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35 Summary (200/200): 

36 Process-based vegetation models attempt to represent the wide range of trait variation in biomes by 

37 grouping ecologically similar species into plant functional types (PFTs). This approach has been 

38 successful in representing many aspects of plant physiology and biophysics, but struggles to capture 

39 biogeographic history and ecological dynamics that determine biome boundaries and plant distributions. 

40 Grass dominated ecosystems are broadly distributed across all vegetated continents and harbor large 

41 functional diversity, yet most Land Surface Models (LSMs) summarize grasses into two generic PFTs 

42 based primarily on differences between temperate C3 grasses and (sub)tropical C4 grasses. Incorporation 

43 of species-level trait variation is an active area of research to enhance the ecological realism of PFTs, 

44 which form the basis for vegetation processes and dynamics in LSMs. Using reported measurements, we 

45 developed grass functional trait values (physiological, structural, biochemical, anatomical, phenological, 

46 and disturbance-related) of dominant lineages to improve LSM representations. Our method is 

47 fundamentally different from previous efforts, as it uses phylogenetic relatedness to create lineage-based 

48 functional types (LFTs), situated between species-level trait data and PFT-level abstractions, thus 

49 providing a realistic representation of functional diversity and opening the door to the development of 

50 new vegetation models. 

51

52 Keywords: C4 photosynthesis, earth system models, land surface models, evolution, grass biogeography, 

53 plant functional types, vegetation models

54

55 Main body:

56

57 Introduction

58 Functional trait variation within biomes arises from evolutionary histories that vary biogeographically, 

59 leading to plant taxa with differing ecological behavior and differences in ecosystem structure and 

60 function  across continents ( Lehmann et al., 2014; Higgins et al., 2016; Griffith et al. 2019). Land 

61 Surface Models (LSMs), fundamental components of Earth System Models, typically apply abstracted 

62 plant functional types (PFTs; but see  Pavlick et al., 2013; Scheiter et al., 2013; Medlyn et al., 2016) to 

63 represent physical, biological, and chemical processes crucial for soil and climate-related decision making 

64 and policy. However, PFTs must generalize across species, and inevitably encapsulate a wide range of 

65 plant strategies and vegetation dynamics, a demand that contrasts with efforts to investigate nuanced and 

66 species specific ecological behavior (Cramer et al., 2001; Bonan, 2008; Sitch et al., 2008; Kattge et al., 

67 2011). Furthermore, PFTs account for only a modest degree of variation in a wide array of functional 

68 traits, ranging from seed mass to leaf lifespan (LL), in the TRY database (Kattge et al., 2011). For 

Page 2 of 20

Manuscript submitted to New Phytologist for review



For Peer Review

69 example, standard PFTs may not generally capture key drought responses in tree species (Anderegg, 

70 2015), although models with a hydraulics module can be specifically applied for this purpose (e.g., 

71 ecosys; Grant et al., 1995). Oversimplification of the physiognomic characteristics of PFTs can have 

72 major unintended consequences when simulating ecosystem function (Griffith et al., 2017), such as highly 

73 biodiverse savanna ecosystems (Searchinger et al., 2015). However, studies that explicitly incorporate 

74 species-level trait variation into vegetation models (e.g., Grant et al., 1995; Sakschewski et al., 2016; Lu 

75 et al., 2017; Grant el al., 2019; Mekonnen et al., 2019) have demonstrated improvements in model 

76 performance. Selecting trait data from multi-variate trait distributions for model parameterization (Wang 

77 et al., 2012; Pappas et al., 2016) is very challenging for global modeling applications, particularly in 

78 hyper-diverse regions like the tropics, and may not be feasible for areas with biased or limited data. Until 

79 these data-gaps are filled, a finer-grained representation of the functional diversity among species might 

80 be achieved by reorganizing PFTs based on tradeoffs and evolutionary relatedness.  

81

82 Importantly, in seeking approaches to restructure PFTs, numerous observations over the last decade have 

83 shown that both plant traits and biome-occupancy are commonly phylogenetically conserved, with closely 

84 related species having similar traits and niches (e.g., Cavender-Bares et al., 2009, 2016; Crisp et al., 2009; 

85 Liu et al., 2012; Donoghue & Edwards, 2014; Coelho de Souza et al., 2016). The existence of strong 

86 evolutionary constraints on plant functioning and distribution suggests that, as an alternative, vegetation 

87 types should be organized in a manner consistent with phylogeny. Eco-evolutionary models have 

88 increased our mechanistic understanding of ecological patterns in fields ranging from community ecology 

89 (e.g., Webb et al., 2002; Cavender-Bares et al., 2009) to global biogeography (e.g., the Latitudinal 

90 Diversity Gradient; Pontarp et al., 2019; Visser et al. 2014). We advocate for explicit inclusion of 

91 evolutionary history and a consistent framework for integrating traits into global vegetation models. This 

92 approach brings a testable method for defining vegetation types, enables the functional traits of 

93 uncharacterized species to be inferred from relatives, and allows evolutionary history to be explicitly 

94 considered in studies of biome history. Here, we illustrate this approach for grasses and grass-dominated 

95 ecosystems, where we use our framework to aggregate species into Lineage-based Functional Types 

96 (LFTs) to capture the species-level trait diversity in a tractable manner for large-scale vegetation process 

97 models used in LSMs. Capturing the evolutionary history of woody plants is also critical to understanding 

98 variation in ecosystems function in savannas (Lehmann et al., 2014; Osborne et al., 2018), and in general 

99 we are advocating for the development of LFTs in other vegetation types and in other ecosystems. 

100 Grasses provide a tractable demonstration for the utility of LFTs; we also discuss the potential to 

101 significantly improve ecological and biogeographical representations of other plants in LSMs. 

102
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103 Grasses are one of the most ecologically successful plant types on earth (Linder et al., 2018) and provide 

104 great opportunity for increasing understanding of plant functional diversity. Ecosystems containing or 

105 dominated by grasses (i.e., temperate, tropical, and subtropical grasslands and savannas) account for 

106 a>40% of global land area and productivity,  and are a staple for humanity’s sustenance (Tilman et al., 

107 2002; Still et al., 2003; Asner et al., 2004; Gibson, 2009). The photosynthetic pathway composition (C3 or 

108 C4) of grass species is a fundamental aspect of grassland and savanna function, ecology, and 

109 biogeography. Of the ~11,000 grass species on Earth, some ~4,500 use the C4 photosynthetic pathway 

110 (Osborne et al., 2014). Although they account for less than 2% of all vascular plant species (Kellogg, 

111 2001), C4 grasses are estimated to account for 20-25% of terrestrial productivity (Still et al., 2003), 

112 having risen to such prominence only in the last 8 million years (Edwards et al., 2010). Dominance by 

113 C4 versus C3 grasses has major influences on gross primary productivity and ecosystem structure and 

114 function (Still et al., 2003) and strongly influences interannual variability of the global carbon cycle, due 

115 to a combination of ecological and climatic factors (Poulter et al., 2014; Griffith et al., 2015). Dynamic 

116 vegetation models largely fail to reproduce spatial patterns of grass cover —both past and present—

117 and productivity at regional to continental scales, limiting ability to predict future plant community 

118 changes (Fox et al., 2018;Still et al., 2018). As a consequence, LSMs require significant improvement to 

119 adequately represent vegetation responses to increasing CO2 (Smith et al. 2016; De Kauwe et al., 2016). 

120 Many models also miss key transitions between biome states (e.g.,Still et al., 2018) that exist as a result 

121 of disturbance or biogeographic history (e.g., Staver et al., 2011; Dexter et al., 2018).

122

123 Most LSMs classify grasses into two PFTs based on differences between temperate C3 grasses and sub-

124 tropical and tropical C4 grasses. However, grass ecological adaptations and physiological properties are 

125 highly diverse, ranging from cold-specialized to fire- and herbivore-dependent species. While grasses are 

126 often equated functionally, in reality they exhibit a high degree of variation in hydraulic, leaf economic, 

127 and phenological traits (Taylor et al., 2010; Liu et al., 2012) that likely explains their broad geographic 

128 dominance in different regions (Edwards et al., 2010; Visser et al., 2014). These differences include 

129 economically important forest-forming grasses such as bamboos, although here we focus on globally 

130 dominant herbaceous lineages. Grasses exhibit strong phylogenetic diversity in leaf economics variation 

131 and associations with disturbance (Taylor et al., 2010; Liu et al., 2012; Simpson et al., 2016). 

132 Disturbances such as fire and herbivory have large impacts on ecosystem function and distributions, and 

133 PFT based approaches are unlikely to capture these differences among lineages. At broad phylogenetic 

134 and spatial scales, niche and biome conservatism of major plant lineages is common (Crisp et al., 2009; 

135 Cornwell et al., 2014; Donoghue & Edwards, 2014), and  we therefore argue that evolution and 

136 biogeography provide a framework for aggregating species (across ecosystems and strata) into LFTs that 
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137 capture species-level trait diversity in a way that can be feasibly incorporated for use in global vegetation 

138 models, and that will improve PFT-based modeling approaches. Focusing on grasses, we developed this 

139 approach by collecting grass traits from databases (e.g., Osborne et al., 2011) and literature (e.g., 

140 Atkinson et al., 2016; Supplemental Appendix S1), for five key categories (physiology, structure, 

141 biochemistry, phenology, and disturbance). We summarize these species traits at the lineage level and 

142 relate these functional types to their observed global distributions. 

143

144 Methods for establishing lineage-based functional types (LFTs) for grasses

145 There are 26 monophyletic C4 lineages described in the Poaceae family, yet only two (the Andropogoneae 

146 and Chloridoideae) account for most of the areal abundance of C4 grasses globally (Lehmann et al., 2019 

147 ; Fig 1.) (Edwards & Still, 2008; Edwards et al., 2010; Grass Phylogeny Working Group II, 2012). 

148 Among C3 grasses, only the Pooideae are globally dominant today. The Pooideae occupy cooler climates 

149 than the C4 Andropogoneae and Chloridoideae, which dominate in warm and wetter and drier climates, 

150 respectively. Therefore, we focused on collecting species-level trait data from the literature and from 

151 databases for grass species from these three lineages. The term ‘trait’ is defined differently across 

152 research disciplines (Violle et al., 2007). Our aims necessitate a collection of broad trait space beyond 

153 that typically used for the leaf economic spectrum to include morphological and physiological 

154 determinants of plant hydraulics, physicochemical controls of photosynthesis, allocation to reproduction, 

155 and spectral reflectance. Many traits are highly correlated, reflecting plant functional strategies. Further, a 

156 single trait can relate to multiple forms of plant fitness. Here, traits were assigned to groups  (Table 1) 

157 based on their use in models and how they might be used in future applications (e.g., hyperspectral remote 

158 sensing of LFTs, or modeling of fire). We present median and variation in trait values among-species for 

159 three major grass lineages (LFTs) as per Figure 1, and compare these with commonly used values for C3 

160 and C4 PFTs (Table 1). 

161

162 LFTs for grasses differ drastically in key functional traits

163 Our LFTs demonstrate both the importance of considering lineage to explain ecological patterning, and 

164 the need for modification of current LSM PFT approaches. For instance, C4 plants typically have lower 

165 RuBisCO activity (Vcmax) but higher electron transport capacity (Jmax) than C3 plants, reflecting both the 

166 additional energetic cost of C4 physiology and the greater efficiency of RuBisCO in higher CO2 

167 environments (Collatz et al., 1998). The Chloridoideae (C4) grasses have intermediate Vcmax and Jmax 

168 compared to the Andropogoneae (C4) and the Pooideae (C3) (Table 1). Furthermore, the Pooideae have 

169 evolved to tolerate much colder conditions (reflected in Trange; Sandve & Fjellheim, 2010; Vigeland et 

170 al., 2013; McKeown et al., 2016), and our results suggest that C4 lineages may differ in their thermal 
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171 tolerances (Watcharamongkol et al., 2018). These differences suggest that macroecological synthesis 

172 studies with global implications (e.g., Walker et al., 2014; Heskel et al., 2016) should, at minimum, 

173 include more grass species in their datasets, ideally organized as LFTs. 

174

175 Trade-offs among adaptations and tolerances in natural systems promote coexistence among plant species 

176 (Tilman, 1988; Tilman & Pacala, 1993; Kneitel & Chase, 2004). Specific leaf area (SLA) measures the 

177 cost of constructing a leaf, which represents a tradeoff between acquisitive (high relative growth rate) and 

178 conservative (high leaf lifespan) plant strategies (Westoby, 1998; Westoby et al., 2002; Wright et al., 

179 2004). Model simulations of growth are highly dependent on the value of SLA used (Korner, 1991; Sitch 

180 et al., 2003; Bonan, 2008). However, in most of these LSMs, C3 grass PFTs have higher or similar SLA 

181 values as C4 PFTs likely biasing predictions. In contrast, we found that the C4 LFTs had higher SLA than 

182 the C3
 LFT, but SLA did not differ between the two dominant C4 grass lineages (Atkinson et al. 2016). 

183 SLA can be highly variable within lineages in grasses, likely due to the importance of herbivore pressure 

184 as a competing demand on leaf economics (Anderson et al., 2011; Griffith et al., 2017) as well as 

185 intraspecific variation. As a result, SLA highlights that some traits are harder to generalize than others 

186 using the LFT approach, and suggests that a range of values may be appropriate than a single value for 

187 constraining LFT parameters. The phylogenetic signal among grass lineages is stronger for stature (Taylor 

188 et al., 2010; Liu et al., 2012), with the Andropogoneae being considerably taller on average than the 

189 Chloridoideae. This difference suggests that not all traits are oriented along a fast-slow axis at broad 

190 taxonomic scales across C3 and C4 grass lineages (Reich, 2014; Díaz et al., 2016; Archibald et al. 2019). 

191 Furthermore, the C3- and eudicot-centric approach in the current leaf economics framework suggests that 

192 a higher SLA should also correlate with a higher specific leaf nitrogen content, yet the evolution of C4 

193 photosynthesis allows for a significant reduction in RuBisCO content, and hence plant nitrogen 

194 requirements (Taylor et al., 2010). Thus, grass lineages differ in numerous leaf traits which have 

195 consequences that extend from palatability and flammability to hydrological differences.

196

197 Physiological and morphological leaf vascular traits underlie variation in SLA, constrain the hydrology of 

198 plants (e.g., Blonder et al., 2014; Sack et al., 2014), and are key traits related to the evolution of C4 

199 photosynthesis (Sage, 2004; Ueno, 2006). We describe next key hydraulic differences between the two 

200 dominant C4 lineages, which correspond to the C4 biochemical subtypes (Ueno, 2006; Liu & Osborne, 

201 2015). The Chloridoideae have low conductance and high embolism resistance hydraulic traits (Table 1), 

202 and tend to inhabit drier sites (Fig. 1). Some Andropogoneae have been described as “water spenders” 

203 (Williams et al., 1998), and their hydraulic traits help to explain their affinity with higher rainfall habitats 

204 where they rapidly expend available soil water (Taub, 2000) and promote fire after curing. These 
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205 hydraulic differences should have large effects in models, especially those that consider tree-grass 

206 coexistence (Higgins et al., 2000) and explicit representation of plant hydraulics (Grant et al., 1995; 

207 Mekonnen et al., 2019).

208

209 Lineages also differ in biogeochemical traits that influence nutrient turnover rates and the reflectance and 

210 absorbance properties of vegetation. For example, Andropogoneae have higher C:N than Chlordoideae 

211 grasses, likely a result of growth rate differences and the frequent association of Andropogoneae grasses 

212 with fire. Similarly, a greater proportion of N in Chloridoideae leaves is allocated to RuBisCO, which is 

213 related to Vcmax (Ghannoum et al. 2012). Finally, C3 and C4 grasses are distinguishable spectrally at the 

214 leaf, canopy, and landscape level based on differences between the functional types in chlorophyll a/b 

215 ratio, canopy structure, and seasonality (Foody & Dash, 2007; Siebke & Ball, 2009; Irisarri et al., 2009). 

216 C3 and C4 grasses are typically given many of the same optical properties in vegetation models, but we 

217 show here that Chloridoideae might have considerably higher near infra-red (NIR) reflectance than other 

218 lineages, possibly producing interesting optical variation and affecting the surface energy balance and 

219 albedo (Ustin & Gamon, 2010)(Table 1). Foliar spectral traits are also correlated with morphological and 

220 chemical traits related to nutrient cycling and plant physiology (Dahlin et al., 2013; Serbin et al., 2014). 

221

222 Grass lineages also show key differences in reproductive traits and the timing of related biological events 

223 (e.g., leaf-out times) that should be captured in models, especially those that include demographic 

224 predictions (Davis et al., 2010). Chloridoideae grasses have seeds with lower mass than other lineages 

225 (Liu et al., 2012; Bergmann et al., 2017), and this may represent a life-history trade-off with higher seed 

226 production and other ‘fast’ growth strategies (Adler et al., 2014). Wind versus animal dispersal strategies 

227 might also affect diaspore size in a way not directly related to disturbance (e.g., Westoby 1998; Bergmann 

228 et al., 2017), whereas some reproductive traits may also indicate fire and disturbance-related adaptations. 

229 Phenological traits, such as flowering and leaf-out times and their cues (which can include disturbance 

230 factors) exhibit conservatism across many plant lineages (Davies et al., 2013). Fire and herbivory are two 

231 globally important and contrasting disturbances for grass-dominated vegetation (Archibald & Hempson, 

232 2016; Archibald et al., 2019) and adaptations to both can be characterized by phenological and 

233 reproductive traits in addition to physiological and leaf traits. It is less clear how herbivory effects can be 

234 captured in such models, given that many herbivore-related traits vary greatly in grasses (Anderson et al., 

235 2011). Many fire-related traits show patterns of phylogenetic conservatism, with high flammability 

236 clustering into particular lineages such as the Andropogoneae (Simpson et al., 2016). Large-scale 

237 vegetation models that have simulated grass fires in Africa have attributed faster curing (becoming dry 
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238 fuel) rates to C4 vegetation (Scheiter et al., 2012), and this behavior appears to be due largely to dominant 

239 Andropogoneae grasses. 

240

241 We have identified large differences among LFTs, across six trait categories, that are not captured by the 

242 standard PFT approach. Many of these trait data have very low sample sizes (from 1 to 1365) and come 

243 from non-overlapping species, highlighting the need for systematic data collection for grasses. Such a 

244 data collection effort would be an excellent opportunity to test for coordination among trait axes in a

245 phylogenetic context, which has rarely been done in other systems despite the likelihood that relatedness 

246 drives patterns of trait covariation (e.g., Salguero-Gómez et al., 2016; Griffith et al., 2016). Furthermore, 

247 intra-group (whether PFTs or LFTs) trait variation deserves to be properly estimated (only some traits in 

248 Table 1 have enough data to estimate variability) as convergence and adaptation produce meaningful trait 

249 variation that should be incorporated into models.

250

251 Potential for lineage-based functional types in other vegetation types

252 Many current PFTs implicitly represent groupings of closely related lineages (e.g., pinaceous conifers, 

253 grasses). However, even in these cases biogeographic distributions, and the coarseness of the 

254 phylogenetic unit, generates a lack of useful resolution. Currently, there are efforts to incorporate species-

255 level trait data and methods such as those proposed by Cornwell et al., (2014) could be employed to 

256 cluster species into prominent lineage-based groupings representing unique trait combinations. 

257 Phylogenies are hierarchical by nature and allow the LFT approach to be scalable and adjustable to the 

258 research question being addressed. While many technical challenges still remain, the ability to remotely 

259 sense plant lineages adds potential for rapidly developing LFTs from spectral data (e.g., Cavender-Bares 

260 et al., 2016). LFTs would be valuable for a wide range of systems. For example, trees in Eurasian boreal 

261 forests suppress canopy fires through the structure of their canopies, whereas North American boreal trees 

262 enable greater intensity canopy fires (Rogers et al., 2015). These distinctions lead to major differences in 

263 CO2 emissions and function (Rogers et al., 2015) that might be captured in an LFT framework. The 

264 boreal tree example is challenging because these communities are comprised of closely related species 

265 that are ecologically different, potentially requiring species level parameterization or being better 

266 represented by fire-based PFTs. Secondly, LFTs for savanna tree communities could better represent 

267 differing climatic responses that are driven by unique evolutionary and biogeographic histories (Lehmann 

268 et al., 2014; Osborne et al., 2018). Finally, tropical ecosystems such as the dipterocarp forests in 

269 Southeast Asia would be well suited to LFTs which might better represent carbon storage (Brearley et al., 

270 2016).

271
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272 Potential challenges with a lineage-based functional approach include the fact that many plant traits do 

273 not show strong phylogenetic conservatism (Cadotte et al., 2017), with several being labile. There are 

274 likely spatial and phylogenetic scales at which the LFT approach will be most appropriate; for example, at 

275 large scales (regional to continental), lineage conservatism is common (Crisp et al., 2009). In contrast, at 

276 the scale of local communities, we might expect character displacement and limiting similarity (processes 

277 that lead to reduced trait similarity of coexisting species) could obscure phylogenetic patterns and limit 

278 the utility of LFTs as proposed here (Webb et al., 2002; Cavender-Bares et al., 2009; HilleRisLambers et 

279 al., 2012). However, in grassy ecosystems, there is evidence that the patterns of spatial ecological sorting 

280 of lineages would be captured with LFTs also at landscape scales (e.g., within Serengeti National Park, 

281 Anderson et al., 2011; Forrestel et al., 2017). Finally, we focus on extant lineages that are functionally 

282 important today, but their past interactions with other clades may have shaped the biomes they inhabit 

283 (Edwards et al., 2010).

284

285 Conclusions

286 We conclude that an LFT perspective captures important variation in functional diversity for grasses 

287 (Table 1). Our analysis of current knowledge of grass functional diversity (in terms of physiology, 

288 structure, biochemistry, phenology, and disturbance), distributions, and phylogeny indicates that to 

289 represent grass ecological behavior, division of today’s ecologically dominant grasses into at least two C4 

290 and at least one C3 LFT could potentially improve representation in LSMland models. These proposed 

291 LFTs capture key evolutionary differences in physiological, structural, biogeochemical, anatomical, 

292 phenological, and disturbance-related traits. We also highlight the need for systematic trait data collection 

293 for grasses, which we show are vastly underrepresented in trait databases, despite their ecological and 

294 economic importance. More broadly, we outline the LFT framework which is highly flexible and has the 

295 potential for use in a wide range of applications. Here, we speak to incorporating LFTs as groupings in 

296 vegetation models, but we also suggest that trait-based models might capture important biogeographic 

297 variation (e.g., due to historical contingency) through the inclusion of phylogenetic conservatism. We 

298 advocate for the use of phylogeny as a way to help guide and constrain the inclusion of burgeoning plant 

299 trait data to expand the range of functional types considered by global vegetation models. 

300
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593 Table 1. Common PFT parameters from LSM models, and median LFT parameters (IQR; interquartile 

594 range in parentheses, where calculable) for three dominant grass lineages, taken from the literature and 

595 trait databases. Lineage assignments are based on Osborne et al. (2014). The table shows a subset of 

596 common parameters, with up to five parameters from each of six major categories. Blank values in the 

597 PFT/LFT columns signify parameters that are not typically included in LSM  models but are 

598 potentially important for accounting for the ecological behavior of grasses. Bolded numbers with letters 

599 (i.e., a compact letter display; sharing a letter [a, b, c] indicates no difference) indicate significant 

600 differences with a Tukey’s test from simple linear model fits when all three lineages had at least three 

601 data points. Sources are in table footer.

602  

603

604

605 1 - Farquhar et al. (1980), 2 - Collatz et al. (1992), 3 - von Caemmerer

PFT LFT*

Category Parameter C4 C3 Source Andropogoneae Chloridoideae Pooideae

Physiological Vcmax ( )𝜇𝑚𝑜𝑙 𝑚―2 𝑠―1
39 90 1, 2 38 45.6 (4.4) 63.6 (28)

Jmax ( )𝜇𝑚𝑜𝑙 𝑚―2 𝑠―1
400 100 3 180 108.1 (43) 128.8 (45)

Rd ( )𝜇𝑚𝑜𝑙 𝑚―2 𝑠―1
0.8 1.1 1, 2 0.9a (0.2) 2a (1.4) 0.9a (0.7)

Phi ( )𝜇𝑚𝑜𝑙 𝜇𝑚𝑜𝑙―1
0.06 0.085 4, 5 0.06 0.06 0.09

Trange )( ∘𝐶
< 15.5 > 15.5 6 > 5** > - 5** > -30 and < 

5**

Structural SLA ( )𝑚2𝑘𝑔―1
16 33 7 33b (11) 29b (14) 25a (12)

LDMC ( )𝑔𝑔―1
- - - - -

SRL ( )𝑚 𝑔―1
- - - - -

Culm Height ( )𝑐𝑚 - - 150c (150) 80b (50) 60a (60)

R:S ( )𝑔𝑔―1
2 2 7 0.4b (0.07) 0.3a (0.07) 0.4b (0.1)

Biogeochemical/ C:N ( )𝑔𝑔―1
10 17 7 66.1b (14.7) 39.9a (22.2) 55.7ab (10)

spectral Nrubisco ( )𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛 0.09 0.137 7 0.05 (0.01) 0.08 (0.03) 0.2

Reflectance (300–2500 nm) - - - - -

e.g., rNIR (reflectance) 0.35 0.35 7 0.4 0.5 0.3

Anatomical/ IVD ( )𝜇𝑚 - - 85.7a (25.2) 136.8b (40) 242.1c (58)

Hydraulic Xylem dia. ( )𝜇𝑚 - - 7 21.4b (12.2) 16.8a (10.7) 19.3a (6.7)

Kleaf - - - - -

Vein Hierarchy (𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑣𝑒𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑣𝑒𝑖
)𝑛―1

-
- 0.11a (0.09) 0.29b (0.2) 0.58c (0.6)

Leaf Width:Length - - 0.04b (0.05) 0.03a (0.04) 0.03a (0.02)

Life History LL ( )𝑚𝑜𝑛𝑡ℎ𝑠 1.68 12 7 2 (0.4) 1.1 2 (1.8)

1000-seed mass ( )𝑔 - - 7 1.4b (2.4) 0.2a (0.4) 1.4b (3.8)

Life History ( )% 𝑎𝑛𝑛𝑢𝑎𝑙 - - 7 0.25 0.28 0.15

Disturbance Curing rate ( )% 80 20 8 80 50** 20

Bud Bank - - - - -

Flammability ( )𝑔𝑠―1
- - - - -
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606  (2000), 4 - Ehleringer et al. (1997), 5 - Collatz et al. (1998), 6 - Sitch et al. (2003), 7 - Oleson et al. 

607 (2013), 8 - Scheiter et al. (2012); Curing rate is the % cured 30 d after the end of the growing season as 

608 described in Scheiter et al. (2012); *Published citations for LFT values can be found in Appendix S1. 

609 Anatomical data come from Gallaher et al. in prep. **Estimated value. Abbreviations: Vcmax (maximum 

610 carboxylation rate), Jmax (light saturated rate of electron transport), Rd (dark Respiration), Phi (quantum 

611 efficiency), SLA (Specific Leaf Area), LDMC (Leaf Dry Matter Content), SRL (Specific Root Length), 

612 R:S (root to shoot ratio), C:N (Carbon to Nitrogen ratio), IVD (InterVeinal Distance), Kleaf (leaf 

613 hydraulic conductance), LL (Leaf Lifespan).

614

615
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616 Figures:

617

618 Figure 1. Distributions of the three globally dominant grass lineages in the herbaceous layer. These data 

619 come from Lehmann et al (2019), and show where each lineage is more abundant than the other two 

620 lineages on a 0.5 degree grid.
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