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Transition to doubly diffusive chaos

Cédric Beaume1

1 School of Mathematics, University of Leeds, Leeds LS2 9JT, UK

(Dated: September 10, 2020)

Abstract

Doubly diffusive convection driven by horizontal gradients of temperature and salinity is studied

in a three-dimensional enclosure of square horizontal cross-section and large aspect-ratio. Previous

studies focused on the primary instability and revealed the formation of subcritical branches of

spatially localized states. These states lose stability due to the twist instability, thereby precluding

the presence of any related stable steady states beyond the primary bifurcation and giving rise

to spontaneous temporal complexity for supercritical parameter values. This paper investigates

the emergence of this novel behavior. In particular, chaos is shown to be produced at a crisis

bifurcation located close to the primary bifurcation. The critical exponent related to this crisis

bifurcation is found to yield an unusually abrupt transition. The construction of a low-dimensional

model highlights that only few requirements are necessary for this type of transition to occur. It

is, as a consequence, believed to be observable in many other systems.
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INTRODUCTION

Doubly diffusive convection, the convection of a fluid driven by density variations caused

by two competing components, is a fascinating phenomenon that can lead to a wide range of

behavior, some of which is still poorly understood. It has been mostly studied in oceanog-

raphy, where it was shown to occur in 44% of the Earth’s oceans [1]. In the oceanographic

context, the flow is driven by temperature and salt variations and is usually referred to as

thermohaline convection. It can lead to several instabilities, such as salt fingering, and is

a major contributor to mixing currents [2–5]. Doubly diffusive convection is also studied

in other contexts, such as in geology, where it is observed in magma chambers and at the

Earth’s core-mantle boundary [6, 7] and in astrophysics [8–10].

In addition to the applied interest it draws, doubly diffusive convection is also a paradigm

for pattern formation in fluids that has been studied in various configurations. The most

studied such configuration is that of horizontal fluid layers placed within negative vertical

gradients of temperature and salinity. Unlike Rayleigh–Bénard convection, this configura-

tion yields primary bifurcations to standing and traveling waves that can be subcritical [11].

As a result, a wealth of time-dependent states has been observed both numerically [12–14]

and experimentally [15–17], and temporal complexity, in the form of small amplitude disper-

sive chaos, emerges near criticality [18]. When the bifurcation to steady states is subcritical,

secondary bifurcations have been found that lead to the formation of steady, spatially lo-

calized states known as convectons [19]. Their formation and their bifurcation diagram was

characterized by Mercader et al. [20, 21]: the convectons lie on a pair of branches undergoing

well-bounded oscillations in parameter space in a behavior called snaking. Time-dependent

localized states, in the form of traveling convection rolls within a spatially localized enve-

lope traveling at a different speed, have also been observed to produce similar bifurcation

diagrams [22] and the interplay between their stable and unstable manifolds has been eluci-

dated by Watanabe et al. [23]. Symmetry-breaking perturbations, such as mixed boundary

conditions for the temperature [24] or slight inclinations of the fluid layer [25], were also

found to imprint a non-zero traveling speed to the convectons.

The physical system of interest here is that of the doubly diffusive convection arising

in a vertically extended, closed container driven by horizontal gradients of salinity and

temperature. Here, unlike in the previously described configuration, the conduction state
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loses stability due to non-oscillatory modes, making steady state dynamics of prime impor-

tance. Steady, spatially localized convection was once again found to be organized along

two subcritical snaking branches. In two dimensions, some of these convectons are stable

and perturbing the forcing parameter (typically the Rayleigh number) outside the snaking

region reveals a depinning instability in which the flow successively takes the form of local-

ized states constituted of an increasing number of rolls until a stable, domain-filling state is

reached [26]. Small aspect-ratio, three-dimensional domains revealed secondary bifurcations

along the branch of steady convection. These bifurcations produce tilted convection rolls and

have a destabilizing effect on steady convection. Bergeon & Knobloch also observed a transi-

tion to chaos via a sequence of period-doubling bifurcations leading to a symmetric chaotic

attractor that then undergoes an internal crisis to become asymmetric [27]. The three-

dimensional convectons undergo a similar instability to that observed in small aspect-ratio

domains: pitchfork bifurcations can be found along the snaking branches that destabilize

the convectons and give rise to a new family of (unstable) twisted convectons. The absence

of any stable steady states drives the system to produce chaotic dynamics for supercritical

parameter values [28]. The linear stability of the regular and twisted convectons revealed the

emergence of transient temporal complexity in the subcritical regime but does not explain

the sudden presence of chaos for parameter values near criticality [29].

The aim of this paper is to elucidate the transition to chaos observed in three-dimensional,

doubly diffusive convection in a closed container extended in the vertical direction. The rest

of this paper is structured as follows. The mathematical formalism of the problem is exposed

in Section 2, followed, in Section 3, by the description of the successive instabilities leading

from conduction to chaos. Section 4 is devoted to the mechanism behind the observed

transition to chaos. The paper continues with the construction of a phenomenological,

low-dimensional model to highlight the generic character of the route to chaos identified in

doubly diffusive convection. A short discussion concludes this paper.

PROBLEM SET-UP

We consider the instability of a binary fluid mixture placed in a closed, three-dimensional

container and subject to thermal and solutal gradients in the horizontal direction. The con-

tainer has a square horizontal cross-section and is extended in the vertical, x, direction with
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aspect-ratio L = 19.8536, following earlier studies [28, 29] and corresponding to 8 critical

wavelengths of the related two-dimensional problem [30]. The two vertical walls at constant

z are maintained at fixed temperatures and salinities while the two other vertical walls are

modeled using no-flux boundary conditions for both temperature and salt concentration.

No-slip boundary conditions are used for the velocity at all the walls.

The fluid obeys the Navier–Stokes equation under the Boussinesq approximation, the

incompressibility condition, the heat equation as well as an advection-diffusion equation for

the salinity. Upon nondimensionalization, these equations read:

Pr−1 [∂tu+ (u · ∇)u] = −∇p+Ra(T +NC)ex +∇2u, (1)

∇ · u = 0, (2)

∂tT + (u · ∇) T = ∇2T, (3)

∂tC + (u · ∇)C = Le−1∇2C, (4)

where t is the time, u is the velocity field, p is the pressure and ex represents the vertical

ascending unit vector. To write these equations, the temperature and salinity were rescaled

in the following way:

T =
T ∗ − T ∗

ref

△T
, C =

C∗ − C∗

ref

△C
, (5)

where T ∗ (resp. C∗) is the dimensional temperature (resp. salinity), T ∗

ref (resp. C∗

ref) is

the reference temperature (resp. salinity) taken at the z = 0 wall and △T (resp. △C) is

the imposed temperature (resp. salinity) difference across the domain. System (1)–(4) is

controlled by the following dimensionless numbers:

Pr =
ν

κ
, Ra =

g|ρT |△T l3

ρ0νκ
, Le =

κ

D
, N =

ρC△C

ρT△T
, (6)

where Pr is the Prandtl number, Ra is the Rayleigh number, Le is the Lewis number, N

is the buoyancy ratio, ν is the kinematic viscosity of the fluid, κ is the thermal diffusivity

of the fluid, g is the gravitational acceleration, ρT /ρ0 is the thermal expansion coefficient in

the Boussinesq approximation evaluated at the reference temperature, ρC/ρ0 is the solutal

expansion coefficient in the Boussinesq approximation evaluated at the reference salinity, ρ0

is the fluid density at the reference temperature, l is the wall separation in both horizontal

directions and D is the molecular diffusivity of the fluid. The boundary conditions read:

u = v = w = ∂nT = ∂nC = 0 at x = 0, L and y = 0, 1, (7)

u = v = w = T − z = C − z = 0 at z = 0, 1, (8)

4



where u, v and w are the projection of the velocity field u in the x, y and z directions

respectively, and where ∂n represents the gradient in the direction normal to the wall.

We consider the case N = −1 so that the solutal and thermal contributions to the

buoyancy compete with equal strength. This special case allows for the equations to admit

the conductive solution u = 0, T = C = z and to be equivariant with respect to the dihedral

group D2 comprised of the identity I and of the reflections:

Sy : [u, v, w,Θ,Σ](x, y, z) → [u,−v, w,Θ,Σ](x, 1− y, z), (9)

S△ : [u, v, w,Θ,Σ](x, y, z) → −[u,−v, w,Θ,Σ](L− x, y, 1− z), (10)

where (Θ,Σ) = (T − z, C − z) are the so-called convective variables. The composition of

both the above reflections is the reflection with respect to the center point of the domain

and is hereafter called Sc.

In the absence of dynamics in the y direction, the related two-dimensional system [26] only

possesses the S△ symmetry (it is thus Z2-equivariant, orO(2)-equivariant if spatially periodic

boundary conditions are imposed in x). The instability from the conduction state is sub-

critical and the flow evolves toward a steady domain-filling state. In the three-dimensional

system of interest here, the presence of the Sy symmetry is responsible for a major enrich-

ment of the bifurcation diagram and of the observed dynamics, as described in the following

sections for Le = 11 and Pr = 1.

INSTABILITY FROM THE CONDUCTIVE STATE

The conductive state (u = v = w = 0) is linearly stable until Ra ≈ 850.78, where

conduction develops as a result of two close bifurcations. The eigenmodes related to these

two bifurcations produce arrays of steady convection rolls but are different in a subtle way,

as shown in figure 1(a,b). On the one hand, the eigenmode in figure 1(b) satisfies all the

symmetries of the system and creates a transcritical bifurcation at Ra ≈ 850.86 leading to

the creation of a wide variety of localized states [28, 29]. On the other hand, the eigenmode

in figure 1(a) has a similar structure but with a phase shift of a quarter of the wavelength.

As a result, it breaks both the S△ and the Sc symmetry (but preserves Sy). This eigenmode

is responsible for the creation of a (subcritical) pitchfork bifurcation at Ra ≈ 850.78 [29].

The growth rates of the related instabilities are similar, e.g. λ ≈ 0.20 at Ra = 930, where λ
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(a)

(b)

(c)
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(e)

(f)

FIG. 1. Most unstable eigenmodes of the conductive state at Ra = 930 shown using two opposite

contours of u. Eigenmode (a) is the first to become destabilizing at Ra ≈ 850.78. Eigenmode

(b) is the one producing the subcritical patterns shown in [28, 29] and becomes destabilizing at

Ra ≈ 850.86. Eigenmodes (c) and (d) are two-pulse modes that are marginal at Ra ≈ 859, and

eigemodes (e) and (f) are three-pulse modes marginal at Ra ≈ 872. In all figures, the gravity

bearing direction, x, is represented horizontally and the direction bearing the temperature and

salinity gradients, z, is represented vertically.

is the temporal growth rate and these eigenmodes remain the most unstable ones at all the

values of the Rayleigh number tested. Other modes become destabilizing at higher values of

the Rayleigh number: bifurcations to two-pulse states are found at Ra ≈ 859 and to three-

pulse states at Ra ≈ 872. The eigenmodes related to these bifurcations are represented for

Ra = 930 in figure 1. At this value of the Rayleigh number, the two-pulse eigenmodes have

growth rate λ ≈ 0.18 while λ ≈ 0.15 for the three-pulse eigenmodes. Crucially, all these

eigenmodes preserve the symmetry Sy and trigger the formation of rolls with rotation axis

ey, i.e., with dominant velocities in x and z. Figure 2 shows the growth rate of the most

unstable eigenmodes for 845 ≤ Ra ≤ 950. The instability hierarchy remains the same in

the parameter region investigated: the leading instability is always one related to one-pulse

perturbations.

As the instability grows, for Ra > 850.78, the rolls displaying downflow close to the
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FIG. 2. Most unstable eigenvalues in the range 845 ≤ Ra ≤ 950 represented using the exponential

of the real part of the eigenvalue eλr = eRe(λ). The thick line at eλr = 1 represents marginality. The

two eigenvalues representing the one-pulse eigenmodes are labelled 1p and are indistinguishable, so

are those representing the two-pulse eigenmodes, labelled 2p, and those representing the three-pulse

eigenmodes, labelled 3p.

hot and saline wall become suppressed in favor of the other rolls, giving rise to convective

structures comprised of co-rotating rolls [31]. Owing to the presence of walls at x = 0

and x = L, the structure grows from the center of the domain via successive nucleation

of convection rolls. The growth of the instability is exemplified for Ra = 880 in figure

3. A preliminary simulation was initialized by the conductive state so that the instability

developed from numerical noise. As the flow reached a domain-integrated kinetic energy of

about 10−4, the state was stored to be used as the initial condition of another simulation,

shown in panels (a,c). Another simulation, shown in panels (b,d), was initialized on the

opposite side of the stable manifold of the conduction state by changing the sign of all the

components of u, as well as those of Θ and Σ. The results are shown through two flow

indicators:

Aconv(x, t) =

√

∫ 1

0

∫ 1

0

u2dy dz, (11)
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t t
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FIG. 3. Spatiotemporal growth of the convective pattern triggered by numerical noise at Ra = 880

and represented by an indicator of the convection amplitude Aconv (see equation (11)) in panels

(a,b) and by an indicator of the tilt amplitude Atilt (see equation (12)) in panels (c,d) as a function

of the time t and vertical coordinate x. The simulation in (a,c) and the one in (b,d) were initialized

by small amplitude states located on opposite side of the stable manifold of the conduction state.

Atilt(x, t) =

√

∫ 1

0

∫ 1

0

v2dy dz, (12)

where u = u(x, y, z, t) represents the velocity in the vertical, x, direction and v = v(x, y, z, t)

is the velocity component in the y direction. Indicator Aconv quantifies the convection ampli-

tude owing to the fact that u typically represents the largest velocity component by nearly

an order of magnitude. The rotation axis of the rolls emerging from the instability is ey and,

thus, their velocity has major components in the x and z directions. When a convection roll

is impacted by the secondary instability, its axis tilts around ex, which generates a non-zero

projection on ez and results in non-negligible velocities in the y direction. Indicator Atilt

captures this flow feature: in the absence of tilt, Atilt ≪ 1. The first simulation, presented

in figure 3(a,c), produces a structure consisting of 4 co-rotating rolls at t = 50 before the

growth a fifth one at t ≈ 55 at the top of the structure and a sixth one at the bottom of
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ex

ey

ez

FIG. 4. Snapshot from the simulation in figure 3(b,d) taken at t = 72.5. The state is represented

using contours u = ±1.

the structure at t ≈ 67, at which point, convection is domain-filling. The other simulation,

in figure 3(b,d), produces an array of 5 co-rotating rolls at t = 50 before two successive nu-

cleations at t ≈ 67 and t ≈ 70, leading to a domain-filling 7-roll state before the emergence

of temporal complexity. Owing to the magnitude difference between the growth rates of

the 1-pulse modes and the others for Rayleigh number values close to onset, any simulation

initialized by a sufficiently small perturbation of the conductive state will lead to one or the

other scenarios described. At this stage, the flow is Sy-symmetric and is reminiscent from

spatially periodic convection [26] and its roll count depends on the projection of the initial

condition onto the unstable manifold of the conductive flow.

The domain-filling state formed through the process described above is unstable to a

secondary instability that affects each roll individually. The axis of the affected rolls develops

a non-zero component on ez in addition to its dominant component on ey. An example of

occurrence of this instability is shown in figure 4 by a state consisting of 7 convection rolls.

Most these rolls produce a flow rotating around ey, except for the central roll which is tilted

and whose axis is no longer parallel to ey but has now a non-negligible projection onto ez.

Owing to the tilt, the high-velocity regions of the central roll are no longer parallel to the

walls associated with the forcing boundary conditions. The roll can no longer be maintained

and decays shortly after tilting, as shown in figure 3. The next rolls to be affected by the

instability are the ones formed right after the central roll: the ones located next to it. The

beginning of this second tilting event is visible in figure 4. Figure 3 shows that all the initial

rolls survive for a duration of the order of 20 time units before tilting, decaying and the

emergence of chaotic dynamics characterized by shorter-lived rolls.

To investigate the next stage of the dynamics, characterized by roll decay, a small ampli-

tude state from the simulation shown in figure 3(b,d) is used to initialize a simulation in a

domain constrained in such a way that only one roll is allowed to grow initially. The results
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t

t

(a)

(b)

FIG. 5. Growth of the instability in a domain constrained by the addition of additional damping

for x < 7.4451 and x > 12.4085. This simulation was initialized by the same initial condition used

for the simulation shown in figure 3(b,d). The flow is represented in the central part of the domain

through Aconv (a) quantifying the convection strength and the flow rate in the y direction Φy (b).

are shown in figure 5 through the quantities Aconv and Φy, where:

Φy(x, t) =

∫ 1

0

∫ 1

0

vdy dz. (13)

The artificial damping slows down the growth of the instability: it now takes 260 units of

time for the only roll to reach its full amplitude. The roll then survives for about 30 time

units before its tilt becomes noticeable and reaches its maximum at t ≈ 292, as shown by

the y-flow rate profile in figure 5(b) and by figure 6(a). The absence of nearby wall and

of any adjacent roll allows the localized roll to expand further than it normally would, as

can be seen by comparing figure 6(a) with figure 4. As the roll tilts, its decay accelerates

and it breaks from its center, forming two tilted rolls of smaller amplitude at t ≈ 293 (see

figure 6(b)) that continue to decay, albeit more slowly, until the flow energy grows again

at t ≈ 296. The signature of these secondary rolls is also visible in the space-time plot in

figure 5(b): as the red and blue patches indicating non-zero flow rate in the y direction move

away from each other, two lower-intensity patches of the opposite colors appear in between.
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(a)

(b)

FIG. 6. Snapshots from the simulation shown in figure 5 taken at t = 292 (a) and t = 293 (b).

The states are represented using contours u = ±1 in (a) and u = ±0.8 in (b). The orientation of

the figure is similar to that of figure 4.

In addition to highlighting the mechanisms by which the rolls decay, this provides insight

into subsequent roll formation. The roll breaks up into two smaller structures carrying

residual momentum. These two structures act like seeds for the later growth of the linear

instability of the conduction state. In the above simulation, the two rolls that are produced

at t ≈ 302 are very close to the artificial edge of the domain and all subsequent dynamics

are irrelevant. In a full domain simulation, interaction with the walls and other rolls leads

to a strong partitioning of space: as the rolls rarely tilt (and subsequently decay) at the

same time, there is generally not enough room for two rolls to form and the two seeds of

energy quickly merge to yield only one new roll.

CRISIS BIFURCATION

The sudden jump in amplitude between the end-states observable on either side of the

primary bifurcation point is typical of subcritical systems such as two-dimensional doubly

diffusive convection [26]. The fact that the configuration considered here is three-dimensional

introduces the symmetry Sy and allows for a secondary, symmetry-breaking instability to

take place and for the destabilization of steady states that would otherwise be dynamics

attractors. To identify the region of existence of the chaotic behavior, an arbitrary instanta-

neous flow state obtained from the chaotic dynamics at Ra = 900 was selected as an initial

condition for a simulation in which the Rayleigh number was progressively decreased. Fig-

ure 7 shows the result of this simulation superimposed onto the bifurcation diagram of the

known steady states. The steady states bifurcate subcritically from the conductive state at

Ra ≈ 850.86 and take the form of two pairs of intertwined branches of convectons C which
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 700  750  800  850  900
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Ra
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TC

FIG. 7. Bifurcation diagram showing the total kinetic energy E (see equation (14)) as a function of

the Rayleigh numberRa. The diagram shows branches of steady states in color: (red) the convecton

branches C correspond to the branches L± in [28, 29], (blue) the twisted convecton branches TC

correspond to the branches L±

1,2 in [29]. The black line shows the result of a numerical simulation

initialized at Ra = 900 with an arbitrary instantaneous state obtained from chaotic dynamics at

Ra = 900. The Rayleigh number in that simulation was progressively decreased: Ra = 900 − ξt

with ξ = 1/500.

produce snaking between Ra ≈ 700 and Ra ≈ 810 before going to larger Rayleigh num-

bers. They are subject to secondary bifurcations producing a family of secondary branches

of twisted convectons TC, who undergo snaking between Ra ≈ 740 and Ra ≈ 820 before

extending to large Rayleigh numbers. Several simulations were tested in which the Rayleigh

number was a decreasing function of time. The simulation represented in figure 7 has a

rate of decrease of the Rayleigh number with time ξ = 1/500. The flow initially displays

large-amplitude oscillations spanning two orders of magnitude in the total kinetic energy:

E =
1

2

∫ 1

0

∫ 1

0

∫ L

0

(u2 + v2 + w2) dx dy dz, (14)

and reaching values up to those of the most energetic convectons. This behavior persists

down to Ra ≈ 850 where the flow tends to approach the conductive state more closely before

its final decay at Ra ≈ 842. Analyzing other simulations revealed that slowing down the
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Eu

Ev

Eu(a) (b)

FIG. 8. Phase portraits of the flow obtained for a simulation at Ra = 900 represented by the

reduced kinetic energies Eu and Ev defined in equations (15) and (16) in (a) linear and (b) loga-

rithmic scales. The darker the blue, the more often the area is visited by the flow. The red squares

indicate the 200 random selected flow states to serve as initial conditions for the statistical analysis

of the crisis time-scales.

rate of decay of the Rayleigh number, i.e., lowering ξ, led to decay at larger values of the

Rayleigh number but no simulation has been found to decay for Ra > 850.

The sudden decay of chaotic dynamics observed in the simulation shown in figure 7 is

typical of a crisis bifurcation. To characterize this transition, we look for the time-scale over

which chaos persists beyond the crisis, i.e., for Ra < RaX , where RaX is the crisis location

to be determined. As the flow is highly dependent on the initial condition, we resort to

the statistical analysis of a large number of simulations [32–34]. We select initial conditions

randomly from a chaotic flow at Ra = 900. The latter simulation is represented via density

plots for the reduced kinetic energies:

Eu =
1

2

∫ 1

0

∫ 1

0

∫ L

0

u2 dx dy dz =
1

2

∫ L

0

A2
conv dx, (15)

Ev =
1

2

∫ 1

0

∫ 1

0

∫ L

0

v2 dx dy dz =
1

2

∫ L

0

A2
tilt dx. (16)

in figure 8.

The chaotic flow is attracted by a region of phase space with fuzzy boundaries. To ensure

fair sampling of the dynamics, we collect instantaneous flow states at large enough time
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intervals so that they satisfactorily represent the attractor: the selected flow states cover

the whole area occupied by the attractor and their density is higher in areas that are more

often visited, as shown in figure 8.

Simulations were initialized by the flow states identified in figure 8 for a number of

subcritical Rayleigh numbers, ranging from Ra = 750, i.e., far away from the crisis, to

Ra = 845, i.e., close to the crisis. The time at which the chaotic transient decayed or

survival time, tdecay, was recorded by identifying the moment at which the total kinetic

energy fell below E < 10−3 for the first time. The distribution of survival times for a given

value of Ra is statistical, as shown in figure 9(a). All the simulations decayed back to the

conduction state in finite time and the associated time-scale increased as the value of the

Rayleigh number approached that of the crisis.

Much insight can be gained from basic dynamical considerations. First of all, the simula-

tions comprise 3 stages: (i) an initial transient where the initial condition taken at Ra = 900

travels towards the displaced chaotic saddle, (ii) a chaotic transient where the flow is trapped

in the saddle and (iii) decay. The stage of interest here is the second one: the first stage is

an artifact of the changed value of Ra and the third stage is dictated by the linear stability

of the conduction state. It helps to think of the chaotic saddle as a topological ball with

a hole. Once inside the ball, the trajectory bounces against its walls until it “finds” the

hole, at which point the simulation enters its decay stage. This probabilistic depiction of

chaotic saddles has led them to be called leaky attractors in the context of the transition

to turbulence [35, 36]. In this framework, the crisis bifurcation corresponds to the opening

of the hole in the ball and the event corresponding to the trajectory exiting the chaotic

saddle can be assimilated to a memoryless Poisson process. Given the above insight, we can

infer that the probability of the trajectory exiting the leaky attractor follows an exponential

distribution function of time and, thus, that the probability of a simulation not decaying

before time t follows its complementary cumulative distribution function:

p(t) = e
−

t− t0
tc , (17)

where t0 corresponds to the initial transient duration and tc is the characteristic time associ-

ated with the process, both of which are functions of Ra. Similar survival analyses have been

used to characterize transient turbulent flows [37, 38] and more generally the spatio-temporal

chaos generated by the complex Ginzburg–Landau equation [32]. Figure 9(b) shows the sur-
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tdecay

FIG. 9. (a) Time tdecay at which the simulation first reached values of the total kinetic energy

E < 10−3 as a function of the initial condition used for (black) Ra = 790, (red) Ra = 834 and

(blue) Ra = 844. (b) Survival probability associated with similar datasets than in (a) but for

(black) Ra = 834, (red) Ra = 838 and (black) Ra = 844. The straight lines represent a fit to law

(17) with t0 ≈ −2.982 and tc ≈ 174.399 for Ra = 834, t0 ≈ −60.066 and tc ≈ 467.821 for Ra = 838

and t0 ≈ −58.300 and tc ≈ 2415.18 for Ra = 844.

vival probability p for three sets of simulations taken at Ra = 834, Ra = 838 and Ra = 844

together with the corresponding least square fit to law (17). The data obtained through

the flow simulations are well approximated by the exponential distribution, the only visible

departures from the law being observed in the tail of the distributions. This confirms the

relevance of the chosen probabilistic approach. Further examination reveals that tc increases

with Ra, leading to longer and longer simulations as we approach the crisis. The last com-

plete set of simulations was obtained for Ra = 845. All the 200 initial conditions decayed
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FIG. 10. Characteristic survival time of the chaotic transients tc as a function of the distance to

criticality RaX −Ra, where RaX = 850.78 is chosen to be the location of the primary bifurcation

point. The black dotted line corresponds to the numerical data while the straight line corresponds

to the fit: tc ∼ (RaX −Ra)−3.

to the conduction state, with the slowest ones staying in the vicinity of the chaotic saddle

for more than 105 time units. The timescales involved in simulating the flow are such that

it was computationally too expensive to pursue the numerical effort beyond Ra = 845.

The characteristic survival times tc are shown as a function of the Rayleigh number in

figure 10. Since the flow eventually decays down to the conduction state for subcritical

values of Ra and that this state loses stability at Ra ≈ 850.78, it is logical to assume that

the characteristic time associated with the chaotic transient diverges for Ra ≤ 850.78. The

results are therefore represented against the Rayleigh number offset by RaX , which is an

approximate value for the crisis Rayleigh number. In practice, the data obtained does not

allow the accurate determination of RaX , so RaX = 850.78 was chosen. For RaX −Ra < 50,

i.e., for Ra > 800, tc can be remarkably well approximated by

tc ∝ (RaX −Ra)−γ , (18)

where γ ≈ 3. This exponent is larger than the ones typically observed for crisis bifurcations

in fluids. For example, Zammert and Eckhardt found two crises in plane Poiseuille flow: an

interior crisis associated with γ = 0.8 and a boundary crisis with γ = 1.5 [33], and Kreilos

et al. observed a boundary crisis in plane Couette flow with γ = 2.1 [36]. Figure 11 shows
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FIG. 11. (a) Initial transient time t0 and (b) its absolute value normalized by the characteristic

survival time tc as a function of the Rayleigh number Ra.

the evolution of the initial transient time t0 as a function of the Rayleigh number. The

initial transient lasts approximately 10 time units at Ra = 750, the lowest Rayleigh number

used, and grows monotonically until Ra = 825, where it lasts approximately 27 time units.

For values of the Rayleigh number beyond Ra = 825, the results obtained are erratic and

can take negative values. As the Rayleigh number is increased, the characteristic survival

time grows at a much faster rate than the initial transient time. The latter becomes less

important to the fitting function and more prone to statistical errors originating from the

finite size of the sample. Figure 11(b) shows the initial transient time normalized by the

characteristic survival time as a function of Ra and clearly shows that, in the region where

t0 is poorly approximated (Ra > 825), the absolute value of t0 remains small compared to

the values of tc.

LOW-DIMENSIONAL TRANSITION MODEL

Close to the crisis bifurcation, the convection rolls seem to have a well-defined size and

location in the physical domain. We can thus model the dynamics in the vicinity of the

crisis by using a system of Nr coupled oscillators, each oscillator modeling one roll via two

quantities: the convection energy, c, describing the energy contained in the x-component of

the velocity and main component of any convective flow observed; and the tilt, τ , describing
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the intensity of the y-component of the velocity within that roll. The quantity c (resp. τ)

can be thought of as the analogue of A2
conv (resp. Φy).

One-roll system

An essential feature of doubly diffusive convection (hereafter DDC) is the presence of

subcritical untilted states, as shown by the branches labelled C in the bifurcation diagram

in figure 7. A similar bifurcation diagram to that of such states can be obtained by setting

a dynamical equation for c containing a simple quadratic-cubic nonlinearity and by simply

damping out τ :

∂tc= rc+ c2 − c3, (19)

∂tτ= −γτ, (20)

where r is the forcing parameter, akin to the Rayleigh number, and γ ≥ 0 is the tilt decay

rate. In DDC, a destabilizing instability arises at a critical roll amplitude [28]. To model

this, convection and tilt can be coupled in equation (20) such that when c is larger than a

threshold value (function of γ), the untilted (τ = 0) states become unstable. This coupled

system writes:

∂tc= rc+ c2 − c3 − βcτ 2, (21)

∂tτ= −γτ +
β

2
cτ, (22)

where β ≥ 0 is the rate of energy transfer between the tilt energy τ 2 and the convection

energy c. The effect of this coupling is to destabilize any solution (c, τ) = (c, 0) when

c > 2γ/β and, thus, to prevent the hysteresis by destabilizing the upper branch. The

system presented above is similar to equations (16) and (17) of Bergeon and Knobloch [27],

except for the absence of one term that the authors deemed to have “[no] qualitative effect”.

System (21), (22) admits four steady states:

Cond : (c, τ) = (0, 0) , (23)

Lower : (c, τ)=

(

1

2
− 1

2

√
1 + 4r, 0

)

, (24)

Upper : (c, τ)=

(

1

2
+

1

2

√
1 + 4r, 0

)

, (25)

Twist : (c, τ)=

(

2γ

β
,±
√

r

β
+

2γ

β2
− 4γ2

β3

)

, (26)
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FIG. 12. Bifurcation diagram for system (21), (22) with β = 2 and γ = 0.1. The steady solutions

are represented via the energy E = c+ τ2 versus the reduced Rayleigh number r. The stability of

each solution is shown in the following way: (eigc,eigτ ), where eigc (resp. eigτ ) represents the sign

of the growth rate of the convection (resp. twist) eigenmode. Although the eigenmodes associated

with the linear stability of Twist are not so trivial, they have, for simplicity, been represented in

the same fashion.

where the subcritical state Lower bifurcates from the conduction state, Cond, at r = 0

and extends down to rs = −1/4, where it undergoes a stabilizing saddle-node bifurcation

producing the upper branch labeled Upper. The state Twist bifurcates from either Lower

or Upper depending on the value of the group 2γ/β. In DDC, this occurs when the roll

energy is about 10% of the maximum roll energy within the snaking region, implying that

2γ/β ≈ 0.1 and placing this bifurcation along the lower branch. The resulting bifurcation

diagram is shown for β = 2 and γ = 0.1 in figure 12.

The presence of the twist bifurcation alters the stability of the large amplitude steady

states. The eigenmodes of the τ = 0 states (Cond, Lower and Upper) are decoupled and

correspond either to pure convection or tilt. The former is responsible for the primary

bifurcation at r = 0 and destabilizes Lower for −1/4 < r < 0, becoming stabilizing again

at the saddle-node and creating a heteroclinic connection between Lower/Cond and Upper.

Along the lower branch, the twist eigenmode becomes destabilizing at rτ = 4γ2/β2−2γ/β =

−0.09, raising the dimension of the unstable manifold of both Lower for r < rτ and Upper.
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FIG. 13. Phase portrait showing the twist energy τ2 as a function of the convection energy c for

simulations at r = 0.1 (black), r = 0.2 (blue) and r = 0.4 (red). The three fixed points (Cond,

Upper and Twist) are shown using dots while the stable periodic orbits are shown in solid lines.

Parameters are β = 2 and γ = 0.1.

The bifurcation at rτ is the surrogate to the twist bifurcation in DDC and produces the

solution Twist. The eigenmodes of Twist do not project trivially onto c or τ and both

eigenvalues collide to form a pair of complex conjugate eigenvalues at rc = δ2(4δ−1)2/(2γ)+

2δ(2δ − 1) = −0.082, where δ = γ/β.

For r > 0, no stable, c ≥ 0 state exists and the dynamics takes the form of periodic orbits

driven by the stable and unstable manifolds of the three fixed points. Three examples of

such stable periodic orbits are shown in figure 13. Starting from an initial condition near

Cond, the orbit follows the unstable manifold of Cond, which is also the stable manifold

of Upper, as the convection amplitude grows. The orbit is subsequently repelled along the

unstable (twist) manifold of Upper, which results in the increase of the twist energy, thereby

suppressing convection and leading to the closure of the orbit as it approaches the stable

manifold of Cond. This oscillatory behavior is further supported by the oscillatory instability

of Twist. The orbits shown in figure 13 approach Cond and Upper as r is decreased, however,

they are not formed at a global bifurcation at r = 0 but at a heteroclinic bifurcation just

below r = 0. This was predicted by Bergeon & Knobloch in [27]: the case at hand is similar
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FIG. 14. Bifurcation diagram showing the periodic orbit P on top of the steady states represented

using the extrema values of E as a function of r for β = 2 and γ = 0.25. The right panel is an

enlargement of the left panel to show the bifurcation to periodic orbits.

to their Fig. 15(a)[39]. To illustrate this, figure 14 shows the bifurcation diagram with the

periodic orbit for γ = 0.25, where the global bifurcation is at an appreciable distance away

from r = 0. The periodic orbit collides with Lower and Upper at a heteroclinic bifurcation

located at rhet ≈ −0.01. As a result, there exists an interval in r, albeit small, in which the

system is bistable.

Nr-roll system

There are various ways to couple rolls together. Here, the point is not to be exhaustive

but rather to show a simple example of coupling that can lead to chaos immediately above

onset. In DDC, as a roll tilts, its convection amplitude decays, vanishing from the center

towards the outside and forming, for a very short period of time, two smaller tilted rolls

(see figures 5 and 6). Following the decay of these rolls, two seeds of kinetic energy are left

behind that may lead to the growth of two rolls instead of one at the newly vacated location.

The following coupled system takes inspiration from this observation:

∂tci= rci + c2i − c3i − βciτ
2
i + η(τ 2i−1 + τ 2i+1), (27)
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∂tτi= −γτi +
β

2
ciτi − ητi, (28)

where the subscript i indicates the i-th roll, i = 1, ..., Nr, and η ≥ 0. The coupling term

converts some of the tilt energy of the i-th roll into convection energy for the adjacent rolls.

More specifically, the term −ητi in equation (28) removes tilt energy at rate −2ητ 2i , half of

which is reinjected in equation (27) for the (i− 1)-th roll, the other half being reinjected in

the same equation but for the (i+ 1)-th roll.

No-slip boundary conditions can be modeled by assuming that the rolls at the extrema of

the domain lose tilt energy at the same rate as central rolls but will only receive convection

energy from one neighbor: τ0 = 0 and τNr+1 = 0. To illustrate the complexity of the

behavior obtained by weakly coupling the oscillators, we set β = 2, γ = 0.1 and η = 0.01,

and consider the Poincaré section corresponding to the conditions:

∂E

∂t
=

∂(c̄ + τ̄ 2)

∂t
= 0 and

∂2E

∂t2
> 0, (29)

where:

c̄ = ΣNr

i=1ci, τ̄ 2 = ΣNr

i=1τ
2
i . (30)

Intersections of the trajectory with this Poincaré section correspond to local minima of the

total energy of the system. Figure 15 shows the resulting diagram for system (27), (28)

with 6 rolls. An initial run consisted in a series of simulations, the first of which was set

at r = −0.1 and the last of which at r = 0.8 with increments △r = 5 · 10−4. The first

simulation was initialized using a random initial condition of small amplitude, then each

successive simulation was initialized by the last state of the simulation that preceded it.

Although the simulations were run for 15, 000 time units, only the Poincaré intersections

occurring during the last 5, 000 time units were stored to avoid capturing any transient

dynamics. A second run was then carried out in the reverse direction down to r = −0.1

to identify the subcritical extent of the chaotic region. Although the initial run identified

the presence of an immediate transition to temporal complexity at r = 0, the second run

revealed that this chaotic behavior persists down to r ≈ −0.044, indicating a small region of

coexistence between chaos and Cond. Figure 15 also indicates a number of distinct regions

exhibiting qualitatively different dynamics. Some of these regions are chaotic, as indicated

by a diffuse set of Poincaré intersects, while others are dominated by periodic orbits and

only feature Poincaré intersects at well-defined values of the energy E. To illustrate these
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FIG. 15. Bifurcation diagram showing the value of the energy E as a function of r for system (27),

(28) with 6 rolls, β = 2, γ = 0.1 and η = 0.01. The points reported are Poincaré section intersects

where the Poincaré plane is defined via the conditions ∂tE = 0 and ∂2
tE > 0. The diagram shows

the density of Poincaré intersects: the more opaque, the denser.

different dynamics, several simulations are reported in figure 16. The observed chaotic

trajectory at r = 0 (panel (a)) displays little structure besides the dominating anti-clockwise

cycle resulting from the dynamics imposed by the uncoupled system (see figure 13). When

r < rhet in the uncoupled system, decay is unavoidable. On the other hand, in the presence

of coupling, a neighboring roll with non-zero tilt energy provides a source of convection

energy capable of restarting a decaying roll. This, in turn, makes it possible to observe

non-trivial dynamics below rhet. As r is increased, the temporal dynamics simplifies and,

by r = 0.2 (panel (c)), the trajectory follows two distinct stages. During the first stage,

from the lowest energy point in the cycle to the point of maximum tilt energy τ̄ 2, the

system follows straightforward dynamics: the convection energy c̄ first increases, leading

to the build up of tilt energy, which then suppresses convection. The second part of the

cycle corresponds to the redistribution of twist energy into convection energy to neighboring

rolls. As this happens, the trajectory spirals down to return to the point of minimal energy.

This dynamical structure can be easily observed on the periodic orbit identified at r = 0.16

(panel (b)). As the parameter is increased further, transitions to other attractors can be

seen, such as the one occurring at r ≈ 0.28 and leading to the dynamics shown in panel

(d). This attractor is denser than the one shown in panel (c) and both coexist for a range
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time units after an initial transient of suitable duration was discarded. Parameters are Nr = 6,

β = 2, γ = 0.1 and η = 0.01.

of parameter values. Lastly, this temporal complexity terminates at r ≈ 0.75 where the last

(Hopf) bifurcation leads to the return to a simple periodic orbit.

DISCUSSION

This paper dealt with doubly diffusive convection in a vertically extended domain with

square horizontal cross-section and forced by horizontal gradients of salinity and tempera-
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ture. This flow configuration gives rise to a sudden transition to chaos that is here char-

acterized for the first time via its successive temporal instabilities and as a dynamical sys-

tems process. While the linear instability from the conduction state produces an array of

counter-rotating convection rolls, nonlinear effects select half of them, leading to an array of

co-rotating rolls [31]. Past a certain convection amplitude, the convection rolls become un-

stable and tilt before decaying. This secondary instability initiates chaotic dynamics where

shorter-lived rolls are observed at well-defined locations in the physical domain. These

rolls obey similar dynamics to the one previously described: owing to the instability of the

conduction state, they evolve through cycles where they grow, tilt and then decay. Weak

interactions between these rolls seem to be responsible for temporal complexity by nontriv-

ially modifying the duration of each of the cycle stage. This chaotic regime disappears at

a crisis bifurcation located in the vicinity of the primary bifurcation. It was found that the

crisis bifurcation is abrupt, with a critical exponent of about 3. To illustrate the dynamical

phenomenon at play, a low-dimensional model was constructed based on basic observations

of the bifurcation structure found in doubly diffusive convection. The model takes advantage

of the fact that the convection rolls always occupy the same position and do not drift, so that

they can be represented by oscillators. The equations for adjacent oscillators were coupled

via the addition of terms inspired by the way rolls interact in doubly diffusive convection.

The resulting phenomenological model exhibits a global bifurcation where time-dependent,

long-lasting behavior arises at slightly subcritical values of the parameter and hinting at the

possible existence of a small region of bistability between the conductive state and chaos.

This paper elucidates the transition to chaos observed in doubly diffusive convection in

[28, 29]. While the aforementioned references focused on subcritical pattern formation, the

transition to complex dynamics immediately at onset remained unclear. This paper shows

that this transition to chaos is the result of a crisis bifurcation. Although crises are common

in classical fluid dynamics [33, 38, 40, 41], to the author’s knowledge, this is the first time

that it is observed in the vicinity of the threshold for the primary instability and with such

a high critical exponent. The phenomenon identified here only requires few conditions to

take place, as shown by the construction of a low-dimensional, phenomenological model.

It is further expected that any system displaying subcritical localized states subject to a

secondary subcritical instability might display such an abrupt transition to chaos. This is

the case in a variety of systems related to fluids which display spatially localized pattern
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formation: with few exceptions, they are subcritical and their high dimensionality makes

the emergence of secondary instabilities likely. As such, this work may be of relevance to a

large range of fluid systems.
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