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Abstract:  

Plastic pollution is a pervasive and growing problem. To estimate the effectiveness of 

interventions to reduce plastic pollution, we modeled stocks and flows of municipal solid waste 

and four sources of microplastics through the global plastic system for five scenarios between 

2016 and 2040. Implementing all feasible interventions reduced plastic pollution by 40% from 

2016 rates and 78% relative to ‘business as usual’ in 2040. Even with immediate and concerted 

action, 710 million metric tons of plastic waste cumulatively entered aquatic and terrestrial 

ecosystems. To avoid a massive build-up of plastic in the environment, coordinated global action 

is urgently needed to reduce plastic consumption, increase rates of reuse, waste collection and 

recycling, expand safe disposal systems and accelerate innovation in the plastic value chain. 

One-sentence summary: 

Immediate, globally coordinated action on pre- and post-consumption solutions can reduce 

plastic pollution rates by nearly 80% by 2040 

Main Text:  

Plastic pollution is globally ubiquitous. It is found throughout the oceans, in lakes and rivers, in 

soils and sediments, in the atmosphere, and in animal biomass. This proliferation has been driven 

by rapid growth in plastic production and use combined with linear economic models that ignore 

the externalities of waste (1, 2). A sharp rise in single-use plastic consumption and an expanding 

‘throw-away’ culture (1) have exacerbated the problem. Waste management systems do not have 

sufficient capacity at the global level to safely dispose of or recycle waste plastic (3, 4), resulting 

in an inevitable increase in plastic pollution into the environment. Previous studies estimated 
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approximately 8 million metric tons (Mt) of macroplastic (5) and 1.5 Mt of primary microplastic 

(6) enter the ocean annually. Comparable estimates for terrestrial plastic pollution have yet to be 

quantified. If plastic production and waste generation continue to grow at current rates, the 

annual mass of mismanaged waste has been projected to more than double by 2050 (1, 2) and the 

cumulative mass of ocean plastic could increase by an order of magnitude from 2010 levels by 

2025 (5). Despite the magnitude of these flows, the efficacy and economic costs of solutions 

proposed to solve the plastic waste problem – the uncontrolled release of plastic waste into the 

environment resulting from ineffective management – remains unknown. 

A growing body of evidence points to a broad range of detrimental effects of plastic pollution. 

Nearly 700 marine species and over 50 freshwater species are known to have ingested or become 

entangled in macroplastic (7, 8) and there is growing evidence that plastic is ingested by a wide 

range of terrestrial organisms (9). Plastic pollution impacts many aspects of human well-being: 

affecting the aesthetics of beaches (10), blocking drainage and wastewater engineering systems 

(11) and providing a breeding ground for disease vectors (10, 12). The lower-bound estimate of 

the economic costs of plastic pollution on fishing, tourism and shipping have been estimated at 

USD 13 billion annually (13). Although harmful effects of microplastic (here defined as plastics 

< 5 mm) have not been consistently demonstrated, ingestion has been documented across trophic 

levels and at all depths of the ocean in individual organisms and species assemblages (8, 14) and 

in terrestrial organisms (15). Microplastics are also increasingly found in the human food system 

though their impacts on human health are difficult to assert and require further research (16, 17). 

Plastic production, collection and disposal are also major sources of greenhouse gas (GHG) 

emissions (18).  
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Cost-effective solutions to managing plastic waste vary considerably across geographies and 

social settings (3), and a variety of solutions to the plastic pollution problem have been proposed 

at local, national and regional levels (19, 20). Some proposed interventions focus on post-

consumption management, requiring considerable growth in investment and capacity of waste 

management solutions (21, 22). Other interventions prioritize reducing plastic through 

replacement with alternative products, reuse, and the development of new delivery models (23). 

Individual countries have established bans or levies on select plastic products, with a particular 

focus on banning single-use carrier bags and microbeads in cosmetic products (24, 25). The 

European Union recently adopted a directive on single-use plastics (26) while the Basel 

Convention was amended to regulate the international trade of plastic waste (27). The scientific 

community and non-governmental organizations are also working to identify solutions (21, 28). 

Despite these efforts, a global evidence-based strategy that includes practical and measurable 

interventions aimed at reducing plastic pollution does not yet exist. 

Modeling Approach 

Designing an effective global strategy requires an understanding of the mitigation potential of 

different solutions and the magnitude of global effort needed to appreciably reduce plastic 

pollution. To estimate mitigation potential under different intervention scenarios, we developed 

the Plastics-to-Ocean (P2O) model. P2O is a data-driven coupled ordinary differential equation 

(ODE) model that calculates the flow of plastics through representative systems. We used the 

model to characterize key stocks and flows for land-based sources of plastic pollution across the 

entire value chain for municipal solid waste (MSW) macroplastics (Fig. S1-S2) and four sources 

of primary microplastics (i.e., those entering the environment as microplastics; Supplementary 
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Materials (SM) Section 15; Fig. S3-S6). Crucially, it provides estimates of plastic waste input 

into the environment. Costs are calculated as a function of modeled plastic flows, and changes in 

costs due to production scale and technological advancement are accounted for through learning 

curves and returns to scale (SM Section 16.1). 

Projected growth in demand for plastic was calculated using country-level population size (29), 

per capita macroplastic MSW (30, 31) and microplastic-generating product use and loss rates. 

Per capita waste generation and waste management processes (e.g., collection costs, collection 

and processing rates, recycling recovery value) and rates of primary microplastic generation vary 

by geography and plastic category/source (6, 32–34). To account for these differences, the global 

population was split across eight geographic archetypes based on World Bank income categories 

(low income, lower- and upper- middle income and high income); and United Nations urban-

rural classifications (29). Populations were further differentiated by their distance to water (< 1 

km or > 1 km) to estimate their relative flows of plastic pollution to terrestrial versus aquatic 

(lakes, rivers and marine environments) systems. To account for different waste management 

pathways (35) and movement rates of waste in the environment (35), MSW plastics were 

differentiated into three material categories: rigid monomaterial, flexible monomaterial and 

multi-material/multi-layer. Four microplastic sources were modeled: synthetic textiles, tires, 

plastic pellets and personal care products. 

Five scenarios were developed to estimate reductions in plastic pollution over the period 2016-

2040. Scenarios were defined by four high-level classes of interventions (reduce, substitute, 

recycle, dispose) and eight system interventions: (i) reducing plastic quantity in the system, (ii) 

substituting plastics with alternative materials and delivery systems, (iii) implementing design 
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for recycling, (iv) increasing collection capacity, (v) scaling-up sorting and mechanical recycling 

capacity, (vi) scaling-up chemical conversion capacity, (vii) reducing post-collection 

environmental leakage, and (viii) reducing trade in plastic waste (Table S7). Scenarios modeled 

include: (i) ‘Business as Usual’ (BAU), (ii) ‘Collect and Dispose’, (iii) ‘Recycling’, (iv) ‘Reduce 

and Substitute’, and (v) an integrated ‘System Change’ scenario that implemented the entire suite 

of interventions (Tables S8, S57). 

At all relevant geographical scales, waste production and handling data are notoriously difficult 

to obtain. Many model inputs have a high degree of uncertainty which was propagated using 

Monte Carlo sampling. Data inputs and assigned uncertainties are described in supplemental 

material (SM Section 5.6). In the absence of datasets with which to formally validate the model, 

sensitivity analyses were conducted to quantify the influence of individual model inputs and to 

identify key drivers of plastic pollution. Model outputs from the BAU scenario were also 

compared against results from other global studies (2, 5, 36).  

Business as Usual 

The BAU scenario highlights the scale of the plastic pollution problem and provides a baseline 

from which to compare alternative intervention strategies (Fig. 1). At a global scale from 2016-

2040, the annual rate of macro- and microplastic entering aquatic systems from land increased 

2.6-fold (Table 1, Fig. 1C). Over the same period, the rate of plastic pollution retained in 

terrestrial systems increased 2.8-fold (Table 1, Fig. 1D). 

When current commitments to reducing plastic pollution were modeled assuming full 

implementation (SM Section 9.1), annual plastic pollution rates into aquatic and terrestrial 
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environments decreased by only 6.6% [95% Confidence Interval: 5.4, 7.9] (37) and 7.7% [5.2, 

10] by 2040, respectively (Fig. 1A). This result confirms that current commitments coupled with 

appropriate policies can reduce plastic waste input into the environment but also shows that 

considerable additional effort will be needed to match the unprecedented scale of projected 

environmental plastic pollution. 

Plastic pollution rates were found to be particularly sensitive to total plastic mass, collection 

rates, and the ratio of managed to mismanaged waste. For example, a 1 t reduction in plastic 

MSW mass (i.e., through reduce and substitute interventions) decreased aquatic plastic pollution 

by an average of 0.088 t in low and middle-income archetypes and an average of 0.0050 t in 

high-income archetypes. Across all archetypes, an equivalent increase in the collection of plastic 

waste (through formal and informal sectors) resulted in an average 0.18 t decrease in aquatic 

plastic pollution, while a similar decrease in post-collection mismanaged waste produced an 

average 0.10 t decrease in aquatic plastic pollution. 

Scenarios to Reduce Plastic Pollution 

The focus of plastic pollution reduction strategies can be broadly partitioned into upstream (pre-

consumption, e.g., reducing demand) and downstream (post-consumption, e.g., collection and 

recycling) measures. To parameterize the development of waste management and recycling 

solutions in the ‘Collect and Dispose’, ‘Recycling’, and ‘System Change’ scenarios, we 

estimated maximum foreseen growth and implementation rates based on historical trends and 

expert panel consensus assessment (SM Section 1). In a limited number of cases where data were 

not available in the published literature, we conducted interviews with industry experts or 

purchased proprietary data from industry market research databases. Compared to BAU, the 
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annual combined terrestrial and aquatic plastic pollution rates were reduced by 57% in 2040 [45, 

69] under the ‘Collect and Dispose’ scenario, and by 45% [35, 54] under the ‘Recycling’ 

scenario (Fig. 1A, B).  

Strategies focused on upstream (pre-consumption) solutions were represented by the ‘Reduce 

and Substitute’ scenario. We developed a feasibility assessment framework to model the 

potential development of upstream solutions aimed at reducing the volume of plastics used and 

disposed of into the waste stream (SM Section 9). Fifteen major plastic applications were 

assessed against four criteria for technology readiness and unintended consequences related to 

health/food safety, consumer acceptance (e.g., convenience, climate change impacts) and 

affordability (Tables S21-S22). The feasibility of substitution with alternative material was 

assessed against the potential for scaling to meaningful levels within the modeling period. Paper, 

coated paper and compostable materials met these criteria. Under the ‘Reduce and Substitute’ 

scenario, annual combined terrestrial and aquatic plastic pollution in 2040 decreased 59% [47, 

72] relative to BAU while annual plastic production decreased by 47% [44, 49]. Consequently, 

plastic production in 2040 under the ‘Reduce and Substitute’ scenario (220 Mt/y [200, 240]) was 

similar to production in 2016 (210 Mt/y [200, 230]).  

Neither pre- nor post-consumption interventions alone are sufficient to address the plastic 

problem. Combining the maximum foreseen application of pre- and post-consumption solutions 

represents the most aggressive possible solution given current technology: the ‘System Change’ 

scenario. In this scenario, annual combined terrestrial and aquatic plastic pollution decreased by 

78% [62, 94] relative to BAU in 2040, but only by 40% [31, 48] relative to 2016 pollution rates 

(Table 1, Fig. 1A, B). In 2040, the annual rate of land-based sources of plastic entering aquatic 
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and terrestrial systems decreased by 82% [68, 95] and 76% [55, 97] relative to BAU, 

respectively (Table 1, Fig. 1C, D). 

Under the ‘System Change’ scenario in 2040, a substantial reduction in mismanaged and 

disposed waste was achieved through increases in the proportion of plastic demand reduced, 

substituted by alternative materials and recycled (Table 1, Fig. 2A). These changes to the plastic 

system resulted in 11% [10, 12] less virgin plastic being produced in 2040 under the ‘System 

Change’ scenario than was produced in 2016, and 55% [51, 58] less than in 2040 under BAU. 

Moreover, this reduction was driven by increases in recycled plastic feedstock, which have lower 

life-cycle GHG emissions (18). Taken together, the ‘System Change’ scenario moves towards 

achieving a circular economy in which resources are conserved, waste generation is minimized 

(38) and GHG emissions reduced.  

The present value of cumulative, global waste management operations from 2016 to 2040 was 

approximated to assess the relative cost of each scenario (Fig. 3). Among scenarios, costs varied 

by less than 20% relative to BAU, were lowest under the ‘System Change’ and ‘Recycling’ 

scenarios, and highest for the ‘Collect and Dispose’ scenario. Costs under the ‘System Change’ 

scenario were 18% [14, 23] lower than BAU, with increased waste management costs offset by 

costs savings from reduced plastic production and revenues from recyclate sales, which 

increased due to product redesign and improved economics of recycling (SM Section 16.8). 

These costs represent only waste management costs, which are generally borne by taxpayers. 

Corporate engagement, through improved product design, alternative material development and 

new business models will be necessary to achieve pollution levels observed in the ‘System 
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Change’ scenario. This engagement will likely require a significant shift in private sector 

investment. 

Our results underline the urgency with which extensive interventions are needed. Despite a 

considerable reduction in annual plastic production and an increase in the proportion of MSW 

that is effectively managed under the best-case ‘System Change’ scenario, a substantial amount 

of plastic waste remained mismanaged (i.e., not collected and sorted, recycled or safely 

disposed) between 2016 and 2040. When implementation of interventions begins in 2020, the 

cumulative mass of plastic pollution added between 2016 and 2040 amounts to 250 Mt [190, 

310] in aquatic systems (Fig. 4A) and 460 Mt [300, 640] in terrestrial systems (Fig. 4B), 

approximately 1 and 2 times the total annual plastic production in 2016, respectively. If 

implementation of interventions is delayed by only 5 years, an additional 300 Mt of mismanaged 

plastic waste is expected to accumulate in the environment. 

Outlook by Plastic Category 

The complex composition of multi-material plastics limits the technical feasibility of sorting and 

reprocessing (39), decreasing the economic attractiveness of recycling. Accordingly, the annual 

production of these plastics decreased by 19 Mt [18, 20] from 2016 to 2040 under the ‘System 

Change’ scenario, with a shift of similar magnitude to flexible mono-material plastic production 

(20 Mt/y [19, 21]). 

Due to the relative ease of collection and sorting, recycling was dominated by rigid plastics in all 

archetypes and across all scenarios (Fig. 4C). Under the ‘System Change’ scenario in 2040, rigid 

plastics represented 62% [58, 67] of the annual mass of recycling, with a sizeable component of 
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flexible mono-material plastic (33% [28, 37]) (Fig. 5A). In comparison, only 5.0% [4.2, 5.4] of 

recycled material was derived from multi-material/multilayer waste plastic (Fig. 5A). 

The diversity of polymer types, surface contamination and low density of post-consumer flexible 

monomaterial limit their capacity for recycling, particularly in geographies where waste 

collection services are provided by the informal sector. At a global scale, the absolute and 

relative contribution of flexible monomaterial plastics to environmental pollution grew between 

2016 and 2040, from 45% [35, 56] to 56% [40, 73] in aquatic environments and from 37% [18, 

52] to 48% [22, 67] in terrestrial environments (Fig. 5B, C). Accordingly, finding an 

economically viable solution to effectively manage flexible plastics will be essential for solving 

the plastic pollution problem. 

Similarly, the proportion of total plastic pollution originating from microplastics in the ‘System 

Change’ scenario grew from 11% [6.5, 18] to 23% [11, 42] in aquatic systems and from 16% 

[8.2, 27] to 31% [18, 51] in terrestrial systems over the modeled period (Fig. 5B, C). 

Technologies to capture microplastics, which often rely on stormwater and wastewater 

management and treatment, are rarely economically feasible – even in wealthy regions – due to 

associated infrastructure costs. This technological challenge is particularly acute for tire 

particles, which contributed 93% [83, 96] of global microplastic pollution by mass in 2040. 

Difficulties to Overcome 

Scaling collection to all households at a global level is a monumental task that would require 

connecting over a million additional households to MSW collection services per week from 2020 

to 2040; the majority of these unconnected households are in middle-income countries. The 
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effort to increase household waste collection will therefore require a key role for ‘waste pickers’ 

(the informal collection and recycling sector (40)), who link the service chain (MSW collection) 

to the value chain (recycling) in low- and middle-income settings. Globally, this sector was 

responsible for 58% [55, 64] of post-consumer plastic waste collected for recycling in 2016. To 

incentivize the collection of low-value plastics (flexible monomaterial and multimaterial / 

multilayer plastic) by the informal sector, the profitability of recycling these materials would 

need to rise to create demand for their collection. Accordingly, investments in collection 

infrastructure must be coordinated with improved governance around collection, sorting and safe 

management of generated waste (41). 

Mismanaged plastic waste (i.e., in dumpsites, openly burned or released into aquatic or terrestrial 

environments) is associated with a range of risks to human and ecological health (42). 

Substantial quantities of such waste are likely to continue to be emitted into the environment or 

openly burned through time. Under the ‘System Change’ scenario, in addition to aquatic and 

terrestrial pollution, approximately 250 Mt [130, 380] of waste plastic would accumulate in open 

dumpsites from 2016 to 2040 and remain a potential source of environmental pollution (Fig. 4D). 

Many communities in emerging economies with inadequate waste management services and 

infrastructure burn waste residentially or in open dumpsites without emissions controls. Open 

burning transfers the pollution burden to air, water and land via the generation of GHGs, 

particulate matter (including microplastic particles) and harmful chemicals such as dioxins and 

other persistent organic pollutants (43, 44). Despite its human health and environmental 

consequences, open burning was the single largest component of mismanaged plastic waste 

under all scenarios, with 1200 Mt [940, 1400] of plastic burned in the ‘System Change’ scenario 
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between 2016 and 2040 (Fig. 4D). It therefore remains a stubborn pollution and social justice 

problem in need of an effective solution.  

Though not strictly mismanaged, the net export of waste from high-income to upper- and lower-

middle income countries grew from 2.7 Mt/y [2.4, 4.7] in 2016 to 3.8 Mt/y [0.7, 7.2] in 2040 

under BAU. Though a comparatively small amount, these exports have the potential to increase 

the fraction of mismanaged plastic waste, as receiving countries often have insufficient capacity 

to manage their own waste. Consequently, importing waste for recycling can have the 

unintended consequence of displacing these developing economies’ capacity to recycle their 

domestic waste (45). 

Although efforts to measure the amount of plastic pollution entering rivers and the ocean have 

increased in recent years (46–48), key data gaps remain. To better estimate the effects of 

consumer, corporate and policy actions on solving the plastic pollution problem, additional 

empirical data are needed throughout the plastics system – particularly in developing economies. 

Moreover, a more complete accounting of the benefits, costs and externalities of plastic use is 

needed to design policies which align social and financial incentives and minimize plastic 

pollution. These data deficiencies currently prevent application of the model at finer 

geographical scales and limit the granularity of the system representation. In particular, data 

from the informal sector of the global waste management system are scarce, as are data which 

shed light on the importance of post-collection MSW mismanagement. Additional quantitative 

data are also needed to better understand key sources, rates and pathways for microplastic 

pollution and for maritime sources of plastic pollution.  
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Addressing the Plastic Pollution Problem 

Our analysis indicates that urgent and coordinated action combining pre- and post-consumption 

solutions could reverse the increasing trend of environmental plastic pollution. While no silver 

bullet exists, 78% of the plastic pollution problem can be solved by 2040 using current 

knowledge and technologies and at a lower net cost for waste management systems compared to 

BAU. However, with long degradation times, even a 78% reduction from BAU pollution rates 

results in a massive accumulation of plastic waste in the environment. Moreover, even if this 

system change is achieved, plastic production and unsound waste management activities will 

continue to emit large quantities of GHGs. Further innovation in resource-efficient and low-

emission business models, reuse and refill systems, sustainable substitute materials, waste 

management technologies and effective government policies are needed. Such innovation could 

be financed by redirecting existing and future investments in virgin plastic infrastructure. 

Substantial commitments to improving the global plastic system are required from businesses, 

governments and the international community to solve the ecological, social and economic 

problems of plastic pollution and achieve near-zero input of plastics into the environment. 
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Fig. 1 Annual rates of plastic pollution entering the environment estimated from 300 Monte 

Carlo simulations. (A) Time series of plastic pollution entering aquatic and terrestrial 

ecosystems (Mt/y +/- 95% CI) by scenario, 2016 – 2040. Scenarios: ‘Business as Usual’ (BAU), 

‘Collect and Dispose” scenario (CDS), ‘Recycling’ scenario (RES), ‘Reduce and Substitute’ 

scenario (RSS), and ‘System Change’ scenario (SCS). Plastic pollution rates for all scenarios 

between 2016 and 2020 are identical. The black point estimate in 2040 represents the annual rate 

of plastic pollution assuming global commitments to reduce plastic use and increase recycling 

announced before June 2019 are implemented prior to 2040. A time series for this scenario is not 

presented because timelines for implementation are unknown. (B) Kernel density estimates for 

plastic pollution (Mt) in 2040 by scenario. Boxplots of plastic pollution entering (C) aquatic and 

(D) terrestrial ecosystems by scenario for beginning, middle, and end years of scenario 

implementation.  

 

Fig. 2  Fate for all municipal solid waste plastic, 2016-2040, under the ‘System Change’ 

scenario (SCS). (A) Annual mass of plastic (Mt/y) for each of five end-of-life fates. (B) Mass of 

plastic utility (Mt/y) addressed per modeled intervention in 2040, following 20 years of SCS 

implementation, organized by end of life fate. NDM = new delivery model. P2F chemical = 

plastic to fuel chemical conversion. P2P chemical = plastic to plastic chemical conversion. 

Incineration ER = Incineration with energy recovery. Aquatic poll. = plastic pollution into 

aquatic systems. Terrestrial poll. = plastic pollution into terrestrial systems. 

 

Fig. 3. Present value costs for the management (i.e., collection, sorting, recycling, and 

disposal) of plastic municipal solid waste by scenario, 2016 -2040. Costs (Billion 2018 USD 
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+/- 95% CI) are calculated assuming 3.5% discount rate and are net of revenues associated with 

the sale of recycled plastic feedstock and electricity generated from plastic incineration with 

energy recovery. Scenarios: Business as Usual’ (BAU), ‘Collect and Dispose” scenario (CDS), 

‘Recycling’ scenario (RES), ‘Reduce and Substitute’ scenario (RSS), and ‘System Change’ 

scenario (SCS).  

 

Fig. 4 Cumulative mass of plastic municipal solid waste (MSW), 2016 – 2040 (Mt +/- 95% 

CI) polluting (A) aquatic, and (B) terrestrial systems by scenario and plastic type for years 2016-

2040. (C) Cumulative mass of plastic MSW recycled for each of four plastic types modeled. (D) 

Cumulative mass of non-circular plastic MSW endpoints, including solutions in the mismanaged 

(dumpsite, open burn), effectively disposed (landfill, incineration with energy recovery, plastic 

to fuel (P2F) chemical conversion), and recycling (open loop recycling) categories. Uncertainty 

bars for P2F chemical conversion are not visible as their endpoints do not exceed the radius of 

the plotted point estimate. Scenarios: Business as Usual’ (BAU), ‘Collect and Dispose” scenario 

(CDS), ‘Recycling’ scenario (RES), ‘Reduce and Substitute’ scenario (RSS), and ‘System 

Change’ scenario (SCS). 

 

Fig. 5.  Fate of plastic municipal solid waste (MSW) by plastic type under the ‘System 

Change’ Scenario (SCS). (A) Proportion of MSW (+/- 95% CI) produced in 2040 absorbed by 

each of three recycling solutions and the dispose and mismanaged end-of-life categories. Even 

under SCS, few effective solutions are implemented to manage primary microplastics. The 

proportion of plastic pollution (+/- 95% CI) entering (B) global aquatic and (C) terrestrial 

systems by plastic type, 2016 – 2040.  
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Table 1. Plastic mass; percent of total plastic demand under different end of life fates for 

year 2016 and for year 2040 under the ‘Business as Usual’ (BAU) and ‘System Change’ 

scenarios (SCS); and percent change in plastic mass under different end of life fates for 

SCS in 2040 relative to 2016 and BAU in 2040. 

 

End of Life Fate 

Plastic Mass (Mt/y) 

95% CI 

Fate as % Plastic Demand 

95% CI 

SCS 2040 % Change 

95% CI 

2016 BAU 2040 SCS 2040 2016 BAU 2040 SCS 2040 2016 BAU 2040 

Reduction 
0 

0, 0 

0 

0, 0 

130 

110, 150 

0 

0, 0 

0 

0, 0 

31 

28, 33 
- - 

Substitution 
0 

0, 0 

0 

0, 0 

71 

62, 81 

0 

0, 0 

0 

0, 0 

17 

15, 18 
- - 

Recycling 
31 

26, 32 

55 

46, 63 

84 

75, 93 

14 

12, 15 

13 

11, 15 

20 

18, 21 

170 

140, 200 

54 

46, 61 

Disposal 
97 

83, 97 

140 

120, 150 

100 

89, 110 

44 

39, 45 

32 

28, 33 

24 

22, 26 

3.5 

3.3, 3.8 

-26 

-24, -28 

Mismanaged 
91 

84, 100 

240 

220, 260 

44 

40, 49 

42 

41, 47 

56 

53, 59 

10 

9.4, 12 

-51 

-48, -54 

-81 

-76, -87 

 Open burn*  
49 

40, 60 

130 

110, 160 

23 

18, 29 

54 

42, 63 

56 

44, 65 

53 

41, 65 

-53 

-45, -61 

-82 

-70, -95 

 Dumpsite*  
12 

7.4, 21 

25 

14, 41 

3.2 

1.5, 5.0 

13 

8.2, 22 

11 

5.9, 17 

7.3 

3.3, 11 

-74 

-49, -99 

-87 

-54, -120 

 Aquatic pollution*  
11 

9.0, 14 

29 

23, 37 

5.3 

3.8, 7.0 

12 

9.8, 14 

12 

9.8, 15 

12 

9.0, 15 

-52 

-43, -60 

-82 

-68, -95 

 Terrestrial pollution*  
18 

13, 25 

52 

34, 70 

12 

7.8, 18 

20 

13, 27 

22 

14, 29 

28 

18, 39 

-33 

-23, -42 

-76 

-55, -97 

* Components of the mismanaged end of life fate. These categories sum to the total for mismanaged waste.  

 


