As Drosophila virilis have 94 

a slightly lower thermal preference than D. melanogaster [32], D. virilis were grown in vials at 95 

20°C before collection. Upon eclosion sexes were separate d using ice anaesthesia. Non-96 

focal flies were collected in single-sex groups of ten and the females supplemented with live 97 

yeast. All focal flies were aged individually for 1 day before exposure to a social partner. 98 

Non-focal flies used as social partners were aged-matched and identified with a small wing 99 

clip.  100 

Flies were maintained in their social treatments, singly, with a conspecific or a 101 

heterospecific of the same sex, for 10 days before being used in one of the assays detailed 102 
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below (Figure S1). We assessed learning in a range of assays, both sexual and non-sexual 103 

context. Where possible, the observer was blind to the social identity of the focal fly. 104 

 105 

Virgin Finding – decision making in a complex environment 106 

We tested a male’s decision making in a complex social environment, whereby males target 107 

courtship towards a virgin female in a group of mated females [12]. Focal males were 108 

aspirated into a group of six females, one virgin and five mated 24 hours prior. Male courting 109 

behaviour was recorded every minute for 20 min, or until mating occurred. Female type was 110 

identified by a wing-clip administered 2 days before a trial. Virgin females were clipped in 111 

50% of the trials. Trials were conducted on 10 individuals at a time, 5 of each social 112 

treatment, to control for time of day effects. This assay was carried out at 25 oC under 113 

standard white light. Each block contained 30 males from each social treatment and was 114 

repeated 3 times, with separate experiments for conspecific and heterospecific contact.  115 

 116 

Aversive olfactory associative learning 117 

We tested the ability of flies to learn to associate an odour with a mechanical shock [33]. 118 

Experiments were performed at 22-25°C under red ligh t to remove visual cues. Odorants, 3-119 

octanol (2.7µL/mL) and 4-methylcyclohexanol (1µL/mL) diluted in light mineral oil, were 120 

drawn through a T-maze with a vacuum pump. The side the odorant originated from was 121 

switched every second trial.  122 

Firstly, innate preference for either odour was derived from the time spent in either 123 

arm (not the central section of the T maze) over 2 min. A fly was then conditioned to avoid its 124 

preferred odour by exposing it to the preferred odour accompanied by mechanical shock for 125 

1 sec every 5 sec for 1 min. This was followed by a 30 sec exposure to air and then 1 min 126 

exposed to the non-preferred odour without shock. This training protocol was repeated once. 127 

To test learning, flies were immediately moved to the central section choice point and given 128 
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both odours simultaneously. The time an individual spent showing preference for either 129 

odour was recorded over 2 min. A learning index (LI) was calculated as: 130 

Equation 1 131 

post-training time in unconditioned odour  -  pre-training time in unconditioned odour 132 

post-training total time making a choice        pre-training total time making a choice 133 
 134 
 135 

Each testing period assessed 2-8 flies, half held singly, repeated 6-8 times per social 136 

treatment.  To control for day and time effects the LI of individuals kept wi th social partners 137 

was standardised by the average LI of singles in the same block. Separate experiments 138 

were conducted for conspecific and heterospecific exposure. 139 

 140 

Visual learning and reversal learning 141 

This assay tests the ability of flies to associate a visual cue, a green dot, with a “safe” 142 

temperature zone on the floor of an arena. Learning was assessed as the time a fly took to 143 

spend 20 sec consecutively in the “safe” zone. The total distance travelled by the fly was 144 

measured to control for directional learning. An increase in distance travelled would suggest 145 

that flies were not learning visual cues, but were instead learning the presence of a safe spot 146 

within the arena. Flies underwent 3 trials of 10 min. A reversal “probe” trial was then 147 

performed by moving the visual cue to an “unsafe” area of the arena, and measuring the 148 

time taken to spend time in the “safe” zone and the mean distance from the visual cue.  149 

 150 

Gene expression  151 

Flies were snap frozen in liquid nitrogen, head and thorax dissected away from the abdomen 152 

on dry ice and frozen at -80°C before extraction . RNA was extracted from a pools of 10 to 25 153 

flies using Direct-zolTM RNA miniprep columns. cDNA was synthesised using the Life 154 
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Technologies First strand cDNA kit. Housekeeper genes EF1 and Rap21 were chosen as 155 

likely to be unaffected by social environment [34].  156 

Quantification of transcript levels relative to housekeeping genes were performed 157 

using the Pfaffl method [35]. Ct values for samples were quantified against the lowest value 158 

across 5 to 7 biological replicates, taking into account the efficiency of the primer used. 159 

Relative expression was calculated by dividing the gene of interest by the geometric mean of 160 

the housekeepers for each sample, averaged across biological replicates  [35]. 161 

 162 

Behavioural analysis – activity, social interactions and aggression 163 

We observed behaviour of flies within their social treatments. Focal flies were held in their 164 

social treatment for 5 days and behaviour recorded on days 6, 8 and 10, at 9am, 12 pm and 165 

3pm. This was replicated in 4 blocks; each block contained 10 vials per sex and social 166 

treatment (final n = 40). Focal flies were scored as active or not, and for those with a social 167 

partner, whether they were within one body length of that partner (proximity) and whether the 168 

flies interacted aggressively (wing flicking and fencing) (females [36], male [37]) once every 169 

5 min for 10 sec. Movement and proximity were not mutually exclusive; individuals could be 170 

both stationary and close to another flies. However, any aggressive interactions were 171 

deemed as activity whether flies were stationary or not. For this assay it was impossible to 172 

blind the observer to the social treatment of the fly. 173 

 174 

Data analysis 175 

Statistical analysis was performed using SPSSv14 and R 3.3.1 [38]. 176 

 177 

Virgin Finding – decision making in a complex environment 178 
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To account for day/time of day effects, amount of time courting and courtship directed to the 179 

virgin for paired flies was standardised by subtracting from each, the mean of their matched 180 

single counterparts. This was then analysed using a Generalised Linear Mixed Model 181 

(GLMM) with a binomial distribution. Social treatment was a fixed factor and ID of the fly 182 

nested in repeat as a random factor. A model with effect of social treatment included was 183 

compared to that only containing random factors using Analysis of Deviance. 184 

 185 

Aversive olfactory associative learning 186 

 To account for day/time of day effects, innate odour preference and LI (Equation 1) for flies 187 

kept with a social partner were standardised by matched groups of single flies tested 188 

concurrently. Standardised values were then compared to 0 (i.e. no difference between 189 

single and social partners) with one sample Wilcoxon signed ranks tests. 190 

 191 

Visual learning and probe trial analysis 192 

A learning index was calculated for both time taken to find a “safe” spot and for total distance 193 

moved by subtracting the last learning trial from the first learning trial. The time taken to find 194 

a “safe” spot was compared between individuals kept with a conspecific or heterospecific 195 

social partner with Mann-Whitney U tests. For total distance moved, the difference between 196 

the first and last trial was compared to zero with a Wilcoxon signed rank test. 197 

To test for learning in reversal trails (both time taken to find “safe” spot and mean 198 

distance from “safe” spot) learning was calculated as the difference between an individual 199 

kept with a social partner and the average of individuals kept singly. Both measures were 200 

compared to 0 (no difference between single and social partner males) with a one sample t -201 

test. 202 

 203 
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Gene expression 204 

Relative expression differences were examined using ANOVA with gene identity and social 205 

group as fixed factors. Pairwise comparisons with Bonferroni correction were performed to 206 

investigate the difference between males kept singly and with a social partner for each gene. 207 

 208 

Social interactions and activity 209 

Separate analysis was conducted for each sex. Movement, proximity and interaction data 210 

were analysed with generalised linear mixed models with zero inflation correction (package 211 

glmmADMB and glmmTMB). For movement, social treatment and time of day were used as 212 

fixed effects and Day and ID were random effects. Number of interactions with social 213 

treatment and time as fixed factors, day and ID as random effects. Maximal models were 214 

reduced to minimum explanatory factors through Analysis of Deviance, with post -hoc 215 

comparisons between groups performed using the package emmeans with the Tukey 216 

adjustment for multiple testing. 217 

 218 

Results 219 

After exposure to a conspecific, males performed better in both the virgin finding assay 220 

(AOD: ȋ2
1 = 29.212, N = 165, p < 0.001 Figure 1A) and olfactory learning (z = 2.753, N = 58 221 

p = 0.006 Figure 1B) compared to males held singly. There was a similar (though non -222 

significant) trend for visual reversal learning (Time: X = 1.851, N = 19, p = 0.064. Distance: 223 

t18 = 0.994, p = 0.355 Figure S3A and B). Males kept with heterospecifics responded to 224 

social contact through an increase in courting effort (AOD: X2
1 = 4.871, N =176, p=0.027, 225 

Figure S2) though showed none of the learning improvements seen when males were kept 226 

with conspecifics when compared to single males (Virgin finding ȋ2
1 = 8.1616, N = 176, p = 227 

0.004 Figure 1A; Olfactory learning: z = 0.957, N = 30, p = 0.338 Figure 1B, Visual reversal 228 

Learning Time: z = -1.461, N = 18, p=0.144. Distance: t17 = 0.115, p = 0.115 Figure S3A and 229 



10 
 

D). Importantly, the ability of males to detect cues needed to complete the learning tasks did 230 

not differ significantly between social environments (Figure S4). 231 

Females did not statistically differ in olfactory learning ability when kept with 232 

conspecifics (t30 = -0.308, p = 0.760 Figure 1D) but significantly improved when exposed to 233 

heterospecifics (t32 = 2.675, p = 0.012 Figure 1D). However, this may be partly due to a 234 

change in female olfaction preference for training odours used in the assay. Females 235 

significantly changed their preference for 3-Octanol compared to single females when kept 236 

with both conspecifics (z = -2.079, N = 31, p = 0.038, Figure S5A) and heterospecifics (z = 237 

2.010, N = 33, p = 0.044, Figure S5A). There was no statistical difference in visual reversal 238 

learning dependent on social treatment (conspecific time: z = -1.492, N = 19, p = 0.136. 239 

Distance X2
1 = 0.604, N = 19, p = 0.546, heterospecific time: z = 1.099, N = 14, p = 0.272. 240 

Distance X2
1 = 2.291, N = 14, p = 0.022 Figure S3C and D). 241 

We found a general pattern of increased expression across all genes in males kept 242 

with conspecifics compared to single males (F1,29 = 11.349, p = 0.002 Figure 2A). Post-hoc 243 

analysis showed both futsch (t9 = -3.299, p = 0.012) and Neurexin-1 (t10 = -3.424, p = 0.006) 244 

were significantly upregulated in males kept with conspecifics. Expression did not 245 

significantly differ between males held singly or with heterospecific males (F 1,22 = 2.589, p = 246 

0.122 Figure 2B). Female gene expression was not affected by conspecific contact (F1,24 = 247 

3.351, p = 0.080 Figure 2C). However, females kept with heterospecifics significantly 248 

increased expression overall (F1,24 = 8.209, p = 0.009 Figure 2D), though not for individual 249 

genes after post-hoc testing. 250 

Male movement was dependent on an interaction between social environment and 251 

time of day (X2
4 = 11.297, p = 0.004, Figure S6A). Males with conspecifics moved less than 252 

males kept singly and with heterospecifics. Conspecific partners were significantly closer in 253 

proximity than heterospecific partners (X2
1 = 11.575, p < 0.001, Figure S6B), and also 254 

interacted significantly more (X2
1 = 31.94, p < 0.001, Figure S6C). 255 
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Females held with any social partner moved less than single females (X2
4 = 10.761, 256 

p < 0.004; Figure S7A). Females kept with conspecifics moved less than single females at 257 

9am only ( t334 = 2.666, p = 0.0219), whilst with heterospecifics they were less active at 9am 258 

(t334 = 2.504, p = 0.034) and 12pm (t334 = 3.248, p = 0.003). Type of social contact did not 259 

affect partner proximity (X2
1 = 0.4253, p = 0.514, Figure S7B). Interactions were seen too 260 

infrequently to analyse. 261 

 262 

Discussion 263 

Our data supports the idea that competitive interactions, specifically mating competition, is 264 

important for male cognitive ability. Males exposed to conspecifics, but not heterospecifics 265 

that acted as a general social contact, showed general cognitive improvement, including in a 266 

visual learning task, a sensory modality not required for a response to sperm competition 267 

[19]. Interestingly, the opposite pattern was true for females who increased olfactory learning 268 

ability in response to exposure to heterospecifics but not conspecifics. 269 

When exposed to a conspecific, males increased their ability to identify a virgin 270 

female. Though males exposed to heterospecifcs failed to improve within this assay, they did 271 

increase courtship effort. D. melanogaster males increase the volume of their courtship song 272 

after social contact [39] and experience of heterospecifics  strengthens conspecific mating 273 

preferences [40]. In line with this, our results reflect that social experience increases male’s 274 

preference for conspecifics. Indeed, males involved in virgin finding, although requiring 275 

learning, would also be expected to draw on other cognitive processes that could lead to a 276 

change in social preference. 277 

Social environments that produced increases in learning ability for both sexes were 278 

associated with increased expression of synapse-related genes and a decline in 279 

movement(used as a proxy for sleep). Decreases in synapse number is linked to decreased 280 

cognition in multiple species [41], and chemically induced increases in synapse connectivity 281 
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in mice improves cognitive performance [42]. Sleep is thought to be vital in developing and 282 

consolidating synaptic circuitry [43, 44]. Consistent with this, Neurexin-1, a gene involved in 283 

synaptic plasticity is significantly increased in heads when males are kept with conspecifics. 284 

Neurexin-1 acute overexpression in adulthood is associated with synaptic growth and an 285 

increase in sleep in D. melanogaster [45]. In this study we cannot separate out the exact 286 

mechanisms leading to an increase in learning. However, we observe a coordinated change 287 

in activity patterns and increased expression of genes involved in synaptic growth [45] due to 288 

changes in the sexual environment, suggesting the socio-sexual environment has a 289 

significant role to play in cognitive development. 290 

Females also display less movement (likely more sleep) and an increase in synaptic 291 

gene expression when kept with the type of contact leading to an increase in learning, in this 292 

case heterospecific. We interpret the male responses caused by conspecific contact a 293 

response to the sperm competition environment [15], however, what may be causing 294 

females to increase memory after contact with heterospecifics is unknown. In addition to an 295 

increase in learning, females were found to have changed their olfactory preference in 296 

response to heterospecific exposure. During the assay this preference was taken into 297 

account by training individuals against their preferred odour. However, the change would 298 

also suggest heterospecific partners could impact future choice influenced by smell, for 299 

example, of oviposition sites [46]. Female D. melanogaster use learning and memory 300 

processes to choose oviposition sites avoiding parasitism [47] and for preferred substrates 301 

[48].  Cues of heterospecific competition may similarly affect female D. melanogaster egg 302 

laying decisions, though this is yet to be tested. 303 

Examples of difference in cognitive abilities between the sexes are relatively common 304 

[49, 50] and are often connected to sexually specific fitness benefits arising from different 305 

selective pressures [10]. Here, cognitive differences are seen in how the sexes react to 306 

different same-sex social pressures. This serves to again highlight that sexual competition is 307 

especially important for males to develop cognitive abilities. It also suggests that cognitive 308 
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evolution is driven by sex specific pressures in D. melanogaster. Indeed, female D. 309 

melanogaster base some mating decisions on public information [51], whereas males only 310 

seem to use cues directly related to their own experience to modulate behaviour [52]. In 311 

insects the evolution of cognition is intimately linked to increasing complexity of Mushroom 312 

Bodies, a structure which is analogous to the mammalian central cortex [53], leading to 313 

greater behavioural complexity [54, 55]. Previously, the primary driver of cognitive 314 

development in insects was thought to be complex foraging behaviour [56]. Here we present 315 

evidence that intra-sexual competition, and specifically sperm competition responses 316 

previously linked to the MBs [17], are also likely important in driving cognitive development in 317 

males. We also find that cues of another species may drive female cognitive development, 318 

though we know much less about the underlying processes. Overall, our data, together with 319 

other recent studies [10, 12] highlight competitive interactions as a key social driver of 320 

cognitive evolution [4, 5], at least outside of mammals. We therefore suggest the 321 

requirement for plasticity in male and female responses to fluctuating socio -sexual 322 

environments may be more generally important to cognitive development than previously 323 

thought. 324 

 325 

Figure 1: Effect of social environment on learning. A) Change in percentage courting 326 

directed towards a virgin female (“Correct” courting) by males kept with D. melanogaster or 327 

D. virilis rivals. Change in olfactory learning ability of B) males or C) females kept with D. 328 

melanogaster or D. virilis partners. All data are standardised by comparison to the group 329 

average of single flies assayed at the same time * < 0.05, ** < 0.01, *** < 0.001. 330 

Figure 2: Gene expression changes depending on social environment. Males (A and B) or 331 

females (C and D) were held singly (white bars) or with social partners (grey bars) that were 332 

conspecific (A and C) or heterospecific (B and D). Significant effects are indicated across the 333 

whole model or in pairwise comparisons where * < 0.05, ** < 0.01, *** < 0.001. 334 

 335 
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