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Abstract  

Barium strontium titanate (BSTO) thin-films were deposited on Pt(111) by high throughput 

evaporative physical vapour deposition (HT-ePVD) and then annealed at 650 °C for 30 min 

under N2 atmosphere. Using advanced transmission electron microscopy, energy-dispersive x-

ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), we directly show, that 

not only does N substitute for O in the BSTO lattice but that it also compensates for Ti3+ ions, 

suppressing conductivity, thereby reducing dielectric loss and enhancing dielectric tunability. 

However, this effect is negated near the film edge where we speculate that exposed Pt acts as 

a reservoir of adsorbed/absorbed O and alters the local N2 concentration during annealing. 
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I. Introduction 

Thin film barium strontium titanate (BaxSr1-xTiO3), hereafter referred to as BSTO is a 

promising candidate for applications as tunable capacitors [1,2], tunable microwave devices 

[3,4] and microwave phase shifters [2,5]. Paraelectric BSTO thin films (~200 nm) have been 

shown to exhibit >50% dielectric tunability under dc bias (2–5 V) [2,6,7] but their relative 

permittivity (r), dielectric loss and tunability depend on various factors. Previous studies have 

highlighted the effect of film thickness [8], grain size [9-11], grain boundary orientation [12], 

secondary amorphous phases [13], composition, stoichiometry, dopants [14,15], substrate 

residual stresses [3,16] and the formation of interfacial dead layers [17,18] on the dielectric 

loss, r and tunability. Practically, BSTO thin films are optimized by tailoring their 

stoichiometry, composition, lateral grain size, and thickness during deposition and are often 

subjected to a suitable post-deposition [19] heat treatment to improve resistivity. The 

improvement in resistivity is attributed to modification of the film’s defect chemistry but the 

role of point defects such as oxygen vacancies (VO) and associated Ti3+ ions are rarely 

investigated by direct methods. Rather, their existence is implied from their potential 

contribution to the dielectric properties and conductivity [20,21].  

High throughput evaporative physical vapour deposition (HT-ePVD) has been exploited to 

deposit BaxSr1-xTiO3 thin films on Pt coated substrates [22]. HT-ePVD is based on the 

evaporation of elemental sources employing wedge shutters to obtain a compositional spread 

that results in physical property changes across the film. Different dopants are incorporated 

onto the A- (Ba), B- (Ti) or simultaneously on the A and B sites [23,24] of the ABO3 perovskite 

structure, resulting in ternary or quaternary solid solutions [25]. A plasma atom source is used 

to provide reactive oxygen co-deposited with metal atoms: This ensures oxygen stoichiometry 

during synthesis, at temperatures much lower than post annealing in molecular oxygen. In 

addition, large growth rates can be achieved resulting in relatively thick layers (250-300 nm) 

in <90 min.   

Here we use scanning transmission electron microscopy (STEM) in conjunction with energy 

dispersive X-ray (EDX) spectroscopy and electron energy loss spectroscopy (EELS) to 

investigate the structure and chemistry of BSTO thin-films that have been subjected to a post-

deposition heat treatment in N2. We demonstrate through direct observation rather than 

inference that N is incorporated into the lattice which compensates for Ti3+ ions, suppresses 

conductivity and results in lower dielectric loss and enhanced dielectric tunability. 
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II. Experimental methods 

BaxSr1-xTiO3 was deposited on Pt coated substrates (Pt/TiO2/SiO2/Si) using a high throughput 

modified Molecular Beam Epitaxy [22] system from DCA Instruments, as described elsewhere 

[23]. Elemental sources of Ba (Alfa Aesar: 99.9%) and Sr pieces (Alfa Aesar: 99%) were 

contained in Ta and PBN crucibles respectively and evaporated using Knudsen cells. Ti pellets 

(Testbourne 99.995%) were placed on a graphite crucible and evaporated using a 40 cc electron 

gun. An RF atom source of 545 W (HD25, Oxford Applied Research) produced atomic oxygen 

with a flow rate of 1.02 ml/min. Substrate temperature in situ was 640 °C. Films where post 

annealed in a tube furnace at 650 °C for 30 min under N2 with a flow rate of 2.5 Lmin-1. 

Films thickness varied between 170-250 nm for a deposition time of 60 minutes. Scanning 

electron microscopy (SEM) was carried out using a Tesca Vega 3 equipped with an EDX 

detector XMax 50 (Oxford Instruments). A Bruker D8 x-ray di൵ractometer equipped with an 

Incoatec microsource Cu KĮ and GADDS detector were used to map film composition and 

crystal structure. 

For dielectric measurements, a 14×14 array of 290 m diameter platinum top electrodes was 

deposited onto the film surface using RF sputtering. The dielectric loss and capacitance (C) of 

the thin films were measured at 1 kHz-100 kHz using an LCR bridge (Hewlett Packard 4284A) 

with an AC voltage of 100 mV. The dielectric permittivity (ߝ௥ሻ and tunability ݊௥ of the thin 

films were calculated using Eqs. (1) and (2): 

௥ߝ  ൌ ஼ௗఌబ஺, (1) ݊௥ ൌ ͳͲͲ ൈ ఌೡିఌబఌబ , (2) 

where, ߝ଴, d, A and ߝ௩ are the dielectric constant under zero electric field (8.854×10-12 Fm-1), 

thickness of the BSTO film, conductive area of the electrodes and dielectric constant under a 

DC electric field, respectively. 

Regions 1 and 2, marked by circles in Fig. 1(a), were chosen for TEM investigations as they 

exhibit quite different optical (i.e. colour) and dielectric properties while there were no 

significant difference in their cation composition (according to SEM-EDX results not shown 

here). Cross-sectional samples for TEM characterization were prepared by grinding and 

polishing to <40 µm, followed by ion milling to electron transparency using a GATAN 

precision Ar-ion polishing system II (PIPSII). Ion milling was carried using LN2 cooling 
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initially at 5 keV followed by final milling at 1 keV. A JEOL JEM F200 transmission electron 

microscope operating at 200 keV was used to acquire TEM data from the samples. 

 
Figure 1: (a) BaxSr1-xTiO3 film with Pt electrodes shown as circular dots on the surface of the film. The 
color differentiation corresponds to the compositional gradient. The two points indicated on the film 
were subjected to further analysis using advanced TEM. (b) Ternary plot of Ba, Sr and Ti obtained by 
EDX analysis. The black line represents the SrTiO3–BaTiO3 pseudobinary line. The shaded area shows 
the limits of composition where the perovskite structure is retained. 

 

III. Results 

3.1 Composition and Structure 
High throughput EDX analysis was carried out to determine the composition of the 

fabricated samples. Sr, Ba and Ti concentrations varied from 4-14 at.%, 30-50 at.% and 45-55 

at.%, respectively, across the film, as illustrated in  Fig. 1(b). High throughput X-ray diffraction 

confirmed the film crystal structure and phase assemblage. Fig. 2(a) shows the X-ray patterns 

obtained from regions 1 and 2 displayed in Fig. 1(a). All peaks indexed according to a single 

perovskite phase. The distribution of relative intensities in the XRD pattern suggest that the 

films favour a 100 orientation but with some random orientation as evidenced by the strong 

101 peak (100% peak in powder XRD from BSTO ceramics, e.g. PDF card 01-082-8710). The 

lattice parameters and peak positions from regions 1 and 2 were consistent with compositions 

rich in Ba and matched best with Ba0.85Sr0.15TiO3 (PDF card 01-082-8710). We note that the 

peak matching gives only a qualitative indication of film composition since the ICDD database 

contains only a limited number of entries for different Ba/Sr ratios in BSTO. Moreover, none 

of these references are from thin films which suffer from peak shifting due to strain, arising 

from thermal expansion mismatch between substrate and film on cooling. The peaks at 39.8 
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and 46 are attributed to the (111) and (200) of the Pt bottom electrode (see inset of lower XRD 

pattern). 

 
Figure2 (a): X-ray diffraction patterns obtained from Regions 1 and 2 illustrated in Fig. 1(a). The 
vertical red tick marks correspond to the Ba0.85Sr0.15TiO3 (PDF card 01-082-8710) indicating a match 
with this perovskite phase. The inset figure on the bottom right shows an X-ray diffraction pattern 
obtained from the SSTOP substrate, which shows the 111 and 200 reflections of Pt at 39.8 and 46 
degrees, respectively. (b): Map of the 100/101 intensity ratio across the film. 

 

One difference between regions 1 and 2 is in the relative intensity of the peaks at 22 (100) 

and 31 (101) deg. In Region 1 (blue pattern), the intensity of the 100 peak at 22 deg (Ip22) is 

similar to the intensity of the 101 peak at 31 deg (Ip31). In Region 2 the peak at 22 deg has a 

higher intensity than the 101 peak with Ip22/Ip31 about 3 times that of region 1 Fig. 2(b). 

Although there have been studies that correlate optimum dielectric properties with a preferred 

orientation [26-28], we will demonstrate this is not the main contributing factor to the 

difference in properties between these two regions. 

 

3.2 Dielectric Properties  

A high-throughput study of BSTO and BSTON dielectric properties as a function of 

composition was previously presented in Ref. [24] to which the reader is referred for further 

details. In this study, we consider only regions 1 and 2 for further TEM characterisation. Fig. 

3 shows the r and dielectric loss for BSTO films in regions 1 and 2 as a function of applied 

bias field from -300 kV to 300 kV, and frequencies from 1 kHz-100 kHz. r, dielectric loss and 

tunability in Regions 1 and 2 have been extracted from Fig. 3 and listed in Table I. The 

tunability of the BSTO film is 63% and 50 % in Regions 1 and 2, respectively. As frequency 
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increases, a decrease in r of the BSTO films was observed in both regions. The highest values 

for İr (636 and 321 for 0 and 300 kV/cm, respectively) were observed in region 2. However, 

the most significant difference between the dielectric properties of the two regions is the 

remarkably lower loss of the BSTO film in region 1 (Table I). r and dielectric loss for region 

2 at 100 kHz are not presented as they were too noisy due to the high conductivity. 

 
Figure 3: (a), (b) Dielectric constant and (c), (d) dielectric loss measured from the BSTO thin film at 
the region 1 (a, c) and region 2 (b, d) under the frequencies of 1, 10 and 100 kHz shown in blue, purple 
and green, respectively. The ac excitation voltage applied from the LCR Bridge was 100 mV. 

 

Table I: Dielectric constant (İr), dielectric loss (tanį) and tunability (nr) calculated from Fig. 3 in 0 
and 300 kV/cm electric fields at 1 and 10 kHz frequencies. 

Frequency Region  İr (0)    İr (300) tanį (0)   tanį(300) nr (%) 

1 kHz 
Region 1    437       160   0.110         0.080 63.3 
Region 2    636       321   0.131         0.090 49.5  

10 kHz 
Region 1    417       159   0.075         0.028 61.8 
Region 2    623       319   0.300         0.710 48.7  

 

3.2 TEM characterization 
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 Fig. 4 shows STEM micrographs of cross sections of the BSTO thin films obtained from 

Regions 1 and 2. The thickness of the BSTO thin film is ~250 nm (Fig. 4) in both regions. 

 

 
Figure 4: STEM images obtain from (a) region 1 (Bright Field) and (b) region 2 (Annular Dark Field) 
of the BSTO thin-film (scale bars are 200 nm). 

 

No interfacial phases were observed between the BSTO and Pt in the (S)TEM images (e.g. 

Fig. 5(a-c)). In several cases, the grain boundary between adjacent BSTO grains (Fig. 5(a)) is 

coincident with the Pt grain boundary upon which they grow. Thus, the lateral size of the BSTO 

grains are governed by that of the Pt grains (50-100 nm) (Fig. 5(d)). 

 

 

Figure 5: (a-c) HRTEM image obtained from BSTO-Pt interface in region 1; In this images Pt grains 
are close to [110] zone axis while BSTO grains are close to [110] (grain 1) and [312] (grain 2) zone 
axes. (d) BF-STEM image obtained from BSTO-Pt interface showing Pt has a lateral grain size of 50-
100 nm. 

 

EDX: 

According to EDX analysis, the composition of the BSTO grains in each region is uniform 

across the film. (Fig. 6) The chemical compositions of the BSTO films extracted from EDX 
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spectra obtained from the Regions 1 and 2 are listed in Table II  and have the approximate 

formulae, Ba0.84Sr0.16TiO3± and Ba0.83Sr0.17TiO3±, respectively. These results indicate that 

there is only a small difference in the cation composition between these regions. 

  

 

Figure 6: (a) BF-STEM image obtain from region 1. (b-f) EDX elemental maps corresponding to (a). 
 

Table II . Chemical composition of the thin-films in Regions 1 and 2 extracted from EDX. 

 Ba (at.%)* Sr (at.%)* Ti (at.%)* Composition 

Region 1 42.0 ± 0.9 8.0 ± 0.7 50 ± 1.0 Ba0.84Sr0.16TiO3± 

Region 2 41.7 ± 0.9 8.3 ± 0.9 50 ± 1.0 Ba0.83Sr0.17TiO3± 

* at.% values show the percentage of each cation among all cations. 

 

EELS: 

While the above EDX data provided the composition of the BSTO films, they did not reveal 

information regarding the bonding configurations and oxidation states of the ions. Analysis of 

bonding configurations in the BSTO films is feasible using the Ti-L3,2 (~450 eV), Ba-M5,4 

(~780 eV), Sr-L3,2 (~1940 eV) and O-K (~530 eV) edges. Electron transitions from 2p3/2 and 

2p1/2 subshells of metallic Ti to unoccupied Ti-3d states form two white lines L3 and L2 in 

EELS, respectively. In Ti oxides, however, the coordination, site symmetry as well as valence 
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of the Ti atoms change the position and number of peaks in the Ti-L3,2 white lines [29,30]. As 

Ti is in octahedral coordination with oxygen in BSTO, unoccupied Ti-3d orbitals split into a 

higher 3eg (*) molecular energy level and a lower 2t2g (*) level [31]. Hence, as displayed in 

Fig. 7(a), Ti-L3 and Ti-L2 exhibit two white lines (i.e. * and *) in the electron energy loss 

near-edge structure (ELNES) spectra obtained from the BSTO thin-films. Peak energies as well 

as intensity ratios of Ti-L3,2 white lines extracted by fitting Lorentzian curves to the Ti-L3,2 

white lines are listed in Table III . The energies of the Ti white lines as well as * to * energy 

ratios are in the same range for both Region 1 and 2, indicating that the average Ti valence is 

approximately the same. 

 

Figure 7: Experimental EELS data of the BSTO thin films showing (a) Ti L3,2, (b) O K and (c) N K 
edges. 

 

Table III . Ti ELNES energies (eV) and intensity ratios for the thin-films. 

 Region 1 Region 2 

Ti 

L3 
כ࣊ࡱ  0.04 ± 459.01 0.03 ± 459.14 כ࣌ࡱ 0.06 ± 457.06 0.06 ± 457.12 

L2 
כ࣊ࡱ  0.06 ± 0.39 0.07 ± 0.44 כ࣌ࡵȀכ࣊ࡵ 0.05 ± 464.63 0.05 ± 464.59 כ࣌ࡱ 0.09 ± 462.67 0.09 ± 462.71 

 

The O-K edge in BSTO thin-films (Fig. 7(b)) exhibits peaks due to hybridization of O-2p 

with Ti-3d (), Sr-4d and Ba-5d (ȕ) and high energy metal states, e.g. Sr-5p, Ba-6p and Ti-4sp, 

( and ). As illustrated in Fig. 7(b),  has a relatively lower peak intensity in region 1. This is 

due to either the greater presence of VTi/VO or to the greater substitution of N for O in the lattice 

in comparison with region 2. Our EDX and Ti-L3,2 EELS results showed that Ti composition 

and its oxidation state are similar in region 1 and region 2; i.e. there is no significant difference 

in the VTi/VO between these regions. However, a set of peaks at ~400 eV energy loss related to 

N-K edge (Fig. 7(c)) were obtained from region 1 that were absent from region 2, thereby 
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confirming that the decrease in the intensity of the  peak relates primarily to the substitution 

of N into the lattice.  

 

IV. Discussion 

Our (S)TEM results show that: i) the BSTO grains grow directly on the Pt substrate with no 

evidence of an interfacial layer; ii) the composition of the BSTO grains in each region is 

uniform; iii) the cation composition in both region 1 and region 2 is similar and iv) the oxidation 

state in each region is approximately the same. (Table II). Despite these similarities, region 1 

has a higher tunability, lower relative permittivity and lower dielectric loss in comparison with 

region 2 (see Fig. 3 and Table I). Previous studies [20,21] have postulated there is a correlation 

between the dielectric degradation (higher conductivity loss) and the presence of VO. The defect 

chemistry associated with the presence of VO is summarised below using the Kroger Vink 

notation: ܱைൈ ՜ ைܸȈȈ ൅ ଵଶ ܱଶሺ݃ሻ ൅ ʹ݁ Ԣ, (3) ʹ݁ Ԣ ൅ ʹ்ܶ݅௜ൈ  ՜ ʹ்ܶ݅௜Ԣ , (4) 

VO therefore, lead directly to the promotion of electrons to the conduction band and/or the 

associated formation of Ti3+ ions that facilitate a small polaron conduction mechanism [32,33]. 

However, the substitution of N for O in the lattice significantly alters the defect chemistry 

associated with titanates since: 

ଶܰሺ݃ሻ ൅ ͵ܱைൈ ՜ ʹ ைܰԢ ൅ ைܸȈȈ ൅ ଷଶ ܱଶሺ݃ሻ. (5) 

The substitution of N for O, Eq. (5), therefore compensates for the formation of Ti3+, Eq. 

(3), and limits the promotion of electrons to the conduction band or inhibits small polaron 

hopping, Eq. (4), depending on the conduction mechanism within the film. This has direct 

implications for the dielectric properties; the dielectric loss is dramatically improved, the 

contribution to relative permittivity from space charge polarisation is suppressed and tunability 

relating to the polarisation of the perovskite lattice is enhanced. The presence of N in Region 

1 therefore, may be used to explain the superior properties observed in this region. However, 

Region 2 has undergone an identical treatment in N2 and has little or no difference in 

composition or microstructure. The question remains therefore, why region 2 has not 

undergone substitution of N for O in the lattice when the evidence is overwhelming for this 
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effect in region 1. Pertinently, EELS analysis of other regions near the edge of the sample also 

revealed that N had not substituted for O. 

We note that the samples are placed in a tube furnace and heat treated in flowing N2 at 650 
oC. The tube furnace diameter is approximately 2x that of the sample width and hence all of 

the sample is within a region of lamellar rather than turbulent N2 flow. Moreover, the sample 

is fully within the hot zone of the furnace. Thus, within the experimental set-up there is no 

difference in the temperature or concentration of N2 in the furnace atmosphere.  

The most likely explanation, however, relates to the thin region of exposed Pt around the 

edge of the sample (see Fig. 1(a)). We speculate that O atoms are absorbed/adsorbed by Pt 

[34,35] during the deposition of the BSTO films in the MBE chamber and are released on 

reheating in the N2 atmosphere. The local P(N2) at the edge of the film is affected by the 

evolution of O from the Pt, inhibiting substitution of N for O.  

 

V. Conclusions 

BSTO thin-films with a thickness of ~170-250 nm were successfully deposited on Pt(111) 

by high throughput evaporative physical vapour deposition (HT-ePVD). We have investigated 

the structure and chemistry of two samples of BSTO thin-films, with different dielectric 

properties using (S)TEM. We find direct evidence, using EELS, for N substituting for O in the 

lattice of BSTO. BSTO film regions containing higher N concentration exhibit lower dielectric 

loss (0.04 under zero field) and higher dielectric tunability (63.3%) in comparison to the film 

containing low (no) N concentration (dielectric loss of 0.131 under zero field and tunability of 

49.5%). We propose than N compensates for Ti3+ ions, thereby suppressing conductivity, 

decreasing dielectric loss and enhancing tunability. 
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