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Spectroscopy is an important tool for probing the properties of materials, chemicals and bio-
logical samples. We design a practical transmitter-receiver system that exploits entanglement to
achieve a provable quantum advantage over all spectroscopic schemes based on classical sources.
To probe the absorption spectra, modelled as pattern of transmissivities among di�erent frequency
modes, we employ broad-band signal-idler pairs in two-mode squeezed vacuum states. At the re-
ceiver side, we apply photodetection after optical parametric ampli�cation. Finally, we perform a
maximal-likehihood decision test on the measurement results, achieving orders-of-magnitude-lower
error probability than the optimum classical systems in various examples, including `wine-tasting'
and `drug-testing' where real molecules are considered. In detecting the presence of an absorp-
tion line, our quantum scheme achieves the optimum performance allowed by quantum mechanics.
The quantum advantage in our system is robust against noise and loss, which makes near-term
experimental demonstration possible.

Quantum sensing and metrology [1� 4] harness nonclas-
sical resources to substantially improve the performance
of positioning and timing [5], target detection [6� 10, 14],
digital reading [4], photometry [12, 13], distributed sens-
ing [15� 20], and most prominently the Laser Interfer-
ometer Gravitational-wave Observatory (LIGO) [ 21� 23].
There have been attempts to develop quantum-metrology
protocols [24, 25] for spectroscopy [26� 30], an indispens-
able tool for science and industry. In this regard, the
entangled NOON state [31, 32] and its generalizations
have been considered in interferometric estimation of loss
and phase [33]. However, NOON states are hard to gen-
erate and lack robustness against imperfections. As a
more experimentally accessible approach, entangled pho-
tons produced by spontaneous parametric down conver-
sion have been utilized for loss estimation [34� 39]. In
particular, Refs. [37� 39] reported nonlinear interferomet-
ric probing of mid-infrared absorption lines using visible
photons. Despite the technical bene�ts, the quantum ad-
vantage over the classical schemes remains unclear.

In this work, we investigate entanglement-assisted ab-
sorption spectroscopy (EAAS), as an e�ective means to
achieve a provable quantum advantage over all schemes
using classical sources. As depicted in Fig. 1, EAAS uses
a source of multichromatic entangled signal-idler mode
pairs from a nonlinear media, each being in a two-mode
squeezed vacuum (TMSV) state and anti-correlated in
the frequency domain. The signals with di�erent frequen-
cies interact with the sample and experience absorption
di�erently, while the idlers are stored locally. Then an op-
tical parametric ampli�er (OPA) is applied on the return
signal-idler pairs, followed by photodetection to classify
samples among a plural of possibilities.

� zhuangquntao@email.arizona.edu

EAAS achieves a strict quantum advantage in the dis-
crimination of arbitrary absorption patterns. Before ad-
dressing the general case, we begin with two basic mod-
els: absorption detection�the binary testing of a sin-
gle absorption line at a speci�c frequency, and peak
positioning�pinpoint a given number of absorption lines
within a frequency spectrum. Then we consider the clas-
si�cation of several large organic molecules, and use real
spectrum data [40] to simulate the performance against
the optimum classical performance in `wine-tasting' and
`drug-testing'. Let us remark that all components in our
EAAS are o�-the-shelf, and the quantum advantage is ro-
bust against excess noise and idler storage loss, making
experimental implementations possible in the near-term.

Pattern recognition on absorption spectra.� In absorp-
tion spectroscopy [26], each speci�c composition is asso-
ciated with a unique absorption spectrum determined by
measuring the transmissivities across the spectrum the
input light. Therefore, the overall problem of compo-
sition identi�cation can be formulated as a hypothesis
testing between several known patterns of the frequency-
dependent transmissivities, as formulated below.

The multichromatic input light is decomposed into m
discrete frequency modes, denoted by the annihilation
operators f a` gm

` =1 . The input-output relation for each
modea` is modelled as a thermal loss channelL � ` ;N B [1]
described by the Bogoliubov transformation

a` !
p

� ` a` +
p

1 � � ` è ; (1)

where � ` is the transmissivity and è is a thermal mode
with mean photon number NB =(1 � � ` ) to model the
environmental thermal noise, which is negligible (NB �
0) at the optical wavelengths. However, to demonstrate
the robustness of the quantum advantage,NB > 0 is
considered for generality.

The pattern of the transmissivity coe�cient f � ` gm
` =1

ar
X

iv
:2

00
9.

12
02

6v
1 

 [q
ua

nt
-p

h]
  2

5 
S

ep
 2

02
0



2

/»/» /»/» /»/» /»/» /»/»

Signal

Idler

/»/» /»/» /»/» /»/» /»/» /»/» /»/» /»/» /»/» /»/» /»/» /»/»

Source

/»/»

Sensor Quantum Receiver

Sample

Figure 1. Diagram of the entanglement-assisted absorption
spectroscopy. The source generates multi-chromatic entan-
gled signal-idler pairs via a nonlinear process. The signals
interact with the sample and then go through another non-
linear process jointly with the idlers at the quantum receiver.
Photo detection extracts the absorption coe�cients at di�er-
ent frequencies.

reveals the sample's absorption spectrum. We usually
have prior information about the possible patterns, there-
fore the task is to discriminate betweenH patterns, each
described by a vector� (h) = f � (h)

` gm
` =1 of transmissivi-

ties, where1 � h � H is the index of the hypotheses and
` is the frequency-mode index (see Ref. [42] for a channel
formulation). In general, we allow M repetitions of the
probing attempt to make a decision.

Before addressing the general pattern-recognition
problem described above(see Fig. 1), we consider two
simpli�ed problems: absorption detection and peak po-
sitioning.

In absorption detection, the goal is to determine
whether absorption occurs at a single frequency mode
(m = 1), therefore there are H = 2 hypotheses, with
transmissivities � B and � T corresponding to the absence
and the occurrence of absorption. In peak positioning,
one aims to pinpoint a single absorption peak (target)
within m frequencies, therefore we haveH = m possible
patterns. Each pattern h has a single absorption peak
with transmissivity � T for frequency modeah while all
other frequency modes see a background transmissivity
� B , i.e., � (h)

` = � T if ` = h, and � B otherwise.

The problem of absorption detection can be general-
ized to �nding the positions of k absorption peaks in a
spectrum of m frequencies, which we call k̀-peak posi-
tioning'. In this more general problem, k targets with
transmissivity � T are hidden amongm � k backgrounds
of transmissivity � B , so that we have a total of H = Ck

m
hypotheses, whereCk

m is the binomial coe�cient of m-
choose-k. Note that, while we consider these simple ex-
amples to introduce our results, our methodology applies
to the recognition of arbitrary patterns, such as the com-
plex molecules considered at the end of this paper.

Classical lower bounds.� In a classical spectroscopy
scheme, one sends an arbitrary mixture of coherent states
as input state. Given mMN S mean total number of pho-
tons at the input, where NS is the average mean photon
number per frequency mode, the minimum error proba-
bility a�ecting the discrimination between the ensemble
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Figure 2. Schematic of receiver. Signal beams are irradiated
over the sample, modeled by frequency-dependent transmis-
sivities � ( h ) = f � ( h )

` gm
` =1 . The modulated beams go through a

single optical parametric ampli�er (OPA). Finally spectrally-
resolving photodection (PD) o�ers a 2mM -dimensional count,
based on which the maximum-likelihood decision ~h is made.

of patterns f � (h) gH
h=1 is lower bounded by

PC;m;LB =
2

(H � 1)H 3 � (2)

"

min
f X ` g

X

h0>h

exp

 

�
1
2

mX

` =1

(
q

� (h)
` �

q
� (h0)

` )2� B X `

!# 2

;

where � B = 1=(1 + 2NB ) and the minimization is un-
der the energy constraint

P m
` =1 X ` � mMN S (See [42]

for a proof). Applying Eq. (2) to the absorption de-
tection case, we obtain the lower bound PC; 1;LB =
e� � B MN S (

p
� B �

p
� T )2

=4. In this case, a slightly improved
bound can be obtained [4]

PC; 1;LB =
1
2

�
1 �

p
1 � e� � B MN S (

p
� B �

p
� T )2

�
: (3)

Specifying Eq. (2) to the problem of k-peak positioning,
one obtains [42]

PC;m;LB =
Ck

m � 1
2Ck

m
e� 2wm;k � B MN S (

p
� B �

p
� T )2

; (4)

wherewm;k = kCk
m � 1=(Ck

m � 1). The latter term is equal
to 1 for a single peak, andwm;k ' k(1� k=m) for k peaks.
When NB = 0 , the lower bound is tight in the error ex-
ponent for absorption detection and 1-peak positioning.

Entanglement-assisted strategy.� To achieve a quan-
tum advantage, we exploit entanglement at the input,
as given by M copies of a TMSV state � ME for each
signal-idler pair [42]. Each idler mode is stored lo-
cally, with imperfections modeleld as a pure-loss chan-
nel L � I ;0 of transmissivity � I (with a mode transfor-
mation aI !

p
� I aI +

p
1 � � I v and v being a vac-

uum mode); while the signal modes are sent to probe
the patterns. For the special binary case of absorp-
tion detection, the error probability is bounded by the
asymptotically-tight quantum Cherno� bound (QCB),
which can be e�ciently calculated [ 2, 3] from the return
Gaussian states� (T=B ) composed ofM identical copies
of L � T =B ;N B 
L � I ;0 (� ME ). For the general pattern case,
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Figure 3. Error rate versus number of probing modes with
practical parameters NS = 1 , � T = 0 :75, and � B = 0 :95. (a)
Absorption detection. EA nulling receiver (solid orange) is
compared with classical lower bound of Eq. (3) (dot-dashed
black), QCB (dashed black), and the EA homodyne receiver
(solid purple). (b) Peak positioning. Single-peak positioning
(solid green) and double-peak positioning (solid blue) with
m = 10 frequency slots. Single-peak positioning with m =
100(solid red) provided as a reference. Classical lower bounds
given by Eq. (4) (dashed, accordingly colored).

a simple tool like the QCB is missing and, for this reason,
we need to design an explicit receiver that is able to show
a quantum advantage.

Entanglement-assisted receiver design.�We begin our
description of the receiver design with a simple case so
as to provide its basic modus operandi. Consider the
ideal case of� B = � I = 1 and NB = 0 . Then the
returned state � (B ) = � 
 M

ME consists ofM copies of the
ideal TMSV state (while � (T ) is mixed because� T < 1).
Suppose that we perform a two-mode squeezing (TMS)
operation S (via an OPA), that precisely anti-squeezes
each TMSV state � ME . Then we can `null' S(� (B ) ) to
tensor products of vacuum, whileS(� (T ) ) is non-vacuum.
Therefore, a simple photon counting on all the signals
and idlers after the TMS operation can identify the input
state � (B ) if there is any photon count. Errors only occur
if we obtain a zero count onS(� (T ) ): when this happens,
we can only guess randomly, with an error probability
Rm . Note that this nulling strategy has been used in
classical schemes [42], whose performance is bounded by
Eqs. (3) and (4). OPA has also been utilized in quantum
illumination [ 52], however without exploiting correlations
in the patterns.

Let us use a compact notation, wherem = 1 corre-
sponds to absorption detection, for whichR1 = 1=2; and
m � 2 corresponds to single-peak positioning, with one
copy of S(� (T ) ) among m � 1 copies ofS(� (B ) ), so that
Rm = ( m � 1) =m. Accounting for the zero counts, the
error probability for absorption detection ( m = 1) and
single-peak positioning (m � 2) is given by [42]

PE;m = Rm

�
1

1 + NS (1 �
p

� T )

� 2M

: (5)

When NS � 1 and M � 1, we have PE;m '
Rm exp

�
� 2MN S

�
1 �

p
� T

��
. Comparing this with the

classical lower bounds in Eqs. (3) and (4), we see that

Figure 4. (a)(b) Error probability of EAAS PE;m versus
transmissivities � B and � T ; (c)(d) log10 PE;m versus idler loss
1� � I and thermal noise NB at �xed � T = 0 :75 and � B = 0 :95.
absorption detection ( m = 1 ) in (a)(c) compared with single-
peak positioning (m = 100) in (b)(d). M is chosen to �xed the
classical lower bounds to 0:01 [42]. NS = 1 is assumed. Red-
crossed diagonal region in (a)(b) represents the degenerate
case� B = � T .

EAAS has an exponential advantage:PE;m =PC;m;LB '
2 exp (� MN S (1 � � T )) for absorption detection, and '
2 exp

�
� 2MN S

� p
� T � � T

��
for single-peak positioning.

In fact, Eq. (5) achieves the QCB [42] and therefore it is
optimal for absorption detection.

The above receiver design, and the resulting entangle-
ment advantage, can be generalized to cope with more
complex spectrum patterns and the presence of noise and
idler loss (NB > 0; � I < 1), as described by the follow-
ing strategy (see Fig. 2): (i) Apply TMS operation with
gain G` to each of the return signal-idler pairs a00

S` ; a00
I`

to obtain new modesaS` =
p

G` a00
S` �

p
G` � 1ay

S` and
aI` =

p
Ga00

I` �
p

G � 1ay
S` . (ii) Perform photon counting

measurement on all signal and idler modesf aS` ; aI` g's to
obtain the results as two vectorsn S and n I . (iii) Finally,
apply maximum-likelihood (ML) decision rule, i.e., make
the decision~h through

~h = arg max
h

Pm (n S ; n I jh); (6)

where Pm (n S ; n I jh) is the conditional probability of ob-
taining the outcomes n S ; n I if the true hypothesis is h.

To complete the description of our receiver, we need
to determine the gain G` 's and specify the conditional
probabilities. Let us begin with the cases of absorption
detection and peak positioning, where we adopt uniform
gain G` = G; the ideal situation is to get a quantum state
close to vacuum; however, if� B < 1, it is only possible
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to reduce the signal part of � (B ) to vacuum, by choos-
ing G = 1 + NS � B =(1 + NS (1 � � B )) . In the presence
of noiseNB > 0 and idler loss

p
1 � � I > 0, `nulling' to

vacuum is not possible but the same choice of gain still
provides an appreciable advantage over classical schemes.
For general patterns, due to the absence of symmetry we
consider optimization over the gain G` 's at di�erent fre-
quency modes. Moreover, as some frequency windows
may contain more essential information about the hy-
potheses, we also allow the optimization over the energy
distribution f NS` g of the TMSV in di�erent frequency
modes. In these cases, although the `nulling' decision
rule does not apply, the ML decision rule in Eq. (6) still
leads to an advantage [42].

Now let us compute the conditional probabilities.
With M identical repetitions, the probability of ob-
taining the mM -dimensional measurement resultsn S =
f nSL ;k gM;m

L =1 ;k =1 and n I = f nI L ;k gM;m
L =1 ;k =1 , conditioned

on pattern h, is

Pm (n S ; n I jh) =
MY

L =1

mY

` =1

P(nSL;` ; nI L;` j� (h)
` ; G` ; NS` );

(7)

where each term is a function of the subsystem transmis-
sivity � (h)

` , the TMSV source energyNS` and the gain
choiceG` [42].

With all these theoretical elements in our hands, we
can numerically evaluate the error probability PE;m for
the problems of absorption detection, peak positioning
and general spectrum recognition via Monte Carlo simu-
lations [42]. Although we consider equal priors for sim-
plicity, our ML decision can generally be applied to arbi-
trary prior probabilities for the patterns.

Detecting and positioning absorption peaks.�In order
to investigate the problems of absorption detection and
peak positioning, we assume a background transmissiv-
ity � B = 0 :95 and a target transmissivity � T = 0 :75.
In particular, we study their error probabilities in terms
of the number of modesM . For absorption detection,
Fig. 3(a) shows that our EA nulling receiver asymptoti-
cally achieves the QCB [4], outperforming both the best
known receiver, the EA homodyne receiver [3, 42], and
the classical lower bound of Eq. (3). In fact, we can
verify that our receiver can asymptotically saturate the
QCB for absorption-detection with general choices of� B
and � T [42]. For peak positioning, as shown in Fig. 3(b),
our EA receiver is able to outperform the classical lower
bound of Eq. (4) by orders of magnitude.

In a practical scenario, we are interested in how
much EAAS can enhance the performance, when classical
schemes fail to perform well. To showcase the advantage,
in Fig. 4, we �x the classical lower bounds in Eqs. (3)
and (4) to be 0:01 and plot the error probability PE;m of
EAAS. We start with tuning the transmissivities � B and
� T in Fig. 4(a)(b). Then we �x � T = 0 :75 and � B = 0 :95
and study how the quantum advantage varies with idler
loss1� � I and noiseNB in Fig. 4(c)(d). The white dashed

Figure 5. Identi�cation of H = 3 molecules with m = 4 fre-
quency slots, for wine-tasting in (a)(b)(c) and drug-testing in
(d)(e)(f). (a)(d) are m = 4 sampled discrete spectra on the
FTIR spectra in (b)(e). (c) and (f) show the logarithmic error
rate of EAAS, with NS = 1 . `EAAS' assumes a uniform distri-
bution of photons at the input modes (solid orange), while nu-
merically optimized energy distribution presented in `EAAS ? '
(solid purple). The classical lower bound (dot-dashed black)
and homodyne detection (solid black). Insets of (c) and (f):
error probability ratio of EAAS with gain optimization af-
ter energy-distribution optimization and EAAS with merely
energy-distribution optimization.

lines divide the parameter space with/without quantum
advantage. We can see that the advantage is remarkable,
and also survives for a large range of parameters, espe-
cially when � B ' 1 as in practice. The robustness of
the advantages to imperfections reveals a clear possibil-
ity for a near-term experimental demonstration. See [42]
for more parameter settings.

General spectrum recognition.� EAAS can also iden-
tify actual molecules, each of which is associated with a
unique absorption spectrum. As a taste of �avor, we be-
gin with `wine-tasting'�where one discriminates three
common alcohol-like liquids. Methanol could be lethal
if mistaken for ethanol (alcohol). Meanwhile, the alco-
hol, as time goes by, will be dehydrogenated to ethanal,
whose concentration provides the age of a vintage [53].
To consider larger molecules, the second example, `drug-
testing', involves three drugs: phenyl salicylate, methyl
salicylate, and benzoic acid. In both examples, a non-
destructive testing method is preferred, as we shall con-
duct with the extremely weak quantum light source. The
transmissities are taken from real Fourier-transform in-
frared (FTIR) spectra [ 40]. These spectra are sampled by
averaging them within each ofm = 4 frequency slots [42].

As the classical benchmark, we calculate the ultimate
lower bound using Eq. (2) and the performance of a ho-
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modyne receiver on coherent-state input with the same
energy distribution (distribution of mean photon number
over frequency modes) optimized in Eq. (2). Fig. 5 shows
that EAAS with uniform energy distribution and G = 1
(orange) outperforms the homodyne receiver (black solid)
in both cases. Then, in drug-testing, EAAS beats the
classical lower bound by orders of magnitude, while, in
wine-tasting, this advantage is less pronounced. This is
mainly due to the classical lower bound being not tight,
and uniform energy being sub-optimum, as we see EAAS
with energy optimization (purple) enables much better
advantages. Although gain optimization only leads to a
slight advantage over the energy-optimized EAAS, as ev-
ident in the inset plots of Fig. 5(c)(f). In the noisy case,
it enables a much better enhancement [42].

Now we address phase noise common in experiments.
Phase tracking can typically eliminate the time-invariant
phase noise, so the above results directly hold; when
phase tracking is not possible, we can model the phase
noise by adding a` ! ei� ` a` in Eq. (1). The random
phase � ` clearly complicates the problem. However, if
we choose uniformG = 1 (i.e., not applying OPA before
photodetection), the same results of the orange curves in

Fig. 5(c)(f) hold, and the classical performance can only
be worse than the current benchmarks (black). Thus, the
quantum advantage sustains.

Conclusion.� We have devised a near-term feasible
EAAS scheme that outperforms any classical strategy
in determining the presence and position of spectral ab-
sorption peaks. The EAAS scheme saturates the QCB
in binary detection of a single absorption line and o�ers
orders-of-magnitude advantage in error probability in the
discrimination of sampled spectra of molecules even in
the presence of experimental nonidealities.
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Supplemental Materials: Entanglement-Assisted Absorption Spectroscopy

I. CHANNEL SET-UP

In the main paper, we mainly utilize input-output re-
lations to describe the quantum channels, here we make
the quantum channel notations explicit.

The overall H patterns being discriminated can each
be modelled as quantum channelsfJ (k ( h ) ) gH

h=1 act on
m subsystems. They are given byJ (k ( h ) ) = 
 m

` =1 � (h)
S`

;

where each sub-channel� (h)
S`

�
�

L � ( h )
` ;N B

� 
 M
is asso-

ciated with M probings of subsystemS` and L �;N is a
thermal loss channel with transmissivity � , noiseN .

In the absorption detection case,H = 2 , m = 1 , and
we denote the two channels as� (T=B ) =

�
L � B=T ;N B

� 
 M
.

The transmissivities � B and � T correspond to the ab-
sence (background channel� (B ) ) and the occurrence
(target channel � (T ) ) of absorption.

In the peak positioning case, we haveH = m possi-
ble global channels, whereJ (k ( h ) ) has a target channel
� (T ) at subsystemSh while the rest are transparent back-
grounds � (B ) . The corresponding pattern is therefore
described by� (h)

` = � T if ` = h, and � B otherwise.
In the general pattern case, we consider discrimination

between the ensemble of channelsfJ (k ( h ) ) gH
h=1 .

When we introduce entanglement assistance, each
sub-channel is extended to� (h)

S`

 D � I

I `
, where D � I =

�
L � I ;0

� 
 M
and L � I ;0 is a noiseless lossy channel mod-

elling the imperfections on each idler systemI ` . Then
the return state for each sub-channel is� (h)

S`
= � (h)

S`



D � I
I `

�
� 
 M

ME

�
. For the case of target/background channels,

the return states

� (T=B ) = � (T=B ) 
 D � I
�
� 
 M

ME

�
: (S8)

II. COVARIANCE MATRIX AND TWO-MODE
PHOTON STATISTICS

A. Covariance matrix derivation

First, we brie�y introduce the notion of Gaussian
states [S1], whose Wigner functions have a Gaussian
shape. An n-mode Gaussian state� comprising modes
ak ; 1 � k � n, is fully characterized by the mean
and the covariances of real quadrature �eld operators
qk = ak + ay

k ; pk = i
�

ay
k � ak

�
. Formally, we can de�ne a

real 2n-dim vector of operators x = ( q1; p1; � � � ; qn ; pn ),
then the mean �x = hx i � and the elements of the2n-by-2n
covariance matrix are given by

� ij =
1
2

hfx i � �x i ; x j � �x j gi � ; (S9)

where f ; g is the anticommutator and hAi � = Tr ( A� ).

An important example of Gaussian state is TMSV,
given by the wave-function

� ME =
1X

n =0

s
N n

S

(NS + 1) n +1 jni S0 jni I 0 ; (S10)

where jni is the number state. From the above wave-
function, we can obtain the covariance matrix of a TMSV
as

� TMSV =
�

(2NS + 1) I 2C0Z
2C0Z (2NS + 1) I

�
; (S11)

where I , Z are two-by-two Pauli matrices, and C0 =p
NS (NS + 1) is the amplitude of the phase-sensitive

cross correlation.
We utilize multiple copies of the signal-diler pair

f a0
S ; a0

I g in a TMSV state to probe the sample. To begin
with, we consider the case with no phase noise, where
each signal goes through the channelL � S ;N B , giving the
output

a00
S =

p
� Sa0

S +
p

1 � � Se; (S12)

where e mode is in a thermal state with mean photon
number NB =(1 � � S ). While the idler mode a0

I goes
through a pure loss channelL � I ;0.

a00
I =

p
� I a0

I +
p

1 � � I v; (S13)

where the environment modev is in vacuum state. The
state � � 0 ( � S ) of each of the signal-idler pairf a00

S ; a00
I g has

the covariance matrix

� 0 (� S ) =
�

(2(� SNS + NB ) + 1) I 2CpZ
2� S � I C0Z (2� I NS + 1) I

�
;

(S14)

with the signal-idler cross correlation Cp =p
� S � I NS (1 + NS ).
In the case of absorption detection, we have� S = � B

or � S = � T . With each Gaussian mode-pair of the re-
turn state speci�ed by Eq. (S14), we can obtain the QCB
on the error probability of the binary hypothesis testing
through methods in Ref. [S2],

PE � PQCB = ~QM
s =2; (S15)

where ~Qs = inf 0� s� 1Tr � s
� 0 ( � B ) �

1� s
� 0 ( � T ) . The QCB is

asymptotically tight as the mode number M ! 1 and
can be e�ciently calculated in our case [S2, S3].

On the receiver side, we apply a two-mode squeezing
process, parametrized by the gainG � 1, to obtain re-
turned signal-idler mode pairs f aS ; aI g

aS =
p

Ga00
S �

p
G � 1ay

I ; (S16)

aI =
p

Ga00
I �

p
G � 1ay

S : (S17)
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They are in a Gaussian state with covariance matrix

� (� S ) =
�

E I CZ
CZ SI

�
: (S18)

Denote G = 1 + N 0
S with the e�ective photon number

N 0
S , we have the variances of signal and idler

E = 1 + 2 � SNS � 4Cp

q
N 0

S (1 + N 0
S )

+ 2N 0
S (1 + � I NS + � SNS ) + 2 NB (1 + N 0

S ); (S19)

S = 1 + 2 � I NS � 4Cp

q
N 0

S (1 + N 0
S )

+ 2N 0
S (1 + � I NS + � SNS ) + 2 NB N 0

S ; (S20)

and the signal-idler correlation

C = 2
q

N 0
S (1 + N 0

S )(1 + � I NS + � SNS )

� 2(1 + 2N 0
S )Cp + 2NB

q
(1 + N 0

S )N 0
S : (S21)

When � I = 1 ; NB = 0 , suppose we choose

N 0
S0 =

NS � B

1 + NS (1 � � B )
; (S22)

as given in the main paper, we have

� (� B ) =
�

I 0
0 (1 + 2 (1 � � B ) NS ) I

�
: (S23)

This means that the signal mode becomes vacuum under
this choice of the gain. We will choose this gain in the
absorption detection and peak positioning cases, with the
exception in Sec. VII B, in which we optimize the gain.
For the general pattern recognition for molecules, we will
consider both uniform gainG = 1 and consider optimiza-
tion over gain.

B. Photon number statistics

We consider photon counting on each signal-idler pair
f aS ; aI g in a Gaussian state with the covariance matrix in
the form of Eq. (S18), which has zero phase-insensitive

cross-correlation
D

aSay
I

E
= 0 and non-zero phase sen-

sitive cross-correlation haSaI i 6= 0 . The corresponding
joint probability of obtaining results nS ; nI is given by

P(nS ; nI ) = � 4FR (1 + nS ; 1 + nI ; 1;
4C2

XY
)

�
(� 1 + C2 + E + S � ES)1+ n S + n I

X 1+ n S Y 1+ n I
;

(S24)
whereFR is the regularized hypergeometric function and

X = 1 + C2 + E � (1 + E)S; (S25)

Y = C2 � (E � 1)(S + 1) : (S26)

Moreover, for states with covariance matrix equal to
Eq. (S18) up to a phase rotation on any mode, the photon
number statistics is also given by Eq. (S24).

In our hypothesis testing protocols, P(nS ; nI ) is fully
determined by NS ; N 0

S ; � S ;
p

1 � � I ; NB , where the last
two

p
1 � � I ; NB are the �xed environment parameters,

idler loss and thermal noise. Given signal mean pho-
ton number NS , our receiver, parametrized by the gain
G = 1 + N 0

S , is to jointly discriminate the photon count
distributions per slot f P(�; �j � S ; G; NS )g associated with
di�erent signal channel transmissivity patterns, condi-
tioned on the same parameter settingN 0

S ; � I ; NB . Here
we make the dependence of Eq. (S24) on� S ; G; NS ex-
plicit.

C. Conditional probabilities

In the main paper, we give the conditional probability
of obtaining the mM -dimensional measurement results
n S = f nSL ;k gM;m

L =1 ;k =1 and n I = f nI L ;k gM;m
L =1 ;k =1 condi-

tioned on pattern h in Eq. (7) of the main paper. Here
we also print it for reference

Pm (n S ; n I jh) =
MY

L =1

mY

` =1

P(nSL;` ; nI L;` j� (h)
` ; G` ; NS` ):

(S27)

Each term P(nSL;` ; nI L;` j� (h)
` ; G` ; NS` ) is given in

Eq. (S24), with the transmissivity � S = � (h)
` , also the

gain distribution G` = 1 + N 0
S` and the energy distri-

bution NS` optimized probalistically. For the scenarios
with strong symmetry, e.g. the peak positioning case,
the optimal gain and energy distributions may be triv-
ially uniform due to the symmetry.

For the absorption detection case, m = 1 and
H = 2 , the two hypotheses are h = f T; Bg. De-
note M -dimensional vectors of photon count n S =
f nSL gM

L =1 ; n I = f nI L gM
L =1 . Furthermore, with total en-

ergy being limited, the degree of freedom ofNS is frozen.
Eq. (S27) reduces to

Pm (n S ; n I jh) =
MY

L =1

P(nSL ; nI L j� h ; G); (S28)

Similarly, for the single-peak positioning case,H = m >
1, each hypothesish 2 [1; m] corresponds to the posi-
tion of the target channel. Noting the symmetry in this
scenario, we choose the uniform energy and gain distri-
butions. Still, the degree of freedomNS is frozen and
that of gain is limited to one. Eq. (S27) reduces to

Pm (n S ; n I jh)

=
MY

L =1

[P(nSL;h ; nI L;h j� T ; G) �
Y

l 6= h

P(nSL;l ; nI L;l j� B ; G)]:

(S29)
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In general, one can tune the energy and gain distribu-
tions among the di�erent slots to approach the optimal
performance.

D. Limiting cases of the photon statistics

To enable numerical simulation, we also need to deal
with term-wise divergence in Eq. (S24), e.g. the hyperge-
ometric function FR could diverge. Since the probability
is normalized, all divergences are in fact cancelled out
by pairing in�nite terms with in�nitesimal terms. This
must be done in an analytical way before numerical cal-
culations.

The divergence comes from special values ofz =
4C2=XY , as summarized in the following two cases:

1. Case 1: z ! 1

This can be caused byX ! 0 or Y ! 0. This only
happens when all noise are zero. Then

lim
Y ! 0

FR (1 + nS ; 1 + nI ; 1;
4C2

XY
)=Y1+ n I =

(
C � 2(n I +1) (� 4)� 1� n I X 1+ n I (� 1)n S

� n I
n S

�
; if nI � nS

0; otherwise
(S30)

Hence

P(nS ; nI ) = ( � 1 + C2 + E + S � ES)1+ n S + n I

(� 4)� n I (� 1)n S C � 2(1+ n I ) X n I � n S

�
nI

nS

�
(S31)

for nI � nS or 0 otherwise.
Two-mode squeezed vacuum is among this case, by

taking E; S = 1 + 2 NS , C = 2
p

NS (NS + 1) , we �nd
X = Y = 0 , which makes the above expression non-zero
only when nI = nS , and indeed we haveP(nS ; nI ) =
N n S

S =(1 + NS )n S +1 � n S � n I .
A special scenario of case 1 happens whenz = 0

0 . At
this moment X or Y is zero, combined with C = 0 . To
avoid singularity C � 2(1+ n I ) in numerical calculation, we
take the C ! 0 limit with Eq. (S31), which yields

P(nS ; nI ) =

(
2(E � 1)n S (1 + E) � 1� n S ; if nI = 0 ;
0; otherwise;

(S32)
for X = 0 and

P(nS ; nI ) =

(
2(S � 1)n I (1 + S) � 1� n I ; if nS = 0
0; otherwise:

(S33)
for Y = 0 . Note that �rst case corresponds to signal
mode thermal statistics

P(nS ) =
N

n S

S

(1 + N S )n S +1
; (S34)

with mean photon number N S = ( � 1+ E)=2; the second
case corresponds to idler mode thermal statistics

P(nI ) =
N

n I

I

(1 + N I )n I +1
; (S35)

with mean photon number N I = ( � 1 + S)=2.

2. Case 2: z = 4 C2=XY ! 1

In this caseFR is in�nite. Indeed it always comes with
� 1+ C2 + E + S � ES ! 0 which cancels the singularity.
We have

P(nS ; nI ) =
�

E + S
(E � 1)(S � 1)

� � 1� n S � n I

(� 1)� n S � n I �

23+ n S + n I
(2 � 2E) � 1� n I (2 � 2S) � 1� n S (nS + nI )!

nS !nI !
:

(S36)

III. ENTANGLE-ASSISTED HOMODYNE
RECEIVER

We give a brief summary of the best known receiver
design for quantum reading, a Bell-measurement receiver
proposed in Ref. [S4], which we utilized to benchmark
in Fig. 3(a) of the main paper. The returned signal-
idler pair travels through a beamsplitter, which yields
output modes a+ = ( aS + aI )=

p
2, a� = ( aS � aI )=

p
2.

Then homodyne measurements are operated on the two
quadratures p+ = ( a+ � ay

+ )=i; q� = ( a� + ay
� ), which

share the same varianceVh = � 2
h =



p2

+

�
=



q2

�

�
=

1+ NS + NS � (h) � 2
p

NS (1 + NS )� (h) , h = f T; Bg. With
a large identical mode numberM , the receiver design
constructs � 2 test variable � =

P M
L =1 p2

+ ;L + q2
� ;L , which

comes with the probability density function

PM (� jh) =
� M � 1 exp

�
� �

2Vh

�

(2Vh )M �( M )
; (S37)

where �( �) is the Gamma function. Under maximum-
likelihood decision, the error rate is (1 � j FT � FB j)=2,
given the cumulative distribution function (cdf) of the
chi-square distribution Fh = �( M; t

2Vh
)=�( M ) with the

threshold t = 2M� 2
T � 2

B log
�
� 2

T =� 2
B

�
=(� 2

T � � 2
B ). Here

�( �; �) is the incomplete Gamma function
Generally, the Bell receiver, extracting the quantum

correlations by interfering the signal and the idler with
a beamsplitter, yields measurement results with a higher
signal-to-noise ratio, thereby it has a signi�cant advan-
tage over a direct homodyne measurement in the classical
scenario. Similarly, the nulling receiver discussed in the
main text exploits the quantum correlation with the as-
sistance of an OPA, which yields a signi�cant advantage
on a photon number resolving detector. In the following,
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we calculate the performance of a homodyne detector as-
sisted by OPA, where we �nd that the advantage remains
but is undermined.

Now we consider a homodyne receiver, measuring the
quadratures of the signal-idler pair nulled by an OPA
with gain similarly de�ned by Eq. (S22). After the OPA,
each of the two-mode signal-idler pair is in a Gaussian
state with the covariance matrix given by Eq. (S18). For
homodyne measurements, one can choose to measure the
position qS or momentum pS quadrature of the signal
mode andqI or pI for the idler mode. The two outcomes,
de�ned as x; y, are Gaussian random variables character-
ized by the marginal covariance matrix. Observing the
symmetry, we see that the measurement onf qS ; pI g has
the same statistics with f pS ; qI g, ditto for f qS ; qI g with
f pS ; pI g. Upon obtaining all measurement results across
all mode-pairs, we utilize maximum likelihood estimation
(MLE) to make the decision. In general, the error rate of
this OPA-assisted homodyne receiver has no closed form.

To provide an outline of the practical performance, we
give the numerical result of the ideal case� B = 1 . In this
case, the covariance matrix for the background channel is
� (B ) = I . We �nd it possible to eliminate the correlation
between the two measurement outcomesf x; yg per copy
by a linear combination that diagonalizes the covariance
matrix, mapping f x; yg to f x0; y0g. Then we have the
weighted M-copy squared sums =

P M
L =1 ax02

L + by02
L ,

as a su�cient statistic for the 2M -dimensional Gaus-
sian, thereby the 2M -dimensional MLE reduces to 1-
dimensional. Here the weights area = 1=� 2 (T )

x 0 � 1,
b = 1=� 2 (T )

y0 � 1, where the variances� 2 's are obtained
from the diagonalized covariance matrix and we have
used the fact � 2 (B )

x 0 = � 2 (B )
y0 = 1 when � B = 1 . Fi-

nally, we can expresss = a� 2 (h)
x 0 X 1 + b� 2 (h)

y0 X 2 as a
weighted sum of two chi-square distributed random vari-
ables X 1; X 2 � � 2(M ). The corresponding distribution
of s under hypothesish is a generalized chi-square distri-
bution, which can be numerically calculated. Then, the
error probability of MLE is numerically obtained by an
numerical integration.

Fig. S6 compares the Bell receiver with the OPA-
assisted homodyne receivers and the classical limit, which
illustrates the superiority of the Bell measurement. Note
that the homodyne receiver measuringf qS ; pI g fails to
achieve an advantage over the classical at this moment.
This is due to the absence of the quantum correlation
between qS , pI . Above all, considering its supremacy
among the homodyne receivers, we compare our design
only with the Bell receiver in the main text.

Figure S6. Error rates of the entanglement-assisted (EA)
homodyne receivers with M identical copies in the absorp-
tion detection scenario. We compare the performance of
Bell receiver (blue solid), the OPA-assisted homodyne re-
ceivers measuring quadratures f q1 ; q2g (red solid) and mea-
suring quadratures f q1 ; p2g (orange solid), with the classical
limit Eq. (3) (black dashed). The mean photon number of the
TMSV source is NS = 1 , the transmissivities of channels are
� T = 0 :75 and � B = 1 .

IV. ERROR PROBABILITY LOWER BOUND
OF CLASSICAL PATTERN RECOGNITION

A. Single-mode phase-insensitive Gaussian
channels

As explained in Ref. [S5], the action of a single-mode
(covariant) phase-insensitive Gaussian channel over in-
put quadratures x̂ = ( q̂;p̂)T can be represented by the
transformation x̂ !

p
� x̂ +

p
j1 � � jx̂ E + � , where � is a

transmissivity ( 0 � � � 1) or a gain (� � 1), x̂ E are the
quadratures of an environmental mode in a thermal state
with noise variance ! = 2N + 1 , with N being the mean
number of photons, and� is additive classical noise, i.e.,
a random 2-D Gaussian distributed vector with covari-
ance matrix wadd I . Here we assume vacuum shot noise
equal to 1.

Note that, for a coherent state at the input, the output
state of the channel is generally thermal with covariance
matrix V = ( � + j1� � j! + ! add )I . Setting ! = (1+2 E �
! add � � )=j1� � j, this matrix simply becomes (2E + 1) I .
Therefore, conditionally on a coherent state input, the
channel can be described by the two parameters� and E,
which we denote as� �;E . In particular, for a thermal-loss
channel, we have1 � � � 1, and E = ( ! � 1)(1 � � )=2 =
(1 � � )N ; for a noisy ampli�er, we have � � 1, and
E = ( ! + 1)( � � 1)=2 = ( � � 1)(N + 1) ; and �nally, for
an additive Gaussian noise channel, we have� = 1 and
E = ! add =2.
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B. Ultimate lower bounds for general patterns

Consider the general case of hypothesis testing between
H di�erent patterns of composite channels

En = 
 m
` =1

�
� 
 M

� ( n )
` ;E ( n )

`

�

S`

; 1 � n � H; (S38)

each acting on m subsystemsf S` gm
` =1 . Here each sub-

system consistsM modes and each mode goes through a
single-mode phase-insensitive bosonic Gaussian channel
� � ( n )

` ;E ( n )
`

. Therefore, a global channelEn is speci�ed by

coe�cients f � (n )
` ; E (n )

` gm
` =1 .

Lemma 1 Consider classical states (with positive P-
representation) as the input, assuming a global energetic
constraint of mMN S mean photons withM modes irradi-
ated over each of them subsystemsSk , the error probabil-
ity of equal-prior hypothesis testing betweenH channels
En in Eq. (S38) is lower bounded by

PH � PC
H;LB =

H � 1
2H

�c2 exp [� B ?mMN S ] ; (S39)

where

�cK =
Y

n 0>n

mY

` =1
(

1 +
� q

E (n )
` (1 + E (n 0)

` ) �
q

E (n 0)
` (1 + E (n )

` )
� 2

) � M= 2

;

(S40)

B ? = max
`

1
K

X

n 0>n

(
q

� (n )
` �

q
� (n 0)

` )2

1 + E (n )
` + E (n 0)

`

; (S41)

with K = H (H � 1)=2.
A tighter lower bound

PC
H;LB =

K
H 2 f 2

? (S42)

can be achieved by solving a constrained optimization

f ? = min
f X ` g

:
X

n 0>n

1
K

Cn;n 0 exp

"

�
1
2

mX

` =1

B (n;n 0)
` X `

#

(S43)

under constraint
mX

` =1

X ` � mMN S : (S44)

The constants

B (n;n 0)
` =

(
q

� (n )
` �

q
� (n 0)

` )2

1 + E (n )
` + E (n 0)

`

(S45)

Cn;n 0 =

mY

` =1

2

4 1

1 +
� q

E (n )
` (1 + E (n 0)

` ) �
q

E (n 0)
` (1 + E (n )

` )
� 2

3

5

M= 2

:

(S46)

Corollary 2 (classical channel-position �nding, origi-
nally derived in [S5]) When H = m,

� (n )
` =

�
� T if n = `;
� B if n 6= `; (S47)

and

E (n )
` =

�
ET if n = `;
EB if n 6= `; (S48)

the pattern recognition problem corresponds to channel-
position �nding with a target channel � 
 M

� T ;E T
among

(m � 1) background channels� 
 M
� B ;E B

, where the above
bound in Ineq. (S39) reduces to

PH;LB =
m � 1

2m
c2M

E B ;E T
�

exp
�
�

2MN S (
p

� B �
p

� T )2

1 + EB + ET

�
; (S49)

with cE B ;E T = [1+
� p

EB (1 + ET ) �
p

ET (1 + EB )
� 2

]� 1.
In particular, for no passive signature (ET = EB � E ),
we have the simpli�cation

PH;LB =
m � 1

2m
exp

�
�

2MN S (
p

� B �
p

� T )2

1 + 2E

�
; (S50)

Remark 3 The corollary is easy to obtain from

Lemma 1, recognizing�c2 = c2M
E B ;E T

and
q

� (n )
` �

q
� (n 0)

`

is zero unless` = n or ` = n0, therefore we have

B ? =
2
m

(
p

� B �
p

� T )2=(1 + EB + ET ); (S51)

which easily leads to Eq. (S49).

Corollary 4 (classical channel-position �nding with
multiple target channels) When there arek target chan-
nels � 
 M

� T ;E T
among(m� k) background channels� 
 M

� B ;E B
,

we haveH = Ck
m patterns. For this case, the lower bound

in Eq. (S39) reduces to

PH;LB =

H � 1
2H

c2Mw m;k

E B ;E T
exp

�
�

2wm;k MN S (
p

� B �
p

� T )2

1 + EB + ET

�
;

(S52)

with

wm;k � m
Ck � 1

m � 1Ck
m � 1

Ck
m (Ck

m � 1)
=

kCk
m � 1

Ck
m � 1

(S53)

For no passive signature (ET = EB � E ) case, the
above bound in Ineq. (S39) reduces to

PH;LB =
H � 1

2H
exp

�
�

2wm;k MN S (
p

� B �
p

� T )2

1 + 2E

�
:

(S54)
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Remark 5 Similarly, the corollary is easy to obtain from
Lemma 1. First, one realizes that due to the symme-
try, the maximization in B ? is achieved by an arbitrary
`, e.g. we let ` = 1 . And then the non-zero contribu-
tion to Eq. (S41) only comes from patterns with di�erent
channels on subsystem̀ = 1 . Slight simpli�cation of
Eq. (S54) leads to Eq. (4) of the main paper.

Proof. For the convenience of analysis, we will pa-
rameterize a coherent statej� i with the phase and am-
plitude squared, i.e., jx; � i �

�
�p xei�

�
, where x � 0

and 0 � � � 2� . In this notation, a multi-mode
coherent state over the entire system takes the form
jx ; � i = 
 m

` =1

�
jx ` ; � ` i S`

�
, where each subsystem state

jx ` ; � ` i S`
= 
 M

` 0=1

�
�
�x ( ` 0)

` ; � ( ` 0)
`

E
is again a tensor prod-

uct of multiple modes with generally-di�erent ampli-
tudes. Here x ` are positive and real vectors x ` =
(x (1)

` ; � � � ; x ` ) � f x ( ` 0)
` gM

` 0=1 and x is a simple concate-
nation of them, i.e., x = ( x 1; � � � ; x m ).

In this notation, the general classical state as the input
can be written as a Lebesgue integral

� =
�

dP jx ; � i hx ; � j ; (S55)

where the probability measureP over x ; � can be arbi-
trary. Let us de�ne

kx k1 �
X

`;` 0

jx ( ` 0)
` j =

X

`;` 0

x ( ` 0)
` ; (S56)

which is the standard one-norm and equals the total
mean photon number of the statejx ; � i . Then, the total
energy constraint leads to the inequality

�
dP0kx k1 � mMN S ; (S57)

where the integral has been simpli�ed to a marginal prob-
ability measure P0 restricted to the non-negative vari-
ablesx .

The total conditional state at the output of the channel
En is also a mixture, with expression

� C
n = En (� ) =

�
dP � C

x ;� ;n ; 1 � n � H; (S58)

where each conditional state is given by

� C
x ;� ;n = 
 m

` =1 (� C
� ( n )

` ;E ( n )
`

)S` (S59)

The state (� C
� ( n )

` ;E ( n )
`

)S` is a product of M displaced ther-

mal states, each with amplitude
q

� (n )
` x ( ` 0)

` ei� ( ` 0)
` and co-

variance matrix (2E (n )
` + 1) I .

We use the �delity-based lower bound of Helstrom
limit [ S6],

PH � PH;LB �
X

k 0>k

pk 0pk F 2(� k 0; � k ): (S60)

From Eq. (S60), we can write the following lower bound
to the mean error probability. Consider the equal prior
case for simplicity.

PC
H;LB =

X

n 0>n

1
H 2 F 2

� �
dP � C

x ;� ;n ;
�

dP � C
x ;� ;n 0

�

�
K
H 2

X

n 0>n

1
K

n �
dP F[� C

x ;� ;n ; � C
x ;� ;n 0]

o2

�
K
H 2

n X

n 0>n

1
K

�
dP F[� C

x ;� ;n ; � C
x ;� ;n 0]

o2
; (S61)

where use the joint concavity of �delity

F
� �

dpx � x ;
�

dpx � x

�
�

�
dpx F [� x ; � x ]; (S62)

and Jensen's inequality for the square function withK =
(H � 1)H=2.

Let us now address each �delity term

F C
n;n 0 � F [� C

x ;� ;n ; � C
x ;� ;n 06= n ]

= F [
 m
` =1 (� C

� ( n )
` ;E ( n )

`

)S` ; 
 m
` =1 (� C

� ( n 0)
` ;E ( n 0)

`

)S` ] (S63)

=
mY

` =1

F [(� C
� ( n )

` ;E ( n )
`

)S` ; (� C
� ( n 0)

` ;E ( n 0)
`

)S` ] (S64)

Using Gaussian �delity formula [S1], we can compute

F [(� C
� ( n )

` ;E ( n )
`

)S` ; (� C
� ( n 0)

` ;E ( n 0)
`

)S` ]

=
�

c(n;n 0)
`

� M= 2
exp

�
�

1
2

B (n;n 0)
` kx ` k1

�
(S65)

where the constant

B (n;n 0)
` =

(
q

� (n )
` �

q
� (n 0)

` )2

1 + E (n )
` + E (n 0)

`

(S66)

c(n;n 0)
` =

1

1 +
� q

E (n )
` (1 + E (n 0)

` ) �
q

E (n 0)
` (1 + E (n )

` )
� 2

:

(S67)

Note that B (n;n 0)
` > 0 and c(n;n 0)

` � 1. From the one-
norm in the expression above, it becomes clear that the
performance is exactly the same regardless how the en-
ergy is distributed among the M modes impinging on a
subsystem, as long as the mean total energy irradiated
over the subsystem is �xed. Therefore we have

F C
n;n 0 = Cn;n 0 exp

"

�
1
2

mX

` =1

B (n;n 0)
` kx ` k1

#

; (S68)

where we de�nedCn;n 0 =
Q m

` =1

�
c(n;n 0)

`

� M= 2
. By replac-

ing the F C
n;n 0 in Eq. (S61), and noticing that F C

n;n 0 does
not depend on� we �nd the following lower bound

PC
H;LB �

K
H 2

n �
dP0g(fk x ` k1gm

` =1 )
o2

; (S69)
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where we de�ne the function

g(fk x ` k1gm
` =1 ) �

X

n 0>n

1
K

Cn;n 0 exp

"

�
1
2

mX

` =1

B (n;n 0)
` kx ` k1

#

: (S70)

We can use the convexity of e� cx (with c > 0) and
Jensen's inequality to move expectation value to the ex-
ponent

PC
H;LB �

K
H 2

n X

n 0>n

1
K

Cn;n 0 exp

"

�
1
2

mX

` =1

B (n;n 0)
` X `

#
o2

;

(S71)

where X ` =
�

dP0kx ` k1. Note that equality is only
achieved whenP0 corresponds to a delta function. Over-
all we want to solve the minimization under constraint
Ineq. (S57)

f ? = min :
X

n 0>n

1
K

Cn;n 0 exp

"

�
1
2

mX

` =1

B (n;n 0)
` X `

#

(S72)

under constraint
mX

` =1

X ` � mMN S : (S73)

Then the lower bound would be

PC
H;LB �

K
H 2 f 2

? : (S74)

This gives the lower bound in Eq. (S42).
Below we obtain a further lower bound.

g(fk x ` k1gm
` =1 )

�

(
Y

n 0>n

 

Cn;n 0 exp

"

�
1
2

mX

` =1

B (n;n 0)
` kx ` k1

#!) 1=K

(S75)

= �cexp

"

�
1

2K

X

n 0>n

mX

` =1

B (n;n 0)
` kx ` k1

#

(S76)

where we have introduced�c =
� Q

n 0>n Cn;n 0

	 1=K
. We

have also usedK = H (H � 1)=2 and the fact that arith-
metic mean is greater than geometric mean. The equal-
ity holds if and only if cn;n 0 exp

h
�

P m
` =1 B (n;n 0)

` kx ` k1

i
is

equal for all n; n0.
Thus overall we may write

PC
H;LB �

�c2K
H 2

n �
dP0exp

"

�
1

2K

X

n 0>n

mX

` =1

B (n;n 0)
` kx ` k1

#
o2

�
�c2K
H 2

n
exp

"

�
�

dP0 1
2K

X

n 0>n

mX

` =1

B (n;n 0)
` kx ` k1

#
o2

=
H � 1

2H
�c2 exp

"

�
1
K

X

n 0>n

mX

` =1

B (n;n 0)
` X `

#

: (S77)

Figure S7. Veri�cation of the analytical formulae. We com-
pare the numerical result P ?

E;m with the analytical result
PE;m . M is valued such that the classical lower bound
Pc;m;LB = 10 � 1 . (a) the absorption detection Eq. (S91).
� B = 1 ; NS = 1 . (b) Veri�cation of the peak positioning
Eq. (S93). � B = 1 ; NS = 1 ; m = 100. In the simulation we
take 108 samples for the absorption detection case and2� 106

samples for the peak positioning case.

For the second inequality, we use the convexity ofe� cx

(with c > 0) and Jensen's inequality to move expectation
value to the exponent.

To minimize the lower bound in Eq. (S77), we need to
solve the constrained (by constraint in Eq. (S57)) opti-
mization

max
mX

` =1

1
K

X

n 0>n

B (n;n 0)
` X `

under constraint
mX

` =1

X ` � mMN S : (S78)

The solution to the maximization is simple, de-
note `? = arg max `

P
n 0>n B (n;n 0)

` and B ? =

max`
1
K

P
n 0>n B (n;n 0)

` , and let

X ` ? = mMN S ; X ` 6= ` ? = 0 ; (S79)

which leads to the maximum B ?mMN S .
Overall we have the lower bound

PC
H;LB �

H � 1
2H

�c2 exp [� B ?mMN S ] ; (S80)

It is easy to check that the lower bound can be reached
only if

cn;n 0 exp
h
� B (n;n 0)

` ? mMN S

i
= const; (S81)

is independent of n; n0. This is not always possible
and therefore the lower bound is only achievable in
certain symmetric cases. In symmetric cases, when
max`

1
K

P
n 0>n B (n;n 0)

` are equal for all `, then one can
evenly distribute the energy to achieve the lower bound.
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Figure S8. Error rate of the classical nuller with M identical
copies in the 100-slot peak positioning scenario. We compare
the unconditional nuller (UN, blue solid) and the conditional
nuller (CN, red solid) with the classical lower bound Eq. (4)
in the main text (LB, black dashed). Source mean photon
number NS = 1 , channel transmissivity � T = 0 :75; � B =
0:95.

V. CLASSICAL STRATEGY: NULLING
RECEIVER FOR COHERENT STATE INPUT

Refs. [S7, S8] have conducted a comprehensive analysis
on the classical nulling receiver in the noiseless scenario
NB = 0 . We brie�y summarize the pertinent conclu-
sions here, and compare the performance with our lower
bound. The channel setup in the classical scenario is al-
most identical to that in the quantum scenario, the only
di�erence being that the source is classical, e.g. coherent
states generated by a laser.

A. Absorption Detection

In this scenario, the task is to distinguish the tar-
get channel with transmissivity � T with the background
channel � B . Given the source state beingM copies of
coherent state

�
�p NS

�
with total mean photon number

MN S , the optimal error rate is tightly bounded by the
Helstrom limit [ S4]

PH =
1
2

[1 �
p

1 � e� (
p

� T �
p

� B )2 MN S ] : (S82)

Dolinar has proposed an adaptive receiver [S7] that
reaches the Helstrom bound. In this case, the improved
classical ultimate lower bound Eq. (3) in the main text
coincides with this bound, which results from the fact
that encoding with two pure states instead of an ensem-
bles, i.e. concentrating the source energy on a single
amplitude level, has achieved the optimum.

B. Peak Positioning

Consider single-peak position amongm slots. We
categorize the nulling receiver into unconditional nuller
and condition nuller. The unconditional nuller, which

motivated our entanglement-assisted design in the main
text, applies identical displacementD(

p
� B NS ) to all m

modes. In the noiseless caseNB = 0 , the return is in
coherent states. The uniform displacement nulls the re-
turned copies through the background channels to vac-
uum and those through the target channel to yet a co-
herent state with displacement

p
� T NS �

p
� B NS . Then

we apply photon counting on every mode, which immedi-
ately identi�es the target channel if any click is detected.
The error only occurs when the coherent state associated
with the target channel yields zero photon count with the
false-negative error ratep = exp

�
� (

p
� T �

p
� B )2MN S

�

for source mean photon energyMN S . The error rate of
unconditional nuller is then

PC;UN =
m � 1

m
p =

m � 1
m

exp
�
� MN S (

p
� B �

p
� T )2�

:

(S83)
The conditional nuller, however, applies a mode-by-

mode sequence of displacements dependent on the prior
measurement results. Speci�cally, we null the �rst mode
and measure its photon count. If no photon is de-
tected at the �rst mode, our hypothesis that the tar-
get channel be at the �rst mode is partially con�rmed,
and we forgo the nulling on the remaining modes un-
less any photon is detected in the subsequent measure-
ments. Note that in this noiseless case the false posi-
tive error rate is zero, any nonzero photon count is a
conclusive evidence in favor of rejecting the current hy-
pothesis for the currently measured mode, which imme-
diately gives the conclusion if the rejected hypothesis is
`background'. On the other hand, if any photon is de-
tected at the �rst mode, the target hypothesis is conclu-
sively rejected, we move forward to the next hypothesis
that the target channel be at the second mode. In sum,
the error only occurs if both measurements on the tar-
get channel and the background channel mistook by tar-
get yield false negative errors. By iteration the relation
PC;m = [(1 � p)PC;m � 1 + p2] � (m � 1)=m, the error rate
of the conditional nuller is

PC;CN =
(1 � p)m + mp � 1

m
: (S84)

When M � 1, we have

PC;CN �
m � 1

2
exp[� 2MN S (

p
� B �

p
� T )2]: (S85)

In this limit, the conditional nuller loses to the classical
lower bound Eq. (S54) (hereE = 0 ) merely by a constant
factor m, achieving the bound in the exponent indeed.

Fig. S8 compares the two nulling receivers with the
classical lower bound Eq. (4) in the main text. It is veri-
�ed that the unconditional nuller is overwhelmed by the
conditional nuller. Furthermore, the latter is shown close
to the classical lower bound in the decaying rate, which
never achieves the bound though as expected.
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Figure S9. The e�ect of idler storage e�ciency � I (a-d) and the anti-squeezing gain G (e-h) on the performance of our
entanglement-assisted nulling receiver. (a)(e)NS = 0 :1; NB = 0 . (b)(f) NS = 1 ; NB = 0 . (c)(g) NS = 0 :1; NB = 1 ; (d)(h) NS =
1; NB = 1 . For the gain G, we compare the consequential error rate between a wide range of values, includingG0 , the default
setting in the main text, and Gmin , which minimizes the signal mode thermal �uctuation. With the parameter setting in this
�gure Gmin < G 0 . Identical mode number M is chosen such that the classical lower boundPC; 1;LB (black dashed line) is �xed
to be 0:1. � T = 0 :75; � B = 0 :95. Note that in (c) the QCB and classical bound coincidentally get close when � I = 1 , this is
due to �nite M and they will deviate as M further increases.

VI. ANALYTICAL SOLUTIONS OF THE
ERROR PROBABILITY

Here we present analytical solutions for the error prob-
ability in absorption detection and single-peak position-
ing, when � B = � I = 1 ; NB = 0 .

A. Absorption detection

In this case, Eq. (S22) yields the gainG = 1 + NS .
At this moment the squeezing S is exactly the inverse
of the two-mode squeezing operation that creates the
TMSV state from vacuum. From the covariance ma-
trix � (� B ) in Eq. (S23), the background signal � (B )

is nulled to the vacuum state, a pure state capable to
be discriminated with zero error rate. Applied on the
photon statistics Pm (n S ; n I jh), the maximum-likelihood
decision rule accepts the hypothesis~h = T for all the
photon count results except for zero counts, which leads
to the hypothesis to ~h = B . In this case, the er-
ror only happens when the nulled target-present state
S(� (T ) ) yields no photon count. Hence the error rate
is PE; 1 = Pm (0; 0jT)=2. Given the transmissivities of
background and target present channels� B , � T , and the
mean photon number constraint on the sourceNS , we

have the covariances� (� T ) of each pair inS(� (T ) ) given
by Eq. (S18) with

E = 1 + 2 NS (1 + NS )(1 �
p

� T )2; (S86)

S = 1 + 2 NS [(1 �
p

� T )(2 + NS (1 �
p

� T ))] ; (S87)

C = 2[( NS (1 �
p

� T ) + 1)(1 �
p

� T )
p

NS (1 + NS )]:
(S88)

Thus

PE; 1 = P(0; 0jT)=2 = [P(0; 0)]M =2 (S89)

=
(C2 + E + S � ES � 1)

C2 ; (S90)

where P(nS ; nI ) is given by Eq. (S24). Finally

PE; 1 =
1
2

�
1

1 + NS (1 �
p

� T )

� 2M

: (S91)

B. Peak positioning

The simplest case is when� B = 1 , which is analytically
solvable. First, the receiver nulls all the returned slot
by uniformly applying the squeezing processS with the
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Figure S10. (a)(b) Error exponent ratio RE =RQCB of noiseless absorption detection over QCB with respect to the transmissivity
� B ; � T . Based on Monte Carlo simulation with 5 � 106 (NS = 0 :1) and 5 � 107 (NS = 1 ) samples. Standard deviation is (a)
below 1% in all data points. (b) below 0:3% in all data points. The di�erence in the standard deviation results from the fact
that more modes are required in (a), therefore the Monte Carlo simulation is more costly and the sample size is traded o�.
(c)(d) Error exponent ratio of RE =EC in the same parameter setting.

same N 0
S = NS . Then the photon number per slot is

measured. The slot with any click detected is the target-
present slot. The errors only occur when no photon is
detected among all slots. At this moment we randomly
guess to make a decision. Hence the error rate is

PE =
m � 1

m
Pm (0; 0jT) (S92)

with the same E; S; C as in the single slot case. Similarly
we have

PE;m =
m � 1

m

�
1

1 + NS (1 �
p

� T )

� 2M

(S93)

C. Numerical veri�cation of the formula

The solutions in Eq. (S91) and (S93) can be summa-
rized into a uni�ed formula, as done in Eq. (5) of the
main paper.

The solvable case requires the ideal channel with� I =
1; NB = 0 . As shown in Fig. S7(a), the analytical formula
in Eq. (S91) �ts the numerical results well in the absorp-
tion detection case and achieves the QCB. As shown in
Fig S7(b), the analytical formula in Eq. (S93) �ts the
numerical results well for the peak positioning case.

VII. DETAILS ON NUMERICAL SIMULATION
AND FULL RESULTS

A. Monte Carlo simulation

In the main paper, we evaluate the performance of
EAAS through Monte Carlo simulations. First we ran-
domly choose the true hypothesish0 and simulate the
random outcomesf n g measured from the quantum state
corresponding toh0. Based on the measurement results,
the conditional probabilities p(n jh) are generated ac-
cordingly and we make the maximum likelihood decision

~h = argmaxh p(n jh). Note that when there are multiple
maximum hypotheses with equal probability, we make a
random guess among them. Finally we �gure out the fre-
quency of~h 6= h0 as an estimation of the error probability
PE;m of EAAS.

The sample size, i.e., number of total simulations, de-
termines the precision of the estimation. According to
the central limit theorem, larger sample size yields lower
estimation variance� 2

MC in inverse proportion. However,
we have to balance the computation cost while targeting
at higher precision results. As a result, a variety of sam-
ple sizes are chosen according to the speci�c scenarios
in the main paper: Fig. 4(a) with 108 and (b)(d) with
106; Figs. 4(c) and 5 with 107. With these sample sets,
we have checked the validity and precision of the Monte
Carlo simulation by comparing with the random guess er-
ror rate (H � 1)=H of the H-identical-hypothesis case in
the NS ! 0 limit, and the analytical formulae Eqs. (S91)
and (S93) for ideal cases� B = 1 in Fig. S7. The di�er-
ences all lie in the� 3� MC 99:7% con�dence interval. In
the supplemental material, we give the sample size di-
rectly in each �gure involving Monte Carlo simulations.

B. Optimal gain

Indeed, in all ideal cases with no noise nor idler loss, the
gain G0 = 1 + N 0

S0 nulling the signal to vacuum is given
by Eq. (S22). However the optimal gain that minimizes
the error rate is not necessarily the same. We denote the
optimal gain G(opt ) . Indeed, numerical results show that
with most � B ; � T values under the ideal parameterNB =
0; � I = 1 , G0 saturates QCB when MN S is relatively
large, i.e. optimal gain G(opt ) = G0. When MN S is
small, G(opt ) may deviate from G0 and �uctuate in the
neighbourhood.

When the idler storage e�ciency � I < 1, although
impeded from nulling the signal mode to vacuum, in-
tuitively we expect to minimize the mean photon num-
ber of it. This requires another setting Gmin =
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Figure S11. Error probability of EAAS versus transmissivi-
ties of the background and target channels, � B and � T , with
di�erent PC;m;LB �xed. Source mean photon number NS =
0:1. The white dashed line corresponds to the value of the
classical benchmarkPC;m;LB , therefore indicating the bound-
ary between regions with/without quantum advantage. (a-b)
We consider absorption detection case (m = 1 ), with M such
that PC; 1;LB = 0 :1; 0:01. (c-d) We consider single-peak posi-
tioning with m = 100 and M such that PC; 100 ;LB = 0 :1; 0:01.
Monte Carlo simulation sample size 105 .

Figure S12. Error probability of EAAS versus transmissivi-
ties of the background and target channels, � B and � T , with
di�erent PC;m;LB �xed. Source mean photon number NS = 1 .
The layout is the same as Fig. S11. Monte Carlo simulation
sample size106 .

argminG

D
ay

S (G)aS (G)
E

di�erent from G0 in Eq. (S22).

We numerically compare the performances for a wide
range of the gain, including G0 and Gmin , setting M
such that the classical optimumPC; 1;LB = 0 :1, we see the

Figure S13. Logarithmic error rate log10 (PE;m ) of EAAS
with respect to the thermal noise NB and the idler loss 1� � I

with di�erent PC;m;LB �xed. Parameters are: NS = 0 :1,
� T = 0 :75, and � B = 0 :95. The white dashed line corresponds
to the value of the classical benchmark PC;m;LB , therefore
indicating the boundary between regions with/without quan-
tum advantage. (a-b) We consider absorption detection case
(m = 1 ), with M such that PC; 1;LB = 0 :1; 0:01. (c-d) We
consider single-peak positioning with m = 100 and M such
that PC; 100 ;LB = 0 :1; 0:01. Monte Carlo simulation sample
size 105 .

Figure S14. Logarithmic error rate log10 (PE;m ) of EAAS with
respect to the thermal noise NB and the idler loss 1� � I with
di�erent PC;m;LB �xed. Parameters are: NS = 1 , � T = 0 :75,
and � B = 0 :95. The layout is the same as Fig. S13. Monte
Carlo simulation sample size 106 .

decay rate of quantum advantage depends on the gainG
shown in Fig. S9. Contrary to the intuition, optimum
sticks around G0 in most of cases, as the performance
saturates beyond it (in the presented casesGmin < G 0).
In the NB = 0 case (Fig. S9 (e)(f)), when� I < 1, the
optimum can be between Gmin and G0, however, the
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optimum error probability is only slightly smaller then
that of G0.

C. Saturating the QCB for absorption detection
case

We further explore the saturation of QCB in the ab-
sorption detection case. Since QCB is only asymptoti-
cally tight, we compare the error exponents as

RE = � ln(PE;m )=M (S94)

and that of the QCB

RQCB = � ln
�

~QM
s =2

�
=M (S95)

We also compare the classical error exponent

RC = � ln(PC; 1;LB )=M: (S96)

In Fig. S10(a)(b), we plot the error exponent ratio
RE =RQCB . To guarantee that we are considering the
asymptotic region, we choose the mode numberM such
that the QCB is around 10� 5 in all data points. We see
that the error exponent ratio r = RE =RQCB � 1 in all
parameter region of � B ; � T , verifying the optimality of
the EA receiver in absence of noise (NB = 0 ; � I = 1 ).
Moreover, in Fig. S10(c)(d) we plot the error exponent
ratio RE =RC in the same parameter region, where we see
advantage in almost all the parameter region of� T ; � B .
Furthermore, the entangled error exponent can have a
factor of � 8 larger than the classical error exponent,
showing a great advantage. Note that the expected
monotonicity with respect to transmissivities breaks at
few points, e.g. (� T ; � B ) = (0 :6; 0). This is due to the
discreteness ofM when M is small [even� 1 at (0.6,0)],
which results in a relative sharp change. Indeed the clas-
sical lower boundsPC; 1;LB , expected to be �xed by the
proper choice onM , �uctuates around 0:1 in these non-
monotonic areas.

VIII. CHARACTERIZING THE QUANTUM
ADVANTAGE IN ABSORPTION DETECTION

AND PEAK POSITIONING

Here we present more results related to Fig. 4 of the
main paper.

In a practical scenario, we are interested in how
much EAAS can enhance the performance, when clas-
sical schemes fail to perform well. To showcase the ad-
vantage, we �x the classical lower bound to be0:1 or
0:01 and calculate the error probability achievable with
EAAS.

In Fig. S11, we plot the error probability PE;m for ab-
sorption detection as a function of the transmissivities
� B and � T , while comparing it with the classical lower
bounds in Eqs. (3) of the main paper. The white dashed

lines divide the parameter space with/without quantum
advantage. From the �gure, we can see that the ad-
vantage is remarkable (several orders of magnitude for
� B ; � T ' 1) and also survives for a large range of pa-
rameters. In practice, when� B ' 1, we �nd a quantum
advantage for all values of� T for the problem of absorp-
tion detection.

In Fig. S12, we plot the error probability PE;m for
100-peak positioning as a function of the transmissivities
� B and � T , while comparing it with the classical lower
bounds in Eq. (4) of the main paper. From the �gures,
we can see that the advantage is remarkable (several or-
ders of magnitude for � B ; � T ' 1) and also survives for
a relatively large range of parameters. In practice, when
� B ' 1, we �nd a quantum advantage for � T

>� 0:2 for
100-peak positioning. The region permitting quantum
advantage is slightly smaller than the absorption detec-
tion case, which we think is due to the fact that the
classical lower bounds in Eq. (4) of the main paper is
looser than Eq. (3) of the main paper.

In the analysis above, we have assumed noiseless
(NB = 0 ) and lossless (� I = 1 ) idler storage. In ex-
perimental practice, the presence of such noise and loss
is inevitable. Therefore we also study how the quantum
advantage varies with idler loss

p
1 � � I and noise NB

in Figs. S13 and S14 forNS = 0 :1 and NS = 1 . Again
we �x the classical lower bound and plot the error prob-
ability of EAAS for � T = 0 :75 and � B = 0 :95. Regions
on the left-down side of the dashed lines show quantum
advantage. We see that the advantage is robust against
idler loss and channel noise.

IX. DETAILS ON GENERAL SPECTRUM
RECOGNITION

Here we give the transmissivities data that are used in
our calculations of wine-tasting and drug-testing.

For the wine tasting, there are H = 3 molecules�
methanol (h = 1 ), ethanol (h = 2 ) and ethanal (h = 3 ).
To discretize the spectra so that we can perform numeri-
cal simulation, samples are tested at four frequency slots
500, 1050, 1400, 1800cm� 1 (wavelength 20, 9.5, 7.1,
5.6�m ), with the transmissivities averaged in the span
of � 100 cm� 1. The discrete spectrum can be described
by � (h)

` = K `h , where the overall data can be represented
as anm � H matrix

K =

0

B
@

0:9460 0:9749 0:7853
0:5659 0:6218 0:6846
0:7503 0:7622 0:4683
0:9737 0:9891 0:4165

1

C
A : (S97)

Here each column gives the transmissivities of� (h) for
a �xed hypothesis h = 1 ; 2; 3. The four rows in each
column corresponds to them = 4 spectrum slots.

For the drug-testing case, the molecules are phenyl sal-
icylate (h = 1 ), methyl salicylate (h = 2 ), and benzoic
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(a) Error rate in base 10 logarithmic scale. (b) Energy distribution N S .

Figure S15. Logarithmic scaled learning curve of the error rate optimization over the source energy distribution in the noiseless
wine tasting scenario. Average mean photon number per mode

P 4
` =1 NS` =4 = 1 , noiseNB = 0 . We �nd the energy concentrates

on the �rst frequency slot when M is small, and the fourth frequency slot when M goes su�ciently large. It veri�es the intuition
that suggests the energy be concentrated on the slot with the largest error exponent which dominates the decay of error rate.

(a) Error rate in base 10 logarithmic scale. (b) Energy distribution N S .

Figure S16. Learning curve of the error rate optimization over the source energy distribution in the noiseless drug testing
scenario. Average mean photon number per mode

P 4
` =1 NS` =4 = 1 , noise NB = 0 . The large �uctuation in the last two

sub�gures of M = [10 1:75 ] and M = [10 2 ] is due to the Monte Carlo simulation error. The concentration of energy on a single
frequency slot predicted by the classical bound is absent here, rather the optimum energy distribution is non-trivial on all slots.

acid (h = 3 ). Similarly, samples are tested at four fre-
quency slots 500, 100, 1500, 2000cm� 1 (wavelength 20,
10, 6.67, 5�m ), with the transmissivities averaged in the
span of � 100 cm� 1. We have � (h)

` = K `h , with

K =

0

B
@

0:9613 0:9002 0:8093
0:9215 0:8749 0:7427
0:8360 0:4002 0:7556
0:9867 0:8749 0:8522

1

C
A : (S98)

We evaluate the performance of our receiver through
numerical simulations, with optimization over energy and
gain. We generate the measurement results through
Eq. (S27), and perform maximum likelihood decision.
And the error rates are obtained by calculating the fre-
quencies of error happening.

Noticing that the general patterns in Eq. (S97)
and (S98) break the symmetry between di�erent (fre-
quency) slots, symmetric strategies with uniform pa-
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(a) Error rate. (b) Gain distribution G

Figure S17. Learning curve of the error rate optimization over the receiver gain in the noiseless wine tasting scenario. Average
mean photon number per mode

P 4
` =1 NS` =4 = 1 , noise NB = 0 . The gains are restricted by G � 1 � 4.

(a) Error rate. (b) Gain distribution G

Figure S18. Learning curve of the receiver gain optimizing the receiver gain in the noiseless drug testing scenario. Average
mean photon number per mode

P 4
` =1 NS` =4 = 1 , noise NB = 0 . The gains are restricted by G � 1 � 4.

rameters over all slots are unlikely to be the opti-
mum; therefore we expect optimizing the parameters,
including the source mean photon numbers N S =
[NS1; NS2; NS3; NS4]T and the receiver gains G =
[G1; G2; G3; G4]T over the four frequency slots, to achieve
further quantum advantages. Considering the large di-
mension of parameters in the future application with
more frequency slots, we apply the constrained simul-
taneous perturbation stochastic approximation (SPSA)
algorithm [S10, S11] to accelerate the optimization. As a
variation of stochastic gradient descent methods, SPSA
does not guarantee to always �nd the global optima.
First, we will perform optimization over the energy dis-

tribution, and then we will further optimize over the
gain. We �nd that in general energy optimization leads
to improved quantum advantages, gain optimizations of-
fers slight improvement in the noiseless case and much
better improvement in the noisy case.

A. Energy distribution of the source

In the noiseless scenario, Figs. S15 and S16 show the
learning curve of the optimization over the source energy
distribution, with the average mean photon number per
mode �xed to

P 4
` =1 NS` =4 = 1. From the subplots (b) in
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(a) Wine tasting. (b) Drug testing. (c) Optimized energy distribution
of the drug testing.

Figure S19. Error rate of the receiver in the noisy scenario with thermal photon number NB = 0 :1. The energy distribution
of the source is optimized under the constraint on the average mean photon number per mode

P 4
` =1 NS` =4 = 1 . We compare

energy-optimized EAAS under three gain settings: simply adopting Eq. (S22) in each frequency slot to obtain G = G 0 = 1+ N 0
S 0

(dashed blue), numerically optimized gain G = G ? (dashed red), OPA-absent case G = 1 (dashed orange), along with the
classical lower bound Eq. (S42) (dot-dashed black) and homodyne detection (solid black). In the numeric optimization of
G ? the gains are restricted by G � 1 � 4. Subplot (c) shows the optimized energy distribution which is prescribed in the
optimization in subplot (b), where the leap at M � 102:5 accounts for the same leap in the performance in (b).

both �gures, we see that the optimal energy distributions
are far from uniform as expected. We achieve an appre-
ciable one-order-of-magnitude improvement whenM is
large, which guarantees the advantage over the classical
lower bound in Fig. 5 of the main text.

As to the energy distribution, the classical lower bound
in Eq. (2) of the main paper gives a pretty good intuition
for the optimization, although the lower bound itself is
likely to be loose. Speci�cally, the classical bound con-
sists of a few exponential terms with respect to the di�er-
ence between the transmitted energys(

p
� i �

p � j )2MN S
through two channels i; j , and the term with the largest
error exponent dominates the performance asymptoti-
cally when M is su�ciently large. Hence a fair guess
of the optimal strategy is to allocate most of the energy
to the slot associated with the dominant term. However,
in Fig. S15(b), we see that the energy tends to concen-
trate on the �rst slot when M increases, which is di�erent
from the classical optimum (the second slot). Note that
the transmissivities of the �rst slot are relatively higher
and closer to unity, this divergence from the classical pre-
diction is likely due to the gap between the quantum
scenario here and the conventional classical region, viz.
that the entanglement-assisted advantage over the classi-
cal optimum surges as the transmissivity increases close
to unity. This can also be seen in Fig. S16(b), the energy
was scattered on the four modes without any dominant
slot, instead of being concentrated on the second slot
as predicted by the classical optimum. The illustrated
di�erences from the intuition based on classical schemes
demonstrate the novelty of the entanglement-assisted sce-
nario again.

B. Gain distribution of the receiver

With the same noiseless environment setting, we op-
timize the gain distribution on top of the optimal en-
ergy distribution achieved above. Figs. S17 and S18 give
the learning curve of the optimization on the receiver
gain distribution. The gains are restricted per slot by
G � 1 � 4NS = 4 , as the gain of OPA is limited by the
nonlinearity of the crystal in practice. Compared with
the optimization on energy distribution, we see a slight
improvement by further optimizing the gains in this sce-
nario.

The optimization of the gain distribution is more chal-
lenging than that of the energy distribution. As shown
in Fig. S9 (e-h) for the binary hypothesis-testing case,
the gradient of error rate with respect to the gain is close
to zero almost everywhere. A large �uctuation is present
in the convergence process due to the small gradient-to-
noise ratio.

By contrast, gain optimization is likely to achieve a
signi�cant improvement in the noisy scenario. To demon-
strate the in�uence of noise, we include a uniform thermal
background with mean photon number NB = 0 :1 into
the channel. Following the same procedure, we �rst opti-
mize the energy distribution for the noisy case. Here the
presence of noise leads to a sharp increase in the compu-
tational complexity of the photon statistics. Consequen-
tially, we compromise the average mean photon number
per mode down to

P 4
` =1 NS` =4 = 0:1. Meanwhile, we

correspondingly scale the range of copy numberM of in-
terest by a factor 10. Fig. S19 illustrates the gap between
the di�erent gain settings. In both the wine-tasting and
drug-testing cases, we see a substantial advantage of the
gain optimization over the OPA-absent case as expected.
Interestingly, a trivial choice of G = G0 = 1 + N 0

S0 ac-
cording to Eq.(S22) is su�cient to yield nearly the same
improvement. This provides a neat rule-of-thumb esti-
mation of the optimum gain in the practical implemen-
tation.
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