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ABSTRACT The Cramér-Rao Bound (CRB) for direction of arrival (DOA) estimation has been extensively

studied over the past four decades, with a plethora of CRB expressions reported for various parametric

models. In the literature, there are different methods to derive a closed-form CRB expression, but many

derivations tend to involve intricate matrix manipulations which appear difficult to understand. Starting from

the Slepian-Bangs formula and following the simplest derivation approach, this paper reviews a number of

closed-form Gaussian CRB expressions for the DOA parameter under a unified framework, based on which

all the specific CRB presentations can be derived concisely. The results cover three scenarios: narrowband

complex circular signals, narrowband complex noncircular signals, and wideband signals. Three signal

models are considered: the deterministic model, the stochastic Gaussian model, and the stochastic Gaussian

model with the a priori knowledge that the sources are spatially uncorrelated.Moreover, three Gaussian noise

models distinguished by the structure of the noise covariance matrix are concerned: spatially uncorrelated

noise with unknown either identical or distinct variances at different sensors, and arbitrary unknown noise.

In each scenario, a unified framework for the DOA-related block of the deterministic/stochastic CRB is

developed, which encompasses one class of closed-form deterministic CRB expressions and two classes

of stochastic ones under the three noise models. Comparisons among different CRBs across classes and

scenarios are presented, yielding a series of equalities and inequalities which reflect the benchmark for the

estimation efficiency under various situations. Furthermore, validity of all CRB expressions are examined,

with some specific results for linear arrays provided, leading to several upper bounds on the number of

resolvable Gaussian sources in the underdetermined case.

INDEX TERMS Circular and noncircular, Cramér-Rao bound, direction of arrival estimation, narrowband

and wideband, underdetermined and overdetermined.

I. INTRODUCTION

The Cramér-Rao Bound (CRB), which provides a lower

bound on the variance of any unbiased estimator, has been

extensively studied in the context of direction of arrival

(DOA) estimation using sensor arrays during the past four

decades, and it still attracts substantial research interest with

the development of novel DOA estimation methods and array

design techniques. This topic covers a broad range of results

which have been published separately in the open literature,

including many celebrated papers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Liangtian Wan .

The CRB depends implicitly on the data properties via

the probability density function (p.d.f.). Since the Gaussian

distribution, whose p.d.f. is mathematically tractable, is fre-

quently encountered in practice, the Gaussian CRB is by far

themost popular one. Another reason for the popularity is that

the Gaussian CRB would be the largest of all CRBs corre-

sponding to different congruous distributions [1, p. 363], [2].

Moreover, the CRB depends on the parametric model instead

of a specific algorithm or estimator. Traditionally, two kinds

of signal models are widely adopted, i.e., the deterministic

(conditional) model and the stochastic (unconditional) model

[3]. The former assumes the signals to be deterministic but

unknown, whereas the latter assumes them to be stochastic,
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usually Gaussian distributed. Compared to the deterministic

model, the detection and estimation schemes derived from the

stochastic Gaussian model is usually found to yield superior

performance, regardless of the actual distribution of emitter

signals [4].

The signals received by each sensor are often corrupted by

an additive noise. For sparsely placed sensors, the noise is

spatially uncorrelated. In the ideal case, the noise covariance

matrix is assumed to be diagonal with identical variances

across sensors, which is known as the uniform noise (UN).

Due to variation of the manufacturing process or the imper-

fection of array calibration, the noise variances may be differ-

ent [5], which is called the nonuniform noise (NUN). More

practically, the noise can be correlated from sensor to sensor.

Various modeling schemes are developed to characterize the

spatially colored noise, e.g., [6]–[9], and they can be sum-

marized by an arbitrary unknown noise (AUN) model, where

the noise is parameterized by a set of arbitrary unknowns

depending on a specific modeling scheme.

As from its definition, the CRB can be calculated from the

inverse of the Fisher information matrix (FIM) [10], but the

computation is rather complicated due to the derivatives of

the log-likelihood function of the data samples with respect

to (w.r.t.) all unknown parameters involved. In many appli-

cations, only the DOA-related block of the CRB matrix is

of interest. A closed-form CRB expression not only offers

a clear interpretation of the CRB, but also allows the com-

parison with the asymptotic covariance matrix of estimation

errors. It also supports the understanding of the source/array

configuration and provides physical insights into the under-

lying problem.

A. CRBs FOR NARROWBAND COMPLEX CIRCULAR

SIGNALS

Most CRB expressions are derived based on the p.d.f. of a

complex circular Gaussian distribution, under which the addi-

tive noise is also Gaussian distributed. For the deterministic

model, the closed-form CRB expression for DOA estimation

in the presence of UN was derived in [11], [12], along with

its worst/best version under different criteria presented in

[13]. To simplify the intricate derivations, a linearization and

decoupling technique was proposed in [14]. Inspired by this

idea, the most compact derivation was presented in [15] by

means of transforming the FIM into a block diagonal form.

In the presence of NUN, two closed-form CRB expressions

were derived in [16] and [17], respectively, in the single-

source case and the multi-source case. In the presence of

AUN, the closed-form CRB expression was derived in [18],

with specific results concerning an autoregressive noise pro-

vided. Furthermore, a unified closed-form CRB expression

based on known signal structures was reported in [19], which

also accounts for AUN.

For the stochastic model, the closed-form CRB in the

presence of UN was indirectly derived in [2], [20], [21]

through asymptotic covariance matrices of estimation errors

of different DOA estimators. The first direct derivation was

presented in [22] by writing all submatrices of the FIM

explicitly and then applying the partitioned matrix inversion

lemma. Almost a decade later, a much more simplified direct

derivation was given in [23], which avoids the complicated

calculation of all submatrices of the FIM. Under various noise

fields, theDOAestimation problemswere investigated in [7]–

[9], [16], [17], [24], with the corresponding CRB expressions

provided. A common conclusion is that if the noise covari-

ance matrix is parameterized by more than one unknowns,

then the corresponding stochastic CRB for DOAs will be no

less than that in the presence of UN,whereas the deterministic

CRBs for DOAs will be identical in both cases [17], [24].

The deterministic and stochastic CRBs play an important

role in asymptotic performance studies. The term ‘‘asymp-

totic’’ can refer to different cases where one or a combination

of the following factors tend to infinity, including the number

of snapshots, the number of sensors, and the signal-to-noise

ratio (SNR). When the number of snapshots alone tends to

infinity, the stochastic CRB can be asymptotically achieved

by the stochastic maximum likelihood (ML) estimator [2],

[20], the method of direction estimation (MODE) estimator

[20], and the weight subspace fitting (WSF) estimator [2],

[21], whereas the deterministic CRB cannot be asymptoti-

cally achieved by the deterministic ML estimator unless the

number of sensors also tends to infinity [11], [20]. When the

SNR alone tends to infinity, the deterministic ML estimator

attains the CRB [25], but the stochastic one does not [26].

If both the number of sensors and the SNR are sufficiently

large, both the deterministic and stochastic ML estimators

will attain the respective CRBs [27]. These asymptotic prop-

erties are mainly studied in the presence of UN. For NUN

and AUN, a number of extended estimators (mostly the ML

ones) are shown to asymptotically (w.r.t. snapshots) achieve

the corresponding CRBs [7], [9], [16], [17].

B. CRBs FOR NARROWBAND COMPLEX CIRCULAR

SIGNALS IN THE UNDERDETERMINED CASE

The results outlined above are only applicable to the overde-

termined case, where the number of physical sensors is larger

than that of the sources. In the past decade, a family of sparse

linear arrays (SLAs) with closed-form sensor positions have

attracted renewed research interest [28]–[36]. Assume that

the sources are known a priori to be spatially uncorrelated,

many effective techniques, such as the spatial smoothing

based method [28], the compressive sensing based method

[37], and the ML method [38], can be applied to resolve

more sources than sensors (the underdetermined case) with

the assistance of SLAs.

A decade earlier than the flourish of underdeterminedDOA

estimation methods, the CRB employing the a priori knowl-

edge of uncorrelated sources was derived in [39], but only

limited insights were gained in the underdetermined case.

After one and a half decades, this CRB was studied again

in [40]–[44], with the role of the virtual difference co-array

highlighted. The condition under which this CRB exists was

examined in [40], [41], which leads to an upper bound on the
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number of resolvable Gaussian sources by a specific SLA.

Note that these CRB expressions are derived for the stochastic

model only, because the deterministic CRB does not exist in

the underdetermined case [40].

The achievability of the underdetermined stochastic CRB

has not been fully investigated at present, but there exist

some insightful results. In [42], a closed-form asymptotic

mean square error (MSE) for the co-array based Mutiple

Signal Classification (MUSIC) algorithm was derived. The

asymptotic (w.r.t. SNR) analysis therein showed that neither

the direct augmentation [45] based MUSIC nor the spatial

smoothing [28] based MUSIC are efficient when the number

of sources is larger than one and less than the number of

sensors.

C. CRBs FOR NARROWBAND COMPLEX NONCIRCULAR

SIGNALS

In applications such as digital communications, signals gen-

erated bymodulation schemes, such as binary phase shift key-

ing (BPSK) and quaternary phase-shift keying (QPSK), are

no longer circularly symmetric. The DOA estimation tech-

niques for noncircular signals have been extensively studied

[46]–[51], with the CRBs derived. The closed-form stochastic

CRB expression for complex noncircular Gaussian signals in

the presence of UN was derived in [52] by two approaches.

The direct one starts from the noncircular Slepian-Bangs

formula, whereas the indirect one is based on the asymptotic

covariance matrix of the ML estimation errors. The authors

further extended there results to the case of NUN and AUN

[53]. It was demonstrated that the noncircular Gaussian CRB

is upper bounded by the circular Gaussian one. Specifically,

for discrete distributed BPSK and QPSK modulated signals,

the corresponding stochastic CRBs were derived in [54],

which indicates that the stochastic CRBs under the noncir-

cular and circular complex Gaussian distributions are tight

upper bounds on those under the discrete BPSK and QPSK

distributions, respectively, at very low and very high SNRs

only.

On the other hand, the deterministic noncircular Gaussian

CRB is simply shown to be identical with the circular Gaus-

sian one [53]. If the signals are known to have a strictly

noncircular structure, the rotation phase angles will be con-

sidered as unknown parameters instead of imaginary parts of

the signal waveforms. This feature leads to some specialized

closed-form deterministic CRB expressions, see, e.g., [55] for

amixture of circular and strictly noncircular signals, and [55],

[56] for strictly noncircular signals only. It was proved that

the strictly noncircular deterministic CRB degenerates to the

circular one in some special cases [56].

D. CRBs FOR WIDEBAND SIGNALS BASED ON

FREQUENCY DECOMPOSITION

Different from the narrowband scenario, for wideband sig-

nals, the phase difference between sensor pairs depends on

not only the DOAs but also the signal frequencies. Mathe-

matically, the array sampling process for wideband signals

involves matrix convolution instead of direct multiplication

[57]. In an effort to deal with this problem, the observation

interval can be divided into nonoverlapping subintervals and

then transformed into the frequency domain via the discrete

Fourier transform (DFT) or a filter bank [58]. The processing

bandwidth is therefore decomposed into a set of frequency

bins that resemble narrowband settings, based on which sig-

nal subspace methods [59]–[65], ML methods [66]–[68], and

compressive sensing (CS) based methods [69], [70] can be

implemented to produce high-resolution DOA estimates.

If the wideband signals are Gaussian random pro-

cesses or the observation duration is sufficiently long,

the Fourier coefficients will be (asymptotically in the latter

case) Gaussian distributed [71, p. 94]. Accordingly, both

the deterministic and stochastic models apply to the Fourier

coefficients of the source signals, and the concept of UN,

NUN, and AUN applies to the noise Fourier coefficients.

Thus, the narrowband Gaussian CRB can be extended to

the wideband scenario. If the duration of each subinterval is

much longer than the correlation time, the Fourier coefficients

will be asymptotically uncorrelated across frequency. Con-

sequently, the wideband FIM is a superposition of those at

all frequency bins, and the wideband CRB can be evaluated

numerically from the inverse of the wideband FIM [60],

[72], [73]. Note that other wideband models which are not

established via frequency decomposition lead to different

wideband CRBs, such as [74], [75].

For the wideband deterministic model, the closed-form

CRB expressions in the presence of UN and NUN were

derived in [68], [76] and [5], respectively, together with

the corresponding ML estimators that asymptotically (w.r.t.

SNR) approach these CRBs proposed. For the wideband

stochastic model, a direct examination of the multi-source

CRB is more challenging, and early analytical expressions

were either obtained approximately [66], [77] or written in an

intermediate form [78]. In particular, the stochastic ML esti-

mator employing the spectra smoothness condition is asymp-

totically (w.r.t. snapshots) efficient [66]. Afterwards, the first

closed-form expression for the wideband stochastic CRBwas

presented in [79], but detailed proof was unavailable in the

published paper. Note that these CRB results are only valid in

the overdetermined case, which implies that when no a priori

knowledge on the source spectra is available, the wideband

model based on frequency decomposition shares the same

resolution capacity with the narrowband one [78], [79].

In the past few years, narrowband underdetermined DOA

estimation techniques have been extended to the wideband

scenario, see, e.g., [65], [69], [70], [80]. Similar to their

narrowband counterparts, most wideband underdetermined

methods also employ the a priori knowledge of uncorrelated

sources. A few years later, the closed-form expression for

the wideband stochastic CRB accounting for this a priori

knowledge was derived in [81], which shows that the nar-

rowband limitation on the number of resolvable Gaussian

sources can be exceeded. Consequently, the assistance of

special array structures is no longer necessary for wideband

VOLUME 8, 2020 175103
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underdetermined DOA estimation, where as a nonuniform

linear array (NULA) is indispensable to the narrowband sce-

nario [40], [41].

E. CRBs FOR OTHER EXTENDED PARAMETRIC MODELS

Based on the aforementioned results, a myriad of closed-

form CRB expressions have been proposed under extended

parametric models that involve, e.g., modeling errors [82]–

[86], a time-varying source [87], multiple noncoherent sub-

arrays [88]–[90], and coherent signals with mutual coupling

[91]. Taking into account the a priori knowledge of spa-

tially uncorrelated sources, the underdetermined CRB has

been generalized to many cases, e.g., two sources with co-

prime frequencies [92], the compressed sparse array scheme

[32], sensor location errors [93], noncircular signals [94], and

modeling errors [95].

In applications such as 3-D source localization problems,

the location of a single source is parameterized by more than

one unknowns, whereas the other ones associated with the

source signals, the source covariance matrix, and the noise

covariance matrix, may be known. The corresponding CRBs

provide insightful guidance on array design in a particular

scenario, see, e.g., [68], [96]–[100] and the references therein.

In applications such as sonar, radar, and communication

systems, the noise distribution may be far from Gaussian.

If the p.d.f. of the nonGaussian noise can be specified,

the CRB will also be tractable. A number of related DOA

estimation techniques and closed-form CRB expressions can

be found in [101]–[105].

F. MOTIVATION AND CONTRIBUTION

There exist some relevant works that offer a comprehen-

sive overview of typical performance bounds (including the

CRB) and the asymptotic distributions of DOA estimates

produced by many celebrated algorithms, see, e.g., [106],

[107], but they did not elaborate in detail how a valuable

analytical CRB expression can be reached. As emphasized

in [23], a detailed and direct derivation of a closed-form

CRB expression is important and requires painstaking efforts.

Different approaches have been used by the literature to

derive a closed-form CRB, which may start from the FIM,

the Slepian-Bangs formula, the asymptotic covariance matrix

of estimation errors of a specific estimator, and so forth.

It would be time-consuming for a novice researcher seeking

for and trying to understand those intricate derivations that

appear in scattered publications, some of which could even be

oversimplified.Moreover, sometimes those well-knownCRB

expressions turn out to be inapplicable to a particular problem

for which a novel algorithm or array structure is designed.

This difficulty was encountered when dealing with underde-

termined problems for narrowband circular/noncircular and

wideband signals. In such cases, comprehending the existing

derivations will help derive the correct CRB in need and also

benefit future studies.

This paper is devoted to illustrating a direct and concise

way to derive the rich closed-form CRB expressions in the

literature by reviewing a number of typical results in dif-

ferent scenarios under a unified framework. This will build

the bridge between the general CRB formula and its many

specific presentations. Furthermore, original supplementary

materials, especially in the noncircular scenario with uncorre-

lated sources and the wideband scenario, are provided to shed

light on some important points that have not been investigated

in the past. In addition, the recent research developments in

underdetermined DOA estimation, which were not covered

by earlier reviewing works, are also visited in this paper.

First, we illustrate the probability distribution model of the

narrowband data samples under the deterministic/stochastic

model. Based on the p.d.f. of the complex circular Gaussian

distribution, the Slepian-Bangs formula is presented. Follow-

ing the shortest derivation in the literature, we then show how

this general formula evolves into a unified framework for

the DOA-related block of the deterministic/stochastic CRB.

This framework indicates that the explicit deterministic CRB

expression is distinguished by the noise covariance matrix,

whereas the stochastic one depends on the derivatives of

the source and noise covariance matrices w.r.t. all nuisance

parameters.

By specifying the noise covariance matrix under three

different models (UN, NUN, and AUN), one class of

closed-form deterministic CRB expressions and two classes

of stochastic ones (one without a priori knowledge, and

the other employs the a priori knowledge of uncorrelated

sources) are derived based on the developed framework.

Then, comparisons are conducted among these CRBs and

the asymptotic covariance matrix of estimation errors of the

deterministic/stochastic ML estimator, leading to a series of

equalities and order relationships.

The results for narrowband circular Gaussian signals are

further extended to two scenarios, i.e., complex noncircular

Gaussian signals and wideband signals. In each scenario,

we elaborate the signal model and the extended Slepian-

Bangs formula, based on which the corresponding closed-

form deterministic/stochastic CRB framework is developed.

Then, a class of extended closed-form deterministic CRB

expressions and two stochastic ones are presented. The non-

circular stochastic CRBwith uncorrelated sources are derived

in this paper, and its difference with the recently reported

result in [94] is explained. From a general perspective,

we demonstrate how the noncircular deterministic/stochastic

CRB degenerates to the circular ones in a special case. Fur-

thermore, we show that the wideband deterministic/stochastic

CRB for DOAs can be interpreted as a combination of the

CRBs for DOAs at all frequencies.

The deterministic CRBs and the stochastic ones with-

out a priori knowledge exist only in the overdetermined

case, regardless of the array geometry. However, those

stochastic CRBs employing the a priori knowledge of

uncorrelated sources can exist in the underdetermined case.

Since the validity of the Gaussian CRB is connected with

identifiability of the unknown parameters, some further

results based on linear arrays are presented. The co-array
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concept is first reviewed, and its connection with the circu-

lar/noncircular/wideband stochastic CRB employing uncor-

related sources is discussed. We extend the rank condition,

a condition under which the circular CRB exists, to the

noncircular/wideband scenario, and examine the number of

resolvable Gaussian noncircular/wideband sources by a given

linear array. We show that the information contained in either

the conjugate part of noncircular signals or the multiple

frequency components of wideband signals can significantly

increase the number of resolvable Gaussian sources, com-

pared to the circular scenario.

G. ORGANIZATION

The rest of this paper is organized as follows. In Section II,

the narrowband deterministic/stochastic model and the gen-

eral CRB formula are first introduced, and then the unified

framework for the DOA-related block of the determinis-

tic/stochastic CRB is developed. Based on this framework,

Section III presents a class of closed-form deterministic CRB

expressions and two classes of stochastic ones in the pres-

ence of UN, NUN, and AUN, and then conduct comparisons

among these results. Similarly, the extensions to noncircular

complex Gaussian signals and wideband signals based on

frequency decomposition are provided in Section IV and

Section V, respectively. In Section VI, the existence of all the

CRBs is examined, with the corresponding upper bounds on

the number of resolvable Gaussian sources discussed based

on linear arrays.

II. PRELIMINARIES ON THE CRAMÉR-RAO BOUND

A. NARROWBAND SIGNAL MODEL

Consider an array consisting of M omnidirectional sensors

with identical responses receiving narrowband signals from

K far-field sources. Assume that all the sources are located at

distinct directions, and there is only one angular parameter to

be estimated for each source. Then, the unknown DOAs are

denoted by θ = [θ1, θ2, . . . , θK ]
T , where (·)T is the transpose

operation. After sampling, the array output signals can be

modeled as

x(t) = A(θ )s(t) + n(t), (1)

where t = 1, 2, . . . ,N is the snapshot index. x(t), s(t),

and n(t) collect the samples of the sensor output signals,

the source signals, and additive noise, respectively:

x(t) = [x1(t), x2(t), . . . , xM (t)]T ∈ C
M×1,

s(t) = [s1(t), s2(t), . . . , sK (t)]
T ∈ C

K×1,

n(t) = [n1(t), n2(t), . . . , nM (t)]T ∈ C
M×1,

where C
M×1 denotes the space of M -by-1 complex-valued

vectors. A(θ ) = [a(θ1), a(θ2), . . . , a(θK )] ∈ C
M×K is the

array manifold matrix with a(θk ) denoting the steering vector

associated with the k-th source. The explicit form of a(θk )

will not be specified here, so that the following discussions

are applicable to different array geometries.

The noise is assumed to be a zero-mean circular Gaussian

process, both temporally and spatially uncorrelated with the

source signals. Under the deterministic model, the source

signals are assumed to be deterministic but unknown, leading

to [20]

x(t) ∼ CN [A(θ )s(t),Q], (2)

where CN (µ, Γ ) stands for the multidimensional complex

Gaussian distribution with mean µ and covariance matrix Γ .

The noise covariance matrix is defined as

Q , E[n(t)nH (t)],

where E[·] is the expectation operator, and (·)H represents the

conjugate transpose operation.

On the other hand, under the stochastic model with zero-

mean and wide-sense stationary sources, the output signal

at each snapshot is an observation of a zero-mean complex

Gaussian process [20], and thus

x(t) ∼ CN (0,R), (3)

where

R , E[x(t)xH (t)] = A(θ )PAH (θ ) + Q,

P , E[s(t)sH (t)]. (4)

Note thatR,P, andQ are all assumed to be Hermitian positive

definite.

B. CRB FORMULA

Denote x̄ = [xT (1), xT (2), . . . , xT (N )]T as the overall data

vector containing N independent and identically distributed

(i.i.d.) snapshots, and thus x̄ follows anMN -variate complex

Gaussian distribution with mean µ and covariance Γ , both

of which are determined by a real-valued vector α containing

all unknown parameters. Let f (x̄; α) represent the p.d.f. of x̄

which depends on α. Under certain regularity conditions (a

precise summary of all required regularity conditions can be

found in [108]), the FIM is defined as [109]

F , −E
[

∂2lnf (x̄; α)

∂α ∂αT

]

, (5)

where ∂f (α)/∂α denotes the partial derivative of f (α) w.r.t.

the variable vector α. If F is positive definite, then the CRB

for α, denoted by B(α), is given by

B(α) = F−1. (6)

Since F is nonnegative definite by definition, (6) is valid if

and only if F is nonsingular.

In most cases, x̄ is modeled to be circularly symmetric

Gaussian distributed with a p.d.f. given by [110]

f (x̄; α) = 1

πMNdet(Γ )
e−[x̄−µ]HΓ −1[x̄−µ], (7)
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where det(·) denotes the determinant of a matrix. It follows

from (5), (6), and (7) that the (i, j)-th element of the CRB

matrix is given by [1, p. 363], [111, p. 927]

〈B−1(α)〉i,j = tr

(

Γ −1 ∂Γ

∂〈α〉i
Γ −1 ∂Γ

∂〈α〉j

)

+2Re

(

∂µH

∂〈α〉i
Γ −1 ∂µ

∂〈α〉j

)

, (8)

where tr(·) denotes the trace of a square matrix, and Re(·) is
the real part of the input argument.

The general CRB formula in (6) is applicable to different

probability distributions, whereas that in (8), which is also

known as the Slepian-Bangs formula [112], [113], is a spe-

cialized version for the Gaussian distribution. The Gaussian

CRB can be numerically evaluated from both formulas, but

a closed-form CRB expression for DOA parameters alone,

denoted by B(θ ), is more desirable, as stated in Section I.

In what follows, we first examine the geometrical interpreta-

tion of the DOA-related block of the deterministic/stochastic

CRB, and then develop a unified framework encompassing

most closed-form deterministic/stochastic CRB expressions.

Throughout the remainder of this paper, B(θ ), A(θ ) and a(θk )

will be written briefly as B, A, and ak , respectively.

C. UNIFIED DETERMINISTIC CRB FRAMEWORK

For the deterministic model in (2), we have

µ = µdet = ∆dets̄, Γ = Γ det = IN ⊗ Q, (9)

where

∆det = IN ⊗ A, s̄ = [sT (1), sT (2), . . . , sT (N )]T ,

the symbol ⊗ stands for the Kronecker product, and IN is

an N -by-N identity matrix. The unknown parameter vector is

expressed as

α = αdet =
[

θT ,Re(s̄T ), Im(s̄T ), σ T
]T

, (10)

where Im(·) is the imaginary part of the input argument,

and σ consists of all real-valued unknown parameters that

determine Q.

Substituting (9) and (10) into (8), we can write the deter-

ministic CRB in a partitioned form:

B(αdet) =
([

0 0

0 Fσσ

]

+
[

F̄ 0

0 0

])−1

, (11)

where (·)−1 is the inverse operation. F̄ is the submatrix

associated with the DOAs and the covariance matrix of the

source signals. It can be partitioned as

F̄ =





F θθ F θRe(s̄) F θIm(s̄)

FRe(s̄)θ FRe(s̄)Re(s̄) FRe(s̄)Im(s̄)

F Im(s̄)θ F Im(s̄)Re(s̄) F Im(s̄)Im(s̄)



 ,

where F θθ refers to the DOA-related block, while the other

ones are associatedwith the unknown parameters specified by

their subscripts. Note that B(θ ) can be extracted from F̄
−1

,

which is the inverse of the second term on the right hand side

of (8).

Computing the derivatives of µdet w.r.t. α
T
det yields

∂µdet

∂αTdet
= [Gdet, ∆det, j∆det,0],

Gdet = [s(1), s(2), . . . , s(N )]T ⊙ A′,

A′ =
[

a′
1, a

′
2, . . . , a

′
K

]

, a′
k = ∂ak

∂θk
, (12)

where ⊙ represents the Khatri-Rao product. Thus, we can

rewrite F̄ as

F̄ = 2Re

















Ḡ
H

det

∆̄
H

det

−j∆̄
H

det






[Ḡdet, ∆̄det, j∆̄det]











,

with

Ḡdet = [s(1), s(2), . . . , s(N )]T ⊙ Ā′,

∆̄det = IN ⊗ Ā, Ā = Q− 1
2A, Ā′ = Q− 1

2A′. (13)

Furthermore, F̄ can be rewritten in a block-diagonal form

using the matrix manipulation introduced in [1, p. 370],

[15]. As a result, the DOAs are decoupled with nuisance

parameters, and F̄
−1

can be calculated neatly. Following this

approach, we can obtain the geometrical interpretation of the

DOA-related block of the deterministic CRB:

Bdet = 1

2
Re
(

Ḡ
H

det5
⊥
∆̄det

Ḡdet

)−1
, (14)

where 5⊥
∆̄det

= I − ∆̄det(∆̄
H

det∆̄det)
−1∆̄

H

det stands for the

orthogonal projector onto the null space of ∆̄
H

det. Throughout

the rest of this paper, other orthogonal projectors will be

defined similarly, distinguished by their subscripts.

On one hand, F̄ is nonsingular only if ∆̄det has full col-

umn rank. On the other hand, the validity of (14) requires

∆̄
H

det∆̄det and Ḡ
H

det5
⊥
∆̄det

Ḡdet to be positive definite, which

needs5⊥
∆̄det

6= 0. From the definition of Ḡdet and ∆̄det in (13),

these conditions lead to K<M . Suppose that K<M , and then

the following result can be obtained by block-wise matrix

computation.

Ḡ
H

det5
⊥
∆̄det

Ḡdet = N (Ā′H5⊥
Ā
Ā′) ◦ P̂T , (15)

where

P̂ = 1

N

N
∑

t=1

s(t)sH (t),

and ◦ stands for the Hadamard product. With (15), (14) can

be transformed into a unified framework for the DOA-related

block of the deterministic CRB:

Bdet = 1

2N

{

Re
[

(Ā′H5⊥
Ā
Ā′) ◦ P̂T

]}−1

. (16)
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D. UNIFIED STOCHASTIC CRB FRAMEWORK

For the stochastic model in (3), we have

µ = µsto = 0, Γ = Γ sto = IN ⊗ R. (17)

The unknown parameter vector is expressed as

α = αsto =
[

θT , pT , σ T
]T

, (18)

with p holding the real-valued unknown parameters related to

the real and imaginary parts of all unknown entries in P.

Substituting (17), (18) into (8) and utilizing the following

identities [111]:

tr(ABCD) = vec(BH )H (AT ⊗ C)vec(D),

vec(ABC) = (CT ⊗ A)vec(B),

(A ⊗ B)−1 = A−1 ⊗ B−1, (19)

we can obtain

B−1(αsto) = N

(

∂r

∂αTsto

)H

(R−T ⊗ R−1)

(

∂r

∂αTsto

)

, (20)

where r = vec(R) represents the vectorization of (R).

Introducing the following notations:

Gsto = W
∂r

∂θT
, ∆sto = [V ,U] , V = W

∂r

∂pT
,

U = W
∂r

∂σ T
, W = R− T

2 ⊗ R− 1
2 , (21)

we can rewrite (20) in a partitioned form:

B−1(αsto) = N

[

GHsto
∆H

sto

]

[Gsto, ∆sto]. (22)

Using the standard result on the inverse of a partitioned

matrix yields the geometrical interpretation of the DOA-

related block of the stochastic CRB [23]:

Bsto = 1

N

(

GHsto5
⊥
∆sto

Gsto

)−1
. (23)

According to (22), a necessary condition for the FIM to be

nonsingular is that [Gsto, ∆sto] should have full column rank,

which is true only if V has full column rank. Meanwhile, (23)

is valid if and only if ∆H
sto∆sto and G

H
sto5

⊥
∆sto

Gsto are positive

definite.

To derive a more explicit CRB framework, we assume that

V have fewer columns than rows, so that5⊥
V 6= 0. Since∆sto

shares the same range space with [V , 5⊥
VU], it follows from

the projection decomposition theorem that [23], [39]

5⊥
∆sto

= 5⊥
V − 55⊥

VU

= 5⊥
V − 5⊥

VU
[

UH5⊥
VU

]−1
UH5⊥

V . (24)

Substituting (24) into (23) gives a unified framework for the

DOA-related block of the stochastic CRB:

Bsto = 1

N

(

C − DF−1DH
)−1

, (25)

where

C = GHsto5
⊥
VGsto, D = GHsto5

⊥
VU, F = UH5⊥

VU . (26)

Remark 1: Comparing (14) with (23), we find that the

geometrical interpretations of the deterministic and stochas-

tic CRBs share a similar form. Ḡdet and Gsto are associated

with the DOAs, whereas ∆̄det and ∆sto correspond to nui-

sance parameters. The difference is that the deterministic

CRB depends on Q−1/2 instead of ∂Q/∂σ T , whereas the

stochastic one is not only determined by ∂r/∂σ T but also

∂r/∂pT . Consequently, more variants of the stochastic CRB

will be produced with different choices of p and σ , as will be

illustrated in Section III.

All the expressions derived in this section are based on the

mean and covariance of the overall data vector x̄ containing

N i.i.d. snapshots. The log-likelihood function of x̄ can be

written as a multiplication of N log-likelihood functions for

each snapshot: lnf (x̄; α) =
∏N

t=1 lnf [x(t); α]. It follows from

(5) that F =
∑N

t=1F t with F t denoting the FIM for the

t-th snapshot. Since the N snapshots are i.i.d., {F (t)}Nt=1 are

identical. As a result, the multi-snapshot CRB can be alter-

natively obtained by multiplying 1/N to the single-snapshot

CRB, which can be derived in the same way based on the

mean and covariance matrix given in either (2) or (3). In other

words, multiplyingN to (16) and (23), respectively, yields the

deterministic and stochastic CRB geometrical interpretations

for the single-snapshot case [111, p. 932].

III. CLOSED-FORM NARROWBAND CRB EXPRESSIONS IN

DIFFERENT CASES

In this section, we review a number of typical closed-

form CRB expressions for DOAs by specifying the nuisance

parameters under three noise models, namely, UN, NUN, and

AUN. We will show how the results in (16) and (25) evolve

into explicit closed-form expressions in different cases.

We start from the deterministic CRB, whose explicit

expression is distinguished by Q−1/2. Since the stochastic

CRB depends on p and σ , in addition to the three noise mod-

els, two classes of closed-form stochastic CRB expressions

with different p are also provided.

A. DETERMINISTIC CRB WITH UNIFORM NOISE

In the presence of UN, we have

Q = σ IM , σ = σ, (27)

where σ ∈ R
+ represents the power of the noise, and R

+

denotes the set of positive real-valued numbers. Substituting

(27) into (16), we immediately obtain the following Result 1.

Result 1: Denote the DOA-related block of the determin-

istic CRB in the presence of UN as Bun
det. If K<M , then the

closed-form expression for Bun
det is given by

Bun
det = σ

2N

{

Re
[

(A′H5⊥
AA

′) ◦ P̂T
]}−1

. (28)

This result was independently derived in [11], [12].

Although both of them started from the general CRB formula

in (5), the subsequent derivation was carried out in a different

manner. In [11], all blocks of the FIM were explicitly derived
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by differentiating the log-likelihood function and taking the

expectation, and then (28) was obtained by an intricate calcu-

lation of the inverse of the partitioned FIM. In [12], the log-

likelihood function was written in a reduced form depending

on the estimated DOAs θ̂ and the noise power σ̂ :

lnf (x̄; θ̂ , σ̂ ) = −MN ln(πσ̂ ) − σN

σ̂
(M − N )

−N

σ̂
tr(AH5⊥

Â
AP), (29)

where Â stands for the array manifold matrix associated with

θ̂ . It was then demonstrated that

AH 5̂
⊥
AA = Â

H
5⊥
A Â+ O(‖θ − θ̂‖3),

which implies that the second-order derivatives of AH 5̂
⊥
AA

and Â
H

5⊥
A Â w.r.t. θT are identical for θ = θ̂ . Finally, (28)

was obtained with reduced matrix computation by substitut-

ing (29) into (6).

B. DETERMINISTIC CRB WITH NONUNIFORM NOISE OR

ARBITRARY UNKNOWN NOISE

The covariance matrix of NUN takes the following form

Q = diag(σ ), σ = [σ1, σ2, . . . , σM ]T , (30)

where diag(·) refers to a diagonal matrix whose diagonal

entries are listed inside the brackets, and {σm}Mm=1 ∈ R
+ are

the noise variances at different sensors. Since the diagonal

elements ofQ are different, it seems infeasible to rewrite (16)

more explicitly as in (28).

Moreover, the covariance matrix of AUN is modeled to be

determined by L unknown real-valued parameters [24]:

Q = Q(σ ), σ = [σ1, σ2, . . . , σL]
T , (31)

where {σl}Ll=1 ∈ R with R denoting the set of real-valued

numbers. For the same reason as in the NUN case, the closed-

form deterministic CRB expression in the presence of AUN

cannot be written more explicitly than that in (16).

Result 2: Denote the DOA-related block of the determin-

istic CRB in the presence of NUN and AUN as Bnun
det and

Baun
det , respectively. If K<M , then the closed-form expression

for Bnun
det or Baun

det is given by (16).

Similar to the UN case, this result was originally obtained

by evaluating all submatrices of the partitioned FIM in (11)

and then applying the partitioned matrix formula [17]. The

difference is that the derivation in [17] is based on (8)

instead of (6), so that fewermatrixmanipulations are involved

compared to [11].

C. STOCHASTIC CRB WITH UNIFORM NOISE

For the stochastic model without a priori knowledge,

the source covariance matrix P is determined by its K 2 upper

triangular elements collected by

p = [p11,Re(p12), Im(p12), . . . ,Re(p1K ), Im(p1K ),

p22,Re(p23), Im(p23), . . . , pKK ]
T , (32)

Applying the vectorization operator to (4) leads to

r = (A∗ ⊗ A)J1p+ vec(Q), (33)

where J1 ∈ C
K2×K2

is a nonsingular matrix satisfying

vec(P) = J1p, and (·)∗ denotes the conjugate operation.

To derive a closed-form expression for the stochastic CRB,

we need to specifyGsto,V , andU in (21). From (19) and (33),

the k-th (k = 1, 2, · · · ,K ) column of Gsto is given by

gk = vec(R− 1
2A′eke

T
k PA

HR− 1
2

+R− 1
2APeke

T
k A

′HR− 1
2 ), (34)

where ek ∈ R
K×1 contains one at the k-th position and zeros

elsewhere. By (33), V is expressed as

V = W (A∗ ⊗ A)J1 =
[

(R− 1
2A)∗ ⊗ (R− 1

2A)
]

J1. (35)

As assumed previously when deriving (25), V has fewer

rows than columns, leading to K<M . In the presence of UN,

it follows from (27) that

U = Wvec(IM ) = vec(R−1). (36)

Next, we show the key derivations of C, D, and F in

(25). Since J1 is nonsingular, we first obtain the following

important result.

5⊥
V = 5⊥

(R
− 1
2 A)∗⊗(R

− 1
2 A)

= IM ⊗ 5⊥
(R

− 1
2 A)∗

+5⊥
R

− 1
2 A

⊗ IM − 5⊥
(R

− 1
2 A)∗

⊗ 5⊥
R

− 1
2 A

, (37)

where the identity below is used

5⊥
A⊗B

= I ⊗ 5⊥
A

+ 5⊥
B

⊗ I − 5⊥
A

⊗ 5⊥
B

.

From (19), (34) and (37), we have

5⊥
Vgk = vec(5⊥

R
− 1
2 A
R− 1

2A′eke
T
k PA

HR− 1
2 )

+vec(R− 1
2APeke

T
k A

′HR− 1
2 5⊥

R
− 1
2 A

). (38)

With (19), (34), and (38), the (k1, k2)-th (k1, k2 =
1, 2, · · · ,K ) element of C is expressed as

〈C〉k1,k2 = gHk15
⊥
Vgk2 = gHk15

⊥
V5⊥

Vgk2

= 2Re
[

(eTk1A
′HR− 1

2 5⊥
R

− 1
2 A
R− 1

2A′ek2 )

·(eTk2PA
HR−1APek1 )

]

. (39)

In this case, D becomes a vector whose k-th element is

〈D〉k = gHk 5⊥
VU

= 2Re

[

tr(R−15⊥
R

− 1
2 A
R− 1

2APeke
T
k A

′HR− 1
2 )

]

= 0. (40)

Then, introduce the following identity [23]:

R− 1
2 5⊥

R
− 1
2 A
R− 1

2 = 1

σ
5⊥
A . (41)

Combining (39), (40), (41), and (25) gives Result 3 as shown

below.
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Result 3: Denote the DOA-related block of the stochastic

CRB in the presence of UN as Bun
sto. If K<M , then the closed-

form expression for Bun
sto is given by

Bun
sto = σ

2N

{

Re
[

(A′H5⊥
AA

′) ◦ (PAHR−1AP)T
]}−1

. (42)

This well-known result was initially derived indirectly

through the asymptotic covariancematrix of estimation errors

of the stochastic ML estimator [2], [20] or the optimal sub-

space fitting estimator [21]. Then, this result was derived

directly in [22]. Explicit expressions of all submatrices of

the FIM were derived therein, and then the partitioned matrix

inversion formula was used to obtain (42). A few years later,

a compact derivation of (42) was presented in [23], which

incorporates the key steps to reach (23) and also the subse-

quent derivation in this subsection.

Remark 2: From (40), it is clear that D = 0. Thus, (25)

is simplified to Bsto = (NC)−1. It is easy to verify that this

simplified stochastic CRB framework and (42) are applicable

to the case where the noise covariance matrix is completely

known, indicating that the DOA estimation accuracy will not

be affected by whether the power of UN is known or not.

D. STOCHASTIC CRB WITH NONUNIFORM NOISE

In the presence of NUN, it follows from (30) that the m-th

(m = 1, 2, . . . ,M ) column of U is expressed as

um = (R− T
2 ⊗ R− 1

2 )vec(eme
T
m). (43)

Let us consider a full column-rank matrix Θ ∈ C
M×(M−K )

whose columns span the null space of AH . This leads to

ΘHA = 0, and hence

5⊥
R

− 1
2 A

= 5
R

1
2 Θ

, (44)

where 5R1/2Θ is the pseudo inverse of R1/2Θ . The identity

below can be deduced from (44), and it plays an important

role in the subsequent derivation [24]

R− 1
2 5⊥

R
− 1
2 A
R− 1

2 = Q− 1
2 5⊥

Ā
Q− 1

2 . (45)

Note that (45) is a generalized version of (41).

In this case, V is the same as that with UN, so that (34),

(38), and (39) are preserved. Meanwhile, with (19), (38), and

(45), the (k,m)-th element of D is expressed as

〈D〉k,m = gHk 5⊥
Vum

= 2Re
[

(eTk Ā
′H5⊥

Ā
Q− 1

2 em)(e
T
mQ

− 1
2 R̄

−1
ĀPek )

]

, (46)

where

R̄ = Q− 1
2RQ− 1

2 . (47)

From (19), (37), (43), and (45), the (m1,m2)-th (m1,m2 =
1, 2, . . . ,M ) element of F is given by

〈F〉m1,m2

= uHm1
5⊥
Vum2

= 2Re
[

(eTm1
Q− 1

2 5⊥
Ā
Q− 1

2 em2
)(eTm2

Q− 1
2 R̄

−1
Q− 1

2 em1
)
]

−(eTm1
Q− 1

2 5⊥
Ā
Q− 1

2 em2
)(eTm2

Q− 1
2 5⊥

Ā
Q− 1

2 em1
), (48)

Substituting (39), (46), (48) into (25) yields the following

Result 4.

Result 4: Denote the DOA-related block of the stochastic

CRB in the presence of NUN as Bnun
sto . If K<M , then the

closed-form expression for Bnun
sto is given by (25), with

C = 2Re
[

(Ā′H5⊥
Ā
Ā′) ◦ (PĀ

H
R̄

−1
ĀP)T

]

, (49)

D = 2Re
[

(Ā′H5⊥
Ā
) ◦ (R̄

−1
ĀP)T

]

, (50)

F = 2Re(5⊥
Ā

◦ R̄−T
) − 5⊥

Ā
◦ (5⊥

Ā
)T . (51)

This result was reported in [17] with a detailed but compli-

cated derivation. The authors started from (8) and provided

closed-form expressions for each submatrix in the FIM. Then,

the partitioned matrix inversion formula was applied to reach

the final result. Note that in [17], the matrix F is written

differently as

F = R̄
−H ◦ R̄−1 − (5ĀR̄

−1
)H ◦ (5ĀR̄

−1
). (52)

Since 5⊥
Ā
R̄

−1 = 5⊥
Ā
, it can be verified that the two forms of

F in (51) and (52) are equivalent [24].

E. STOCHASTIC CRB WITH ARBITRARY UNKNOWN NOISE

Under the AUN model in (31), the l-th (l = 1, 2, . . . ,L)

column of U is given by

ul = (R− T
2 ⊗ R− 1

2 )vec(Q′
l), (53)

where

Q′
l = ∂Q

∂σl
. (54)

The matrix C remains (49). Meanwhile, with (19), (38), (45),

and (53), the (k, l)-th element of D is expressed as

〈D〉k,l
= gHk 5⊥

Vul

= 2Re
[

tr(Q′
lR

−1APeke
T
k A

′HQ− 1
2 5⊥

Ā
Q− 1

2 )
]

= 2Re
{

vec(eke
T
k )
T
[

(Ā
H

5⊥
Ā
) ⊗ (R̄

−1
ĀP)T

]

vec(Q̄
′
l)

∗
}

,

(55)

where

Q̄
′
l = Q− 1

2Q′
lQ

− 1
2 . (56)

It follows from (19), (37), (45), and (53) that the (l1, l2)-th

(l1, l2 = 1, 2, . . . ,L) element of F is given by

〈F〉l1,l2 = uHl1 5
⊥
Vul2

= 2Re
[

tr(Q̄
′
l1
Q− 1

2 5⊥
Ā
Q− 1

2 Q̄
′
l2
R−1)

]

−tr(Q̄
′
l1
Q− 1

2 5⊥
Ā
Q− 1

2 Q̄
′
l2
Q− 1

2 5⊥
Ā
Q− 1

2 )

= 2Re
[

vec(Q̄
′
l1
)H (R̄

−T ⊗ 5⊥
Ā
)vec(Q̄

′
l2
)
]

−vec(Q̄
′
l1
)H
[

(5⊥
Ā
)T ⊗ 5⊥

Ā

]

vec(Q̄
′
l2
). (57)
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Combining (39), (55), (57), and (25) gives the following

Result 5.

Result 5: Denote the DOA-related block of the stochastic

CRB in the presence of AUN as Baun
sto . If K<M , then the

closed-form expression for Baun
sto is given by (25), with

C = 2Re
[

(Ā′H5⊥
Ā
Ā′) ◦ (PĀ

H
R̄

−1
ĀP)T

]

,

D = 2Re
{

ETK

[

(Ā′H5⊥
Ā
) ⊗ (R̄

−1
ĀP)T

]

Q̄
∗}

,

F = 2Re
[

Q̄
H
(R̄

−T ⊗ 5⊥
Ā
)Q̄
]

−Q̄
H
[

(5⊥
Ā
)T ⊗ 5⊥

Ā

]

Q̄,

EK =
[

vec(e1e
T
1 ), vec(e2e

T
2 ), . . . , vec(eK e

T
K )
]

,

Q̄ =
[

vec(Q̄
′
1), vec(Q̄

′
2), . . . , vec(Q̄

′
L)
]

.

This result was obtained in [24] through the derivation above,

and the closed-form expressions for Bun
sto and B

nun
sto were also

derived therein as special cases of AUN.

As a special case of AUN, the partially unknown noise field

was studied in [7]–[9] with the noise model given by

Q(σ ) =
L
∑

l=1

σlΨ l, (58)

where Ψ l ∈ C
M×M represents a known matrix. As pointed

out in [7], {σl}Ll=1 are determined by the intensity and the

spatial distribution of the noise, whereas {Ψ l}Ll=1 depend on

the array configuration. The corresponding CRB was derived

by the inverse of the partitioned FIM in [7], but a closed-form

expression was not available. Then, a CRB expression in the

presence of partially unknown noise, which is similar to that

in (23), was derived from the limiting Hessian matrix [9], but

it can be written more explicitly by substitutingQ′
l = Ψ l into

Result 5.

F. STOCHASTIC CRB WITH SPATIALLY UNCORRELATED

SOURCES

When K ≥ M , the CRB expressions in Results 3-5 are

no longer applicable. This difficulty can be overcome by

employing the a priori knowledge of uncorrelated sources,

which reduces the unknown parameters in P. In this case,

we have

P = diag(p), p = [p1, p2, . . . , pK ]
T , (59)

where pk ∈ R
+. Therefore, R can be written as

R =
K
∑

k=1

pkaka
H
k + Q. (60)

In contrast to (33), the vectorization of R is expressed as

r = Tp+ vec(Q), (61)

where

T = A∗ ⊙ A. (62)

Notice that Pek = pkek , and thus

∂r

∂θk
= vec(A′eke

T
k PA

H + APeke
T
k A

′H )

=
[

(A∗ek ) ⊗ (A′ek ) + (A′∗ek ) ⊗ (Aek )
]

pk . (63)

By (63), Gsto becomes

Gsto = WT ′P, (64)

where

T ′ = A∗ ⊙ A′ + A′∗ ⊙ A. (65)

According to the relationship between the Khatri-Rao

product and the Kronecker product [114], we can rewrite V

as

V = WT = [(R− 1
2A)∗ ⊗ (R− 1

2A)]J2, (66)

where J2 ∈ R
K2×K is a singular selection matrix.

Remark 3: Compared with (35), the number of columns

of V in (66) is reduced from K 2 to K , whereas the number

of rows remains M2. Consequently, the necessary condition

for the FIM to be nonsingular is relaxed from K ≤ M to K ≤
M2. This explains why the a priori knowledge of uncorrelated

sources allows (23) to be valid in the rangeK ≥ M . However,

in this case, 5⊥
V cannot be written in a form similar to (37),

so that explicit expressions for C, D, and F are unavailable.

The following Result 6 gives a class of closed-form expres-

sions for the DOA-related blocks of the stochastic CRBs with

uncorrelated sources under different noise models.

Result 6: Consider the a priori knowledge that the sources

are spatially uncorrelated. Denote the DOA-related block

of the stochastic CRB in the presence of UN, NUN, and

AUN as Bun
unc, B

nun
unc , and B

aun
unc, respectively. The closed-form

expressions for Bun
unc, B

nun
unc , and B

aun
unc are given by (23), with

the sameGsto andV shown in (64) and (66), but with different

U given by

UN : U = vec(R−1),

NUN : U = WEM ,

AUN : U = WQ, (67)

where

EM =
[

vec(e1e
T
1 ), vec(e2e

T
2 ), . . . , vec(eMe

T
M )
]

,

Q =
[

vec(Q′
1), vec(Q

′
2), . . . , vec(Q

′
L)
]

. (68)

The closed-form expression for Bun
unc was first presented in

[39], and it was further rewritten in a more explicit form to

analyze the performance of the proposed DOA estimator. The

key steps are carried out as follows.

Assume that K<M , and then

vec(IM ) = vec(5A) + vec(5⊥
A ). (69)

Introduce a full column-rank matrixΛ ∈ C
M2×(M2−K ) whose

columns span the null space of TH . Similar to (44), we have

5⊥
V = 5W−1Λ. (70)
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Substituting (64), (66), (67), (69) and (70) into (25) yields

Bun
unc = 1

N

[

PT ′HΛ(ΛHYΛ)−1ΛHT ′P
]−1

, (71)

where

Y = (RT ⊗ R) + σ 2

M − K
vec(5A)vec(5A)

H . (72)

G. COMPARISON AND DISCUSSION

When a new CRB expression was derived, it was often com-

pared with the existing ones, see, e.g., [2], [17], [20], [24].

Now we have obtained three closed-form deterministic CRB

expressions, i.e., Bun
det, B

nun
det , and Baun

det , as well as six more

stochastic ones, namely, Bun
sto, B

nun
sto , B

aun
sto , B

un
unc, B

nun
unc , and

Baun
unc. Comparisons among these CRBs lead to many interest-

ing results which offer valuable insights into the estimation

efficiency under different model assumptions. In what fol-

lows, the symbols �, ≻, �, ≺ are used to describe the partial

order between two matrices, which means subtracting the

matrix on the right from that on the left produces a matrix that

is nonnegative definite, positive definite, nonpositive definite,

and negative definite, respectively.

1) DETERMINISTIC CRB VERSUS DETERMINISTIC CRB

In the deterministic case, the signal parameters and noise are

decoupled in the FIM. From Results 1 and 2, the following

equality holds [17], [24].

Property 1: If the true noise covariance matrix is

described by the UN model, then the deterministic CRBs

derived under the assumptions of UN, NUN, and AUN are

identical, yielding

Baun
det |Q=σ IM = Bnun

det |Q=σ IM = Bun
det. (73)

Moreover, if the true noise covariance matrix is described by

the NUN model, then the deterministic CRBs derived under

the assumptions of NUN and AUN are identical, leading to

Baun
det |Q=diag(σ ) = Bnun

det . (74)

2) STOCHASTIC CRB VERSUS STOCHASTIC CRB

Intuitively, adding extra nuisance parameters will expand the

dimension of the subspace of ∆sto, and hence increase the

stochastic CRB for DOAs [24]. We restate this conclusion in

the following theorem and give a rigorous proof.

Theorem 1: Let the vector ω (ω 6= 0) collect a group of

extra unknown parameters.

a) If ω, p, and σ are linearly independent, adding ω to

p or σ will increase the stochastic CRB for DOAs.

b) Ifω, p, and σ are linearly dependent, addingω to p or σ

will not change the the stochastic CRB for DOAs.

c) An arbitrary permutation of nuisance parameters will

not change the stochastic CRB for DOAs.

Proof: See Appendix A. �

Based on Theorem 1, a number of order relationships

among the stochastic CRBs under different model assump-

tions can be immediately obtained by comparing the specific

presentations of αsto.

Property 2: Under the AUN model, assume that σ con-

tains not only the M unknown parameters on the diagonal of

Q but also some other ones. Then, we have

Baun
sto ≻ Bnun

sto ≻ Bun
sto, Baun

unc ≻ Bnun
unc ≻ Bun

unc.

Property 3: The stochastic CRB for DOAs with the a pri-

ori knowledge of uncorrelated sources is always smaller than

that without a priori knowledge, i.e.,

Bun
sto ≻ Bun

unc, Bnun
sto ≻ Bnun

unc, B
aun
sto ≻ Baun

unc.

In [17], [24], the first inequality in Property 2 was writ-

ten as Bnun
sto |Q=IM � Bun

sto and Baun
sto |Q=IM � Bun

sto, respec-

tively. These results were derived based on the fact that

(NC)−1|Q=IM = Bun
sto and also DF−1DH is nonnegative def-

inite. However, the condition under which the equality holds

was not given, and Theorem 1 indicates that these inequalities

are strict.

3) DETERMINISTIC CRB VERSUS STOCHASTIC CRB

To compare the deterministic and stochastic CRBs, the fol-

lowing asymptotic (w.r.t. snapshots) deterministic CRB

expressions for a sufficiently large N will be useful [20].

Bun
det,asy = σ

2N

{

Re
[

(A′H5⊥
AA

′) ◦ P̂Tasy
]}−1

, (75)

Bnun
det,asy = Baun

det,asy = 1

2N

{

Re
[

(Ā′H5⊥
Ā
Ā′) ◦ P̂Tasy

]}−1

,

(76)

where

P̂asy = lim
N→∞

1

N

N
∑

t=1

s(t)sH (t).

Then, another property is given as follows.

Property 4: For a finite number of sensors, the stochastic

CRB is always larger than the deterministic one.

Bun
sto ≻ Bun

det,asy, Bnun
sto ≻ Bnun

det,asy, B
aun
sto ≻ Baun

det,asy.

The first inequality can be demonstrated by subtracting (42)

from (75), which results in a positive definite matrix for any

finite M [20]. Besides, this inequality was shown to be strict

when A′H5⊥
AA

′ and P are both positive definite [2]. Simi-

larly, the other two inequalities can be obtained via comparing

(49) and (76), which leads to Bnun
sto ≻ (NC)−1 ≻ Bnun

det,asy and

Baun
sto ≻ (NC)−1 ≻ Baun

det,asy. In addition, The third inequality

was originally written as Baun
sto � (NC)−1 � Baun

det,asy [24], but

the condition under which the equality holds was not given.
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4) CRB VERSUS ASYMPTOTIC COVARIANCE MATRIX

In the literature, some of the aforementioned inequalities

are accompanied by the asymptotic covariance matrices of

estimation errors of specific estimators [2], [4], [20], [21],

[107]. For instance, an interesting result is given below [4].

1

N
Cun
DML,asy = Bun

det,asy + 2NBun
det,asyRe

[

(A′H5⊥
AA

′)

◦(AHA)−T
]

Bun
det,asy,

1

N
Cun
DML,asy � 1

N
Cun
SML,asy = Bun

sto � Bun
det,asy, (77)

where Cun
DML,asy and C

un
SML,asy denote the asymptotic covari-

ance matrices of estimation errors of the deterministic and

stochastic ML estimators, respectively, with UN.

Other similar results in the literature offer valuable insights

into the asymptotic performance of various estimators, but

they involve a broad range of discussions which cannot be

fully covered in this paper. For detail, the reader can refer to

the original work where a specific inequality is presented.

IV. EXTENSION TO COMPLEX NONCIRCULAR GAUSSIAN

SIGNALS

For complex noncircular Gaussian signals, in addition to Γ ,

the covariance matrix of the conjugate part of the signals is

also required to describe the second-order statistical property

of x̄. Taking into account the conjugate part of the samples,

we denote the extended signal vector and its mean as

ẋ =
[

x̄

x̄∗

]

, µ̇ =
[

µ

µ∗

]

.

Then, the covariance matrix of ẋ is defined as

Γ̇ , E[(ẋ− µ̇)(ẋ− µ̇)H ] =
[

Γ Γ c

Γ ∗
c Γ ∗

]

, (78)

where

Γ c , E[(x̄− µ)(x̄∗ − µ∗)H ].

Here, µ̇ and Γ̇ are determined by the extended unknown

parameter vector α̇. Thus, f (x̄; α̇) can be rewritten as a func-

tion of ẋ, µ̇ and Γ̇ [110], [115], which can be used to derive

the Slepian-Bangs formula for complex noncircular Gaussian

signals [52]:

〈B−1(α̇)〉i,j = 1

2
tr

(

Γ̇
−1 ∂Γ̇

∂〈α̇〉i
Γ̇

−1 ∂Γ̇

∂〈α̇〉j

)

+Re

(

∂µ̇H

∂〈α̇〉i
Γ̇

−1 ∂µ̇

∂〈α̇〉j

)

. (79)

For circular signals, Γ c = 0, so that (79) reduces to (8).

A. CLOSED-FORM NONCIRCULAR DETERMINISTIC CRB

EXPRESSIONS WITH DIFFERENT NOISE MODELS

Under the deterministic model, the signals are assumed to

be deterministic, and the noise is assumed to be circularly

symmetric Gaussian distributed. Therefore, we have

µ̇ = µ̇det =
[

∆dets̄

∆∗
dets̄

∗

]

,

Γ̇ = Γ̇ det =
[

IN ⊗ Q 0

0 IN ⊗ Q∗

]

,

α̇ = α̇det = αdet. (80)

Substituting (80) into (79) and following the derivation in

Section II-C, we finally reach the unified framework for the

circular deterministic CRB in (16). This indicates that the

DOA-related block of the deterministic CRB for complex

circular and noncircular Gaussian signals are identical. This

conclusion also follows intuitively from the fact that the

deterministic model does not account for the second-order

statistics of the source signals, so that noncircularity will

not affect the deterministic CRB. Consequently, the circular

deterministic CRB expressions in Results 1 and 2 are all

applicable to the noncircular scenario.

Result 7: Denote theDOA-related block of the noncircular

deterministic CRB in the presence of UN, NUN, and AUN

as Bun
det,nc, B

nun
det,nc, and B

aun
det,nc, respectively. If K<M , then the

closed-form expression for Bun
det,nc is given by (28), and those

for Bnun
det,nc or B

aun
det,nc are given by (16).

B. UNIFIED NONCIRCULAR STOCHASTIC CRB

FRAMEWORK

For the stochastic model, we define the following covariance

matrices

Pc , E[s(t)sT (t)],

Rc , E[x(t)xT (t)] = APcA
T ,

and thereby

µ̇ = µ̇sto = 0, Γ̇ = Γ̇ sto =
[

IN ⊗ R IN ⊗ Rc

IN ⊗ R∗
c IN ⊗ R∗

]

. (81)

Introduce the following notations:

Ȧ =
[

A 0

0 A∗

]

, Ṗ =
[

P Pc

P∗
c P∗

]

, Q̇ =
[

Q 0

0 Q∗

]

,

Ṙ =
[

R Rc

R∗
c R∗

]

= ȦṖȦ
H + Q̇, (82)

and notice that

Γ̇ sto = O2(IN ⊗ Ṙ)OT2 , (83)

where O2 ∈ R
2MN×2MN is a permutation matrix.

The extended unknown parameter vector is expressed as

α̇ = α̇sto =
[

θT , ṗT , σ T
]T

, (84)

where ṗ holds the real and imaginary parts of the unknown

entries in Ṗ.

Substituting (81), (83), and (84) into (79) and using (19),

we obtain

B−1(α̇sto) = N

2

(

∂ ṙ

∂α̇Tsto

)H

(Ṙ
−T ⊗ Ṙ

−1
)

(

∂ ṙ

∂α̇Tsto

)

, (85)

where ṙ = vec(Ṙ). Introduce the following notations:

Ġsto = Ẇ
∂ ṙ

∂θT
, ∆̇sto =

[

V̇ , U̇
]

, V̇ = Ẇ
∂ ṙ

∂ ṗT
,
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U̇ = Ẇ
∂ ṙ

∂σ T
, Ẇ = Ṙ

− T
2 ⊗ Ṙ

− 1
2 , (86)

and then (23) can be straightforwardly extended to the com-

plex noncircular Gaussian scenario, leading to the geometri-

cal interpretation of the noncircular stochastic CRB:

Bsto,nc = 2

N

(

Ġ
H

sto5
⊥
∆̇sto

Ġsto

)−1
. (87)

Furthermore, assume that V̇ has more rows than columns,

then the unified framework for the DOA-related block of the

noncircular stochastic CRB is given by

Bsto,nc = 2

N

(

Ċ − ḊḞ
−1
Ḋ
H
)−1

. (88)

C. CLOSED-FORM NONCIRCULAR STOCHASTIC CRB

EXPRESSIONS WITH DIFFERENT NOISE MODELS

First, consider the general case without a priori knowledge

about the sources. According to (82), Ṗ is parameterized by

the following 2K 2 + K real-valued unknowns:
[

Re(〈P〉i,j), Im(〈P〉i,j),Re(〈Pc〉i,j), Im(〈Pc〉i,j)
]

1≤i<j≤K
,

[

〈P〉i,i,Re(〈Pc〉i,i), Im(〈Pc〉i,i)
]

i=1,2,...,K
. (89)

It has been proved that theML estimate of θ is invariant to the

constrained structure of Ṗ [52], [53]. Therefore, we can treat

Ṗ as an arbitrary Hermitian matrix which is parameterized by

its 4K 2 upper triangular elements collected by

ṗ =
[

〈Ṗ〉1,1,Re(〈Ṗ〉1,2), Im(〈Ṗ〉1,2), . . . , 〈Ṗ〉2K ,2K

]T
,

Remark 4: The underlying equivalence can also be

explained by Theorem 1. Notice that ṗ contains all parameters

in (89), whereas the rest are their duplicates. Thus, replacing

the original unknown parameters in (89) with ṗ will not

change the DOA-related block of the stochastic CRB. This

shows that in some cases, adding redundant or, more gen-

erally, linearly dependent nuisance parameters will benefit

the derivation of the CRB for DOAs, without impairing the

correctness.

Consequently, the key relationship (33) is preserved for

complex noncircular Gaussian signals

ṙ = (Ȧ
∗ ⊗ Ȧ)J̇1ṗ+ vec(Q̇), (90)

where J̇1 ∈ C
4K2×4K2

is a nonsingular matrix. Since V̇ is

assumed to have more rows than columns, i.e., K<M , it can

be verified that (45) becomes

Ṙ
− 1

2 5⊥
Ṙ

− 1
2 Ȧ

Ṙ
− 1

2 = Q̇
− 1

2 5⊥
¯̇A
Q̇

− 1
2 . (91)

Introduce the following notations:

¯̇R = Q̇
− 1

2 ṘQ̇
− 1

2 , R̄c = Q− 1
2RcQ

∗− 1
2 . (92)

From (47) and (92), we have ¯̇R =
[

R̄ R̄c

R̄
∗
c R̄

∗

]

, and thereby ¯̇R−1

takes the form

¯̇R−1 =
[

Z Zc
Z∗
c Z∗

]

, (93)

where

Z = (R̄− R̄cR̄
∗−1

R̄
∗
c )

−1, Zc = −ZR̄cR̄
∗−1

.

Following the derivations from Section III-C to Section III-

E and using (90), (91), (92) and (93), we can obtain the

following results:

Result 8: Denote theDOA-related block of the noncircular

stochastic CRB in the presence of UN asBun
sto,nc. IfK<M , then

the closed-form expression for Bun
sto,nc is given by

Bun
sto,nc = σ

2N

{

Re

[

(A′H5⊥
AA

′)

◦
(

[PAH ,PcA
T ]Ṙ

−1
[

AP

A∗P∗
c

])T ]}−1

. (94)

Result 9: Denote theDOA-related block of the noncircular

stochastic CRB in the presence of NUN as Bnun
sto,nc. If K<M ,

then the closed-form expression for Bnun
sto,nc is given by (88),

with

Ċ = 4Re
[

(Ā′H5⊥
Ā
Ā′)

◦
(

[PĀ
H

,PcĀ
T
] ¯̇R

−1
[

ĀP

Ā
∗
P∗
c

])T
]

,

Ḋ = 4Re
[

(Ā′H5⊥
Ā
) ◦ (ZĀP)T

+(Ā′H5⊥
Ā
) ◦ (ZcĀ

∗
P∗
c )
T
]

,

Ḟ = 2
[

ZT ◦ Z− (5ĀZ)
T ◦ (5ĀZ)

]

.

Result 10: Denote the DOA-related block of the noncircu-

lar stochastic CRB in the presence of AUN asBaun
sto,nc. IfK<M ,

then the closed-form expression for Baun
sto,nc is given by (88),

with

Ċ = 4Re
[

(Ā′H5⊥
Ā
Ā′)

◦
(

[PĀ
H

,PcĀ
T
] ¯̇R

−1
[

ĀP

Ā
∗
P∗
c

])T
]

,

Ḋ = 4Re
{

ETK

[

(Ā′H5⊥
Ā
) ⊗ (ZĀP)T

]

Q̄
∗}

+4Re
{

ETK

[

(Ā′H5⊥
Ā
) ⊗ (ZcĀ

∗
P∗
c )
T
]

Q̄
∗}

,

Ḟ = 4Re
[

Q̄
H
(R̄

−T ⊗ 5⊥
Ā
)Q̄
]

− 2Q̄
H
[

(5⊥
Ā
)T ⊗ 5⊥

Ā

]

Q̄.

Results 8-10 were originally derived in [52], [53] from

the extended Slepian-Bangs formula. In particular, Result 8

was also obtained indirectly from the asymptotic covariance

matrix of the noncircular stochastic ML estimator [52]. It was

mentioned that the deterministic CRB expression for circular

signals remains valid for complex noncircular Gaussian sig-

nals [53], which invokes Result 7.

D. CLOSED-FORM NONCIRCULAR STOCHASTIC CRB

EXPRESSIONS WITH UNCORRELATED SOURCES

If the sources are known a priori to be spatially uncorrelated,

then (59) and (60) are preserved. In addition, we introduce

Pc = diag(pc), pc =
[

pc,1, pc,2, . . . , pc,K
]T

, (95)
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where {pc,k}Kk=1 ∈ C. Therefore,

Rc =
K
∑

k=1

pc,kaka
T
k .

Applying the vectorization operator yields

rc = T cpc, (96)

where

T c = A⊙ A. (97)

It should be emphasized that in this case, Ṗ is not only

determined by its elements on the main diagonal, but also

those on the off-diagonal, so we cannot treat Ṗ as an arbitrary

diagonal Hermitian matrix. Instead,

ṗ =
[

pT ,Re(pTc ), Im(pTc )
]T

. (98)

According to the block-wise vectorization concept [116],

it follows from (61) and (96) that ṙ can be expressed as

ṙ = J̇2

[

rT , rHc , rTc , rH
]T

= J̇2









Tp

T∗
cp

∗
c

T cpc
T∗p









+ J̇2









vec(Q)

0

0

vec(Q∗)









(99)

where J̇2 = (I2 ⊗ O3 ⊗ IM )−1 ∈ R
4M2×4M2

, and O3 ∈
R
2M×2M is referred to as the communication matrix [117].

By (96), we have

∂rc

∂θT
= T ′

cPc, (100)

where

T ′
c = A⊙ A′ + A′ ⊙ A. (101)

Combining (86), (63), (99), and (100), we obtain

Ġsto = Ẇ J̇2









T ′P
T ′
c
∗
P∗
c

T ′
cPc

T ′∗P









, V̇ = Ẇ J̇2









T 0 0

0 T∗
c −jT∗

c

0 T c jT c

T∗
0 0









.

(102)

Given these ingredients, we can derive the closed-form

noncircular stochastic CRB expressions with uncorrelated

sources in the presence of different noise fields, which are

shown below.

Result 11: Consider the a priori knowledge that the

sources are spatially uncorrelated. Denote the DOA-related

block of the noncircular stochastic CRB in the presence of

UN, NUN, and AUN as Bun
unc,nc, B

nun
unc,nc, and B

aun
unc,nc, respec-

tively. The closed-form expressions for Bun
unc,nc, B

nun
unc,nc, and

Baun
unc,nc are given by (87), with the same Ġsto and V̇ shown in

(102), but different U̇ given by

UN : U̇un = Ẇ J̇2

[

vec(IM )T ,0T ,0T , vec(IM )T
]T

,

NUN : U̇nun = Ẇ J̇2

[

ETM ,0T ,0T ,ETM

]T
,

AUN : U̇aun = Ẇ J̇2

[

QT ,0T ,0T ,QH
]T

.

To the best of our knowledge, this result has not been

presented in the literature, but it is relevant for assessing the

performance of some newly proposed algorithms developed

for this case, such as [94], [118]. In [94], an approximation

to the true noncircular CRB was derived, which is written as

(in our notations)

Bun
unc,nc = 1

N
(Ġ

H

stoĠsto)
−1, (103)

where Ġsto was further rewritten by substituting (128) and

(135) into (102), as will be illustrated in Section V.

In fact, (103) is incorrect since it was derived based on

the Slepian-Bangs formula in (8), which does not account for

noncircularity. According to (79), the coefficient in the front

of (103) should be 2/N . If this mistake was corrected, (103)

would be an approximation of the true CRB for the signal

model in [94]. Let Ḟ denote the FIM in this case, and then the

true CRB is calculated from [Ḟ
−1

]θθ , whereas (103) actually

results from F−1
θθ

. In general, [Ḟ
−1

]θθ ≥ F−1
θθ

[119, p. 65],

indicating that the latter is usually too optimistic, thus not

attainable. In particular, F−1
θθ

can be the true CRB, provided

that the nuisance parameters are assumed to be known.

E. COMPARISON AND DISCUSSION

Properties 1-4 can be easily extended to the noncircular

scenario, and some of these extended properties involving

the stochastic model without a priori knowledge have been

proved in [53]. Since the circular and noncircular determinis-

tic CRB expressions are identical, we shall focus on compar-

isons between the stochastic ones in these two scenarios.

In the following Theorem 2, we directly examine the

circular and noncircular stochastic CRBs for all unknown

parameters, i.e.,B(αsto) andB(α̇sto), and then the relationship

between their DOA-related blocks can be obtained naturally.

Theorem 2: Consider the case where the signals are actu-

ally circular, but this information is not known a priori. Then,

B(α̇sto) =
[

B(αsto) 0

0 B(β)

]

, (104)

where β holds the unknown parameters associated with Pc.

Proof: See Appendix B. �

Equation (104) shows that in the asserted case, the DOA-

related blocks of the circular and noncircular stochastic CRBs

are identical, leading to the following Property 5.

Property 5: Assume that the signals are circular, but this

information is not known a priori. Then, we have

Bun
sto,nc

∣

∣

∣Pc=0

Rc=0

= Bun
sto, Bun

unc,nc

∣

∣

∣Pc=0

Rc=0

= Bun
unc,

Bnun
sto,nc

∣

∣

∣Pc=0

Rc=0

= Bnun
sto , Bnun

unc,nc

∣

∣

∣Pc=0

Rc=0

= Bnun
unc,

Baun
sto,nc

∣

∣

∣Pc=0

Rc=0

= Baun
sto , Baun

unc,nc

∣

∣

∣Pc=0

Rc=0

= Baun
unc. (105)
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This property can also be verified by substituting Pc = 0

and Rc = 0 into the CRB expressions given in Results 8-11.

The three equations on the left of (105) have been checked

by this approach in [52], [53], whereas the other three on

the right have not been reported in the literature. Verify them

by substituting Pc = 0 and Rc = 0 into Result 11 would

take much more efforts due to the absence of more explicit

expressions. However, Theorem 2 demonstrates all these six

equations as an entirety.

Furthermore, another property was given in [52], [53] as

shown below.

Property 6: Under the UN, NUN, and AUN models,

the corresponding noncircular CRBs are upper bounded by

the circular ones.

Bun
sto � Bun

sto,nc, Bnun
sto � Bnun

sto,nc, B
aun
sto � Baun

sto,nc.

FromResults 3 and 8, the first inequality was proved in [52]

by means similar to Theorem 1. On the other hand, the other

two inequalities were demonstrated based on the fact that the

asymptotic covariance matrix of the ML estimation errors

for circular Gaussian signals is preserved in the noncircular

scenario [53]. To the best of our knowledge, when the sources

are known a priori to be uncorrelated, there is no evidence

that the noncircular CRB is upper bounded by the circular

one.

V. EXTENSION TO WIDEBAND SIGNALS

A. WIDEBAND MODEL BASED ON FREQUENCY

DECOMPOSITION

As mentioned in Section I-D, the temporal samples for wide-

band signals cannot be modeled as in (1). Conventionally,

the observation interval is divided into N nonoverlapping

subintervals with the same duration ξ . Then, aΦ-point DFT is

applied to each subinterval. Thus, the processing bandwidth

is decomposed into Φ narrow frequency bins.

Assume that ξ is much larger than the signal propagation

time delay across sensors and also the correlation time of the

source signals and the noise. Then, the Fourier coefficients

at different frequencies are asymptotically uncorrelated [66],

[78], which can be modeled as

xφ(t) = Aφ(θ )sφ(t) + nφ(t), (106)

where φ = 1, 2, . . . , Φ is the frequency index. It should

be noted that t = 1, 2, . . . ,N herein denotes the frequency

domain snapshot index, which is different from the temporal

snapshot index in the narrowband scenario.We do not replace

it with another symbol in order to highlight the connection

between the narrowband CRB and the wideband one. xφ(t),

sφ(t) and nφ(t) contain all Fourier coefficients of the array

output signals, the sources signals, and the additive noise,

respectively, at the φ-th bin:

xφ(t) =
[

x1,φ(t), x2,φ(t), . . . , xM ,φ(t)
]T ∈ C

M×1,

sφ(t) =
[

s1,φ(t), s2,φ(t), . . . , sK ,φ(t)
]T ∈ C

K×1,

nφ(t) =
[

n1,φ(t), n2,φ(t), . . . , nM ,φ(t)
]T ∈ C

M×1.

The array manifold matrix at the φ-th bin is given by

Aφ(θ ) =
[

aφ(θ1), aφ(θ2), . . . , aφ(θK )
]

.

According to the central limit theorem, if ξ is sufficiently

long, the Fourier coefficients will be asymptotically Gaussian

distributed [71, p. 94]. Hence, the Gaussian assumption made

on the temporal signals can be relaxed. For the deterministic

model and stochastic model, respectively, we have

xφ(t) ∼ CN [Aφ(θ )sφ(t),Qφ], (107)

xφ(t) ∼ CN (0,Rφ), (108)

where

Qφ , E[nφ(t)n
H
φ (t)], Pφ , E[sφ(t)s

H
φ (t)],

Rφ , E[xφ(t)x
H
φ (t)] = Aφ(θ )PφA

H
φ (θ ) + Qφ .

Under the assumptions given above, the frequency

domain sample covariance matrix, Rφ , approximately

equals the cross-spectral density matrix of the array out-

put signals. In practice, Rφ is estimated from R̂φ =
1/N

∑N
t=1 xφ(t)x

H
φ (t), which is a sufficient statistic for the

wideband Gaussian problem [78]. Note that the spectral

leakage inherent in the DFT might break the consistency

of the established frequency bin model [57], so that the

wideband CRB derived here is an approximation to the truth,

but is of practical value since most algorithms regard R̂φ as

the actual measured data [78].

B. WIDEBAND SLEPIAN-BANGS FORMULA

Practically, it is not desirable to process all frequency bins

[79]. The uncorrelatedness of different frequencies actually

alludes to a spectra smoothness condition [78], and thus

processing a large number of frequency bins may result

in an overparameterized signal spectra. When this happens,

the FIM might be very close to singular, and the CRB should

be calculated from the Moore–Penrose pseudo inverse of the

FIM [120]. To circumvent this difficulty and derive a bound

with more practical value, we redefine Φ as the number of

frequency bins that will be used by a practical algorithm

and φ their indices. To avoid repeated definition, we use

those notations in Section III with an additional subscript φ

to represent the variable of the same definition at the φ-th

frequency bin.

Let the overall data vector be x̃ =
[

x̄T1 , x̄T2 , . . . , x̄TΦ
]T

with

x̄φ = [xTφ (1), x
T
φ (2), . . . , x

T
φ (N )]T . Its mean and covariance

are denoted by µ̃ and Γ̃ , respectively, which are functions of

the extended unknown parameter vector α̃. Since uncorrelat-

edness is equivalent to independence under the joint Gaussian

distribution, the p.d.f. of x̃ can be expressed as

f (x̃; α̃) =
Φ
∏

φ=1

f (x̄φ; αφ). (109)

Moreover,

µ̃ =
[

µT
1 , µT

2 , . . . ,µT
Φ

]T
,
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Γ̃ = blkdiag (Γ 1, Γ 2, . . . ,Γ Φ) , (110)

where blkdiag(·) is the block diagonalization operation of

matrices in the bracket. Hence, the wideband Slepian-Bangs

formula can be derived as

〈B̃−1
(α̃)〉i,j =

Φ
∑

φ=1

[

tr

(

Γ −1
φ

∂Γ φ

∂〈α̃〉i
Γ −1

φ

∂Γ φ

∂〈α̃〉j

)

+2Re

(

∂µH
φ

∂〈α̃〉i
Γ −1

φ

∂µφ

∂〈α̃〉j

)]

. (111)

Equation (111) implies that the whole wideband CRB

matrix can be calculated through the summation of FIMs at

all frequencies, and then take the inverse. It should be noted

that the derivative of rφ is w.r.t. α̃T instead of αTφ . In general,

α̃ incorporates all the elements in
{

αφ

}Φ

φ=1
, some of which

may be common. For example, if no a priori knowledge is

available, the unknowns in Pφ and Qφ vary with φ. In con-

trast, the DOAs, θ , are invariant across frequencies.

C. UNIFIED WIDEBAND CRB FRAMEWORK

1) DETERMINISTIC MODEL

Let µ̃det and Γ̃ det denote the mean and the covariance matrix

of x̃ under the deterministic model. Then, µ̃det and Γ̃ det

are given by (110), with each frequency component taking

the same form as in (9). The unknown parameter vector is

expressed as

α̃ = α̃det =
[

θT ,Re
(

s̃T
)

, Im
(

s̃T
)

, σ̃ T
]T

,

where

s̃ =
[

s̄T1 , s̄T2 , . . . , s̄TΦ

]T
, σ̃ =

[

σ T1 , σ T2 , . . . , σ TΦ

]T
.

Starting from (111) and following the derivation steps in

Section II-C, we can obtain the submatrix of the wideband

FIM, which is associated with θ , Re (s̃), and Im
(

s̃T
)

:

F̃ = 2Re

















G̃
H

det

∆̃
H

det

−j∆̃
H

det






[G̃det, ∆̃det, j∆̃det]











, (112)

where

G̃det =
[

Ḡ
T

det,1, Ḡ
T

det,2, . . . , Ḡ
T

det,Φ

]T
,

∆̃det = blkdiag(∆̄det,1, ∆̄det,2, . . . , ∆̄det,Φ ). (113)

Assume that K<M , and then the unified framework for

the DOA-related block of the wideband deterministic CRB

is given by

B̃det = 1

2
Re
(

G̃
H

det5
⊥
∆̃det

G̃det

)−1
. (114)

2) STOCHASTIC MODEL

Let µ̃sto and Γ̃ sto denote the mean and the covariance matrix

of x̃ under the stochastic model. Combining (110) and (17)

gives µ̃sto and Γ̃ sto, and the unknown parameter vector is

expressed as

α̃ = α̃sto =
[

θT , p̃T , σ̃ T
]T

,

where

p̃ =
[

pT1 , pT2 , . . . , pTΦ

]T
.

First, the nuisance parameters in α̃sto are permuted to make

pTφ adjacent to σ Tφ . According to Theorem 1, this does not

change the DOA-related block of the stochastic CRB. Then,

applying the derivation steps in Section II-D yields

B̃
−1

(α̃sto) = N

[

G̃
H

sto

∆̃
H

sto

]

[G̃sto, ∆̃sto], (115)

where

G̃sto =
[

GTsto,1,G
T
sto,2, . . . ,G

T
sto,Φ

]T
,

∆̃sto = blkdiag(∆det,1, ∆det,2, . . . ,∆det,Φ ). (116)

According to the partitioned matrix inversion formula,

the unified framework for the DOA-related block of the

wideband stochastic CRB can be expressed as

B̃sto = 1

N

(

G̃
H

sto5
⊥
∆̃sto

G̃sto

)−1
. (117)

Remark 5: The DOA-related block of the wideband FIM

is a summation of all DOA-related blocks across frequencies.

To express the summation as matrix multiplication, G̃det and

G̃sto stack all frequency components following the column

direction. On the contrary, those nuisance blocks are affected

by each frequency component separately, so that ∆̃det and

∆̃sto are block-diagonal. Consequently, 5⊥
∆̃det

and 5⊥
∆̃sto

are

block-diagonal. If the DOA-related block of the CRB at

each frequency is well-defined, then (114) and (117) can be

rewritten as

B̃det =





Φ
∑

φ=1

B−1
det,φ





−1

, B̃sto =





Φ
∑

φ=1

B−1
sto,φ





−1

. (118)

Equation (118) shows that the wideband CRB for DOAs

depends on the CRBs for DOAs rather than for nuisance

parameters at all frequencies of interest, both in the determin-

istic and stochastic cases.

D. CLOSED-FORM WIDEBAND CRB EXPRESSIONS WITH

UNIFORM AND NONUNIFORM NOISES

Based on (118), the narrowband results in Section III can

be naturally extended to the wideband scenario. Most wide-

band algorithms model the covariance matrix of the noise

Fourier coefficients as either UN or NUN rather than AUN,

because many realizations of the AUN model are developed
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for the temporal noise. Existing closed-form expressions for

the wideband deterministic and stochastic CRBs are given

below.

1) DETERMINISTIC MODEL

Result 12: Consider the case where
{

Qφ

}Φ

φ=1
are

expressed as in (27). Denote the DOA-related block of the

wideband deterministic CRB as B̃
un

det. If K<M , then the

closed-form expression for B̃
un

det is given by

B̃
un

det = 1

2N







Φ
∑

φ=1

1

σφ

Re
[

(A′H
φ 5⊥

Aφ
A′

φ) ◦ P̂φ
T
]







−1

. (119)

Result 13: Consider the case where
{

Qφ

}Φ

φ=1
are

expressed as in (30). Denote the DOA-related block of the

wideband deterministic CRB as B̃
nun

det . If K<M , then the

closed-form expression for B̃
nun

det is given by

B̃
nun

det = 1

2N







Φ
∑

φ=1

Re
[

(Ā′H
φ 5⊥

Āφ
Ā′

φ) ◦ P̂Tφ
]







−1

. (120)

In many wideband algorithms developed for the determin-

istic model, the DFT is applied to the whole observation

interval instead of the divided subintervals [5], [68], [76],

so that (119) and (120) are modified by N = 1. Result 13

was first reported in [5]. The original derivation started from

(111). All submatrices of the partitioned FIMwere calculated

and then the partitioned inversion formula was applied to

reach (120). In particular, if the variances of the noise Fourier

coefficients are uniform across sensors and frequencies, (119)

and (120) will degenerate to the same result [5]. Another

expression that resembles (119) was presented in [76], where

the Fourier coefficients of the temporal colored noise are

modeled as the frequency domain UN. The power spectrum

density of the noise was denoted by Q(fφ)Φfs with fs being

the sampling frequency. The covariance matrix of the noise

Fourier coefficients at the φ-th frequency was written as in

(27), with σφ = Q(fφ)Φfs. The authors used the general

CRB formula in (5) to obtain Result 12. However, detailed

derivation was not given in the published paper, and we

find that there was a missing coefficient 1/2 in the CRB

expression derived therein.

2) STOCHASTIC MODEL

As for the stochastic model, the covariance matrix of the

Fourier coefficients of the source signals takes different forms

according to whether the sources are known a priori to be

spatially uncorrelated.

Result 14: Consider the case where
{

Qφ

}Φ

φ=1
are

expressed as in (27). Denote the DOA-related block of the

wideband stochastic CRB as B̃
un

sto. If K<M , then the closed-

form expression for B̃
un

sto is given by

B̃
un

sto = 1

2N

{ Φ
∑

φ=1

1

σφ

Re
[

(A′H
φ 5⊥

Aφ
A′

φ)

◦(PφA
H
φ R

−1
φ AφPφ)

T
]

}−1

. (121)

Result 15: Consider the case where
{

Qφ

}Φ

φ=1
are

expressed as in (30). Denote the DOA-related block of the

wideband stochastic CRB as B̃
nun

sto . If K<M , then the closed-

form expression for B̃
nun

sto is given by

B̃
nun

sto = 1

N





Φ
∑

φ=1

Cφ − DφF
−1
φ DHφ





−1

, (122)

where Cφ , Dφ , and Fφ are shown in (49), (50), and (51),

respectively.

Result 16: Consider the case where the sources are known

a priori to be spatially uncorrelated. Denote the DOA-related

block of the wideband stochastic CRBs with
{

Qφ

}Φ

φ=1
given

by (27) and (30) as B̃
un

unc and B̃
nun

unc , respectively. The closed-

form expressions for B̃
un

unc and B̃
nun

unc are given by

B̃
un

unc = B̃
nun

unc = 1

N





Φ
∑

φ=1

GHsto,φ5⊥
∆sto,φ

Gsto,φ





−1

, (123)

with the same Gsto,φ and Vφ shown in (64) and (66) but

different Uφ given by

UN : Uφ = vec(R−1
φ ),

NUN : Uφ = WφEM .

Result 14 was first presented in [79] with PφA
H
φ R

−1
φ AφPφ

written equivalently as Pφ − (P−1
φ + 1

σφ
A′H

φ Aφ)
−1. However,

the derivation was not given in the published paper. The

expression in the UN case in Result 16 was derived in our

previous work [81]. Note that Result 15 and the expression

with NUN in Result 16 are new and not available in literature.

VI. FURTHER RESULTS BASED ON LINEAR ARRAYS

It is well-known that under the Gaussian distribution, the non-

singularity of the FIM, or the existence of the CRB, implies

local identifiability of the unknown parameters [121]. On the

other hand, a singular FIM indicates nonexistence of an

unbiased estimator with finite variance [120]. As emphasized

in the reviewed results, all the deterministic CRBs and the

stochastic ones without a priori knowledge exist only if

K<M , but the stochastic CRBswith the a priori knowledge of

uncorrelated sources in Results 6, 11, and 16 may exist even

if K ≥ M .

The results above are applicable to various array geome-

tries, as long as there is only one angular parameter to be

estimated for each source. In practice, one of themost popular

array geometries is the linear array located in the same plane

with the sources. By specifying the array manifold matrix of

a linear array, we can examine the explicit condition under

which a particular CRB exists, and then discuss the number

of resolvable Gaussian sources. In this section, we shall

concentrate on the case of uncorrelated sources. We first

review some existing results in the narrowband circular and
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wideband scenarios, and then present some supplementary

results for the narrowband noncircular scenario, which have

not been fully investigated before.

A. REVIEW OF THE CO-ARRAY CONCEPT

Consider a linear array consisting of M sensors and let d

denote the unit inter-sensor spacing. Setting 0d as the refer-

ence, we can express the position of the m-th sensor as zmd ,

zm ∈ R. Then, the array structure can be represented by a real

set A = {z1, z2, . . . , zM }.
Introduce the difference set of A:

Adiff = {zm1
− zm2

zm1
, zm2

∈ A; m1,m2 = 1, 2, . . . ,M}.

Let D collect all unique elements of Adiff in ascending order,

and then D represents the difference co-array associated

with A. Denote the array manifold matrix of D as AD =
[aD(θ1), aD(θ2), . . . , aD(θK )] ∈ C

|D|×K , where aD(θk ) is the
steering vector, and |·| is the cardinality of a set.
Similarly, the sum set of A is given by

Asum = {zm1
+ zm2

zm1
, zm2

∈ A; m1,m2 = 1, 2, . . . ,M}.

Let S collect all unique elements of Asum in ascending

order, and then S represents the sum co-array associated with

A. The array manifold matrix of S is denoted by AS =
[aS(θ1), aS(θ2), . . . , aS(θK )] ∈ C

|S|×K , with aS(θk ) denoting
the steering vector.

For narrowband signals with a central frequency f0,

the (m, k)-th element of the array manifold matrix for the

linear array A can be explicitly written as

〈A〉m,k = e−j2π d
λ
zmsin(θk ), (124)

where λ = c/f0 is the signal wavelength, and j =
√

−1 is the

imaginary unit.

Substituting (124) into (62) and (97), we can write the

(m̄, k)-th element of T and T c, respectively, as

〈T〉m̄,k = e−j2π d
λ
(zm1−zm2 )sin(θk ),

〈T c〉m̄,k = e−j2π d
λ
(zm1+zm2 )sin(θk ),

m̄ = (m2 − 1)M + m1. (125)

Clearly, T and T c are respectively associated with Adiff and

Asum. The number of unique rows in T equals |D|, whereas
that for T c equals |S|.
Based on the co-array concept, the existence of the CRB

can be interpreted as a rank condition for a particular matrix,

as will be illustrated below.

B. RESULTS ON UNCORRELATED NARROWBAND

CIRCULAR SIGNALS

The relationship between AD and T is given by [42]

AD = J3T , (126)

where J3 ∈ R
|D|×M2

is called the co-array selection matrix.

Conversely, another useful relationship is given by [41]

T = J4AD, (127)

where J4 ∈ R
M2×|D| is a binary matrix of full column rank.

The function of J4 is twofold: it permutes the rows in AD and

augments the row dimension from |D| to M2 with M2 − |D|
duplicates of certain rows. By (127), we can rewrite T ′ in (65)
as

T ′ = J4A
′
D
, (128)

where

A′
D

=
[

∂aD(θ1)

∂θ1
,
∂aD(θ2)

∂θ2
, . . . ,

∂aD(θK )

∂θK

]

.

In the presence of UN, it was shown in [41] that

vec(IM ) = J4h, (129)

where h ∈ R
|D|×1 satisfies 〈h〉i = δ〈D〉i,0, ∀i = 1, 2, . . . , |D|,

with δ〈D〉i,0 denoting the Kronecker function. Substituting

(128), (127), and (129) into (64), (66), and (67), respectively,

yields

Gsto = WJ4A
′
D
P,

∆sto = WJ4 [AD,h] . (130)

Using (130), we can rewrite (23) as the closed-form CRB

expression derived in [41]. Since θ is replaced by the nor-

malized DOAs θ̄ = sin(θ )d/λ therein, ∂r/∂θT is updated to

∂r/θ̄
T
.

Define the augmented co-array manifold (ACM) matrix as

ĀACM ,
[

A′
D
,AD,h

]

∈ C
|D|×(2K+1). (131)

It has been proved in [41] that Bun
sto exists if and only if ĀACM

has full column rank. This rank condition is necessarily true

when the number of columns in ĀACM is no larger than that

of rows, which leads to an upper bound on the number of

resolvable Gaussian sources by a given difference co-array:

UN : K ≤ |D| − 1

2
. (132)

In particular, assume that {zm}Mm=1 ∈ Z with Z denoting

the integer set, and then the central segment of D, which

contains consecutive integers, is linked to a uniform linear

array (ULA) represented by U. If K ≤ (|U| − 1)/2, then Bun
sto

is guaranteed to exist for an arbitrary set of distinct DOAs.

Meanwhile, in the region (|U| − 1)/2<K ≤ (|D| − 1)/2,

whether Bun
sto exists or not depends on specific DOAs [41].

Remark 6: For a ULA whose first sensor is located at 0d ,

|D| = |U| = 2M − 1, and then (132) becomes K ≤
M − 1. This indicates that even if the sources are known

a priori to be uncorrelated, it is infeasible to resolve more

Gaussian sources than sensors based on a ULA. Therefore,

a NULA structure is indispensable to underdetermined DOA

estimation for narrowband circular signals [39], [40].

To the best of our knowledge, the rank condition in the

presence of NUN or AUN has not been studied yet, but we

can carry out a similar discussion. In general, the FIM is non-

singular if and only if [∂r/∂θT , ∂r/∂pT , ∂r/∂σ T ] has full col-

umn rank, which requires the submatrix [∂r/∂θT , ∂r/∂pT ] =
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[T ′P,T ] = J4[A
′
D
P,AD] to have full column rank. Since J4

is of full-column rank and P is nonsingular, this leads to a

restriction on the column rank of the reduced ACM matrix

defined as AACM ,
[

A′
D
,AD

]

∈ C
|D|×2K , which has full

column rank only if

Noiseless: K ≤ |D|
2

. (133)

Note that this coincides with the result in [40], where the

power of UN is assumed to be known.

In the presence of NUN, it can be verified that augmenting

J4[A
′
D
P,AD] with ∂r/∂σ T = EM will generate M − 1

and M linearly independent rows and columns, respectively.

A detailed examination in [44] shows that the rank condition

holds if and only if

NUN : K ≤ |D| − 1

2
, (134)

which is the same as the case of UN.

In the presence of AUN, the rank condition depends on

∂r/∂σ T = Q, which can lead to different upper bounds

on the number of resolvable Gaussian sources based on dif-

ferent noise models. In particular, in the presence of par-

tially unknown noise, the noise covariance matrix can be

constructed by truncating the Fourier series [7], [8], whose

basis matrices are Toeplitz ones. Therefore, some columns

in Q may be linearly dependent, leading to a tighter upper

bound than those in (132) and (134).

C. RESULTS ON UNCORRELATED NARROWBAND

NONCIRCULAR SIGNALS

For noncircular signals, T c is related to AS through the fol-

lowing relationships [94]:

T c = J5AS,

T ′
c = J5A

′
S
, (135)

where J5 ∈ R
M2×|S| is a binary matrix of full column rank

constructed similarly as J4, and

A′
S

=
[

∂aS(θ1)

∂θ1
,
∂aS(θ2)

∂θ2
, . . . ,

∂aS(θK )

∂θK

]

.

Substitute (127), (128), and (135) into (102), and then

define the reduced ACM matrix for complex noncircular

Gaussian signals as

ȦACM ,









J4A
′
D
P J4AD 0 0

J5A
′
S

∗
P∗
c 0 J5A

∗
S

−jJ5A
∗
S

J5A
′
S
Pc 0 J5AS jJ5AS

J4A
′
D

∗
P J4A

∗
D

0 0









.

Following the proof in [41], it can be proved that if the noise

covariance matrix is known, then the CRB exists if and only

if ȦACM has full column rank.

Notice that the elements in D are symmetric w.r.t. zero,

so that AD and A∗
D

contain the same |D| rows in reverse

order. Left-multiplying J4 and J5 produces M2 − |D| and
M2 − |S| repeated rows, respectively. Therefore, ȦACM has

|D| + 2 |S| linearly independent rows in total, while the

number of columns is 4K . Thus, ȦACM has full column rank

only if

Noiseless : K ≤ |D| + 2 |S|
4

, (136)

which provides an upper bound on the number of resolvable

noncircular Gaussian sources by a given linear array.

In particular, if the sources are all circular, ȦACM will

degenerate to

ȦACM|circular =
[

J4A
′
D
P J4AD

J4A
′
D

∗
P J4A

∗
D

]

,

which contains |D| linearly independent rows and 2K

columns. In this case, (136) is transformed into (133).

Comparing (133) with (136), we can see that more non-

circular sources than circular ones can possibly be resolved

based on the same linear array, due to the additional sensor

positions in the virtual sum co-array. In other words, since

noncircular signals carry extra information, a nonuniform lin-

ear array is theoretically no longer indispensable for resolving

more noncircular Gaussian sources than the number of phys-

ical sensors.

In the presence of UN, NUN, and AUN, the corre-

sponding ACM matrices are constructed by augmenting

ȦACM with [vec(IM )T ,0,0, vec(IM )T ]T , [ETM ,0,0,ETM ]T ,

and [QT ,0,0,QH ]T , respectively. Therefore, (136) should

be modified accordingly. Extending the results in (132) and

(134), we find that in the presence of UN or NUN, the upper

bound is

UN or NUN: K ≤ |D| + 2 |S| − 1

4
. (137)

However, the upper bound in the AUN case cannot be

obtained accurately. The results in this subsection are original

in this paper.

D. RESULTS ON UNCORRELATED WIDEBAND SIGNALS

In the wideband scenario, the (m, k)-th element of the array

manifold matrix at the φ-th frequency bin is expressed as

〈Aφ〉m,k = e
−j2π d

λφ
zmsin(θk )

,

where the signal wavelength is λφ = c/fφ with fφ denoting

the central frequency for the φ-th frequency bin.

All the results on the difference co-array in Section VI-

B can be directly extended to the φ-th frequency bin. In the

following, we present the condition under which B̃
un

unc exists.

Theorem 3: Define the wideband ACM matrix as

ÃACM ,

[

Ã
′
DP̄, ÃD, h̃

]

∈ C
|D|Φ×(K+KΦ+Φ), (138)

where

Ã
′
D = blkdiag(A′

D,1,A
′
D,2, . . . ,A

′
D,Φ ),

ÃD = blkdiag(AD,1,AD,2, . . . ,AD,Φ ),

P̄ = [PT1 ,PT2 , . . . ,PTΦ ]
T , h̃ = IΦ ⊗ h. (139)
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Then, the B̃
un

unc exists if and only if ÃACM has full column

rank, i.e., if and only if

rank(ÃACM) = K + KΦ + Φ. (140)

Proof: See Appendix C. �

Obviously, (140) holds true only if K +KΦ +Φ ≤ |D| Φ,

yielding

UN: K ≤ Φ

Φ + 1
(|D| − 1). (141)

The upper bound on the number of resolvable Gaussian

sources in (141) is more relaxed than that in (132), since

Φ/(Φ + 1) ≥ 1/2, ∀Φ ≥ 1. It can be inferred that more

wideband Gaussian sources than narrowband ones can be

resolved based on a given linear array, including both the

uniform and nonuniform ones. Moreover, in contrast to the

narrowband circular scenario mentioned in Remark 6, it is

possible to conduct underdetermined DOA estimation for

wideband sources without the assistance of a nonuniform

linear array [81].

VII. CONCLUSION

A number of closed-form Gaussian CRB expressions for

DOA estimation under various model assumptions were

reviewed under a unified framework, with some new sup-

plementary results reported. The reviewed results cover three

scenarios: narrowband complex circular signals, narrowband

complex noncircular signals, and wideband signals. In each

scenario, three source signal models (the deterministic model,

the stochastic model, and the stochastic model with the a pri-

ori knowledge of uncorrelated sources), and three Gaussian

noise models (UN, NUN, and AUN) were considered. Start-

ing from the Slepian-Bangs formula, a closed-form deter-

ministic/stochastic CRB frameworkwas developed according

to the simplest derivation in the literature, based on which

a class of closed-form deterministic CRB expressions and

two classes of stochastic ones were directly derived under

different noise models.

Comparisons were conducted among these CRB expres-

sions, leading to a series of equalities and order relationships

which show that: 1) The deterministic CRB under different

noise models can be identical in some special cases, whereas

more unknown parameters always lead to a larger stochastic

CRB. 2) Under the same noise model, the circular and non-

circular deterministic CRBs are always identical, whereas the

noncircular stochastic CRB is upper bounded by the circular

one, but they can be identical when the signals are actually

circular. 3) The wideband deterministic/stochastic CRB for

DOAs depends on the narrowband CRBs for DOAs rather

than for nuisance parameters at all frequency components.

The deterministic CRBs and the stochastic ones without

a priori knowledge exist only in the overdetermined case,

regardless of the array geometry. However, those stochastic

CRBs employing the a priori knowledge of uncorrelated

sources can exist in the underdetermined case. In each sce-

nario, the rank condition under which this kind of stochastic

CRB exits was examined based on a linear array, with the

upper bound on the number of resolvable Gaussian sources

deduced. For narrowband circular signals, the virtual dif-

ference co-array plays an important role in resolving more

sources than the number of physical sensors. In addition to

the difference co-array, the sum co-array, which is associated

with the covariance matrix of the conjugate part of noncircu-

lar signals, is able to further improve the source resolvabil-

ity. Similar improvement can be offered by the information

within multiple frequency components for wideband signals.

APPENDIX A

PROOF OF THEOREM 1

We introduce the following lemma [20, Lemma A4] to carry

out the proof.

Lemma 1: Consider a positive definite matrixA ∈ C
w×w,

which is partitioned as A =
[

A1 A2

AH
2 A3

]

, where A1 ∈ C
v×v.

Let B ∈ C
w×u be another partitioned matrix such that B =

[BT
1 ,BT

2 ]
T , where B1 ∈ C

v×u. We have

BHA−1B � BH
1 A

−1
1 B1,

The equality holds if and only if B2 − AH
2 A

−1
1 B1 = 0.

Adding ω to p or σ produces an extended matrix ∆ext

satisfying ∆extO1 = [∆sto, Ω], where Ω = W∂r/∂ωT , and

O1 is a permutation matrix satisfyingO−1
1 = OT1 [122, p. 32].

Note that this property of a permutation matrix will be used

elsewhere. By Lemma 1, we have

5⊥
∆extO1

= 5⊥
∆ext

= I − [∆sto, Ω]

[

∆H
sto∆sto ∆H

stoΩ

ΩH∆sto ΩHΩ

]−1 [
∆H

sto

ΩH

]

� I − ∆sto

(

∆H
sto∆sto

)−1
∆H

sto = 5⊥
∆sto

. (A.1)

The equality holds true if and only if ΩH5⊥
∆sto

= 0. Since

Ω 6= 0 and5⊥
∆sto

6= 0, the equality holds true if and only ifΩ

lies in the range space of ∆sto. The linear dependence among

ω, p, and σ indeed satisfies this condition. As a result, we have

GHsto(5
⊥
∆ext

− 5⊥
∆sto

)Gsto � 0. Therefore, Theorem 1 (a) and

(b) follows from (23) directly. Furthermore, the first equation

in (A.1) also implies that permuting nuisance parameters

does not change 5⊥
∆sto

, which proves Theorem 1 (c). This

completes the whole proof.

APPENDIX B

PROOF OF THEOREM 2

Recall the FIM for noncircular signals in (85). According to

[123], the following relationship holds:

Ṙ
T ⊗ Ṙ

= J̇2

(

Ṙ
T

π©Ṙ
)

J̇2

= J̇2









RT ⊗ R RT ⊗ Rc R∗
c ⊗ R R∗

c ⊗ Rc

RT ⊗ R∗
c RT ⊗ RT R∗

c ⊗ R∗
c R∗

c ⊗ RT

Rc ⊗ R Rc ⊗ Rc R⊗ R R⊗ Rc

Rc ⊗ R∗
c Rc ⊗ RT R⊗ R∗

c R⊗ RT









J̇2,

(B.1)
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where π© denotes the block Kronecker product. From (99),

we can get

∂ ṙ

∂α̇Tsto
= J̇2O4

[

∂rT

∂α̇Tsto
,

∂rH

∂α̇Tsto
,

∂rTc

∂α̇Tsto
,

∂rHc

∂α̇Tsto

]T

= J̇2O4

[

r′T , r′H , r′c
T
, r′c

H
]T

, (B.2)

where O4 ∈ R
4M2×4M2

denotes a permutation matrix which

interchanges the second block with the fourth one. Using

(B.1), (B.2), we can rewrite (85) as

B−1(α̇sto) = N

2









r′

r′∗

r′c
r′c

∗









H

Ṙ
−1
π©









r′

r′∗

r′c
r′c

∗









, (B.3)

where

Ṙπ© =









RT ⊗ R R∗
c ⊗ Rc R∗

c ⊗ R RT ⊗ Rc

Rc ⊗ R∗
c R⊗ RT R⊗ R∗

c Rc ⊗ RT

Rc ⊗ R R⊗ Rc R⊗ R Rc ⊗ Rc

RT ⊗ R∗
c R∗

c ⊗ RT R∗
c ⊗ R∗

c RT ⊗ RT









.

For the asserted case, we have Pc = 0 and Rc = 0.

Consequently, (B.3) becomes

B−1(α̇sto) = N r′H
(

R−T ⊗ R−1
)

r′

+N r′c
H
(

R−1 ⊗ R−1
)

r′c. (B.4)

We can always permute the nuisance parameters to partition

the overall unknown parameter vector as α̇sto = [αTsto, β
T ]T .

By Theorem 1, this does not affect the DOA-related block of

the stochastic CRB. Therefore, we have

r′ =
[

∂r

∂αTsto
,0

]

, r′c =
[

0,
∂rc

∂βT

]

. (B.5)

Substituting (B.5) into (B.4) and taking the inverse yields

(104). The proof is complete.

APPENDIX C

PROOF OF THEOREM 3

A very similar rank condition was proved in [81, Theorem 1].

It differs from Theorem 3 in this paper only in the definition

of the wideband ACM matrix. The definition in [81] is

Ãacm ,

[

T̃ ′P̄, T̃ , ĩ
]

∈ C
M2Φ×(K+KΦ+Φ), (C.1)

where

T̃ ′ = blkdiag(T ′
1,T

′
2, . . . ,T

′
Φ ),

T̃ = blkdiag(T1,T2, . . . ,TΦ ),

ĩ = IΦ ⊗ vec(IM ).

Using (127), (128), and (129), we can rewrite T̃ ′, T̃ , and ĩ as

T̃ ′ = J̃4Ã
′
D, T̃ = J̃4ÃD, ĩ = J̃4h̃,

where J̃4 = IΦ ⊗ J4.

The relationship between the two ACM matrices defined

in [81] and in this paper is given by

Ãacm = J̃4ÃACM. (C.2)

Since J4 has full column rank, so does J̃4. When ÃACM

is left-multiplied by J̃4, its rank is unchanged. Therefore,

the proof of the rank condition in [81] is preserved in this

paper. The proof is complete.
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