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An Optimal Finite Element Mesh for Elastostatic Structural
Analysis Problems

P.K. Jimack
School of Computer Studies

University of Leeds
Leeds L52 9JT, UK

Abstract

This paper investigates the adaptive solution of a class of elastic structural analysis problems
through re-positioning of the finite element nodal points (r-refinement) using an approach known
as the Moving Finite Element method. Initially this adaptive method is derived for the elasticity
problems of interest and it is then proved that, under certain conditions, the algorithm can yield
optimal piecewise linear solutions on optimal simplicial finite element meshes. The equations of
linear elasticity are then used to illustrate both the method itself and the optimality result that
is derived. Finally, a number of numerical calculations are made to provide verification of the
theoretical results.

1 Introduction

The problem of attempting to find an optimal finite element mesh for performing structural analysis
has been considered by numerous authors over the past 20 years or so (see [5], [7], [8] or [21] for
example). Many possible approaches have been considered, including methods based on energy
minimization (such as [7]) and others based upon geometric considerations (such as [5]). In addition
numerous different remeshing techniques have also been considered, based upon either h-refinement
([23]), where extra mesh points are added locally, or r-refinement ([5]), where a fixed number of
mesh points are redistributed over the computational domain. Other forms of adaptive analysis
have also been considered, such as p-refinement for example (where the degree of the finite element
approximation is allowed to increase to obtain higher accuracy, [4]), or various combinations of these.
In all cases however the general aim is to improve the quality of the finite element approximation
space so as to allow accurate solutions to be reliably found at the lowest possibly computational
expense.

In this paper we consider a remeshing technique based upon the use of r-refinement, with a
fixed number of degrees of freedom. The approach that we follow is slightly different to most of
the papers cited above since this work is motivated primarily by an analysis ([10], [11]) of a finite
element technique that was originally intended for use with transient problems, known as the Moving
Finite Element method, due to Miller et al ([9], [16] and [17]). This method has been applied to
a wide variety of time-dependent problems of both hyperbolic (e.g. [2]) and parabolic (e.g. [14])
nature. The idea behind it, which is explained in more detail in section 2 below, is to produce a
finite element scheme in which the mesh deforms continuously with time as the solution evolves.
In this work, we obtain solutions to elastostatic structural analysis problems through the use of
artificial time-stepping in such a way that the final solution obtained turns out to be an optimal
finite element solution on an optimal mesh.



A general form of the elastostatic problem in structural analysis is to attempt to find the dis-
placement w(z) which minimizes the total stored energy of a body initially occupying a domain
Q c RP:

g;ggl;%D /Q F(z,u,Vu) dz , (1.1)
where F: RP x RP x RP*P . R+ is an appropriate energy density function. Depending upon
the nature of the problem there may also be a boundary integral present in the functional (1.1) to
represent the effects of possible traction boundary conditions for example. For simplicity however
we will not consider such additional terms for the time-being.

When the displacement field u(z) is small it is common to consider the linear elasticity problem
obtained by choosing
1 Qu, ouy,
= Cijkem—
20x; Oy
where p(z) is the mass density, b(z) is an external body force, Cj;pe(z) are the components of a
fourth order elasticity tensor, and the usual summation convention has been employed over repeated
suffices. It will be assumed that the elasticity tensor is positive and has the symmetries

Cijre = Cruij = Ciipe = Cijur (1.3)
and that u satisfies displacement boundary conditions of the form
u=d on 0Q. (1.4)

(In fact the generalization of what follows to take account of traction boundary conditions is quite
straightforward and will be considered at the end of the paper.)

In the next section of the paper we introduce the Moving Finite Element method and show how
it can be applied to the elastostatic problem (1.1) with the aid of an artificial time parameter 7.
The specific choice of F' given by (1.2) is also highlighted. In section 3 it is then proved that the
r-refinement that is induced by this approach can lead to an optimal minimizer of the functional in
(1.1) over all variations in the finite element mesh as well as variations in the nodal displacement
values. That is, the Moving Finite Element method can yield an optimal mesh for the solution of
this class of problem. Again, the linear problem (1.2) is considered as a specific example and it is
shown that this result implies that the error in the displacement is minimized when measured in the
corresponding energy norm. Finally, in section 4 a couple of simple example problems are solved
numerically so as to verify the analytic results. The extension to a wider class of boundary conditions
is also demonstrated and there is a brief discussion of the applicability of this work. Throughout the
paper we only consider the case D = 2 (two-dimensional elasticity problems). In theory however all
of the work can be extended to three-dimensional problems.

2 The Moving Finite Element Method

Returning now to the functional in (1.1), it can easily be seen that any minimizer, u : @ — R%, is a
solution of the Euler-Lagrange equations
d
_F2i(x7 u, VU) + —EBij(xvﬂv m) =0 (21)

2i(Z,u, Vu : z
dz;

for © = 1,2, where F(-,-,-) represents differentiation of F' with respect to its k" dependent variable
and the other suffices represent tensor components in the usual manner (with summation always im-
plied over repeated suffices). As outlined in section 1 we now introduce an artificial time parameter,



7, and consider solving the parabolic problem

ou; d
0 —Fai(z,u, Vu) + @F,Sij(% u, Vu) (2.2)

on a continuously deforming spatial mesh. Any steady solution of this new problem will clearly also
be a solution of (2.1) and so a minimizer in (1.1).

In subsection 2.1 we show how the Moving Finite Element method is derived for solving the
problem (2.2) on a moving mesh. Note that in practice the steady solution of this problem will be
determined by taking a finite number of “time”-steps and so the solution process is not actually
that different from a more conventional adaptive strategy involving numerous solution/remeshing
iterations (although the underlying philosophy is indeed rather different). The shorter subsection
2.2 which follows then illustrates the method by considering the linear problem given by (1.2), as
originally outlined in [12].

2.1 Applying the MFE Method
We wish to obtain a steady solution u of the parabolic problem
Ou; d

on the domain €, subject to displacement boundary conditions of the form (1.4). To simplify the
algebra that follows it will be convenient to assume that d = 0 and that € is polygonal. It will also
be helpful to introduce the following notation. Let € be discretized into a set of non-overlapping
triangles which can be uniquely specified as a mesh M = (s,C), where

S = (§17---7§N7§N+17"'7§N+B) (24)

is an ordered set of the position vectors of the vertices of the mesh (N interior points and B points
on the boundary), and C is a list of all of the edges. The MFE method seeks to approximate u(z, 7),
the solution of (2.3), by a time-dependent piecewise linear function, u" say, defined on a mesh of
triangles M(7) = (s(7),C) covering the spatial domain . As has been indicated, this mesh is
allowed to deform smoothly in time (in what follows we always refer to the dependent variable 7 as
“time”) by allowing the positions of the internal knot points, s;(7),...,sn5(7), to be time-dependent.
Their connectivity C remains fixed however.

Because C is kept fixed throughout we will generally refer to a mesh M(7) = (s(7),C) only by the
ordered set s(7) for notational convenience. Given that this is the case we can write our piecewise
linear approximation, uzh (z,7), to each component u;(z,7) of the true solution as

N

ul(z,7) = Y i) om(z, 5(7)) (2.5)

m=1

where the a,,’s are the usual continuous piecewise linear “hat” basis functions on the mesh s(7):
O (8,(7),8(T)) = bpm, m=1,.,.N; n=1,..N+B.

The sum in (2.5) only goes from 1 to N because of the homogeneous Dirichlet boundary conditions
on 0.

In order to determine this approximation to u(z,7) we need to find values for the unknowns
@1(7),81(7), .., an(7), sn(7). The Moving Finite Element method does this by producing a weak or
variational form of (2.3) for which the trial solution u” takes the form of (2.5) and the test space is



h
the space in which the functions 8;;' lie at each instant in time. In order to determine this space we
differentiate (2.5) with respect to 7 to give

3u2h el
67_ e 0_7—7;::1 amZ(T)am(£7 §(T))

ds

.am
= § amzam‘l' } Gy~ — Js _7

where this second term is present due to the time-dependence of each «a; through the time-dependence
of the mesh s, and the dot above a variable denotes differentiation with respect to 7. Hence

oult N oul ds
87_ — Z amzam . § E
N a R
. . ou;

= Z (amiam + Sm * Js ) ’ (26)
m=1 =m

and the following lemma allows this last term to be expressed in terms of more conventional deriva-
tives.

Lemma 2.1

9,k A, h h
g,?:l = —a, Yul', and hence _asuld = gmd ford=1,2. (2.7)

Proof See [13] (or refer to lemma 3.1 for a proof of a similar result).

As is indicated above, the MFE method is derived by producing a weak form of (2.3), using

h
the space in which the functions aau; lie as the test space. An initial attempt to do this yields the
following differential system:

N : h
< Z i Oy, + 5,

m=1

fore=1,2and n=1,..., N, and

N ah a h 2.k Ao h
ou® . ou’ ou’ d ou’
< i + 5y » o), o >= — < Foi(z,u", Vu'), =—% > + < — F3;;(z, v, V'), =
mZ:l( mi @m F S 3§m)7 05pe il u, Vut), 05y + dz; sij(z, w', Vur), 05pe
(2.9)
forn = 1,...,N and e = 1,2. In this notation < -,- > represents the usual L? inner product on .

It should be noted at this point however that the second term on the right-hand-side of (2.9) is
not generally defined, even in a distributional sense, when u/(z, 7) is piecewise linear. To overcome
this difficulty we express equations (2.9) in a formally equivalent form which is defined when uzh(g, T)

is piecewise linear for general choices of the function F(-,-,-). This is achieved by observing that
d ult oul d
- Foi— —Fg = no——{Fq— —F3;;} d
/Q{ )2 d 3]} Spe = /Qa 8$6{ )2 d.f] 73]} €L

(using lemma 2. 1)

d 0
/{an UZ F32] 65]’] + anEle} dﬁ (210)

dz; Oz,
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(proof:

d ouhl dul d 82uh
n——ZFi'_Fée'_nFe = —OQpn Z—Fi' Fz nFe
a dxj[axe 31 il —anky a 8xedxj[ 3ij] = O B, Lo+ onlin
(9uh 2uh
an an ‘nFe
+a 2035 + « Skdxaxk apl
3uh d du
= Fz 'rLFz )
0306 [ i+ onky du.

as required).
Using this new expression, (2.10),1in (2.9), we may now derive from (2.8) and (2.9) the following
definition of the Moving Finite Element equations for solving (2.3):

N . oul Jday,
< mz::1(amam + 5, E),an >= — < Fa 0, > — < Faj, i (2.11)
fori=1,2and n=1,..., N, and
N Ak a h
) ou; . Ou; ou Jday,
< mzzzl(amiam + 5, - &m)’ 5. >= /Q[O Fsii— Féoj]— 7z, dz —/ Fiea, dz (2.12)
forn =1,...,N and e = 1,2. (Note that it is also possible to derive the above system of equations

in an alternative fashion, using the original mollification technique of Miller which is described in
[17]. This is entirely equivalent to the formal approach that is used here, which is a generalization
of the integration by parts method first suggested by Mueller in [18].)

As has already been implied, the sets of equations (2.11) and (2.12) are referred to as the
Moving Finite Element equations. They form a system of ordinary differential equations which may
be written as

Awy(m) =g(y) (2.13)
where
y= (6117012781178127 ------ 7(1N17(1N275N175N2)T7
ay) = (ahov ?L{Lv au{b PEREEEE , & 707 aul aul
0s11° 0812 08N1 0sn2
0u2 0u2 oul 0u2
= (0 , Sy e ,0, ,
&2 = ( “ 0811 0812 on 08N1 05N2

A=< 21721 >+ < Q:)aQQT >

and g(y) is the known vector of right-hand-sides (from (2.11) and (2.12)). The matrix A(y) is often
called the “MFE mass matrix” by analogy with the usual Galerkin mass matrix.

Lemma 2.2 The matriz A(y) in (2.13) is posilive semi-definite and is singular if and only if the
MFE solution, u", has a directional derivative which is continuous at one or more of the knot points

515000 SN -

Proof Using (2.6), note that
3uh T. .T

2

Ir =00y =Y oa;.

11



Hence for any choice of the vector § we have

ou"
0< /( Ly gy = / iTaalydvV = if <a;al > 9 = §TAj (2.14)
Q 0T Q- = = =
so A is indeed positive semi-definite (it can easily be shown to be symmetric).
Now observe from (2.14) that A is singular if and only if there is some vector j(# 0) such that

8& = 0. That is, §7a; = 0 for both i = 1 and i = 2. However y a; can be zero (for y # 0) if and
only if some dlrectlonal derivative of w; is continuous at one or more of the nodes s;(7), ..., sn(7)
(by (2.6) and (2.7)). Hence A is singular if and only if there is at least one node for which the same
directional derivative of both w; and wq is continuous. ///

When the matrix A(y) in the system (2.13) is singular due to u* having a continuous directional
derivative at a knot poin_t7 the MFE solution will be described as “degenerate”. Otherwise it will be
said to be “non-degenerate”, in which case A(y) is strictly positive definite. The difficulties associated
with degeneracy along with the possibility of the area of one or more of the elements in the mesh
becoming non-positive as the knot points evolve are often cited as two of the major drawbacks of
the MFE method. One approach to overcoming these difficulties is to attempt to influence the nodal
motion by using penalty functions in the underlying minimization to which equations (2.11) and
(2.12) correspond. This is the approach of Miller et al ([9], [16], [17]) and Mueller and Carey [19] for
example. However, much of the work of Baines et al ([1], [2], [3], [14], [22]) suggests that the use of
these awkward-to-handle penalty functions may not always be necessary. No such penalty functions
will be used in this paper and so the only equations that we consider are those given by (2.13).

2.2 A Linear Example

Suppose that in (1.1), F(z,u, Vu) is given by (1.2) and we retain the homogeneous displacement
boundary conditions of subsection 2.1, then the parabolic differential equations (2.3) become

ou; J Ouy, .
= pb; s =1,2). 2.15
aT =p + 5 a z; [ gkt aﬂfg] (Z ) ( )
(Here we have used the fact that
Oug
F ] T C’L
317 Tk Oz 0

due to the symmetry Cijre = Cheij.)

We may still look for a time-dependent piecewise linear solution to this problem of the form (2.5),
and so the MFE equations (2.11) and (2.12) can again be derived. For this choice of F' equations
(2.11) reduce to

oul da,

Z / O, Oy, AT Qs + Zldz:l/ asmdan dzx $,,4 _/pb a, dz — /C’”kgaw 7z, dz  (2.16)
fori=1,2and n =1,..., N, and equations (2.12) reduce to
oul Oul
ot d mi Y R
Z/a La +ﬂ;;/asmdasm L S
oul gull 0 oul da, Ou
nCijke] d i k1 2.1
/Q =9 o Ox; dxgdxe[a Cig] x—l—/C]kga xy Ox; Ox. e (217)

12



forn=1,...,N and e = 1,2. (Again we have used the fact that

Jug
Faij = Cijrer—
1317 CJM 0z,
and so the right-hand-side of (2.12) is equal to
dul ('?UZ da,, 1oul auz day, da,
~C'i; e 017 biu;——] dz
/Q[axe Jkg@xg Oz;  20x; ]M&rg Oz, + P 0956] =
1oul 0 oul 0
- /9[5330]‘ ECUH% - E(Pbi)ui]an dz

for this choice of F'.)

3 An Optimal Mesh Using the MFE Method

In this section we demonstrate that if the MFE method is applied to equations (2.3) in the manner
described in subsection 2.1 then it is possible to obtain a steady solution of the MFE equations
(2.13) which corresponds to an optimal solution of (1.1) on an optimal mesh. As with the previous
section we will again assume that the boundary conditions associated with the problem are zero
displacement conditions (d = 0 in (1.4)), and in the first subsection we derive the general result and
in the second subsection we focus on the special case of the linear problem (2.15).

3.1 Optimality of the MFE Method

The main result of this subsection is to show that any stable, steady solution, y say, of (2.13)
corresponds to a finite element function »" which is a local minimizer of the stored energy functional
in (1.1) over all choices of the mesh as well as over all finite element functions on that mesh.

In order to prove this result it will be helpful first to establish some more notation and then to
prove a preliminary lemma.

e Suppose n € {1,..., N} is the number of an internal node of a triangulation of the domain Q.
Then we will denote by N(n) the number of elements in the triangulation that have this node
as a vertex. Further, fort = 1,..., N(n),let T'(n,t) be a unique ordering of these N(n) elements
which have a vertex at s,,, let Q7,4 be the region occupied by the triangle numbered T(n,t)
and let Ap(, ) be the area of this region.

o Given any triangle within a finite element mesh we may represent the vertices of that triangle
by a local numbering as 3, §; and $,.

e We may also define a standard triangle, A, as the triangle whose vertices are e¢; = (0,0)7,
e = (1,0)T and e, = (0,1)T.

e Now define a mapping from an arbitrary element within a triangulation onto that standard
triangle by

Ez,5) = D e,bu(z,5) (3.1)

where é&,(z, s) is the usual linear basis function (but with a local numbering corresponding to
a particular triangle) such that é,(s,,s) = 6,,, for p,v € {0,1,2}.

13



e The inverse of this mapping is
2
2(&,5) =Y 5,0u(6) (3.2)
u=0

where the dﬂ( ) are the piecewise linear basis functions on the standard triangle such that

Gu(e,) = 8- (Note that &,(€) = du(z(€,5), 5).)
Lemma 3.1 Given a triangle with vertices §,, 8,, 3, and area A(3y,3;,3,), then
J0A  0a,

5 = 8%/1 Jorv e {0,1,2} and e € {1,2}.

Proof Without loss of generality consider the case v = 0. Because each of &g, &; and @&y are area
coordinates we know that

do(z) = Az, 31,39)/A(30, 51, 5,) - (3.3)
Moreover, since g is affine we know that “0 is independent of z and so from (3.3) 57 0 5o Az, 81, 5,)
must be independent of z. This implies that A(so, $1,8,) must be independent of §;, and therefore
that 9 9
@14(35 181, 85) = D300 A(3p, 31, 37) -
Hence
dag  0A /
(9.’Ee N (%06

Since this argument is valid for any choice of v € {0, 1,2}, the result is proved. ///

We are now in a position to prove the following theorem.

Theorem 3.2 Suppose the stored energy functional E(u) = [o F(z,u, Vu) dz has a minimizer u(z)
which satisfies the corresponding Euler-Lagrange equations (2.1). Let

N
u'(z,7) = 2_: @ (T (2, 5(7))

be a continuous piecewise linear approzimation to this minimizer on a mesh s(7) with N free internal
knots s;(7),...,sn(7). Also let

_ T
y= (61117@1275117512’ ------ 7(1N17‘1N275N175N2)

and I1(y) = E(u"). Then
VI(y) = -9(y) ; (34)

Jor g(y) as in (2.13).

Proof We begin by observing, from (2.11) and (2.12), that g(y) consists of the following components:
Doy,
/ Faio, dz — / Faij5" ° (3.5)
fore=1,2and n=1,..., N, and

oul day,
/Q[O%F?’” — Féj] dax dz — / Fiea, dz (3.6)
e i

14



forn=1,..,Nande=1,2. We now show that the components of VI(y) are as claimed in (3. 4) by
demonstrating that (3.5) is —5;— fori=1,2and n = 1,..., N, and (3.6) is _8— forn=1,..,N
and e = 1,2.

For the first of these two cases it immediately follows from the definition of I(y) that for i = 1,2
andn=1,..., N,

o1

0t

aan] dz ,

/Q[FQZ(.T u", Vu" )y, + Fai(z,u", Vu )037] x

which is equal to —1 times (3.5) as required.
For the other case, for n = 1,..., N and e = 1,2, we have

; 5 N(n)
or 0 > / F(z,u", Vu") dz
Q1(n,t)

O5pe (?sm p

= Z%m H&%)M@NI%

dd Ox; dul 9
Zqﬁ& Qﬁ>/nzx|w£/Fm“£“ n|%+

0D;; dz
iy g et

where z(&, s) is given by (3.2), A is a standard triangle, and D,, represents the value of restncted

to the triangle T'(n, ). (Note that this value is independent of z since we are using p1ecew1se linear
finite elements.)

We may now make use of the fact that the Jacobian, |%|’ in the above transformation is equal

to 2A7(y, 1) on each triangle and so, using lemma 3.1,

0 dxz, Oa, dr

03m| Oz, |d_§ '

In addition we may use lemma 2.1 and the fact that u"(z) is piecewise linear to deduce that, on
each triangle T'(n,t),
0D;; d  Oul d . oul J dul . day, Oul

0Spe 35ne[8mj T 0x; Dspe - O—m][ dxe] T Oz 0z,

We can now deduce that

ol Oan (9uh (?u? day, (?ui
(9Sne = Z / {F ‘|‘ Flzézean + FQZ[a z; 6]ean as—m] - ,32]0—%0w | d‘E

(usmg the fact that, by (3.2), 2 St = bpeaty)

h
Z/ aan+Flean_F32]aan0u }d$
Q1(n, t) Oz

Te Oz,

(again using lemma 2.1)

h
/Q[F(?e] g Zngj]gan dCL‘—I—/ Fieay dz,

15



which is equal to —1 times (3.6) as required. ///

The above theorem tells us that when we have obtained a non-degenerate steady solution of the
Moving Finite Element Equations (2.13), and so g(y) = 0, then we must be at a stationary value
of the functional I(y), which is equal to E(u"). In order to show that this stationary point is in
fact a local energy minimizer we must also show that the Hessian of I is positive definite at this
point. This means that the Jacobian of g(y), which by (3.4) must be symmetric, must be shown to
be negative definite at such a steady solution of the Moving Finite Element equations. This is done
in the following proof.

Corollary 3.3 Any non-degenerate, asymptotically stable, steady solution of the Moving Finite Fl-
ement equations (2.13) for solving the problem (2.3) is an optimal finite element solution of the
elastostatic problem (1.1) on an optimal mesh.

Proof Suppose Y, s such a non-degenerate, asymptotically stable, steady solution of (2.13), then
A(y,) is positive definite (by lemma 2.2). Now take a small perturbation of y , given by y, + ey, ,
so that (2.13) becomes

Ay, + ey )Gy + €y) = 9(y, + €y, -
Linearizing this about y  gives

9, = A7 (y,) Dy(y,) v, »

where Dg(go) is the Jacobian of g with respect to y evaluated at y,. Now, the asymptotic stability
of y, implies that all eigenvalues of the product A_l(yO)Dg( ) must have negative real parts. Since
A‘l(yo) is strictly positive definite we deduce that Dg(y,) must be negative definite and so, from
(3.4), the Hessian of I(y) must be positive definite at y , as required. ///

The outcome of this therefore means that if we apply the approach outlined in subsection 2.1 to
solving the problem (2.3), then any steady solution of (2.13) that we obtain will be locally optimal
on an optimal mesh in the sense that it will be a local minimizer of the functional in (1.1) over all
variations in both the nodal displacement values and the nodal positions.

3.2 The Linear Example

We now return to the specific example where F(z,u, Vu) in (1.1) is given by (1.2), so the parabolic
equations (2.3) reduce to the linear form (2.15). In this case the results of the previous section show
that any stable steady solutions of the MFE equations (2.16) and (2.17) will be local minimizers of

1 [ oul oult

= L C kdg — bu; d 3.7

2 Jo 0z, ¥ ox, x/”“*"” (3.7)
over local variations in each a; and s, for k = 1,..., N.

For this particular example of a linear elasticity problem it is possible to derive a further corollary
to theorem 3.2.

Corollary 3.4 Let u(z) be the unique steady solution of (2.15) subject to zero displacement boundary
conditions on 0. (See [6, section 2.2], for example, for a proof of this existence and uniqueness
result.) Then if @"(z) is a stable steady solution of the MFE equations (2.16) and (2.17), it must be
a local minimizer of the error, u(z) — u"(z), in the energy norm:

(962 dek
H £ ”E 9 / z]kﬁ dﬁ . (38)
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Proof First observe that

1 J 0
lu-u"lf = 5/ a—wcui—u?)cm%(uk—u@dg
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(using the symmetry Cijrs = Ckgij)
d ouy, ) ou; Ouy,
= )+ /{ zykﬁ ] pbiul'} dz -I- 5 ) 92 Cijkﬂ% dz
= E@W)+= 9u; ikt —=— d
(M)‘FQ anjC]kzaw T
(since u is a steady solution of (2.15)). Hence any choice of {a;,s, : k= 1,..., N} which minimizes

E(u*) must also minimize || « — u" ||%. But from the result of corollary 3.3 it is known that @"(z)

corresponds to just such a choice, and so @h(g) must also be a minimizer of this error in the energy
norm (3.8), as claimed. ///

This result shows that for linear elastic structural analysis problems, the optimality results
of theorem 3.2 and corollary 3.3 imply that the Moving Finite Element method can yield a best
approximation to u(z) in the sense that the error is minimized in the energy norm (3.8). This local
minimum is again over all variations in the mesh as well as in the representation of the solution on
that mesh.

4 Examples and Discussion

We conclude the paper by introducing two numerical examples to verify the results of the preceding
sections and then by making a number of comments on the possible practical applications and
limitations of these results. In the following subsection the first example falls into the category of
those problems considered above: with zero displacement boundary conditions everywhere. The
second problem is perhaps a little more practical and makes use of traction boundary conditions:
although these are not considered explicitly in the above theory we see that few complications arise
as a result of their inclusion. In both cases it is demonstrated that the Moving Finite Element
method can indeed yield stable steady solutions which we may therefore deduce (and verify) are
locally optimal solutions on locally optimal meshes.

4.1 Computational Examples

The examples in this subsection are chosen for their simplicity and aim to illustrate the theoretical
results derived above. For this reason only the linear problem (2.15), whose exact steady solution is
the unique minimizer of (3.7), is considered computationally.

For the first example the domain, ©Q, is (0,1) X (0,1) and the elasticity tensor, C, is chosen
to correspond to an isotropic material with a non-dimensionalized Young’s modulus £ = 100 and
Poisson ratio v = 0.001. The values of pby(z) and pby(z) in (2.15) and (3.7) are chosen so as to yield
the exact solution

ur(z) = up(z) = 6427(1 — z1)23(1 - a2)
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which satisfies the zero displacement boundary condition (d = 0 in (1.4)) everywhere on 9f2. When
the resulting MFE equations (2.13) are solved using regular initial data on the regular initial mesh
shown in figure 1, the solution y(7) does indeed tend to a steady-state as 7 — oo. The second mesh
in figure 1 depicts the steady nodal positions and table 1 shows the final values of all of the degrees
of freedom (node positions, s;, and displacements, g, for i = 1, ...,25).

Having obtained a stable, steady MFE solution it is now possible to verify that it is optimal.
This may be done with the aid of some appropriate minimization software, such as the NAG library
minimization routine E04JAF ([20]) for example. Using this subroutine one can show that the MFE
solution given in table 1 is indeed a local minimizer of both the total stored energy (3.7), and the
error in the energy norm (3.8). (Note that this example was chosen so as to have a known analytic
solution, u(z), and so it is possible to verify explicitly that the error || u(z)—u"(z) || is minimized.)
In fact it turns out that the error in the Moving Finite Element solution is about 20% smaller than
the error obtained by a conventional finite element analysis on the original grid (the first grid in
figure 1).

We now consider a slightly more realistic problem which involves the use of traction boundary
conditions. Figure 2 depicts an overhanging cantilever beam with a vertical concentrated load at
the end of the cantilever. An initial finite element mesh is also shown. When this problem is solved
using the same elasticity tensor as in the previous example we again obtain a steady MFE solution
as 7 — 00. The final values of the 122 degrees of freedom (s; and g; for ¢ = 1,...,21, and g, for
i = 22,...,40) are tabulated in table 2 and the corresponding final mesh is illustrated in figure 3.
Note that the definition of the Moving Finite Element equations (2.13) has had to be altered slightly
to take into account the fact that some of the boundary, dy C 01 say, has traction conditions of the
form

Ouy,
Oy
applied on it (where n is the outward unit normal vector). This means that those nodes (numbered
22 to 40 in this case) on this part of the boundary no longer have their displacement values prescribed
and so these become additional dependent variables in (2.13). For simplicity we have chosen still to
keep the positions of all of the nodes on the boundary fixed although in theory these too could be
allowed to vary (along the boundary). For a more detailed description of how the derivation of the
MFE equations is effected by the use of these boundary conditions see [11] or [12].

Again we may consider the stable steady MFE solution that has been tabulated, this time in
table 2, and verify that it too is optimal. Since for this example we do not know the exact solution
of the problem we are only able to verify that our discrete solution minimizes the stored energy
function, which for this problem is

njCijM =MN;0;; = 0; s (4.9)

1 ou; Oug
— | —Cijp—=—dz — biu; de — [ 6;u; ds . 4.10
2 Jo 0z, ]Mé?xg T /QP Ui ax / u; &5 ( )

Here 0y and 6; are as in (4.9) and the addition of the extra boundary integral term to (3.7) is due to
these traction boundary conditions (4.9). Use of the NAG routine EQ4JAF does indeed verify that
the solution given in table 2 is a local minimizer of (4.10) over all variations in nodal positions, s;
(i=1,...,21), and displacements, a; (i = 1, ...,40).

4.2 Discussion

On first inspection it may appear that the optimal mesh shown in figure 3 is not particularly ideal
for representing the solution to this overhanging cantilever beam problem. It is an optimal mesh
however. The reason for this apparent inconsistency is that the mesh derived in solving this problem
is constrained to be of the same geometric topology as the initial regular mesh shown in figure
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2. This is undoubtedly one of the practical drawbacks of the MFE method as outlined here. A
possible approach to overcoming this is to allow occasional remeshing of the node points so as to
alter the connectivity, C, of the grid (see [15] for example, where the additional feature of adding
and removing nodes is also considered). Another drawback in this particular example is that the
movement of the nodes is restricted only to those points lying inside the domain 2. This causes
a significant amount of stretching to occur in a number of elements situated next to the boundary
of the domain; something which would be alleviated if nodes on the boundary were free to move
along it. In theory there is no reason why constrained motion of nodes along the boundary cannot
be allowed in the MFE method (see [11] and [12] for example) and the theoretical results of section
3 can be extended accordingly. The practical difficulties of implementing this in software are more
non-trivial however (although the importance of allowing such tangential motion of the boundary
nodes suggests that this programming effort is likely to be worthwhile).

Another practical drawback of using the Moving Finite Element method as described in section 2
is the computational overhead associated with it. By allowing the nodal positions to become degrees
of freedom we effectively double the size of the discrete problem that must be solved. Moreover,
since equations (2.13) are dependent upon the artificial time parameter 7, the work involved in
solving them is significantly more than that associated with a more conventional discretization of
(1.1) or (2.1). This does not mean however that the method and the results of section 3 cannot be
of significant practical value.

Firstly, there is no need to solve equations (2.13) with particularly high accuracy: a nearly steady
solution (within a couple of percent of the true steady solution for example) will provide an almost
optimal mesh, and a good initial estimate of the displacements, which can be used with a standard
finite element analysis code. This will allow a considerably more accurate solution to be obtained
than would be possible on a uniform mesh.

Secondly, and perhaps more practically, equations (2.13) need only be solved using a coarse finite
element mesh. This would yield an optimal coarse initial mesh upon which to base an adaptive finite
element analysis using h-refinement. Since the efficiency of most h-refinement algorithms is heavily
dependent upon the choice of coarse mesh that is used and it is known that this coarse mesh is
optimal, it is to be expected that this combination of r- and h-refinement should work well. Figure 4
illustrates how this looks in practice by showing the effect of local h-refinement on the grid that was
produced in the solution to the cantilever beam example (figure 3) above. Those elements with the
largest contributions to the functional in (1.1) have been found at very little extra computational
cost and then locally refined, to give the mesh shown. A more accurate solution can now be found
on this mesh in the usual way.

The numerical examples discussed above and in the previous subsection are both for isotropic
linear elastic problems however the theory of sections 2 and 3 extends to non-isotropic, nonlinear
cases too. Whilst these results are therefore of some significance in their own right it remains to be
seen whether or not the Moving Finite Element method has a practical role to play in structural
analysis. This will depend very much upon whether it is possible to utilize its strong theoretical
properties to produce reliable and efficient numerical software, possibly in conjunction with other
forms of adaptive refinement as suggested in figure 4. Further work is clearly needed in this area.

A final point which has not been addressed at all in this paper is that of what should be done if
the solution of equations (2.13) is such that one or more of the finite elements shrinks to zero area
as 7 evolves. In theory there is nothing to prevent such an occurrence although it rarely appears
to happen in practice. It would be useful understand exactly how and when this will occur and to
implement a suitable strategy, such as regridding the mesh points, for when it does.
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Figure 1: The initial and final meshes in the first example.

Figure 2: The initial mesh for an overhanging cantilever beam with a vertical concentrated load at
the end of the cantilever (the second example).

(——

L

Figure 3: The final mesh in the second example.
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Figure 4: The effect of local h-refinement on the final mesh in the second example.

Table 1: The values of the 100 degrees of freedom at the steady MFE solution to the first example

problem.
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(0.69364970,0.69364970)7
(0.22589896,0.91261447)7
(0.59090799, 0.59090799)
(0.91261447,0.22589896)7
(0.80526143,0.80526143)T
(0.53865798, 0.69448498)7
(0.60966146,0.75403842)T
(0.65144442,0.65144442)T
(0.14283922,0.95538455)"
(0.12260433,0.75885079)"
(0.14819209, 0.43261430)"
(0.25397459,0.25397459)7
(0.69448498,0.53865798)
(0.75403842,0.60966146)7
(0.43261430,0.14819209)
(0.75885079,0.12260433)7
(0.95538455,0.14283922)
(0.81816556,0.64261816)
(0.73657273,0.73657273)7
(0.64261816,0.81816556)
(0.96515183,0.34947743)
(0.89237610,0.69457314)T
(0.96278242,0.96278242)7
(0.69457314,0.89237610)7
(0.34947743,0.96515183)7

N

(1.3550871,1.3550871)
(0.18986173,0.19742885)7
(1.2750743,1.2750743)7
(0.19742885,0.18986173)T
(1.0431178,1.0431178)7
(1.2403749,1.2463933)7
(1.2843933,1.2818275)7
(1.3733659, 1.3733659)7
(0.044817489,0.044377864)7
(0.11494611,0.11378281)7
(0.14421655,0.14233981) "
(0.13040246,0.13040246)T
(1.2463933,1.2403749)"
(1.2818275,1.2843933)T
(0.14233981,0.14421655)
(0.11378281,0.11494611)7
(0.044377864,0.044817489)T
(1.1445529,1.1530219)"
(1.2926651,1.2926651)7
(1.1530219, 1.1445529)7
(0.17348793,0.16987146)
(0.80121411,0.81922981)7
(0.15449516,0.15449516)7
(0.81922981,0.80121411)7
(0.16987146,0.17348793)7
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Table 2: The values of the 122 degrees of freedom at the steady MFE solution to the second example

problem.
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(0.61456606,0.47923320)7
1.3508914,0.33709922)%
1.6658348,0.39799753)T
1.9843904,0.51931928)7
2.2980489, 0.43062728)7
2.5632998, 0.48729489)7
2.9466186,0.42107679)"
(0.55265310,0.26833740)"
(0.98419625,0.25049591)7
(1.6552233,0.25631920)7
(1.9466160,0.25760568)T
(2.1329383,0.23533503)"
( )
( )

2.4721697,0.26354485)
2.8670582,0.29304043)7
(0.54078305,0.039875678)
(1.2195241,0.10503114)T
(1.7953244,0.13322287)T
(1.9952269, 0.037836236)"
(2.2766370,0.10919590)7
(2.5329448, 0.086488793)"
(2.9324739,0.19241566)T

(0.0057128317,0.0024057717)7
(0.018124359,0.0039853696)"
(0.034182316,0.0039527141)"
(0.083173394, —0.020636952)7
(0.093319382, —0.11889211)"
(0.13994718, —0.24150486)"
(0.12854469, —0.49384140)7
(0.0040340932, 0.0014452070)
(0.0083095121, 0.0028406895)"
(0.019191152,0.0025423956)%
(0.027981717, -0.013151568)"
(0.025296867, —0.054448789)"
(0.026298447, —0.19275032)7
(0.037755895, —0.43405716)"
(0.00084279350,0.00033244597)7
(0.0053202886, 0.0010113499)7
(0.0096274066, 0.00040332311)%
(0.00094441866, —0.0036342981)"
—0.024969937, —0.10738732) "
—0.067484112, —0.22341877)7
—0.033494436, —0.48334012)7
0.0030501201,0.0014523155)%
0.0046166793,0.0025083792)7
(0.013060042,0.0045300761)%
(0.033228801,0.0072372634)"
(0.10004046, —0.020532766)"
(0.19505958, —0.20246448)"
(0.25710490, —0.53272069)7
(0.26893202, —0.92149933)"
(0.27413503, —1.3156280)7
(0.0031526205, 0.0014838105)"
(0.15685043, —1.3097350)7
(0.0025270661, 0.0013058087)7
(0.042305854, —1.3076245)"
(0.0014285077,0.00090359659)"
(—0.71807578, —1.3068212)"
(—0.11364067, —0.20379047)7
(—0.17115245, —0.53300436) 7
(—0.18317899, —0.92003269)
(—0.18710608, —1.3067605)"
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