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While both Non-destructive Evaluation (NDE) and

Structural Health Monitoring (SHM) share the objective

of damage detection and identification in structures,

they are distinct in many respects. This paper

will discuss the differences and commonalities and

consider ultrasonic/guided-wave inspection as a

technology at the interface of the two methodologies.

The paper will discuss how data-based/machine

learning analysis provides a powerful approach to

ultrasonic NDE/SHM in terms of the available

algorithms, and more generally, how different techniques

can accommodate the very substantial quantities

of data that are provided by modern monitoring

campaigns. Several machine learning methods will be

illustrated using case studies of composite structure

monitoring and will consider the challenges of high-

dimensional feature data available from sensing

technologies like autonomous robotic ultrasonic

inspection.

1. Introduction

At first sight, the current paper may seem like rather an

outlier in a special issue on Advanced Electromagnetic Non-

Destructive Evaluation and Smart Monitoring; however, this

is not the case. The intention here is to focus on matters

of ‘smart monitoring’ with a particular emphasis on the

power and efficacy of machine learning in that context.

In addition, a number of points will be made regarding

the distinctions between non-destructive evaluation (NDE)

and structural health monitoring (SHM). Although the

discussion will be in the context of ultrasonic inspection

methods, the authors believe that it will be of interest and

c© The Authors. Published by the Royal Society under the terms of the

Creative Commons Attribution License http://creativecommons.org/licenses/

by/4.0/, which permits unrestricted use, provided the original author and

source are credited.
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value in the exploitation of other NDE technologies.

Damage detection and identification technologies tend to be grouped according to application

contexts and domains; this leads to an apparent demarcation between them which is not always

useful. In the case of ultrasonic inspection, the approach crosses boundaries between NDE and

SHM; it is thus useful to discuss the apparent boundaries between technologies to establish if they

are useful, or actually limiting. This matter is important to discuss, because it will hopefully shed

light on whether other techniques commonly accepted to be NDE, could usefully be applied to

SHM problems or elsewhere.

The main aim of this paper will be to show that ultrasonic inspection has benefited from the

use of machine learning or data-based analysis techniques over the last few years. In fact, this

observation is true of SHM generally, where the data-based approach is arguably the dominant

paradigm at this time [1]. The main intention of this paper is to inspire the more widespread

possibilities of using data-based analysis, alongside physics-based techniques, in other areas of

NDE than ultrasound, e.g. in electromagnetic NDE. This paper will provide illustrations spanning

a range of machine learning applications to NDE, from using compressive sensing to handle the

large quantities of data obtained in ultrasonic inspection, to optimising robotic scan paths for

damage detection, and finally a state-of-the-art application of transfer learning.

2. Ultrasound: SHM or NDE?

The main engineering disciplines associated with damage detection or identification are arguably

[2]:

• Structural Health Monitoring (SHM).

• Non-Destructive Evaluation (NDE).

• Condition Monitoring (CM).

• Statistical Process Control (SPC).

In order to examine whether these terms truly distinguish disciplines, it is useful to have an

organising principle in which to discuss damage identification problems. Such an organising

principle exists for SHM in the form of Rytter’s hiercharcy [3]. The original specification cited

four levels, but it is now generally accepted that a five-level scheme is appropriate [1]:

(i) DETECTION: the method gives a qualitative indication that damage might be present in

the structure.

(ii) LOCALISATION: the method gives information about the probable position of the

damage.

(iii) CLASSIFICATION: the method gives information about the type of damage.

(iv) ASSESSMENT: the method gives an estimate of the extent of the damage.

(v) PREDICTION: the method offers information about the safety of the structure, e.g.

estimates a residual life.

This structure is a hierarchy in the sense that (in most situations) each level requires that all

lower-level information is available. Few SHM practitioners would argue that Rytter’s scheme

captures all the main concerns in the discipline. However, one can discuss the other damage

identification technologies with respect to this scheme, with some variations.

In NDE the emphasis is different to SHM. Most methods of NDE will involve some a priori

specification of the area of inspection, examples being: eddy current methods, thermography,

X-ray etc. This means that location is not usually an issue; however there are exceptions, and

ultrasonic methods are a good example. Ultrasonic inspection methods are usually classed as

NDE methods, and in the case of A-scan, B-scan etc. which assume a prior location, this is

appropriate. However, methods based on, for example, ultrasonic Lamb-wave scattering, also
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have the potential to locate damage, even over reasonable distances. Good examples of the

use of Lamb-wave methods abound in the literature, and there will be no attempt here to

provide a survey; however, a couple of milestones will be indicated. Guided-wave methods

generally have proved very powerful in applications like pipe inspection, where the waves can

propagate, and thus inspect over, large distances [4]. Lamb waves are singled out where the

structure of interest is plate-like, and this has proved very powerful in the inspection of composite

laminates [5]. It is arguable that the prediction level is not critical for NDE as almost all inspection

methods involve taking the structure out of service for more detailed analysis or repair. In fact,

almost all applications will be off-line. Some element of ‘prediction’ is accommodated in the

general philosophy of NDE, as code-based inspections ultimately relate the estimated damage

to estimated consequence, based on structural integrity calculations1. The important parts of the

identification hierarchy for NDE are thus:

(i) DETECTION: the method gives a qualitative indication that damage might be present in

the structure.
(ii) CLASSIFICATION: the method gives information about the type of damage.

(iii) ASSESSMENT: the method gives an estimate of the extent of the damage.

Two other important distinctions between SHM and NDE were highlighted above; the

first relates to the sensing technology. It is generally considered that SHM will be based on

permanently-installed fixed-position sensors, while in NDE, the instruments (eddy-current probe,

thermographic camera etc.) will usually be brought to the structure at the point of concern. The

other distinction is that many SHM specialists consider that SHM should be conducted online, or

at least with relatively high frequency, in an automated fashion, whereas NDE may be conducted

sporadically or only when indicated by another inspection. The conditions which allow an

NDE technology to transition to an SHM technology are that the sensing instruments become

inexpensive enough to install permanently with automated triggering and data acquisition,

and that it is practically possible to permanently install durable sensors and obtain effective

measurements. The question of expense is also tied to the requirements in terms of sensor density;

many of the physical effects exploited in NDE are very local, so that many permanently-installed

units would need to be installed in order to achieve adequate area coverage. An alternate scenario

where local NDE can transition to SHM is where prior knowledge can be used to pinpoint ‘hot-

spots’ where local damage has higher probability, or where ‘structurally significant items’ are

identified.

Ultrasonic inspection has made the transition from an NDE technique to an SHM technique

partly because of the evolution of inexpensive sensors – like piezoelectric patches or wafers – and

the exploitation of guided-waves, which mean that waves can propagate large distances without

attenuation, e.g. Lamb waves in pipelines; this means that sensor densities are reduced [6].

Other advances in ultrasonic NDE have included the use of phased arrays [7]. A phased array is

simply an ultrasonic transducer containing multiple elements which can be triggered to actuate

in a prescribed sequence. Phased arrays are extremely useful for large-area inspection because

the waves can be steered and focussed without moving the probe. Various designs have been

proposed over the years; portable probes are available for traditional NDE, but recent designs

allow bonding of sensors to the structure, essentially producing an SHM system; an example is

given in [8]. Given a phased array, powerful processing techniques exist for damage imaging;

one such approach is total (or full) matrix capture (FMC) [9]. In FMC, every combination of

actuator/sensor elements is acquired; from this rich dataset, algorithms like the total focussing

method allow sharp imaging of damage regions [10,11].

Another powerful imaging technique which has emerged recently is wavenumber spectroscopy,

which relies on the local estimation of Lamb wave wavenumber on a fine grid [12]. The latter

paper is interesting also in the sense that the ultrasound is generated using a high-power laser,

but sensed using a single fixed transducer; it is thus a type of hybrid of NDE and SHM as the
1The authors would like to thank one of the anonymous reviewers for this observation.
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Figure 1. A simplified machine learning framework for SHM and NDE.

actuation source is an instrument which must be brought to the sample. Where reciprocity holds,

the same data can be acquired by using a point actuator and sensing using a full-field method like

laser vibrometry [13].

The signal processing methods used in FMC and wavenumber spectroscopy are conventional,

relying on Fourier transformation etc. However, one of the major developments over the last

two decades in ultrasonic NDE and SHM, has been the use of data-based approaches based on

machine learning. A simplified framework for using machine learning in SHM and NDE is depicted

in Figure 1 [1]. Data measured from a structure are pre-processed such that damage-sensitive

features are extracted (feature extraction), these become a set of inputs {x}Ni=1 to the machine

learning model. A relationship between inputs {x}Ni=1 and outputs {yi}
N
i=1 (e.g. predicted class

labels) is inferred by the machine learner (typically on a set of training input-output pairs), which

generalises to new input data points [14]. The output predictions from new inputs can be post-

processed in order to make diagnostic decisions, e.g. related to Rytter’s hierarchy. There are

three main problems in machine learning: classification, regression and density estimation, with

examples of all three within the SHM and NDE literature [15–17], [17–20] and [21,22] respectively

(where the reference list is not intended to be exhaustive). In classification, the challenge is

inferring a map from the input data to a set of categorical labels, e.g. descriptions of discrete

damage locations if performing localisation [15]. Regression, by contrast, seeks to infer some

functional map from some set of independent inputs to their dependent outputs, and is used

in problems such as mapping flight parameters to strains on aircraft components [19,20]. Lastly,

density estimation is concerned with identifying the underlying distributions of data, employed

in scenarios such tool wear monitoring, where the machinist is to be alerted when a change in

tool wear has occurred [22]. These techniques are also suited to unsupervised learning, where only

input data are known during learning, typically used in novelty detection problems where the

question is whether a structure has changed from a known healthy condition [23].

The remainder of this paper will be concerned with illustrating the use of machine learning

and showing its potential through three case studies. The first case study demonstrates the

applicability of machine learning in handling the large quantities of data obtained in an inspection

campaign via compressive sensing [24]. The second study presents a Bayesian optimisation and

robust outlier procedure that aims to speed up robotic scanning in an autonomous manner,

amending the scan path to efficiently identify damaged regions [23]. Finally, the last case study

shows how very recent advances in transfer learning mean diagnostic information from one

structure can be used in aiding damage identification on a separate structure — enabling robotic

inspection to be performed in a more autonomous manner.

3. Compressive Sensing and Ultrasonic NDE

A characteristic of ultrasound-based NDE is that the large quantifies of high frequency data

(typically in the range of one to ten MHz) are obtained from the inspection process. These large

data sets cause acquisition and data-processing challenges, problematic for both physics-based

and machine learning-based analysis. Typically, due to the relative sparse information content

within a waveform, two key features are extracted from the echoes of ultrasound pulses: their

attenuation and Time-Of-Flight (TOF) difference, with the latter gaining significant attention in

an NDE context.

Two main approaches exist for estimating TOF: threshold and signal phase-based methods,

that use these techniques to separate the main pulse from the echoes in order to compute the
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difference [25], and those using physical insight in order to solve a deconvolution problem to

recover the impulse response function of the material being scanned [26,27]. This latter approach

– a blind deconvolution problem – is equivalent to a sparse coding step in compressive sensing

(under an appropriate dictionary).

Compressive sensing (CS) aims to exploit sparsity, reconstructing a signal from much fewer

samples than required by Nyquist theorem. The approach outlined here uses machine learning,

in the form of a relevance vector machine (RVM) [28] — a sparse Bayesian regression tool — in

order to reconstruct a compressed signal.

(a) Compressive Sensing as a Sparse Bayesian Regression Problem

Compressive sensing involves three main stages, allowing accurate signal reconstruction from a

low number of measurements. The first part (equation (3.1)), assumes the signal {x}Ni=1 can be

represented by a low number of coefficients {β}Mi=1 and some transform — meaning it is sparse in

that domain — represented by a dictionary D. A key idea in CS is that the dictionary can be formed

from a variety of bases e.g. a mixture of Fourier, wavelet, and polynomial bases. The second stage

of CS is where a random transform Φ (where each element is standard Gaussian or Bernoulli

distributed) is applied to the signal x, preserving the pairwise distances between data points

(via the Johnson-Lindenstrauss Lemma [29]), forming the compressed signal z. Recovering the

original signal x from an over-complete dictionary D forms an ill-posed regression problem, in

equation (3.3) (as most coefficients will be zero), solved using sparse coding or sparse regression

methods, such as an RVM [24].

x=Dβ (3.1) z =Φx (3.2) ΦDβ=Φx (3.3)

The compressive sensing problem in equation (3.3) can be formed as a regression problem

where the output y=Φx, i.e. the randomly transformed signal. This leads to a sparse linear

regression problem, t=ΦDβ + e; t is the target vector, ΦD=X form the set of bases, β are the

weights and e∼N (0, σ2) is Gaussian-distributed noise. An RVM induces sparsity through its

Bayesian model structure, particularly the choice of priors on the coefficients β (equations (3.6)

and (3.7)),

p(t |β, σ2) = (2πσ2)−
N

2 exp
||t− y||22

2σ2
(3.4) p(σ−2) = G(σ−2 | c, d) (3.5)

p(β |α) =

M
∏

i=1

N (βi | 0, α
−1) (3.6) p(α) =

M
∏

i=1

G(αi | a, b) (3.7)

where N (µ, Σ) and G(a, b) indicate Gaussian and Gamma distributions parametrised by a mean

µ, covariance Σ, a shape and b rate parameters. The integral of the Gaussian-Gamma prior

structure on β leads to p(β) being Student’s t distributed; this distribution places most of its

probability mass around the centre with a low number of degrees of freedom, inducing sparsity.

The predictive equations from the model (using Bayes rule) leads to p(t∗ | t,α, σ2) (where t∗ are

test data points),
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y∗ =X(σ−2ΣXT
t) (3.8) V∗ = σ2 +XTΣX (3.9) Σ = (A+

1

σ2
XTX)−1 (3.10)

where A=diag(α) and the hyperparameters α and σ2 are found using an expectation

maximisation (EM) approach in [28].

(b) Compressive Sensing on Ultrasound Data

A demonstration of Bayesian CS (using the RVM formulation), in estimating waveforms from

C-scan data is presented in this section. A robotic head, with a water-coupled ultrasound probe

consisting of 64 transducers, was used to scan a 1.2m × 3m composite panel. Each transducer,

which can fire a 5MHz tone burst, also acts as a receiver, where the spatial resolution of the scan

was adjusted to be 0.8mm in the direction of probe travel. Importantly, the signals all contain

information at a narrow band centred around 5MHz, with the Nyquist frequency at 25MHz, such

that the problem is not oversampled (such that the trivial compression solution of decimation

is not possible). An acquisition time of 24.64µs was used to capture the range of depths in the

specimen, which equates to 1232 samples at a sample rate of 50MHz. CS results are shown

in Figure 2, where different dictionaries have been used; a model-based tone-burst, k-means

clustering [30], and online matrix factorisation. Visually, the mean reconstructed signal (indicated

by the red line) is in good agreement with the measured data, with the main difference being the

uncertainty in the reconstruction. In this example a k-means dictionary [30] (an unsupervised

clustering algorithm) was found to be the most appropriate, highlighting the usefulness of

machine learning both in reconstruction of the signal and identifying an optimal dictionary. It

can be concluded from this example, that machine learning-based CS can be used to increase both

the speed and efficiency of data processing in ultrasound-based NDE.

4. Machine Learning-Based Autonomous Inspection

The use of robotics in NDE has changed the way NDE measurements can be acquired and has

created the opportunity to automate large-scale inspection processes [31,32] (where large-scale

refers to the size of the structure, e.g. a large aerospace composite panel). However, although data

acquisition can be automated, it is increasingly desired that the whole inspection process, from data

collection to decision about the health state of the structure, is made autonomously. This section

looks at the problem of efficiently identifying damage on a specimen by performing damage

detection autonomously using robust outlier analysis, and optimising the scan path such that any

damage is found efficiently using Bayesian optimisation [23].

(a) Autonomous Inspection Strategy

The proposed inspection strategy seeks to select scanning points in a sequential manner, – rather

than a uniform grid – by posing the problem as a Bayesian optimisation to maximise an objective

function i.e. the ‘novelty index’ of a measured data point. The objective function is formed from

a robust novelty index, as this describes the dissimilarity of a given data point against the group,

whilst ensuring the measure is not biased by noise or the presence of damage in the group.

This choice of objective function means optimisation identifies spatial areas of interest that are

particularly novel, and therefore likely to be damaged. The Bayesian optimisation approach

means that the uncertainty across the spatial field is decreased whilst focussing on identifying

potential damage locations, with the smallest number of measurement points.

The process can be summarised as: 1) obtain data and evaluate features, 2) update robust

mean and covariance estimates (including the latest data point) using fast minimum covariance
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Figure 2. Comparison of signal reconstructions of ultrasound data using three dictionaries: panel (a) model-based tone-

burst, panel (b) k-means clustering and panel (c) online matrix factorisation. The uncertainty bounds, σ1 and σ2 refer to

the prediction uncertainty without and with measurement noise respectively [24].

determinant (FASTMCD) [33], and calculate novelty indices for the entire set 2, 3) condition

the Gaussian Process (GP) model [34] on the new novelty indices, 4) compute the expected

improvement (EI) to find the next scan location.

EI is a utility that seeks to find a balance between exploration and exploitation [35], making

it ideal for exploring the specimen whilst accurately identifying likely areas of damage. Given

the focus of this paper, and in keeping with brevity, the interested reader is referred to [23]

for more details, specifically on Gaussian Process regression, Bayesian optimisation and robust

outlier analysis.

A key advantage of utilising Bayesian optimisation is that the posterior GP output is

probabilistic, y∗ ∼N (m,v), leading to a probabilistic estimate of novelty scores over a two-

dimensional spatial field. Typically, in outlier analysis, an observation is flagged as abnormal

if its novelty index exceeds the damage threshold T . In the Bayesian optimisation approach, the

Probability Of Damage (POD) is the probability that the uncertain measurement lies above the

threshold p(y∗,i >T ) =Φ((mi − T )/vi), where Φ(·) is a standard Gaussian cumulative density

function. The method can therefore be used to construct a spatial POD map of the specimen,

given the current scan locations.

(b) Autonomous Inspection of a Composite Specimen

An example of the strategy is demonstrated on an industrial, carbon fibre reinforced polymer

(CFRP) specimen (part of an aerospace substructure provided by Spirit Aerospace), shown in the

right-hand panel of Figure 3. The specimen was known to have two main areas of delamination

in the flat section of the panel, as indicated by the TOF in Figure 4. Ultrasonic pulse-echo scans

were acquired using a system based on a six-axis KUKA robot with a 64-element phased array

2These novelty indices are inclusive outlier detection indices, and are more robust than using Mahalanobis distances, which

can be affected by multiple outlying data points, masking its effects.



8

rs
ta

.ro
y
a

ls
o

c
ie

ty
p

u
b
lis

h
in

g
.o

rg
P

h
il.

T
ra

n
s
.

R
.

S
o

c
.

A
0

0
0

0
0

0
0

..................................................................

probe, as described in [32]. As the inspection strategy depends on a novelty index score, each

implementation of the technique is limited to areas of ‘similar’ properties (otherwise ‘healthy’

areas with different properties would be flagged as novel given the majority ‘healthy’ area); for

this reason only the flat sections are considered.

Figure 3. Illustration of two composite panels. The left panel shows the source specimen used in the transfer learning

case study. The right panel presents the specimen used in the autonomous inspection case study, and is the target

specimen in the transfer learning case study.

Figure 4. Time-of-flight map for the composite specimen (in normalised units); the target specimen in the transfer learning

case study.

The POD, given the final observation, in each region are shown in Figure 5, where it can be

seen that the two main areas of damage have been identified. Furthermore, Figure 5 also presents

the evolution of POD for each of the eight regions, given the current observation number. It can

be seen that regions 3, 6 and 7 are quickly identified as containing damage, with each requiring

around 150, 400 and 300 observations respectively. The approach therefore indicates the potential

of machine learning in the automation of robotic, ultrasound-based inspection.

5. Towards Fully Autonomous Ultrasonic NDE – the Potential of

Transfer Learning

Another machine learning technique that could aid the transition to autonomous, ultrasound-

based inspection is transfer learning. This branch of machine learning allows knowledge about
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Figure 5. Autonomous inspection strategy results for composite specimen [23]. Left panel shows POD across the spatial

field for the final observation in each region; right panel illustrates POD against number of observations for each discrete

region (corresponding to the left panel).

damage state labels to be transferred from one structure to another, meaning datasets can be

classified autonomously without the need for a human to provide labelled examples of different

damage states for each new structure inspected.

As stated previously, machine learning provides multiple avenues for making decisions about

the health state of a structure from data in an autonomous manner, i.e. datasets can be flagged as

‘novel’ or labelled as corresponding to a particular damage state. One challenge in using machine

learning for autonomous NDE (and also in SHM) is that machine learning algorithms are typically

trained, and therefore valid for, specific individual structures. This issue means that if a machine

learner, trained on one specimen, was applied to another specimen, changes in the distribution of

the datasets would mean that the machine learner would fail to generalise and predictions would

be erroneous. In the context of ultrasound-based NDE, these changes in the data distributions

between different specimens may arise for several reasons e.g. the specimens have different

nominal thicknesses; the acoustic impedance of the materials are not the same; damage types

may change between specimens; manufacturing differences lead to different physical properties

etc. As a result, to achieve ‘true’ autonomous robotic inspection in NDE, machine learners must

overcome this limitation and generalise across a population of structures where, for many of the

population, labelled data are unavailable as this requires human intervention (this is a similar

goal to the related field of population-based SHM [36]).

A machine learning-based technique for transferring label knowledge between different

datasets is called transfer learning. This technology seeks to leverage knowledge from a source

dataset and use it in improving inferences on some target dataset. In terms of NDE, this means

that for each new inspection of a new target structure, knowledge can be used from previous

inspections of source structures, where labels have been collected, to aid classification of health

states on the target structure, with the benefit of creating machine learners that generalise across

the complete set of structures. The following case study seeks to demonstrate the potential of

utilising transfer learning to improve damage detection on an unlabelled target composite panel

based on labelled observations of a source composite panel where the features are derived from

ultrasonic measurements.

(i) Domain adaptation

Domain adaptation is one branch of transfer learning [37] that seeks to map feature spaces between

source data {Xs,ys} and target data {Xt,yt}, such that label knowledge can be transferred from

source to target datasets; where X ∈R
N×D is a matrix of feature observations from a feature

space X , and y ∈R
N×1 is a vector of labels corresponding to each feature observation in a label

space Y . This class of methods assumes that the feature and label spaces between the source and
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target datasets are equal; where Xs =Xt means the source and target features have the same

dimensions Ds =Dt, and Ys =Yt means that the same number of classes exist in the source

and target spaces. Given this starting point, the key assumption in domain adaptation is that

the marginal distributions p(X) of the finite feature observations X = {xi}
N
i=1 for the source

and target are not equal p(Xs) 6= p(Xt) (with the potential to assume that the joint distributions

are also different p(ys, Xs) 6= p(yt, Xt) [38]). Consequently, the goal in domain adaptation is

to find a mapping φ(·) on the feature data such that p(φ(Xs)) = p(φ(Xt)) (and p(ys, φ(Xs)) =

p(yt, φ(Xt))), meaning the source and target datasets lie on top of each other and any labelled

data from the source dataset can be used to label (and therefore transferred to) the target dataset.

(ii) Transfer Component Analysis

Transfer Component Analysis (TCA) is one method for performing domain adaptation and

assumes the conditional distributions for the source and target datasets are consistent, i.e.

p(ys |Xs) = p(yt |Xt) but that the marginals are very different p(Xs) 6= p(Xt) [39]. The technique

then seeks to learn a nonlinear mapping φ(·) from the feature space to a Reproducing

Kernel Hilbert Space (RKHS), i.e φ :X →H via a kernel k(xi,xj) = φ(xT

i )φ(xj), where the

distance Dist(p(φ(Xs)) , p(φ(Xt))) is minimised (and therefore p(ys |φ(Xs))≈ p(yt |φ(Xt))).

The distance criterion utilised in TCA is the (squared) Maximum Mean Discrepancy (MMD)

distance, defined as the difference between two empirical means when the data are transformed

via a nonlinear mapping into an RKHS [40],

Dist(p(φ(Xs)) , p(φ(Xt))) =

∥

∥

∥

∥

∥

1

Ns

Ns
∑

i=1

φ(xs,i)−
1

Nt

Nt
∑

i=1

φ(xt,i)

∥

∥

∥

∥

∥

2

H

= tr(KM) (5.1)

where K = φ(X)Tφ(X)∈R
(Ns+Nt)×(Ns+Nt) given that X =Xs ∪Xt ∈R

(Ns+Nt)×D , D is the

dimension of the feature space, and M is the MMD matrix,

Mi,j =















1
N2

s

, xi, xj ∈Xs

1
N2

t

, xi, xj ∈Xt

−1
NsNt

, otherwise.

(5.2)

In order to turn the distance into an optimisation problem, the low-rank empirical kernel

embedding K̃ =KWWTK [41] is exploited such that the distance can be rewritten as,

Dist(p(φ(Xs)) , p(φ(Xt))) = tr
(

WTKMKW
)

(5.3)

where W ∈R
(Ns+Nt)×k are a set of weights to be optimised that perform a reduction

and transformation on the kernel embedding. By optimising the weights W , the marginal

distributions for the source and target features are brought together in the transformed space.

Regularisation in the form of a squared Frobenius-norm is applied to the optimisation problem

in order to control the complexity of W ; in addition, the optimisation is further constrained by

kernel principle component analysis in order to avoid the trivial solution W = 0. The objective is

formed as,

min
WTKHKW=I

= tr
(

WTKMKW
)

+ µtr
(

WTW
)

(5.4)

where µ controls the level of regularisation, H = I− 1/(Ns +Nt)1 is a centring matrix, I is an

identify matrix and 1 a matrix of ones. The objective can be solved via Lagrangian optimisation

as an eigenvalue problem, where W are eigenvectors corresponding to the k-smallest eigenvalues

of,
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(KMK + µI)W =KHKWΨ (5.5)

where Ψ is a diagonal matrix of Lagrange multipliers. Once the optimal W are obtained, the

transformed feature space is then formed by Z =KW ∈R
(Ns+Nt)×k. A classifier can now be

trained in the transformed space using the labelled source data and applied to the unlabelled

target data, therefore transferring the labels from source to target dataset.

(iii) Transferring NDE damage detection labels between composite specimens

This section presents an application of transfer component analysis in aiding robotically-enabled

ultrasonic inspection of two composite aerospace panels. The task in this case study was to

transfer detection labels from a source specimen with seeded defects, to data from an unlabelled

target specimen that was known to have delamination damage.

The two carbon-fibre-reinforced polymer (CFRP) specimens used in this case study are

presented in Figure 3 (both specimens were provided by Spirit Aerospace). Ultrasonic pulse-echo

scans of both panels were acquired using a system based on a six-axis KUKA robot with a 64-

element phased array probe, described in [32]. The source specimen is representative of a typical

aerospace composite, composed of a flat section with a stringer bonded to it. This panel had

defects seeded into the specimen; thin sheets of poly-tetrafluoroethylene (PTFE) were inserted

at different depths during manufacturing, indicated in the TOF and label maps in Figure 6.

The target specimen is part of an industrial, aerospace sub-structure, formed from a flat section

with three stringers and stiffened areas around each stringer. Delamination was known to have

occurred at two main locations on the target panel, shown in the TOF and label maps in Figure 4

and 7. It is noted that the label maps in Figures 6 and 7 are constructed from the known defect

locations and the areas of damage are slightly larger than those indicated by the TOF maps from

the raw ultrasound pulses.

The objective of this case study is to transfer label information from the labelled source panel,

given that the seeded defects act as a proxy for delamination, and transfer this damage label to

the target panel, where damage labels are assumed unknown. Furthermore, these two specimens

form an interesting case study for the application of TCA, as they have different ultrasound

attenuation factors caused by different ply-up sequences, fibre volumetric percentages etc., and

both contain flat sections that have different nominal thicknesses (7mm and 7.3mm for the source

and target respectively) where damage is present in the flat sections of both specimens. For this

reason the flat sections of each specimen are the focus of this study, as specified in the label maps

in Figures 6 and 7. Finally, as the goal in this case study is to transfer label knowledge from

the source to target panel, only the informative parts of the source panel are used in training

and testing the algorithm; which is partly due to the fact that training TCA has a computational

complexity of O(k(Ns +Nt)
2) [39]. These informative sections from the source panel are chosen

as they contain representative examples of both the damaged and undamaged classes, where

these sections are divided into training (black regions) and testing data (red regions) in Figure 6.

The black region in Figure 7 relates to unlabelled target data used in inferring the TCA mapping

(and are not used in training the classifier).

The feature spaces in this case study are normalised autocorrelation functions obtained from

the raw ultrasound pulses, depicted in Figure 8. In order to make the feature spaces consistent

(i.e. Xs =Xt) the autocorrelation functions are truncated to 300 lags (i.e. D= 300) (corresponding

to a time span of 12µs), as most of the significant information in the autocorrelation functions

occur well before 300 lags. The differences in autocorrelation functions shown in Figure 8

demonstrate the need for transfer learning. The distributions over the autocorrelation functions

are significantly different for the source and target panels due to their geometric and material

differences. It is therefore expected that a classifier trained on the source panel data will fail to

correctly classify any target panel defects.
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black boxes indicate areas used in training both the TCA mapping and classifier, and the red boxes represent areas used

in testing the classifier.

Figure 7. Target specimen. The ‘true’ label map where the black boxes indicate areas used in training the TCA mapping

with the remaining regions being test data.
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Figure 8. Left panel: mean and ±3σ (shaded region) for the source and target normalised autocorrelation functions,

where undamaged and damaged classes are blue (top panel) and green (bottom panel) respectively. Right panel: mean

and ±3σ (shaded region) for the source and target TCA transfer components, where undamaged and damaged classes

are blue (top panel) and green (bottom panel) respectively.

Transfer component analysis was implemented on training data from the source and target

panels (the black regions in Figures 6 and 7, where the number of training data points for each

panel was Ns = 7692 and Nt = 16381). The feature data were embedded using a linear kernel

and TCA was implemented with a regularisation factor µ= 0.1 where ten transfer components

were selected (k= 10). The inferred transfer components are presented in Figure 8, where it can

be seen that the transfer component distributions for the source and target panels are now ‘close’3

together and therefore a classifier trained on the source panel should generalise to the target panel.

The classifier utilised in this case study was k-Nearest Neighbours (kNN), with the number of

neighbours k= 1. Although any classifier could be used, kNN was selected as TCA aims to move

the source and target features ‘close’ together, and therefore it would be expected that the transfer

components for the source and target panels will be close in Euclidean space. Classification

was performed both on the autocorrelation functions (i.e. with no transfer learning), and on the

transfer components from TCA. In both scenarios, the classifier is trained on the labelled source

data (black regions in Figure 9) and then tested on the remaining source data (red regions in

Figure 9; where Ns,test = 9304) and target test data (Figure 10; where Nt,test = 219910); where

the features are autocorrelation functions for the no transfer learning scenario, and transfer

components for TCA. The predicted labels for the source and target specimens are shown in

Figures 9 and 10 for the two classifiers, where visually it can be seen that there is comparable

performance on the source specimen and a significant reduction in false positives for the TCA

approach on the target specimen. Classification performance is quantified and compared via

accuracies and macro F1-scores. These two metrics are constructed from the number of true

positives (TP ), false positives (FP ), true negatives (TN ), and false negatives (FN ). Accuracy

is defined as,

Accuracy=
TP + TN

TP + TN + FP + FN
. (5.6)

The macro F1-score is formed from the precision P and recall R, for each class c∈Y ,

Pc =
TPc

TPc + FPc
(5.7) Rc =

TPc

TPc + FNc
(5.8)

3Where ‘close’ can be defined in terms of a distance between distributions, such as the MMD distance used in TCA.
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..................................................................Figure 9. Source specimen label predictions from the classifier trained on the source training dataset. Top panel:

predicted classification labels using no transfer learning; bottom panel: predicted classification labels using TCA transfer

components. The black regions are the training data and the red regions are the testing data.

where a class F1-score and macro-averaged F1-score are formed from,

F1,c =
2PcRc

Pc +Rc
(5.9)

F1macro =
1

C

∑

c∈Y

F1,c (5.10)

where C is the total number of classes in Y . The advantage of the macro F1-score is that it

equally weights the score for each class regardless of the proportion of data within each class.

This property is particularly beneficial in an NDE context, as the majority of data are from

the undamaged class, where poor classification of the damaged label may be masked in an

accuracy score. For this reason both accuracy and macro F1-scores are presented in table 1.

The classification results clearly demonstrate the benefits in performing transfer learning in this

context; visually seen from accurate label predictions in the lower panel of Figure 10 (TCA),

compared to a large number of false positives (extract green areas) in the upper panel (no

transfer learning). Classification accuracy and the macro F1-score increase by 8% and 28%

respectively, when using TCA over not, with classification accuracies remaining unchanged on

the source specimen using either approach. These results demonstrate that the inferred mapping

is extremely beneficial in transferring label information from the source to target panel and that

transfer learning is useful in progressing to a fully autonomous NDE process.

It is interesting to note at this stage that transfer learning, particularly when using ultrasound-

based features, may allow knowledge in the form of labels referring to different health states

obtained from an NDE context to be used in SHM applications. This would mean that knowledge
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Figure 10. Target specimen label predictions from the classifier trained on the source training dataset. Top panel:

predicted classification labels using no transfer learning; bottom panel: predicted classification labels using TCA transfer

components.

Table 1. Classification accuracies and macro F1-scores for the transfer learning case study.

No transfer All data classed

Method learning TCA as undamaged

Source training Accuracy 100.0% 100.0% 94.9%

Marco F1-score 1.000 1.000 0.487

Source testing Accuracy 98.9% 98.9% 97.4%

Macro F1-score 0.884 0.887 0.494

Target testing Accuracy 91.7% 99.0% 95.2%

Macro F1-score 0.737 0.943 0.487
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obtained in offline inspection processes could be used to make health diagnoses online, opening

up the potential for more interactions between the NDE and SHM communities.

6. Discussion and Conclusions

This paper opens with some discussion as to what it means for a technology to be an NDE method

or an SHM method, in the context of ultrasonic inspection. The conclusion is that the boundary

between methods is somewhat blurred, but largely distinguished by the sensor modality and the

strategy for data acquisition. SHM is accomplished using permanently-installed sensors with data

acquired continuously (or at frequent constant intervals), while NDE requires the use of external

actuation/sensing and is (usually) carried out at the direction of human agency. The consideration

of ultrasound as the physical basis for inspection shows that this distinction is somewhat arbitrary,

with ultrasonic NDE and SHM blurring into each other. The opportunity that this realisation

presents, is that technology that is currently considered as restricted to offline/NDE applications,

may well become a useful SHM technology if low-cost local sensing/actuation capability can be

developed; at low-enough cost and high-enough durability that transducers can be permanently

deployed at high enough density.

The main aim of the paper is to illustrate the power of machine learning, in carrying out data-

based diagnosis in support of any physics-based prior analysis. Three case studies are presented.

The first case study shows how compressive sensing (CS) can be used to store waveform data with

reduced demands on computer memory or disk. CS is a lossy compression method, preserving

the main features of interest; the Bayesian implementation presented in this paper has the

advantage of providing confidence intervals for the reconstructed data. For transient waveforms,

CS can provide a much compressed representation if an appropriate dictionary of transient basis

functions is adopted. In the event that damage classifiers can be trained in the compressed

domain, time and storage will be saved because the reconstruction step will not be needed. It

is anticipated that CS technology will be applicable to other modes of wave-based NDE e.g. those

based on acoustic emissions. The second illustration here relates to autonomous path planning

for robotic inspection. A robust algorithm is presented which allows a robot system to adaptively

optimise the inspection path in order to focus on probable areas of damage. Apart from the

inherent intelligence of such a strategy, it offers significant reductions in scan time; furthermore,

the algorithm shown here provides naturally probabilistic results.

The third and final case study discussed here is based on ongoing work, and shows how

transfer learning can be used to allow inferences on structures where no damage state data are

available, using data acquired from a similar but distinct structure. In the application here, NDE

inspection of composite parts – representative of large aerospace structures – is carried out via an

ultrasonic phased-array transducer manipulated by an industrial robotic arm. In accordance with

the earlier discussion, this is clearly an NDE scenario, since the components are moved into an

inspection cell, where automated analysis is executed.

It can be concluded that machine learning provides a powerful means of progress on some

of the problems associated with NDE/SHM. This observation has proved true for ultrasonic

methods and should be considered as an opportunity for approaches based on different physics,

e.g. thermal or electrical. New methods like transfer learning overcome some of the issues of data-

based methods, like the difficulty of acquiring training data that encompass all the damage states

of interest.
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