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Abstract 16 

In Europe, the German Bight is one of the most important non-breeding areas for protected 17 

red-throated divers (Gavia stellata). It is unclear what attracts the birds to this area, especially 18 

as the food composition of seabirds outside the breeding season is notoriously difficult to 19 

study. To obtain information on prey species composition of red-throated divers in this area, 20 

faecal samples from 34 birds caught alive were analysed using DNA metabarcoding. Prey 21 

DNA was detected in 85% of the samples with a mean number of 4.2 ± 0.7 taxa per sample 22 

(n=29). Altogether we found a broad prey spectrum with 19 fish taxa from 13 families 23 

dominated by five groups: clupeids, mackerel, gadoids, flatfish and sand lances with clupeids 24 

being the most frequently detected prey.  25 

Our results indicate that red-throated divers are generalist opportunistic feeders in the German 26 

Bight, but pelagic schooling fish that aggregate at frontal zones and have a high energetic 27 

value might be favoured. Atlantic mackerel appears to be a more important prey for red-28 

throated divers in this area than previously thought.  29 

The precision achievable using metabarcoding has revealed a number of prey species that are 30 

consumed by red-throated divers in the German Bight, which helps to explain the selection of 31 

this area by divers in winter and spring. 32 

Key words: Diet composition, DNA Metabarcoding, Next Generation Sequencing, North Sea, 33 

Red-throated diver/loon, Site selection  34 
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Introduction 35 

Understanding resource utilisation is fundamental for managing wildlife populations. Data on 36 

diet composition and feeding strategies are essential for understanding habitat selection and 37 

for predicting the ecological consequences of habitat change (Davoren et al. 2003). Predator 38 

abundance is often regulated by bottom-up effects of prey abundance (Engelhard et al. 2013). 39 

Thus, the availability of prey may affect not only predator distribution and abundance but also 40 

foraging strategies (Fauchald et al. 2011; Lynam et al. 2017).  41 

Diet composition of seabirds outside the breeding season, when they remain at sea, is 42 

notoriously difficult to study. This is especially true for protected species where only non-43 

invasive methods are applicable. In the past, various techniques have been developed to 44 

analyse seabird diet. These include visual observations, morphological identification of 45 

regurgitates or gut contents, or biochemical methods such as the analysis of fatty acid and 46 

stable isotope concentrations (Barrett et al. 2007; Meier et al. 2017; Quillfeldt et al. 2017; 47 

Quinn et al. 2017). A highly efficient alternative approach is to use DNA metabarcoding 48 

(Deagle et al. 2005, 2007; Pompanon et al. 2012; Vesterinen et al. 2013; Alonso et al. 2014). 49 

This involves amplification of DNA from faecal material and assignment of taxonomical 50 

information using Next Generation Sequencing (NGS) and DNA barcode databases. 51 

Our study focused on the prey spectrum of the red-throated diver (Gavia stellata), a protected 52 

marine bird species, in its wintering and spring staging areas in the German Bight (eastern 53 

part of the North Sea). During the non-breeding season about 84,200–186,000 individuals stay 54 

in the Baltic Sea, the North Sea and the NE-Atlantic (BirdLife International 2018; Dierschke 55 

et al. 2012). Around 20% of the NW-European wintering population occurs in the German 56 

Bight (Dierschke et al. 2012; Garthe et al. 2007; Mendel et al. 2008) classifying it as an 57 

internationally important staging area for these birds, especially in spring before migration 58 

starts (Garthe et al. 2012, 2015). To date three studies have been published on the prey 59 

composition of non-breeding red-throated divers in the North Sea and the Baltic Sea, which 60 

analysed gut contents using morphological tools (Table 1). However, information is not 61 

available from the German Bight (Fig. 1). Red-throated divers feed on a wide range of fish 62 

species and, given that the energy content of prey fish varies with size and season, they appear 63 

to choose prey of high energetic value (Pedersen and Hislop 2001) like gadoids (Madsen 64 

1957) or clupeids (Durinck et al. 1994; Guse et al. 2009). Additionally cephalopods were 65 

found in one of these studies (Durinck et al. 1994) in four of eight birds. Small specimens of 66 

polychaetes, crustaceans, copepods, bivalves and gastropods were reported in all studies 67 
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although these were considered to be secondary prey (i.e. prey in the guts of the fish eaten by 68 

the divers). The German Bight is characterised by an estuarine frontal system, created by the 69 

Jutland costal current (JCC) that is primarily driven by discharges from the Elbe river and 70 

other rivers further south (Skov and Prins 2001). Red-throated divers have been shown to 71 

concentrate at the productive frontal zone, where prey fish aggregate (Skov and Prins 2001). 72 

The area is also suitable for the development of offshore wind farms as it has extensive areas 73 

of shallow waters (< 40 m). To date, 17 wind farms have been installed in German North Sea 74 

waters. Thus, there is potential overlap between offshore wind farm sites and the preferred 75 

habitat of non-breeding red-throated divers (Garthe et al. 2015; Heinänen et al. unpubl data). 76 

Red-throated divers have been shown to strongly avoid both shipping traffic and wind farms 77 

(Garthe and Hüppop 2004; Bellebaum 2006; Petersen et al. 2006; Dierschke et al. 2006, 2012; 78 

Mendel et al. 2019; Heinänen et al. unpubl data; Burger et al. unpubl data). To understand the 79 

environmental importance of the German Bight for red-throated divers, to assess the possible 80 

impacts arising from displacing divers from substantial parts of their staging areas, and to 81 

analyse whether alternative staging areas might be available, it is crucial to understand what 82 

resources these birds rely on. 83 

In this study we had the unique opportunity to collect a small number of faecal samples from 84 

red-throated divers captured in the German North Sea in 2015 and 2016 in both winter and 85 

spring. We applied DNA metabarcoding as a non-invasive technique to analyse diet 86 

composition, and thus to provide a detailed overview of recent meals of these birds in the 87 

German Bight. Specifically, we aimed to document the diversity of prey species eaten by the 88 

birds in this particular staging area when red-throated diver abundance is highest. 89 

Additionally, we aimed to compare data for two consecutive sampling years to determine if 90 

the prey species consumed is consistent between years. By comparing dietary data with 91 

published data on local fish distribution, we aimed to determine whether the abundance and 92 

distribution of prey fish correlate with red-throated diver diet and how this may help to 93 

explain red-throated diver distribution.  94 

Methods 95 

Sample collection and study site 96 

This dietary study was part of a satellite telemetry project on red-throated divers. A total of 36 97 

red-throated divers were captured in March and April 2015 and in February and March 2016 98 

in the German Bight (Fig. 1). Sampling was focused on late winter and spring when red-99 
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throated diver abundance is highest in the German Bight (Mendel et al. 2008; Dierschke et al. 100 

2012; Garthe et al. 2015). The capture area was approximately 30 km offshore in water depths 101 

of around 20 m, which is approximately in the centre of the staging area for red-throated 102 

divers (Fig. 1). Birds were captured from a rigid inflatable boat using a hand net and the 103 

“night lighting technique”, where the sea is searched for resting divers with a spot light. If a 104 

bird is sighted, it often becomes disoriented by the bright light and can be captured with a net 105 

(Whitworth et al. 1997; Ronconi et al. 2010). In 2015 captured birds were kept in boxes for an 106 

average time of 18.3 h (min 6.3 h, max 27 h) and in 2016 for an average time of 9.2 h (min 7 107 

h, max 13 h). After release the boxes were searched for scat. The boxes were cleaned and 108 

disinfected after every use with bleach (1% hypochlorite solution), water and ethanol (70%) 109 

to prevent cross contamination. During the two field seasons a total of 34 faecal samples were 110 

collected (2015 n = 15; 2016 n = 19, Table 2). Samples were preserved in absolute ethanol 111 

and stored at -20°C until further analysis.  112 

DNA extraction 113 

Faecal DNA was isolated using the QIAamp DNA Stool Mini Kit (Qiagen) following the 114 

manufacturers protocol with the following modifications: (i) the samples were resuspended in 115 

the storage ethanol by vortexing before moving 200 µL of the ethanol-scat slurry to a new 116 

clean 2 ml Eppendorf tube and centrifuging for 30 s at 4000 x g (Deagle et al. 2005); (ii) the 117 

lysis step was extended by adding 1.4 mL Buffer ASL instead of 1.6 mL to each sample and 118 

incubating at 70 °C for 10 min and then for 1.5 h at room temperature to improve lysis output; 119 

(iii) the digestion step was extended by adding 20 µl instead of 25 µl proteinase K and 120 

incubating samples at 70 °C for 30 minutes prior to an increased incubation time at a lower 121 

temperature (56 °C for 1.5 h). All remaining steps followed the manufacturer’s instructions 122 

except that buffer volumes were cut down to reduce risk of cross contamination by 123 

minimizing the number of pipetting steps and by reducing the volume of liquid loaded into 124 

spin columns and tubes (Deagle et al. 2005). The final elution step used a total elution volume 125 

of 100 µl (as recommended by the manufacturer`s protocol), but was divided into two steps 126 

with each elution using 50 µL Buffer AE. 127 

Primer design and preparation for sequencing 128 

Three separate PCR primer pairs were used to comprehensively target all the major potential 129 

prey species of red-throated divers in this area (Table 3). These prey species are widespread in 130 
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the North Sea and were informed by previous diet studies on red-throated divers (Table 1; 131 

Madsen 1957; Durinck et al. 1994; Guse et al. 2009). 132 

Primers for each prey group were tested in silico, using ClustalX 2 (Larkin et al.2007) and 133 

MEGA7 (Kumar et al. 2016). Conserved primer binding sites were tested against a DNA 134 

barcode database of barcode-sequences extracted from GenBank. Sequences of 16S DNA of 135 

28 representative fish species from 7 orders and 15 families as well as 12 cephalopod species 136 

from 5 families were aligned for these tests. For crustaceans COI barcode sequences of 137 

potential prey species from 6 orders and 8 families of shrimp and krill were aligned and 138 

tested. Furthermore primers for each prey group were tested in vitro on DNA from tissue 139 

samples of corresponding potential prey species occurring in the German Bight (clupeids, 140 

perciformes, gadoids, flatfish, octopus, squid, cuttlefish and shrimp) to optimise PCR 141 

conditions. Multiplex identifier (MID) tags were added to the primer sequences and used to 142 

assign DNA sequences to their respective samples (n = 34). MID tags were added to each of 143 

the three tested primer sets (fish, cephalopods and crustaceans). For each of the three primer 144 

sets we used 24 forward primers/MID and 2 reverse primer/MID combinations, and all in 145 

vitro testing was performed using primer pairs first without and then with the MID tags to 146 

ensure amplification was not affected. 147 

To amplify DNA from fish and cephalopods, we used primers targeting the 16S region 148 

originally published by Waap (2015) and modified from Chord_16S_F/Chord_16S_R 149 

(Deagle et al. 2009). We further modified the primer sequence to comprehensively match the 150 

range of potential prey species (Table 3). To amplify fish DNA, the forward primer has 151 

additional CT bases at the 3´end for NGS sequencing to improve the blocking probes (see 152 

below), so that the mismatch was not located at the last base pair (Waap, pers comm.). To 153 

amplify cephalopod DNA, we modified the forward primer by one base and the 5´end of the 154 

reverse primer. Both primer pairs tested positive in silico and in vitro for potential prey of red-155 

throated divers. 156 

To amplify crustacean DNA, a primer combination targeting the Cytochrome oxidase I region 157 

(COI) was used that was likely to amplify crustaceans and molluscs (Stockdale 2018, Table 158 

3). The forward primer (Leray et al. 2013) was designed to amplify arthropod DNA, including 159 

crustaceans and molluscs. The reverse primer (Simon et al. 1994) was also designed to 160 

amplify arthropods including crustaceans. The primers tested positive in silico and in vitro for 161 

potential prey of red-throated divers and provided a good coverage of our target species and a 162 

good coverage with reference sequences available in public databases. This primer set 163 
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amplified a product size of 332 bp and thus represents a good compromise as it is long enough 164 

to provide good taxonomic information and short enough to survive digestion.  165 

Blocking primer 166 

The primers chosen to amplify fish prey were universal chordate primers that could also 167 

amplify other chordates, including predator DNA. To prevent the amplification of predator 168 

DNA, we developed a blocking probe using a C3 spacer (Table 3; Vestheim and Jarman 169 

2008). However, the blocking probe reduced amplification success and a second amplification 170 

of samples was performed excluding the blocking probe. Gel electrophoresis (see below) was 171 

used to visually monitor the amplification of predator and prey DNA, assisted by the inclusion 172 

of red-throated diver (300 bp) and fish (264 bp) reference samples. This differential in PCR 173 

product size allowed for predator amplicons to be easily identified (Fig. 2).  174 

PCR amplification of DNA from faeces 175 

PCR amplifications were performed in single reactions using Multiplex PCR Kits (Qiagen) 176 

and a 20 µL PCR reaction volume. Thermal cycling conditions for fish and cephalopod prey 177 

were 95 °C for 15 min followed by 45 cycles of: 94 °C for 30 s, a primer specific annealing 178 

temperature (Table 3) for 90 s, and 72 °C for 45 s, followed by a final extension at 72 °C for 5 179 

min. Thermal cycling conditions for crustaceans were 95 °C for 15 min followed by 45 cycles 180 

of: 94 °C for 30 s, a primer specific annealing temperature (Table 3) for 90 s, and 72 °C for 90 181 

s, followed by a final extension at 72 °C for 15 min. 182 

All PCR products were visualised by gel electrophoresis on 2% agarose gels stained with 183 

SYBR®Safe (ThermoFisher Scientific, Paisley, UK) and compared to a standardised 1000 bp 184 

ladder. The PCR product concentration in successful reactions was quantified with a Qubit 185 

fluorometer (Thermofischer) and subsequently pooled into two equimolar libraries of 186 

individually tagged amplicons (PoolA using a blocking probe and PoolB without a blocking 187 

probe). To remove primer dimer we ran a magnetic clean up (AMPure). Concentrations of 188 

DNA and primer dimer were measured on a tape station (D1000 Screen Tape; Tape Station 189 

Analysis Software A.01.05 SR1, Agilent technologies) and a Qubit before and after the 190 

magnetic clean up.  191 

Next Generation Sequencing 192 

NGS library preparations were performed at the NERC Biomolecular Analysis Facility – 193 

Sheffield (NBAF-S), Sheffield, UK using the NEBNext Ultra DNA Library Prep Kit for 194 
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Illumina (New England Biolabs, Ipswich, MA). To characterise the diet content of the 195 

individually tagged amplicons the libraries (PoolA and PoolB) were sequenced at the 196 

Sheffield Diagnostics Genetics Service (Children’s Hospital, Sheffield, UK) using 250 bp 197 

paired-end reads on a MiSeq desktop sequencer (Illumina, San Diego, CA). 198 

Bioinformatics 199 

We performed eight steps to transform the raw Illumina sequence data into a list of molecular 200 

operational taxonomic units (MOTUs) with assigned taxonomy. These steps included 201 

assessing sequence quality, trimming sequences (Bolger et al. 2014), aligning paired reads 202 

(Magoc et al. 2011), matching sequences to MID tags and amplicon primers (Schloss et al. 203 

2009), and demultiplexing sequences into files for each amplicon. We used USEARCH 204 

(Edgar 2010) to dereplicate the sequence file, to detect and to remove chimeric sequences and 205 

to cluster into MOTUs based on 97% identity. Clustering is an important step in 206 

metabarcoding analysis to group similar sequences into distinct taxonomic units, but remains 207 

one of the central challenges. If the clustering threshold is too conservative, e.g. 5% sequence 208 

divergence, the dietary richness could be underestimated due to a high mean overlap of 209 

MOTUs. Conversely, a less conservative decreased threshold, e.g. 2% sequence divergence, 210 

could overestimate species richness (Clare et al. 2016). Here we applied the established 211 

clustering threshold of 97% similarity (Edgar 2013, 2016) using the ‘cluster_fast’ function in 212 

USEARCH (Edgar 2010). We applied the BLASTn algorithm (Altschul et al. 1990) to match 213 

MOTU sequences to reference sequences in the NCBI GenBank nucleotide database, using a 214 

cut-off of 90% minimum sequence identity and a maximum e-value of 0.00001. For detailed 215 

information about options, parameters and values please see Table 1 in the supplementary 216 

material. 217 

We subsequently manually performed further filtering steps to produce robust taxonomic 218 

assignments. We discarded MOTUs (sequence clusters 97%) that corresponded to 219 

contaminants that can occur regularly in faecal samples, such as bacterial, human or predator 220 

DNA. MOTUs were retained in a sample only if they contained a minimum of 5 sequences. 221 

Taxonomic assignment was based on the percentage similarity of the query and the reference 222 

sequences. Since short fragments are less likely to contain reliable taxonomic information we 223 

only retained sequences with a minimum length of 190 bp and a BLASTn assignment match 224 

greater than 98%, following Deagle et al. (2009) and Vesterinen et al. (2013).  225 
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Finally, we combined both pools (PoolA with a blocking probe and PoolB without a blocking 226 

probe) together for final analyses. To avoid overrepresentation we excluded prey species of 227 

samples from PoolB that were also present in PoolA.  228 

Analysing the Blast output 229 

We used MEGAN Community Edition version 6.8.8 to visualise the accession number 230 

identifiers on the NCBI taxonomy (Hudson et al. 2016). We imported the blast output and 231 

used the default LCA parameters to assign a taxon name to each MOTU (Huson et al. 2007). 232 

If all retained hits of a MOTU with the same quality criteria (sequence identity, sequence 233 

length, e-value) matched the same species then we have a species-level assignment, otherwise 234 

the MOTU was assigned to the lowest shared taxonomic level, e.g. genus or family.  235 

Statistical analysis 236 

We analysed prey range by determining the presence of prey items, their frequency of 237 

occurrence (FO) (Barrett et al. 2007, Tollit et al. 2009), and species richness. FO was 238 

calculated as: FO = (n/t) X100 where n was the number of samples in which the specific prey 239 

item appeared and t was total number of samples containing prey. FO reveals the percentage 240 

of sample units in which each prey item occurred (Barrett et al. 2007). The number of 241 

MOTUs (defined by 97% clustering threshold, n = 169) assigned for each prey taxa were 242 

additionally presented as percent occurrence in faecal samples (n=29) to visualise the 243 

sequencing output Fig. 4. No further quantitative analyses were done with these data due to a 244 

range of possible biases and as interpretation of sequence proportions generated via high-245 

throughput sequencing requires careful data analysis (Deagle and Tollit 2007; Pompanon et 246 

al. 2012; Deagle et al. 2013, 2018). 247 

Whether or not there is consistency in prey consumption by red-throated divers over time 248 

informs our understanding of prey selection in this particular area. We tested this by 249 

comparing FO of prey items in 13 samples from 2015 with FO of prey items in 16 samples 250 

from 2016. Statistical tests suitable for small sample sizes were performed in Rcmdr (Fox and 251 

Bouchet-Valat 2018). We used Pearson’s chi squared-test to compare the frequency of 252 

occurrence between years for each prey group when sample sizes fulfilled the minimum 253 

requirements for this test (n >5). When sample sizes were small (n < 5), we implemented the 254 

Fisher's Exact Test for Count Data. To compare the number of prey detections per sample 255 

between sampling years the T-Test for independence was used. Small sample sizes precluded 256 

further analyses (e.g. comparing seasons) or to use other statistical tests. Considering the 257 
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sample size and the temporal scope of faecal DNA sampling only marked differences were 258 

expected to be identified. 259 

Results 260 

Overview of sample quality and prey species found 261 

Neither cephalopods nor crustaceans were detected in the diet, despite successful in vitro PCR 262 

amplification using reference tissue samples from potential prey items from the German Bight 263 

(octopus, squid, cuttlefish and shrimp samples).   264 

The fish primer set produced more than 800,000 sequences from both pools combined, for 265 

specific information on number of sequences during bioinformatics analysis, see Table 2 in 266 

supplementary material. Of 34 screened samples 29 samples gave positive PCR 267 

amplifications (PoolA: n = 21; PoolB n = 29). Both pools had ~50% of MOTUs assigned to 268 

prey fish (PoolA = 56%; PoolB = 48%), plus with other MOTUs being from the predator 269 

DNA (red-throated diver) and contaminants such as bacteria and human DNA (Fig. 3). Using 270 

the blocking probe, we still amplified predator DNA but the amount of MOTUs assigned to 271 

the predator was slightly lower in PoolA (9%) than in PoolB (17%).  272 

After filtering for contaminants, sequence length and mapping to reference sequences, 20 and 273 

24 faecal samples remained for PoolA and B respectively. After merging both pools, the final 274 

sample set consisted of 29 samples (PoolA n = 20, PoolB n = 9) which corresponds to 85% of 275 

all samples collected (Table 2). Four samples were discarded (PoolB) as they contained only 276 

contaminants and predator DNA, and two samples were discarded as the amplicon length 277 

criteria were not met (1x PoolB, 1x PoolA).  278 

Clustering the sequences by 97% similarity to each other and subsequent filtering resulted in 279 

169 MOTUs that were used for further analyses. A list of a representative query sequences of 280 

each MOTU and its quality criteria is listed for each prey assignment in Appendices (Table 281 

A1) and for all MOTUS in Table 3, supplementary material. For the two sampling periods 19 282 

taxa from 13 families were identified in 29 faecal samples (Fig. 4, Table 4). In 2015 we 283 

detected a slightly higher number of taxa in comparison to 2016 (18 and 13 taxa assigned to 284 

species, respectively; Table 4). The prey species spectrum was similar between the two years 285 

with 12 matching taxa and no significant differences (Ȥ2 = 1.004, p = 0.316). European 286 

anchovy (Engraulis encrasicolus), turbot (Scophthalmus maximus), European pollock 287 

(Pollachius pollachius), cod (Gadus sp.), European bass (Dicentrarchus labrax) and sand 288 
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lances of the genus Ammodytes were detected only in 2015, and whiting (Merlangius 289 

merlangus) only in 2016 (Table 4).  290 

Prey detection 291 

Of the samples where prey were detected, the mean number of taxa found was 4.2 ± 0.7 per 292 

sample (n=29) with minimum and maximum values of 1 and 16 respectively. There was no 293 

significant difference (t = 1.58, p = 0.135) between the number of prey items detected in 2015 294 

(mean = 5.3) and 2016 (mean = 3.1).  295 

Clupeids were the most frequently detected prey group (FO of 65.5%, Table 4). Within this 296 

group, Atlantic herring (Clupea harengus) and European sprat (Sprattus sprattus) occurred 297 

most frequently (FO of 55.2% and 58.6%, respectively). No significant differences were 298 

found between years for clupeids (Ȥ2 = 0.030, p = 0.863), European sprat (Ȥ2 = 0.283, p = 299 

0.595), or for Atlantic herring (Ȥ2 = 0.005, p = 0.945).  300 

The Atlantic mackerel (Scomber scombrus) was the only species of mackerel detected (Table 301 

4), with a total FO of 55.2% and no significant differences between the two sampling years 302 

(FO 53.8% in 2015, FO 56.3% in 2016; Ȥ2 = 0.005, p = 0.945).  303 

Flatfish were recorded with a total FO of 51.7% (Table 4) and no significant difference 304 

between the two sampling years (61.5% in 2015, 43.8% in 2016; Ȥ2 = 0.287, p = 0.592). Most 305 

taxonomic assignments  were at the family or genus levels. Righteye flounders 306 

(Pleuronectidae) were dominant and where MOTUs were assigned at the species level the 307 

common dab (Limanda limanda) was the most frequent species detected. 308 

Gadoids (Gadidae) were recorded with a total FO of 37.9% and high similarity between 309 

sampling years (38.5% in 2015, 37.5% in 2016; Ȥ2 = 0.001, p = 0.972, Fishers exact test p = 310 

0.976). Most MOTUs could only be assigned to the family level, but of those assigned to 311 

species cod (Gadus sp.), European Pollock (Pollachius pollachius), whiting (Merlangius 312 

merlangus) and haddock (Melanogrammus aeglefinus) were detected at least once. Detections 313 

of these species varied between years but sample sizes were too small for statistical tests. 314 

Sand lances had a total FO of 31%, with a similar proportion of greater sand eel (Hyperoplus 315 

lanceolatus; FO of 13.7%) and sand lances of the genus Ammodytes (FO of 20.7%). There 316 

were significantly more sand lances detected in 2015 (61.5%) in comparison to 2016 (6.3%; 317 

Ȥ2 = 5.394, p = 0.020; Fishers exact test p = 0.026). 318 
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Other prey species infrequently occurred and are detailed in Table 4 and Figure 4.  319 

Discussion 320 

The aim of this study was to analyse prey species composition in faecal samples from red-321 

throated divers caught in the German Bight, using high throughput sequencing. In our data set 322 

we found an exclusively piscivorous diet, with no evidence of cephalopod or crustacean 323 

consumption and a similar prey spectrum between two consecutive sampling years.  324 

Application of high throughput sequencing to study diver diets 325 

The DNA metabarcoding methodologies utilised in this study have previously been applied in 326 

diet studies on other marine predators (Deagle et al. 2005, 2007; Pompanon et al. 2012). 327 

However, this study is the first application of this approach to analyse the diet of red-throated 328 

divers in the German Bight or elsewhere. Using reference sequences, we found high 329 

taxonomic coverage for both the COI and 16S barcode primers. Because of their commercial 330 

importance in the German Bight many fish species (e.g. Atlantic herring), alongside some 331 

cephalopod species, are well studied and the majority of these species appear in the Genbank 332 

database (Dickey-Collas et al. 2010, Engelhardt et al. 2013).  333 

Sequences were clustered at 97% identity and represented consistent taxonomical units 334 

(MOTUs). Some prey species were represented by multiple MOTUs, suggesting that the 335 

clustering threshold could have been lower. However, a lower threshold would have increased 336 

the risk of clustering two closely related species into a single MOTU and thus reduced 337 

taxonomic discrimination. In practice, it is difficult to apply an ‘average’ threshold when diet 338 

is diverse and the prey are likely to have differing evolutionary rates. On balance, we deem 339 

the clustering threshold applied as appropriate and this method provided a good estimate of 340 

species richness with distinct taxonomic units. 341 

We obtained sufficient sequencing data from 85% of the analysed faecal samples using 342 

universal primers. The species richness was higher in 2015 but individual variances may be 343 

due to sampling conditions, sample quality and amplification success. The use of a blocking 344 

probe proved to be of little advantage, with sufficient prey DNA amplified using both 345 

approaches (Fig. 3). The use of a blocking probe reduced the amplification of predator DNA 346 

but also amplification success in general since the output of prey-positive samples was higher 347 

when the blocking probe was omitted.  348 
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The detection rate of prey species can be biased by the method applied. For example, Tollit et 349 

al. (2009) found some prey (Ammodytidae, Cottidae and Gadidae) were more reliably 350 

detected with morphological tools, whereas other prey (Salmonidae, Pleuronectidae, 351 

Elasmobranchii and cephalopods) were only detected with molecular tools. However, the 352 

overall results did not dramatically differ. In general molecular methods have been shown to 353 

identify more trophic links (number of taxa identified) with higher rates of taxonomic 354 

discrimination in comparison to morphology (e.g. Soininen et al. 2009; Alonso et al. 2014; 355 

Berry et al. 2015; Waap et al. 2017). Using molecular methods, we found a similar prey 356 

composition to conventional morphological methods applied in previous studies on red-357 

throated diver diet. Using faecal samples coupled with DNA metabarcoding is now an 358 

established non-invasive approach for dietary studies. However, it is debatable whether or not 359 

this method can provide quantitative (read number) in addition to qualitative (presence and 360 

absence) estimates of diet (Deagle and Tollit 2007; Pompanon et al. 2012; Deagle et al. 2013; 361 

2018). In this study we applied a conservative approach of using only qualitative data. 362 

However, if quantitative data are required we recommend combining DNA metabarcoding 363 

and morphological methodologies, where the latter can provide quantitative information as in 364 

Alonso et al. (2014) and Waap et al. (2017). 365 

A faecal sample, for most species, will represent an individual’s most recent meals. Other 366 

methods, including fatty acid composition and stable isotope analyses, can provide 367 

information over a longer time frame (Meier et al. 2017). Although our sample size is small, 368 

samples were collected from birds caught in two consecutive years at dispersed intervals 369 

encompassing late winter and spring (February – April); when red-throated diver abundance 370 

is highest in the German Bight. Thus, this dataset provides dietary information from a time 371 

period when this area is particularly attractive to these birds. Wintering home ranges of red-372 

throated divers can cover several connected sites, including sites outside the German Bight, 373 

such as the Baltic Sea (Kleinschmidt et al. unpub data). The German Bight also represents an 374 

important staging area in spring when some birds have already started migration (Garthe et al. 375 

2015) and the availability of suitable prey types is probably one of the main determinants of 376 

habitat quality for these birds. In this context the time frame over which a faecal sample 377 

provides dietary information helps to reflect the situation in the particular area of interest for 378 

this study.  379 

Fish availability in the German Bight, red-throated diver diet and comparison to previous 380 

studies 381 
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Potential prey availability is an important factor affecting habitat choice and diet selection. 382 

We searched the species factsheets (ICES 2006 a,b), reports and publications (ICES 2008, 383 

2011, 2016, 2017a, 2017b, 2018; DFS 2016) to compare fish distribution (a proxy for 384 

potential prey availability) with the diet of red-throated divers in our study in addition to 385 

previous studies. In our dataset red-throated divers consumed a wide range of fish prey 386 

species consisting of both a pelagic and a benthic component. We found mainly clupeids, 387 

mackerels, flatfish, gadoids and sand lances in the diet of red-throated divers but no clear 388 

dominance of a single species or species group could be identified. A similarly wide, although 389 

slightly different range of prey species was found in previous studies on red-throated diver 390 

diet. For example, Madsen (1957) found a broad prey spectrum but the majority of analysed 391 

birds (82%) fed exclusively on cod, gobies, sticklebacks and herring with varying intensities. 392 

Guse et al. (2009) found 11 species from 9 families with clupeids, zander, European smelt, 393 

ruffe, lesser sandeel, three spined stickleback and common goby being dominant species. 394 

Similarly, Durinck et al. (1994) identified clupeids and gadoids as the most frequent prey 395 

items.   396 

Clupeids, specifically sprat and herring occurred most frequently in both sampling years of 397 

our study. These species are typically high in lipid content and energy density (Pedersen and 398 

Hislop 2001; Ball et al. 2007). Sprat and juvenile herring are also two of the most abundant 399 

pelagic species in the German Bight in spring (ICES 2006 a,b), which coincides with our 400 

sampling period. The size of available prey fish is also important for prey selection. In 401 

general, herring occurs in the North Sea with a size of 20-30 cm but in our sampling period 402 

smaller (juvenile) herring with a size <20 cm are the most abundant and widely distributed in 403 

the German Bight and the Kattegat (ICES 2006 a; Trueman et al. 2017). Sprat is a pelagic 404 

species abundant in frontal areas of the North Sea with a size of <16 cm (Kanstinger and Peck 405 

2009). We also found European sardine (Sardina pilchardus) and European anchovy 406 

(Engraulis encrasicolus) in the diver diet but less frequently, which is consistent with the 407 

distribution of both these clupeid species. They originate from the Mediterranean Sea (Motos 408 

et al. 1996) and since 2003 are expanding into the North Sea (Kanstinger and Peck 2009). 409 

Like sprat, sardine occurs in frontal areas whereas anchovy is primarily found in near-shore 410 

areas. The distribution of clupeids is in good agreement with red-throated diver distribution, 411 

which appear to be attracted by frontal zones (Skov and Prins 2001; Goyert et al. 2016; 412 

Heinänen et al. unpubl data). Hence these areas provide a source of energetically valuable 413 

species for red-throated divers. The high detection rate of clupeids is in line with two earlier 414 
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studies on red-throated diver diet and reinforces their importance as red-throated diver prey 415 

(Durinck et al. 1994; Guse et al. 2009).  416 

Atlantic mackerel is widespread throughout the North Sea and is one of the most commonly 417 

exploited species (ICES 2011, 2016, 2017). Due to its high energetic value, mackerel is an 418 

attractive fish for seabirds (Montevecchi et al. 1984, 1988; Garthe et al. 2014). Overfishing 419 

triggered a population collapse in the North Sea in the 1970s but since 2000 the stock has 420 

increasing again (ICES 2011; Jansen 2014; Jansen and Gislason 2013; Jansen et al. 2012a, 421 

2012b; 2014; Kooij et al. 2016). These changes in mackerel availability may explain why 422 

both Madsen (1957) and the current study detected mackerel in the diet, while Durinck et al. 423 

(1994) did not. Mackerel appeared in our samples in considerable numbers indicating that it 424 

may now be a more important prey than previously thought. 425 

Most flatfish were identified to family level, but of those identified to species level, common 426 

dab was the most common in both years. Flatfish have been recorded in low numbers in red-427 

throated diver diet (Madsen 1957; Durinck et al. 1994; Guse 2009), possibly due to their 428 

wide-bodied shape making adult flatfish an unfavourable prey item (Reimchen and Douglas 429 

1984; Guse et al. 2009). Dietary studies in the adjacent Wadden Sea have shown that juvenile 430 

flatfish are selected as important food items by other water birds such as benthic feeding 431 

cormorants (Nehls and Gienapp 1997). The Wadden Sea and adjacent waters are an important 432 

nursery ground for several flatfish species (DFS 2016) and juvenile common dab is highly 433 

abundant in spring within the German Bight over a wide depth range (Beek et al. 1989; Bolle 434 

et al. 1994; Campos et al. 1994; Hufnagl et al. 2013; DFS 2016; ICES 2017a,b). Prey size 435 

cannot be deduced from metabarcoding but red-throated divers may be preying on juvenile 436 

flatfish. Although flatfish are considered to have a low energy content (Ball et al. 2007), the 437 

probable high encounter rate may explain the high detection rate in our samples.  438 

Gadoids, particularly cod, were described by Madsen (1957) as the most important prey group 439 

for red-throated divers in the Kattegat and Belt Sea. In the current study, gadoids were 440 

infrequently present in the diet. This is in line with findings of Durinck et al. (1994) from the 441 

south-western part of the Skagerrak. Juvenile gadoids (<20 cm) are more likely than adults to 442 

be prey for red-throated divers. Recordings of this size class of gadoids are mostly restricted 443 

to the eastern inshore water of the Skagerrak and Kattegat, with low abundances in the 444 

German Bight (Munk et al. 1999, Munk 2014; André et al. 2016). Thus, gadoids may be a 445 

favoured prey item but low availability at the study site limits feeding on these species.  446 
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Sand lances are an important prey for seabirds in general, particularly in the North Sea (Harris 447 

and Wanless 1991; 2013; Mendel et al. 2008; ICES 2011; Engelhardt et al. 2013; ICES 2016). 448 

Sand lances appeared at a high frequency in 2015 but were less common in 2016 in our data 449 

set. This pattern is reflected in commercial catch rates for sand lances in the central and south-450 

eastern North Sea ecoregion (Division 4b-c): average catch rates and a low recruitment in 451 

2015 and low catch rates and high recruitment in 2016 (ICES 2018a,b). Previously, sand 452 

lances have been recorded at both high (Guse et al. 2009) and low (Madsen 1957, Durinck et 453 

al.1994) frequencies in red-throated diver diet. These patterns suggest that the frequency of 454 

sand lances in the diet is determined by their availability.  455 

Smelt (Osmerus eperlanus) was not detected in this study but has been highlighted as an 456 

important prey species for red-throated divers in the Baltic Sea (Žydelis 2002; Guse et al. 457 

2009). Smelt occurs in parts of the Wadden Sea with low salinity and close to the coast. Here 458 

it forms dense spawning aggregations in estuaries and anadromous migrations in late winter 459 

and early spring (DFS 2016). The German Bight is further away from river mouths, the lack 460 

of smelt in our dataset could probably be explained by the low abundance of this species here. 461 

Sea trout (Salmo trutta), European hake (Merluccius merluccius), sticklebacks (Gasterosteus 462 

sp.), European bass (Dicentrarchus labrax) and sand goby (Pomatoschistus minutus) were 463 

recorded in our dataset at low frequencies. These species are widely distributed in the North 464 

Sea with varying densities. Some, such as gobies, are known to be important prey items for 465 

other marine predators (Haelters et al. 2012; Méheust et al. 2015; Andreasen et al. 2017) and 466 

were previously recorded as prey items of red-throated divers (Madsen 1957, Durinck et al. 467 

1994, Guse et al. 2009). Sticklebacks were frequently found in all previous studies. However, 468 

the current study suggest that these species are of low importance for red-throated divers in 469 

the German Bight.  470 

In contrast to our study, Guse et al. (2009) found zander as one of the most important prey 471 

items of red-throated divers wintering in the Baltic Sea. This fish species prefers freshwater or 472 

brackish habitats, and therefore is almost absent in the saline waters of the German Bight. 473 

Non-fish prey such as insects, polychaetes, molluscs or crustaceans were detected in small 474 

amounts in all previous studies. Cephalopods were detected in a single previous study 475 

(Durinck et al. 1994). We found no evidence that non-fish prey were consumed by red-476 

throated divers in the German Bight and thus our results reinforce previous conclusions that 477 

these taxa are not an important part of the diet.  478 
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In summary, prey species of red-throated divers identified in this study occur in the study area 479 

as both adult (e.g., clupeids, sand lances) and juvenile fish (e.g., gadoids, flatfish, mackerels). 480 

Thus the area seems to be a good foraging ground for red-throated divers. There is an overlap 481 

between the prey fish of red-throated divers and commercial fish species, like herring and 482 

mackerel (ICES 2011, 2016, 2017). This overlap increases the risk of gill-net mortality, which 483 

is a conservation issue in other regions such as the Baltic Sea. In the German Bight, there is a 484 

lower potential for such conflicts because trawls are more commonly used to fish as opposed 485 

to gill-nets. The oceanographic conditions (sea surface temperature (SST), salinity and 486 

chlorophyll a, NAO) were similar between the two sampling years and no important changes 487 

in prey community can be expected within such short timeframe, with the exception of the 488 

observed fluctuations in sand lance abundance. For this prey group, detections in the diet and 489 

reported catch rates (ICES 2018a,b) showed a similar trend. Reasons for this are unclear but 490 

sand lance productivity in the North Sea is known to fluctuate. Such fluctuations depend on a 491 

combination of several regulating factors including fishing, climate effects, density 492 

dependence and food availability (Wright et al. 2017; Lindegren et al. 2018). Although we 493 

present data from only two sampling years, the consistent pattern of prey species suggests a 494 

relatively stable diet that is likely to reflect the availability of these fish species in the study 495 

area. There are long-term increases in sea temperature and species usually associated with 496 

warmer waters are expanding their range to include the North Sea. Such species include 497 

European sardine and European anchovy (Kanstinger and Peck 2009). The diet of red-498 

throated divers in the German Bight includes these expanding species and also recovering 499 

species like mackerel, indicating that the dietary data may reflect changes in the fish 500 

community and some flexibility in prey consumption. However, a larger sample size across a 501 

broader temporal scale is required to fully support this conclusion. 502 

The samples analysed here were collected in late winter and early spring, shortly before the 503 

migration to the breeding grounds. For non-breeding red-throated divers little is known about 504 

energy expenditure, resource partitioning and energy requirements during wintering, staging 505 

and migration. Schmutz (2014) suggested that marine conditions could affect adult survival of 506 

red-throated divers with indications of a higher risk of mortality during the non-breeding 507 

season. Red-throated divers are medium sized birds with weight varying between 1400g – 508 

2000g (own observations), and with high wing loading (Storer 1958; Lovvorn and Jones 509 

1994). Despite this, these birds often need to cover long distances to their breeding grounds 510 

(www.divertracking.com; McCloskey et al. 2018), with some individuals travelling as far as 511 

850km or 1300km in a single flight (Kleinschmidt et al. unpubl data). Weber et al. (1997) 512 
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showed the importance of resting sites for refuelling. Consequently, migration represents 513 

periods of high energetic demand and adequate energy reserves seem to be essential. If prey 514 

of rich calorific value becomes unavailable due to displacement effects, red-throated divers 515 

may fail to balance their energy budgets. In general, these birds winter in temperate marine 516 

waters with low ambient temperatures, consequently reliable and sufficient energy intake is 517 

likely to be a necessity and influences prey consumption. 518 

Conclusion 519 

Overall, our results demonstrate that the use of faecal samples coupled with DNA 520 

metabarcoding and NGS is a valid and appropriate approach to non-invasively study the diet 521 

composition of red-throated divers.  522 

Our results provide important dietary data for red-throated divers in the German Bight, which 523 

is needed for a good understanding of their habitat preferences during wintering and spring 524 

staging. This baseline information can be used to evaluate changes associated with human 525 

developments in the offshore environment, changes in oceanography, or population declines. 526 

The results for the German Bight complement other dietary studies on red-throated divers that 527 

show a somewhat different composition of fish species, reflecting regional differences in fish 528 

fauna. Among a generalised prey spectrum, bentho-pelagic schooling fish seem to dominate 529 

the diet of red-throated divers (Cramp and Simmons 2004; Guse et al. 2009). In our study five 530 

species groups are concluded to be major dietary components for red-throated divers in the 531 

German Bight. We found clupeids, mackerels, flatfish, and gadoids occurring in substantial 532 

proportions in both sampling years, and the frequency of sand lances varied between the two 533 

sampling years. Hence the diet consistently includes some common species with a high 534 

nutritional value (Hislop et al. 1991; Ball et al. 2007), indicating the importance of these fish 535 

groups as prey items for red-throated divers in the German Bight. Red-throated divers stage in 536 

a specific habitat, mostly influenced by frontal zones in coastal areas in the German Bight 537 

(Skov and Prins 2001; Heinänen et al. unpubl data). The preferred feeding at frontal zones 538 

may also explain the higher abundance of pelagic fish among the red-throated diver prey, 539 

where these species aggregate, while demersal species depend mainly on suitable sediments. 540 

Considering the effects of disturbance, displacement or barrier effects arising from 541 

anthropogenic activities such as ship traffic and offshore wind farms (Mendel et al. 2019), the 542 

broad prey spectrum that we found could indicate resilience of red-throated divers against 543 

changes in community composition of available fish or resilience against displacement from 544 

suitable habitat. However, if alternative sites of high-quality habitat are not sufficiently 545 



Diet composition of red-throated divers in the German Bight 

18 

 

available, displacement may result in a decreased energy intake and subsequently poorer body 546 

condition. Thus, altered food accessibility as a result of disturbance or displacement could 547 

have severe effects on red-throated divers. In general, the availability of some prey species 548 

may explain, at least to some extent, the preference of this area as wintering and staging 549 

habitat. Further studies could aim to discern whether the birds use this area because of a high 550 

abundance of suitable and energy rich prey or if they simply feed on the most abundant prey.  551 
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Figure legends 1 

Fig. 1 2 

!3 

!4 

Fig. 1 Study site where red-throated divers were captured and sampled in the German North Sea. The German 5 

Economical Exclusive Zone (EEZ) and 12 nautical miles are indicated (grey line). Red-throated diver capture 6 

positions for both sampling years are summarised as a black dot. Large symbols indicate the locations of 7 

previous dietary studies on red-throated diver in adjacent waters, star presents Durinck et al. 1994, triangle 8 

presents madsen 1957, square presents Guse et al. 2009. 9 
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Fig. 2 15 

 16 

Fig. 1! Agarose gel electrophoresis of 16S mtDNA fragments amplified from faecal samples with fish 17 

(chordate) primers. M = 1000bp ladder, F = fish DNA control, B = red-throated diver DNA control and N = 18 

negative control. 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 



Diet composition of red-throated divers in the German Bight 

3 

 

Fig. 3 35 

 36 

Fig. 2 Proportions of MOTUs in per cent for fish, contamination (bacteria, human and others) and for bird 37 

assignments amplified with the fish primer set. On the left with the blocking probe (PoolA) and on the right 38 

without the blocking probe (PoolB) for both sampling years (2015 and 2016) combined. 39 
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Fig. 4 56 

 57 

Fig. 4 Percent occurrence of MOTUs (n=169) in all faecal samples (n=29) assigned for fish prey: blue – 58 

clupeids, orange – gadoids, grey – hake, brown – sticklebacks, violet – mackerels, red – salmonids, beige – sand 59 

gobies, black – seabass, grey – light-brown flatfish and green – sand lances. Captions of prey groups with 60 

highest proportions (>5%) are highlighted. 61 

!62 

!63 

!64 

!65 

!66 

!67 
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Table 1 Main fish prey species of red-throated divers detected in previously published studies using morphological methods (Madsen 1957, Durinck et al. 1994, Guse et 1 

al. 2009) and this study using molecular tools listed as FO for the corresponding areas where birds were examined. 2 

Prey item  

(Group) 

Prey item 

(Family) 
Prey taxa (Genus/species) 

Madsen 1957  

(North Sea/Inner Danish 

Waters) 

 n = 173 

Durinck et al. 

1994  

(North Sea)  

n = 8 

Guse et al. 2009  

(Baltic Sea)  

n = 82 

This 

study 

 

Gadiformes Gadidae Common Cod (Gadus callarias) 54%  - - - 

Gadiformes Gadidae Whiting (Merlangius merlangus) - 25% - 6.9% 

Gadiformes Gadidae 
Blue Whiting (Micromesistius 

poutassou) 
- 37.5% - 

- 

Gadiformes Gadidae Gadoids indet. - 50 % - 31% 

Perciformes Gobiidae 
Common goby  

(Pomatoschistus microps) 
- - winter 38.2%/spring 10.4% 

- 

Perciformes Gobiidae Gobies (Gobius sp.) 14% - winter 41.2%/ spring 20.8% 13.8% 

Clupeiformes Clupeidae Atlantic herring (Clupea harengus) 12% 87.5% winter 23.5%/ spring 95.8% 55.2% 

Clupeiformes Clupeidae European sprat (Sprattus sprattus) - 75% winter 14.7%/ spring 27.1% 58.6% 

Clupeiformes Clupeidae (Clupea sp./Sprattus sp.) - 37.5% winter 14.7%/ spring 22.9% - 

Gasterosteiformes Gasterosteidae Sticklebacks (Gasterosteus sp.) 11% 62.5% winter 52.9%/ spring 39.6% 10.3% 

Osmeriformes Osmeridae Smelt (Osmerus eperlanus) - - winter 44.1%/ spring 4.2% - 

Perciformes Percidae Zander (Sander lucioperca) - - winter 91.2%/ spring 10.4% - 

Perciformes Percidae European perch (Perca fluviatillis) - - winter 17.6%/ spring 2.1%  - 

Perciformes Percidae Ruffe (Gymnocephalus cernus) - - winter 38.2%/ spring 20.8% - 

Perciformes Ammodytidae 
Lesser sandeel (Ammodytes 

tobianus) 
< 1% 12.5% winter 8.8%/ spring 12.5% 31% 

Perciformes Scombridae Atlantic mackerel (Scomber <1% - - 55.2% 

Table



Diet composition of red-throated divers in the German Bight 

2 

 

scombrus) 

Pleuronectiformes Pleuronectidae Flatfish indet. 5% 37.5% Winter -/spring 2.1% 51.7% 
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Table 2 Timing and sample size of analysed faecal samples of red-throated divers from the German Bight. 3 

One sample per bird was taken for analysis. 4 

Sampling year 2015 2015 2016 2016 

Time period March April February March 

Sample size (captured birds) 10 6 8 12 

Sample size (faecal samples) 10 5 8 11 

Positive samples 9 4 8 8 

Total of positive samples 13 16 

 5 

 6 

 7 

 8 
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Table 3 Sequences of primers used to amplify red-throated diver faecal samples for Next Generation 9 

Sequencing. Modifications from original primers (Waap 2015) in bold.!10 

Target 

amplification 
Gene Primer name Sequence (5’–3’) 

Approximate product 

size incl. primer 

sequence (bp) 

Annealing 

temperature 

(°C) 

Fish (Chordata) mtDNA 16S FISH2_16S_F 
CGAGAAGACCCTDTGRAGC

T (20) 
~264 58 

Fish (Chordata) mtDNA 16S 
modifiedChor

d_16S_R1 

GCTGTTATCCCTRGRGTAA 

(19) 

Cephalopod 

(Molluscs) 
mtDNA 16S Ceph_16S_R 

AGGGACGARAAGACCCTAN

TGAGC (24) 
~244 56 

Cephalopod 

(Molluscs) 
mtDNA 16S Ceph_16S_F 

ACSCTGTTAYCCCTATG  

(17) 

Crustacean 

(Invertebrate) 
mtDNA COI mICO1int_F 

GGWACWGGWTGAACWGTW

TAYCCYCC (26) 
~332 50 

Crustacean 

(Invertebrate) 
mtDNA COI Nancy_R 

CCCGGTAAAATTAAAATATA

AACTTC (26) 

Blocking probe - - 

GTGGA 

ACTTAAAAATCAGCAGCCAC

CA[SpcC3] 

- - 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 
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Table 4 Detected prey species of red-throated divers with regard to presence (MOTUs) and frequency of occurrence (FO) for each sampling year and the full dataset. 28 

          2015     2016       2015 & 2016 

          

MOTUs 

found in 

x 

samples 

(n=13) 

FO      

(%,      

n = 

13) 

No of 

MOTUs 

(n = 

101) 

  

MOTUs 

found in 

x  

samples 

(n=16) 

FO      

(%,     

n = 

16) 

No of  

MOTUs 

(n = 68) 

  

MOTUs 

found in 

x 

samples 

(n=29) 

FO     

(%,     

n = 

29) 

No of  

MOTUs 

(n = 

169) 

Clupeiformes Clupeidae Clupea  harengus Atlantic herring 7 53.8 10   9 56.3 15   16 55.2 25 

Clupeiformes Clupeidae Sprattus  sprattus European sprat 9 69.2 15   8 50.0 12   17 58.6 27 

Clupeiformes Clupeidae Sardina  pilchardus European pilchard 3 23.1 6   3 18.8 4   6 20.7 10 

Clupeiformes Engraulidae Engraulis  encrasicolus European anchovy 1 7.7 1   0 0.0 0   1 3.4 1 

        Clupeids 9 69.2 32   10 62.5 31   19 65.5 63 

Pleuronectiformes Pleuronectidae Limanda  sp. Common dab 8 61.5 8   5 31.3 7   13 44.8 15 

Pleuronectiformes Scophthalmidae Scophthalmus  maximus  Turbot 1 7.7 2   0 0.0 0   1 3.4 2 

Pleuronectiformes Soleidae Solea  solea Common sole 1 7.7 2   1 6.3 1   2 6.9 3 

Pleuronectiformes Pleuronectidae     Right eye flounders 2 15.4 3   1 6.3 1   3 10.3 4 

        Flatfish 8 61.5 15   7 43.8 10   15 51.7 25 

Salmoniformes Salmonidae Salmo  trutta Sea/Brown trout 4 30.8 5   1 6.3 1   5 17.2 6 

Gadiformes Merluccidae Merluccius  merluccius European hake 3 23.1 5   1 6.3 2   4 13.8 7 

Gadiformes Gadidae Pollachius  pollachius European pollock 2 15.4 2   0 0.0 0   2 6.9 2 

Gadiformes Gadidae Melanogrammus  aeglefinus Haddock 2 15.4 4   1 6.3 1   3 10.3 5 

Gadiformes Gadidae Merlangius  merlangus Whiting 0 0.0 0   1 12.5 1   1 6.9 1 

Gadiformes Gadidae Gadus  sp. Cod 1 7.7 1   0 0.0 0   1 3.4 1 

Gadiformes Gadidae     Codfishes 5 38.5 6   5 31.3 7   10 31.0 13 

        Gadoids 5 38.5 13   6 37.5 9   11 37.9 22 

Gasterosteiformes Gasterosteidae Gasterosteus  sp. Sticklebacks 2 15.4 3   1 6.3 1   3 10.3 4 

Perciformes Moronidae Dicentrarchus  labrax European bass 1 7.7 1   0 0.0 0   1 3.4 1 

Perciformes Ammodytidae Hyperoplus  lanceolatus Greater sand eel 3 23.1 3   1 6.3 1   4 13.8 4 

Perciformes Ammodytidae Ammodytes  sp. Sand eel 6 46.2 8   0 0.0 0   6 20.7 8 

Perciformes Ammodytidae     Sand lance 2 15.4 3   1 6.3 1   3 10.3 4 

        Ammdytidae 8 61.5 14   1 6.3 2   9 31.0 16 

Perciformes Gobiidae Pomatoschistus  minutus Sand goby 2 15.4 2   2 12.5 2   4 13.8 4 

Perciformes Scombridae Scomber  sombrus Atlantic mackerel 7 53.8 11   9 56.3 10   16 55.2 21 
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Appendices 29 

A1: Best blast results for each of the 21 detected taxa and corresponding accession number, the identity 30 

with the blast reference sequence, the sequence length and the bitscore from data of both sampling years 31 

(2015 and 2016) combined.  32 

Order Family 
Genus / 

species 

Common 

name 

Accession 

number 

Ident 

% 

(blast) 

Sequ. 

length 

E-

valu

e 

Bit-

score 

Clupeiformes Clupeidae 
Clupea 

harengus 

Atlantic 

herring 
KJ128741 100 210 

1.94

E-

104 

388 

Clupeiformes Clupeidae 
Sprattus 

sprattus 

European 

sprat  
KJ128910 100 210 

9.04

E-

103 

388 

Clupeiformes Clupeidae 
Sardina 

pilchardus 

European 

pilchard 
FR849599 100 205 

1.14

E-

101 

379 

Clupeiformes Engraulidae 
Engraulis 

encrasicolus 

European 

anchovy 
KJ128765 100 211 

5.93

E-

105 

390 

Pleuronectiformes Pleuronectidae -  
Right eye 

flounders 
KU936350 99.1 224 

7.49

E-

109 

403 

Pleuronectiformes Pleuronectidae 
Limanda 

limanda 

Common 

dab 
KJ128862 100 224 

3.78

E-

112 

414 

Pleuronectiformes Scophthalmidae 
Scophthalmus 

maximus 
Turbot EU410416 100 217 

2.60

E-

108 

401 

Pleuronectiformes Soleidae Solea solea 
Common 

sole 
KJ128906 99.1 224 

7.49

E-

109 

403 

Salmoniformes Salmonidae Salmo trutta 
Sea/Brown 

trout 
KT633607 100 213 

4.25

E-

106 

394 

Gadiformes Merluccidae 
Merluccius 

merluccius 

European 

hake 
KJ128826 100 208 

2.49

E-

103 

385 

Gadiformes Gadidae 
Pollachius 

pollachius 

European 

pollock 
FR751400 99.5 208 

2.50

E-98 
379 

Gadiformes Gadidae 
Merlangius 

merlangus 
Whiting KJ128825 100 208 

2.49

E-

103 

363 

Gadiformes Gadidae 
Melanogramm

us aeglefinus 
Haddock KJ128822 100 208 

2.49

E-

103 

385 

Gadiformes Gadidae Gadus sp. Cod AP017650 99.52 208 

1.16

E-

101 

379 

Gadiformes Gadidae - 
Codfishes/ 

True cod 
AP017650 99.5 208 

2.49

E-

103 

379 
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Gasterosteiformes Gasterosteidae 
Gasterosteus 

sp. 
Stickleback KJ627974 100 208 

1.16

E-

101 

379 

Perciformes Moronidae 
Dicentrarchus 

labrax 

European 

bass 
KJ168065 99.5 211 

2.53

E-

103 

385 

Perciformes Ammodytidae  - Sand lance KJ128795 99.1 211 

2.53

E-

103 

379 

Perciformes Ammodytidae 
Hyperoplus 

lanceolatus 

Greater sand 

eel 
KJ128795 100 211 

2.53

E-

103 

390 

Perciformes Ammodytidae 
Ammodytes 

sp. 
Sand eel AF315121 100 211 

1.18

E-

101 

390 

Perciformes Gobiidae 
Pomatoschistu

s minutus 
Sand goby KJ128870 100 207 

8.89

E-

103 

383 

Perciformes Scombridae 
Scomber 

scombrus 

Atlantic 

mackerel 
KJ128898 100 217 

1.21

E-

106 

396 

 33 

 34 

 35 


