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Introduction
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of  end-

stage kidney failure in humans (1). It has an estimated clinical prevalence of  less than 1 in 2000, although 

its genetic prevalence could be higher due to many asymptomatic undiagnosed cases in the general popu-

lation (2). Around 10% of  patients on renal replacement therapy are due to ADPKD, making it a disease 

of  considerable personal, societal, and economic impact. At present, only 1 drug, tolvaptan, has been 

approved for use in humans to slow disease progression (3).

Mutations in 2 genes, PKD1 and PKD2, account for the majority of  cases (>90%) with ADPKD. In 

mutation-negative patients, a combination of  mosaicism in PKD1 or mutations in other cystic genes (DNA-

JB11, GANAB) have been detected, although these still account for a small percentage of  such cases (4, 5). 

PKD1 encoding PC1 is the causative gene in 80%–85% of  patients, making this the major ADPKD gene. 

It has also been recognized that other rarer cystic genes may exert their effects through alterations in the 

expression, processing, or localization of  PC1, making an understanding of  PC1 function central to the 

understanding and treatment of  most forms of  human PKD (6). However, this has been a challenging task 

given the size, complexity, and posttranslational modifications of  the protein (7).

The cellular phenotype of ADPKD is well described but is highly complex with alterations in many path-

ways reported. These include changes in proliferation, apoptosis, cell-cell and cell-matrix adhesion, differen-

tiation, apicobasal polarity, fluid secretion, cilia function, directional migration, and matrix deposition (7). 

In the majority of studies, it has been difficult to assign a specific phenotype to PC1 function. We tested the 

hypothesis that PKD1 mutation leads to significant changes in actin cytoskeleton dynamics giving rise to sev-

eral features of the cystic phenotype. In this study, we report that dysregulation of compartmentalized centro-

somal RhoA signaling mediated by a specific RhoGAP (ARHGAP35) leads to increased Rho kinase (ROCK) 

activation in PKD1 mutant cells.

Mutations in PKD1 (encoding for polycystin-1 [PC1]) are found in 80%–85% of patients with 

autosomal dominant polycystic kidney disease (ADPKD). We tested the hypothesis that changes 

in actin dynamics result from PKD1 mutations through dysregulation of compartmentalized 

centrosomal RhoA signaling mediated by specific RhoGAP (ARHGAP) proteins resulting in the 

complex cellular cystic phenotype. Initial studies revealed that the actin cytoskeleton was highly 

disorganized in cystic cells derived from patients with PKD1 and was associated with an increase in 

total and centrosomal active RhoA and ROCK signaling. Using cilia length as a phenotypic readout 

for centrosomal RhoA activity, we identified ARHGAP5, -29, and -35 as essential regulators of 

ciliation in normal human renal tubular cells. Importantly, a specific decrease in centrosomal 

ARHGAP35 was observed in PKD1-null cells using a centrosome-targeted proximity ligation assay 

and by dual immunofluorescence labeling. Finally, the ROCK inhibitor hydroxyfasudil reduced cyst 

expansion in both human PKD1 3D cyst assays and an inducible Pkd1 mouse model. In summary, we 

report a potentially novel interaction between PC1 and ARHGAP35 in the regulation of centrosomal 

RhoA activation and ROCK signaling. Targeting the RhoA/ROCK pathway inhibited cyst formation 

in vitro and in vivo, indicating its relevance to ADPKD pathogenesis and for developing new 

therapies to inhibit cyst initiation.
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Results
Changes in actin organization are a striking feature of  the ADPKD cellular phenotype. In preliminary studies, 

we observed that abnormalities in the actin cytoskeleton were a common feature of  patient-derived 

PKD1 cystic cell lines. Actin fibers appeared to be thicker, shorter, and more disorganized in PKD1 

cells compared with noncystic controls (Figure 1, A–C). 3D structured illumination (3D-SIM) confocal 

images of  phalloidin-stained cells confirmed the general increase in cortical F-actin at the apical and 

basolateral surface, stress fiber formation, and reduced cell height in a PKD1 cell line (OX161) com-

pared with a noncystic control (UCL93) (Figure 1D and Supplemental Videos 1 and 2; supplemental 

material available online with this article; https://doi.org/10.1172/jci.insight.135385DS1); in control 

cells, actin fibers were predominantly seen at the basal surface. In addition, we made the surprising 

observation that, under conditions promoting optimal cilia formation (48-hour serum starvation), the 

percentage of  ciliated cells as well as cilia length were reduced in PKD1 cystic cells (Figure 1, E and F, 

and Supplemental Figure 1A). These changes were not related to prolonged in vitro culture or immor-

talization since a significant reduction in the cilia length and percentage of  ciliated cells were also 

detected in nephrectomy tissue obtained from 2 patients with PKD1 (OX161 and SKI-001) compared 

with noncystic patients (Supplemental Figure 1, B and D). Similar changes were confirmed in cystic 

kidney tissue from a Pkd1 mouse model (8) (Supplemental Figure 1, C and E), excluding the possibility 

of  secondary changes in late-stage or end-stage disease in human tissues.

The cilia cellular phenotype is associated with increased actin polymerization and PC1 deficiency. In view of  

the observed structural defects in actin organization, we hypothesized that increased actin polymerization 

could be the major underlying defect leading to shorter cilia in PKD1 cystic cells. Although the primary 

cilium is a microtubule-based organelle, it has been recognized that apical actin filaments are necessary to 

stabilize cilia formation by promoting centrosome migration, basal body docking, and axoneme growth (9). 

These changes have been reported in rare ciliopathies such as Bardet-Biedel and Meckel syndromes (10, 

11), although the role of  actin in ciliogenesis in ADPKD has not been previously investigated. Strikingly, 

actin depolymerization induced by cytochalasin D (1 ȝM) increased cilia length in both normal and PKD1 

cystic cells to a similar degree (Figure 2A), linking the degree of  actin polymerization to cilia stabilization. 

In contrast, the ROCK inhibitor Y-27632 restored cilia length in PKD1 cells to that found in normal cells 

but had no effect on cilia length in normal cells (Figure 2B), implicating a mechanistic link between PC1 

deficiency, RhoA activation, and increased ROCK activity.

To confirm that this was the case, we generated PKD1-null cells from the parental normal control human 

tubular cell line (UCL93) by CRISPR/Cas9 mutagenesis. Three isogenic clones were selected for further 

study based on the absence of  PC1 expression (Figure 2C). In early passage cells, we again observed a clear 

reduction in cilia length (Figure 2, D and E), confirming a direct link to PC1 deficiency. In agreement with 

this, cotransfection of  WT mCherry-PC1 (with WT PC2) into OX161 cells resulted in a partial rescue of  the 

cilia phenotype; in contrast, no rescue was observed in cystic cells expressing a mutant mCherry-PC1-4211X 

truncation deleting most of  the C-terminus (Figure 2, F–H). To investigate if  PC2 was similarly implicated 

in this pathway, we generated PKD2-null cells in the same line using the same strategy. PKD2-null cells, how-

ever, had normal cilia lengths compared with the parental line (UCL93), indicating that the cilia phenotype 

is specific to PC1 and/or that PC2 plays a permissive but nonessential role (Supplemental Figure 1F).

RhoA activation is increased in PKD1 mutant or null cells and kidney tissues. To explore the potential mech-

anistic link between increased ROCK activity and PC1 deficiency, the activation of  RhoA in disease cells 

and tissues was measured using a Rhotekin-RBD pulldown assay designed to recognize GTP-RhoA. 

A significant increase in total GTP-RhoA was detectable in PKD1 cystic cells compared with controls 

(Figure 3A) and confirmed in cystic kidneys of  Pkd1 mice (Figure 3B). Under conditions to promote cilia 

formation, we also observed a significant increase in total GTP-Cdc42 but not of  GTP-Rac1 in PKD1 

cystic cells (Supplemental Figure 2, A–C). We also detected a significant increase in the phosphorylation 

of  myosin light chain (MLC), a major downstream effector of  ROCK that activates actin contraction and 

stabilization, in PKD1-null cells (Figure 3C).

Centrosomal RhoA activation is increased in PKD1 cells and directly regulates cilia length. To exclude an addi-

tional role for Cdc42 or Rac1 in regulating cilia length, we next expressed dominant negative (DN) versions 

of  each GTPase in PKD1 cystic cells. As indicated, expression of  DN RhoA (N19) but not DN Cdc42 

(N17) or DN Rac1 (N17) increased cilia length in OX161 cells (Figure 3D). We hypothesized that apart 

from the total cellular increase in active GTP-RhoA, there was likely to be an increase in active RhoA 

https://doi.org/10.1172/jci.insight.135385
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at the centrosome or basal body compartment to account for the cilia phenotype in PKD1 cells. Using a 

fluorescent active RhoA biosensor (12), we directly visualized significantly increased active RhoA in this 

compartment in PKD1 cells compared with controls (Figure 3E). To confirm that an increase in active 

centrosome RhoA can result directly in shorter cilia, we exploited a rapamycin-inducible system to express 

constitutively active RhoA (Q63L) at the centrosome in control cells (Supplemental Figure 3B). As shown, 

this resulted in significantly shorter cilia compared with noninduced cells (Figure 3F).

Knockdown of  several centrosomal ARHGAPs decreased cilia length in control cells. The regulation of  RhoA 

activity between the active GTP-bound state and the inactive GDP-bound state is mediated by ARHGEFs, 

which promote GTP binding and ARHGAPs, which promote GTP hydrolysis (13). The increase in active 

RhoA at centrosomes which we observed in PKD1 cells led us to hypothesize that a possible explanation 

could be loss of  specific centrosomal ARHGAPs due to PC1 deficiency. Database and literature mining of  

several studies of  the cilia/centrosome proteome and siRNA ciliogenesis screens identified 6 likely centro-

somal ARHGAP proteins reported in at least 2 studies (Figure 4A) (14–20).

We next conducted a focused siRNA screen on these 6 candidate ARHGAPs (ARHGAP1, -5, -19, 

-21, -29, -35) in control cells (UCL93), achieving knockdown of  greater than 80% by qPCR (Supple-

mental Figure 3A). Of  note, knockdown of  ARHGAP5, -29, and -35 but not ARHGAP1, -19, and -21 

was found to significantly reduce ciliogenesis (Figure 4, B and C).

Centrosomal ARHGAP35 localization is reduced in PC1-null cells. The centrosomal localization of  ARH-

GAP5, -29, and -35 in control UCL93 cells was experimentally confirmed using a BioID2 proximity liga-

tion assay (PLA) linked to the centrosomal targeting PACT domain (Figure 4D and Supplemental Figure 

3, C and D). Of  interest, all 3 proteins were also detected using a second BioID2 PLA linked to the PC1 

C-terminus (CT1), suggesting their close proximity to PC1 at centrosome and/or noncentrosome com-

partments (Figure 4D and Supplemental Figure 3D).

Figure 1. The ADPKD cellular phenotype is associated with structural changes in actin organization and reduced cilia length. (A) Phalloidin labeled 

F-actin showing a more disorganized actin cytoskeleton in PKD1 cystic cells (OX161) compared with control (UCL93) cells. (B and C) The length of actin il-

aments was signiicantly reduced and their normal parallel orientation more variable in PKD1 compared with control cells (N = 60 cells; signiicance deter-

mined by 2-tailed Student’s t test). (D) 3D-SIM confocal images of phalloidin-stained cells. Actin ibers can be seen predominantly orientated to the 

base of control UCL93 cells. In contrast, actin ibers were thicker and frequently localized to the apical surface of OX161 cells. Increased stress ibers were 

also present. Cilia labeled with Arl13b (green, arrows) are shorter. (E) Primary cilia were visualized in quiescent control and ADPKD cell lines after serum 

starvation by immunoluorescence labeling of Arl13b (red) and nuclei (blue). (F) Cilia length was signiicantly reduced in a panel of human PKD1 cystic 

compared with noncystic cell lines (n = 8 patient-derived cell lines, N = 250 cells counted; signiicance determined by 1-way ANOVA corrected (Tukey) for 

multiple comparison. ****P < 0.0001. ADPKD, autosomal dominant polycystic kidney disease; SIM, structured illumination.

https://doi.org/10.1172/jci.insight.135385
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To test whether the localization of  any of  these centrosomal ARHGAPs could be regulated by PC1, 

we compared their centrosomal localization in PKD1 mutant (OX161) and PKD1-null cells with isogenic 

control cells (UCL93) using the PACT-targeted BioID2 PLA. In the absence of  PC1, a striking decrease 

in centrosome localization of  ARHGAP35 was noted (Figure 4, E and F). We confirmed the reduction 

in centrosomal ARHGAP35 in PKD1-null cells by dual immunofluorescence, with specific antibodies to 

Ȗ-tubulin and ARHGAP35 (Figure 5, A–C). In contrast, no significant change in centrosomal ARHGAP5 

and ARHGAP29 was observed in the absence of  PC1 (Supplemental Figure 3E).

Co-IP of  full-length epitope-tagged ARHGAP35 and PC1 expressed in HEK293 cells confirmed their 

direct interaction (Figure 5D). ARHGAP35 was shown to bind the PC1 C-terminus since it did not bind to 

a truncated PC1 mutant protein (CT1-R4227X) in GST-pulldown assays (Figure 5E).

ROCK inhibition inhibits cyst growth in vitro and in vivo. The increase in total and centrosomal GTP–

bound RhoA in PKD1-deficient cells, the normalization of  cilia length by a ROCK inhibitor, and the 

increased expression of  pMLC led us to conclude that ROCK might be a relevant therapeutic target 

in PKD1. We first tested the efficacy of  a second ROCK inhibitor, hydroxyfasudil, in 3D cyst assays 

using a patient-derived PKD1 cystic line (OX161). Hydroxyfasudil (1–30 ȝM, 7 days) was associated 

Figure 2. Primary cilia length correlates with PC1 expression, actin polymerization, and ROCK activity. (A) Cytochalasin D (1 ȝM, 4 hours) was associated 

with a signiicant increase in cilia length in both control (UCL93) and ADPKD (OX161) lines (n = 4 independent experiments, N = 115 cells). (B) The ROCK inhib-

itor Y-27632 (1 ȝM, 4 hours) rescued the cilia length defect in the ADPKD (OX161) line but had no efect on cilia length in control (UCL93) cells (n = 4 indepen-

dent experiments, N = 264 cells). (C) Isogenic PKD1-null cells were generated by CRISPR/Cas9 in the parental control line, UCL93. PC1-null clones (c1–3) were 

expanded for study. (D) Primary cilia were visualized in quiescent control (UCL93) and PKD1 null lines (PC1KO) after serum starvation by immunoluorescence 

labeling of Arl13b (green) and nuclei (blue). (E) Cilia length was signiicantly reduced in PKD1 null lines (PC1KO) compared with control (UCL93) cells (n = 3 inde-

pendent experiments, N = 67 cells). (F) Expression of mCherry-PC1, mCherry-PC1-4211X, or CFP-PC2 in transfected HEK293 cells showing bands of the expected 

size by immunoblotting for PC1 (7e12) or PC2 (G20). (G) Representative images of primary cilia in UCL93 control cells and OX161 cystic cells showing partial 

rescue of cilia length (Arl13b, green) in cells cotransfected with mCherry-PC1 (red) and CFP-PC2 but not mCherry-PC1-4211X (red) and CFP-PC2. (H) Expression 

of mCherry-PC1 was associated with a signiicant increase in cilia length compared with mCherry-PC1 4211X or pcDNA3 transfected control OX161 cells (n = 3 

independent experiments, N = 264 cells). ****P < 0.0001. Signiicance determined by 2-tailed Student’s t test (A and B). Signiicance determined by 1-way 

ANOVA corrected (Dunnett) for multiple comparison (E and H). PC1, polycystin-1; ADPKD, autosomal dominant polycystic kidney disease.

https://doi.org/10.1172/jci.insight.135385
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with a significant decrease in cyst area, confirming a likely link between the increased ROCK activity 

and cyst growth (Figure 6A).

Hydroxyfasudil is the major metabolite of  the fasudil, one of  the first ROCK inhibitors, and has been 

shown to be effective in other preclinical models of  kidney disease such as ischemia/reperfusion injury, dia-

betic nephropathy, and unilateral ureteric obstruction (21–23). We next tested the effectiveness of  hydroxy-

fasudil in a tetracycline-inducible kidney-specific Pkd1 mouse model (Pax8rtTA-TetO-Cre-Pkd1fl/fl) (24). Treat-

ment with hydroxyfasudil (10 mg/kg/day) from PN16-PN22 after kidney-specific Pkd1 deletion was well 

tolerated, as reflected by changes in daily body weights (Figure 6B). After 7 days, the treated mice had 

reduced fractional kidney weights (2KW/BW) and fractional kidney cystic indices compared with vehi-

cle-treated controls (Figure 6, C–E). Consistent with these changes, we observed a significant reduction in 

the proliferative index (Ki67-positive cells) and an increase in cilia length in treated animals (Figure 7, A–D). 

The increase in cilia length seen in hydroxyfasudil-treated animals was also measurable when analysis was 

restricted to collecting duct-derived (DBA-positive) cysts suggesting that the observed changes in cilia length 

after treatment were unlikely to be secondary to treatment-induced changes in the origin of  individual cysts 

or a segment-specific effect (Figure 7E). In this model, few cysts were derived from proximal tubules as 

shown by the lack of  LTA staining (Supplemental Figure 4A). There was a nonsignificant decrease in BUN 

between vehicle- and hydroxyfasudil-treated Pkd1 animals after 7 days treatment; however, at this stage of  

disease, there was just a small increase in BUN between uninduced and induced Pkd1 mice. Hydroxyfasudil 

did not alter BUN in the control (uninduced) animals (Supplemental Figure 4B).

Figure 3. Total and centrosomal RhoA and ROCK activity is increased in ADPKD models and alters cilia length. (A) GTP-RhoA was signiicantly increased 

in PKD1 cystic cell lines compared with control cells (n = 4) using a Rhotekin-GTP pulldown assay. (B) GTP-RhoA was signiicantly increased in Pkd1-knockout 

kidneys compared with controls (n = 3). (C) Phosphorylation of myosin light chain (pMLC), a major downstream target of ROCK, was signiicantly upregulated 

in isogenic PKD1-null cells (n = 3). (D) Expression of dominant negative RhoA (T19N) in PKD1 cells resulted in a signiicant increase in cilia length compared 

with dominant negative Cdc42 (N17) or Rac1 (N17) (n = 3 independent experiments, N = 81 cells). (E) Active RhoA was localized using a GTP-RhoA biosensor 

(R-GBD) in control and PKD1 cells. In ciliated cells, active RhoA (GFP) was visualized at the cilia base (arrows) and was signiicantly increased in PKD1 cells (n = 

3 independent experiments, N = 22 cells). Insets show cilia under higher magniication (original magniication, ×1000). (F) Rapamycin-inducible centrosomal 

targeted expression (arrow) of constitutively active RhoA (Q63L) was associated with a signiicant decrease in cilia length in control cells compared with unin-

duced cells (n = 3 independent experiments, N = 70 cells) *P < 0.05, **P < 0.01, ****P < 0.0001. Signiicance determined by 2-tailed Student’s t test (A–C and 

E). Signiicance determined by 1-way ANOVA corrected (Dunnett) for multiple comparison (D and F). ADPKD, autosomal dominant polycystic kidney disease.

https://doi.org/10.1172/jci.insight.135385
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Discussion
In this study, we report that dramatic changes in the actin cytoskeleton are a striking feature of  the ADPKD 

cystic cellular phenotype. An unexpected finding was of  reduced ciliation, in both the number of  ciliated cells 

and the cilia length in PKD1 cystic cells, in PKD1 and Pkd1 cystic kidney tissue. To exclude the possibility 

of  confounding factors such as genetic background, secondary genetic or epigenetic changes related to pro-

longed passage or cell immortalization, we generated isogenic PKD1-null cells by CRISPR/Cas9 mutagenesis 

and found similar changes, thus implicating this directly to PC1 expression. The molecular basis for this 

phenotype appears to be an increase in centrosome RhoA activation, leading to elevated ROCK activity and 

increased F-actin polymerization and contractility. Using cilia length as a phenotypic readout for centrosomal 

RhoA activity, we identified 3 candidate ARHGAP proteins (ARHGAP5, -29, -35) as essential regulators of  

normal ciliation, whose centrosome location had been reported but whose function had not been previously 

defined. Nonetheless, we found that PC1 expression was essential only for the centrosomal localization of  

ARHGAP35. We therefore conclude that the centrosome retention of  ARHGAP5 and -29 are determined 

by their interaction with other proteins apart from PC1. A recent paper reported a glomerulocystic pheno-

type in an Arhgap35 (p190A RhoGAP) mutant mouse model generated in an ENU mutagenesis screen (25). 

The amino acid substitution (p.Leu1396Gln) leads to loss of  function, resulting in increased RhoA activity 

and reduced ciliogenesis (number and length) rescued by ROCK inhibition (25). Our findings confirm these 

Figure 4. Centrosomal ARHGAP35 localization is regulated by PC1. (A) Candidate centrosomal ARHGAP proteins identiied from cilia/centrosome databases 

and siRNA cilia screens. Six potential ARHGAPs were reported in at least 2 studies. (B and C) SiRNA knockdown in control cells (UCL93) demonstrated that 

reduced ARHGAP5, -29, and -35 expression resulted in a reduction of the percentage of ciliated cells and cilia length, whereas knockdown of ARHGAP1, -19, 

and -21 was neutral for ciliogenesis (n = 3 independent experiments, N = 50 cells). (D) Centrosomal expression of endogenous ARHGAP35 in HEK293 cells was 

demonstrated using a proximity ligation assay with a myc-tagged BioID2-PACT fusion protein (BioID2-PACT), which localizes to centrosomes. In addition, 

endogenous ARHGAP35 was labeled by a second myc-tagged BioID2 fusion protein containing the C-terminus of PC1 (BioID2-CT1), indicating that both 

proteins are likely interaction partners. (E and F) There was reduced centrosomal expression of ARHGAP35 in PKD1 cystic (OX161) or null (c1, c2) cells compared 

with control (UCL93) cells in the proximity ligation assay using BioID-PACT (n = 3). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Signiicance deter-

mined by 2-tailed Student’s t test (F). Signiicance determined by 1-way ANOVA corrected (Dunnett) for multiple comparison (B and C). PC1, polycystin-1.

https://doi.org/10.1172/jci.insight.135385
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results but extend them by providing the evidence of  a mechanistic link between ARHGAP35 and PC1 in 

cyst formation. It should be noted that homozygous Arhgap35 mutant mice developed hypoplastic kidneys 

and heterozygous mice had normal kidneys, with a low prevalence (<10%) of  glomerular cysts. We con-

clude that a reduction in centrosomal PC1-ARHGAP35 interaction is likely to contribute to cyst formation in 

ADPKD but there could be compensation by other ARHGAPs such as ARHGAP5, -29, and others. Equally, 

other reported signaling pathways (centrosome and noncentrosome) likely contribute to cyst initiation and 

expansion in the ADPKD kidney. Although we have demonstrated that PC1 can bind to ARHGAP35, PC1 

is mainly localized at the plasma and ciliary membrane while ARHGAP35 is localized to centrosome and 

noncentrosome (cell-cell, cell-matrix) compartments. It is plausible that both proteins could interact at the 

plasma membrane in noncentrosomal locations (see below). Nevertheless, since centrosomal ARHGAP35 

Figure 5. Centrosomal ARHGAP35 interacts with PC1. (A–C) Centrosomal ARHGAP35 expression was visualized by colocalization with Ȗ-tubulin and 

labeling with a speciic ARHGAP35 antibody: a clear reduction in centrosomal labeling was observed in PKD1-null cells compared with controls. Represen-

tative images showing ARHGAP35 and Ȗ-tubulin staining in control (A) and PKD1-null cells (B). Staining intensity in the deined area of the centrosome 

was quantiied by ImageJ (C) in 3 independent PKD1 null clones (c1–3) compared with control cells (UCL93) (n = 3 independent experiments, N = 51 cells). 

(D) Coexpressed full-length FLAG-ARHGAP35 and V5-PC1 proteins coimmunoprecipitate in HEK293 cells indicate their likely interaction. (E) GST-pulldown 

of FLAG-ARHGAP35 with GST-CT1 but not GST-CT1-R4227X indicates the PC1 C-terminus as the likely interaction domain. Representative blots from 3 

independent experiments. ****P < 0.0001. Signiicance determined by 2-tailed Student’s t test. (F) Schematic diagram of the expression constructs used 

for PC1 and ARHGAP35 experiments. PC1, polycystin-1.

https://doi.org/10.1172/jci.insight.135385


8insight.jci.org   https://doi.org/10.1172/jci.insight.135385

R E S E A R C H  A R T I C L E

localization and/or retention is clearly dependent on PC1 (Figure 4), we speculate that this could relate to the 

trafficking and delivery of  ARHGAP35 with PC1 to the centrosomes in the same vesicles (26, 27) and/or its 

retention at the centrosomes with the cleaved PC1 C-terminus (CT1) (28) (Figure 6).

The increase in RhoA activation in PKD1 cells is probably not restricted to the centrosome com-

partment as reflected by the observed increase in total cellular GST-RhoA and pMLC expression 

(Figure 3). The functional relevance of  these findings to ADPKD pathogenesis was confirmed using 

the selective ROCK inhibitor hydroxyfasudil in vitro by 3D cyst assays using human-derived PKD1 

cystic cells and in vivo using a previously reported Pkd1-inducible mouse model. It seems likely that 

the beneficial effect of  ROCK inhibition in these models extends beyond the centrosomal actin sub-

compartment; however, it is possible that this could be the initiating signal for local RhoA activation, 

which then spreads throughout the cell (Figure 8).

During the course of  this study, 2 other groups reported the beneficial effects of  2 other ROCK inhibi-

tors in 2 different neonatal Pkd1 mouse models, lending support to our findings (29, 30). In both studies, a 

functional link between increased RhoA/ROCK activity as a relevant upstream regulator of  YAP/TAZ in 

ADPKD was reported. Nonetheless, our finding of  a molecular link between PC1 and centrosomal ARH-

GAP35 is since neither study provided a direct mechanistic link to PC1. Our findings also imply that this is 

a very proximal or early change in cystic pathogenesis due to the molecular link between ARHGAP35 and 

PC1. Taken together, RhoA appears to be a common upstream molecule whose activity is altered by several 

abnormalities seen in ADPKD, i.e., changes in cell-cell, cell-matrix, and centrosome-cilia interactions.

Figure 6. ROCK inhibition reduces cyst growth in vitro and in vivo. (A) The ROCK inhibitor hydroxyfasudil reduced cyst growth of a patient-derived 

PKD1 cystic line (OX161) in 3D cyst assays. Representative images of cysts after 12 days treatment. Average cyst area was reduced at all concentra-

tions (1, 10, 30 ȝM) tested (n = 3 independent experiments, N = 96 cysts). (B) Hydroxyfasudil-treated Pkd1 mice (10 mg/kg/day by i.p. injections from 

PN16) (n = 7) showed similar weight gain to vehicle (dH
2
0)-injected control animals before (n = 5) and after treatment for 7 days (PN22). Signiicance 

determined by 1-way ANOVA test. (C–E) Hydroxyfasudil treatment was associated with a reduction in kidney size, fractional weight (2KW/BW), and 

cyst formation (cystic index). *P < 0.05, ****P < 0.0001. Signiicance determined by 2-tailed Student’s t test (D and E). Signiicance determined by 

1-way ANOVA corrected (Dunnett) for multiple comparison (A).
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Our results confirm the likely significance of the centrosome compartment both for cilia formation and as 

a major signaling node for regulating cellular function. Recent papers have shown that the centrosome is not 

only the main cellular microtubule-organizing center but also an actin filament-organizing center (31). The 

descriptions of several other centrosomal ARHGAPs and ARHGEFs from proteomic studies and a previous 

report of centrosomal ROCK localization argue for the importance of fine-tuning compartmentalized RhoA/

ROCK activity and consequent local actin dynamics both in health and disease (16, 32). The functional impor-

tance of each regulator, how they interact in local complexes, and their relevance in ADPKD are important 

areas for future study. It is also plausible that PC1 may regulate the actin cytoskeleton in other cellular compart-

ments where it has been localized (cell-cell junctions and cell-matrix contacts) (33, 34) through the recruitment 

or stabilization of other ARHGAPs and/or ARHGEFs. In this context, it should be noted that ARHGAP35 

has also been localized to both focal adhesions and cell-cell junctions in other cell types (35, 36).

Cdc42 has been reported to promote cilia formation through the localization of  the exocyst complex 

to the cilia base and kidney-specific cdc42 deletion is associated with cyst formation (37). Although we 

detected an increase in active Cdc42, expression of  dominant-negative Cdc42 did not alter cilia length in 

our Pkd1 cystic cells. These could reflect cell type or species differences. Nonetheless, Cdc42 activation 

could contribute to noncentrosomal changes in actin and microtubular dynamics in our cellular models, 

relevant to the cystic phenotype (38).

Figure 7. Changes in cell proliferation and cilia length in Pkd1 mice after hydroxyfasudil treatment. (A–D) The pro-

liferation index (Ki67) was signiicantly reduced (A and B) and cilia length (Arl13b) signiicantly increased (C and D) in 

hydroxyfasudil-treated animals (50 cilia per animal). (E) Representative images of primary cilia in Pkd1–/– kidney tissue. 

DBA lectin–positive collecting duct cysts were stained green and primary cilia (Arl13b) was labeled red. Dotted lined 

boxes show the region under higher magniication (original magniication, ×1000). Mean cilia length was signiicantly 

increased in DBA-positive cysts after hydroxyfasudil treatment (n = 3 independent experiments, N = 276 cells). ***P < 

0.001, ****P < 0.0001. Signiicance determined by 2-tailed Student’s t test.
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Centrosomal PC2 localization has been reported in several studies; its function in this compartment 

is presently unclear. Notably, PC2 has been shown to bind to several centrosomal proteins, including 

pericentrin and SCLT1, and may localize to the cilia base through binding the exosome protein Sec10/

EXOC5 (37, 39, 40). It is also notable that PC2 has been shown to bind several actin-binding proteins 

(mDia1, actinin-4, filamin-A), which have been reported to regulate its channel activity (41–43). None-

theless, in our study, PC2-null cells had normal cilia length, suggesting that the cilia phenotype is pri-

marily related to changes in PC1 expression.

Our findings of  reduced cilia length in the absence or mutation of  PC1 are consistent with previous 

studies in both primary and immortalized PKD1 cystic cells (44, 45). The current literature, however, has 

reports of  normal, reduced, or longer cilia length in association with PC1 deficiency. The first study of  cilia 

length in Pkd1del34 collecting duct-derived embryonic kidney cells (E15.5) reported “well developed” cilia 

lengths (although formal measurements were not provided) in the context of  loss of  flow-induced, cilia-me-

diated signaling (46). However, a later report using the same cells reported shorter cilia (with occasional long 

cilia) and associated centrosomal abnormalities: in this study, increased expression of  SIRT2 was causally 

linked to these changes (47). Conversely, Pkd1-transgenic mice develop longer renal cilia in noncystic tubules 

(48), although, curiously, this phenotype has also been observed in precystic and/or cystic tissues and cells 

derived from several Pkd1-deficient mice, i.e., the Pkd1RC/RC-hypomorphic mouse (49), Pkd1- and Pkd2-null 

embryonic (E15.5) kidney epithelial cells (50), and Arl13b-transgenic Pkd1 mice (51). Because changes in 

PC1 dosage have been associated with variable changes in cilia length (none, reduced, increased) in different 

model systems, we conclude that this is not an essential feature of  disease. The regulation of  cilia length is 

complex and likely to be determined by multiple factors influencing both actin and microtubule-dependent 

mechanisms in disease (52). Differences between species, genetic background, segmental origin (44), dif-

ferentiation, and proliferative status (embryonic vs. adult onset) (53), the presence of  other functional cilia 

transgenes (e.g., Arl13b) (51, 54), organ involvement (kidney vs. liver) (49), inflammation (55), recovery from 

injury (56), senescence (57), mechanical forces (flow, stretch), or physical constraints (cell shape in 3D tis-

sues) (58) could all be relevant modifying factors. A more systematic study examining these factors in other 

Figure 8. Mislocalization of centrosomal ARHGAP35 due to PC1 mutation leads to accumulation of active RhoA, ROCK activation, increased actin 

polymerization, and shorter cilia in ADPKD. A model showing how mutation of PC1 could lead to reduced cilia/centrosomal localization or reten-

tion of ARHGAP35. Two possible scenarios are shown: (a) traicking and delivery of PC1 and ARHGAP35 in the same vesicles to the centrosome 

compartment and (b) retention of cleaved PC1 C-terminus (CT1) bound to centrosomal ARHGAP35. The RhoA-dependent kinase, ROCK, has been 

previously shown to be localized to centrosomes (32). Loss of centrosomal ARHGAP35 leads to the accumulation of centrosomal “active” GTP-RhoA, 

the activation of ROCK and its downstream efectors (e.g., pMLC), leading to increased actin polymerization and shorter cilia. It is plausible that the 

local increase in centrosomal ROCK activity could lead in turn to a cascade of ROCK activation, which spreads throughout the cell. PC1, polycystin-1; 

ADPKD, autosomal dominant polycystic kidney disease.
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disease models will be needed. Alterations in cilia signaling, however, could be the common abnormality 

in all these models regardless of  cilia length, although there are currently opposing views on whether cilia 

themselves exert a negative effect on cell proliferation acting as a “brake” on the cell cycle (59) or a positive 

effect through an unidentified “cilia-dependent cyst-activating signal” (24) in the context of  ADPKD.

ROCK inhibitors have been clinically approved for use in the treatment of  glaucoma and vasospasm, 

although their wider applications have been limited so far by systemic side effects (60). Our results indicate 

that dysregulation of  the RhoA/ROCK axis in ADPKD is likely to be a major factor in cyst initiation and 

should stimulate the development of  further therapeutic approaches in this area.

Methods
Materials. All chemicals were purchased from Sigma Chemical (Poole), unless otherwise stated. Plasmids were 

obtained through Addgene as indicated. The following antibodies were used in this study: PC1 (7e12), PC2 

(g20), actin, ARHGAP5, ARHGAP29, myc, streptavidin, GST (Santa Cruz Biotechnology), ArhGAP35, MLC 

and pMLC (Cell Signaling), Flag (Sigma), RhoA, Cdc42 and Rac1 (Cytoskeleton), and Arl13b (Proteintech).

Cell Lines. Noncystic (UCL93, CL5, CL8, CL11) and cystic (OX161, OX938, SKI001, SKI002) human 

kidney epithelial cells were generated and cultured as previously described (61–63). Cilia formation was 

induced by serum starvation for 48 hours at 37°C.

CrispR/Cas9 mutagenesis. UCL93 cells were transfected with pSpCas9(BB)-2A-Puro (PX459) V2.0 

[pSpCas9n(BB)-2A-Puro (PX462) V2.0; gift of  Feng Zhang, Broad Institute, Cambridge, Massachusetts, 

USA; Addgene plasmid 6298] (64) containing a gDNA targeting the first exon of  PKD1 (5ƍ-CACCG-

CGCCGGGCGCTGGGCCGCAG) or the first exon of  PKD2 (5ƍ-CACCGCGTGGAGCCGCGATA-

ACCC). Positive clones were selected for puromycin resistance followed by limiting dilution. Mutations 

were then validated by genomic DNA sequencing and Western blotting using specific antibodies to PC1 

(7e12) and PC2 (1A11) (65, 66).

Transfections. Cells were transfected using Lipofectamine 3000 (Life Technologies) for 48 hours before 

the cell assays. For siRNA knockdown assays, cells were transfected with negative control or specific ARH-

GAP siRNAs (SmartPool) using RNAimax (Life Technologies). siRNA knockdown was confirmed by 

qPCR using specific TaqMan probes.

Western blotting and IP. Total cell lysates were prepared and processed for IP and Western blotting as 

previously described (67). Cells were solubilized in detergent lysis buffer (50 mM Tris, 0.14 M NaCl, 1% 

Triton X-100, and 0.5% NP40) supplemented with cOmplete Protease Inhibitors and PhosStop Phospha-

tase Inhibitors (Roche Diagnostics). IP and GST pulldown assays were performed as previously described 

(26); ECL detection and quantification were performed using a Bio-Rad ChemiDoc XRS+ system running 

Image Lab automated image capture and analysis software. All quantification was carried out on nonsatu-

rated bands as determined by the software from 3 independent experiments.

BioID proximity assay. A common centrosomal targeting domain identified from pericentrin and AKAP450 

(PACT) (68) or the C-terminal domain of  PC1 (CT1) was cloned into myc-BioID2-MCS (myc-BioID2-MCS; 

gift of  Kyle Roux, Sanford Children’s Health Research Center, San Diego, California, USA; Addgene plas-

mid 74223) (69). After transfection, cells were incubated with 50 ȝM biotin (B4501, Sigma) overnight. Lysates 

were prepared as described and incubated with 50 ȝl Dynabeads MyOne Streptavidin C1 (Thermo Fisher 

Scientific) for 4 hours. The beads were washed 6 times with lysis buffer, bound proteins eluted, and separated 

by SDS-PAGE before analysis by immunoblotting with specific ARHGAP primary antibodies.

Active RhoA, Cdc42, and Rac1 pulldown assays. Levels of  GTP-bound RhoA were determined using a 

Rhotekin-RBD bead pulldown assay. Levels of  GTP bound Cdc42 or Rac1 were determined by PAK-PBD 

beads pulldown assays (Cytoskeleton) as described. GTP-Ȗ– and GDP-treated cell lysates were used as 

positive and negative controls, respectively. Samples were separated by SDS-PAGE and analyzed by immu-

noblotting with RhoA, Cdc42, or Rac1 antibodies.

Rho-GTPase biosensor. The active RhoA biosensor GFP-rGBD (gift of  William Bement, University 

of  Wisconsin–Madison, Madison, Wisconsin, USA; Addgene plasmid 26732) (12) was transfected into 

UCL93 or OX161 cells. After serum starvation, to induce cilia formation, the proportion of  cells localizing 

GFP-rGBD at the cilia base was quantified.

Polycystin rescue experiment. UCL93 and OX161 cells were transfected using Amaxa electroporation (Lonza) 

(program W-01) with CFP-PC2 (27) and mCherry-PC1 or mCherry-PC1-4211X (gifts of Peter Harris, Mayo 

Clinic, Rochester, Minnesota, USA (70). After transfection, cells were serum starved for 48 hours at 37°C to 
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induce cilia formation. Cilia were stained with Arl13b and measurements were performed on mCherry-PC1–

transfected cells with an Olympus Imaging Systems inverted IX-71 microscope set to capture cellular fluores-

cence images with a CCD camera (Hamamatsu), driven by Simple PCI software (C Imaging Systems).

Rapamycin-induced centrosome translocation. YF-RhoA (CA) (Addgene plasmid 20153) and Lyn11-tar-

geted FRB (LDR) (Addgene plasmid 20147) were gifts of  Tobias Meyer, Stanford University, Stanford, 

California, USA (71). The PACT centrosomal targeting domain was cloned into LDR replacing the Lyn11 

plasma membrane targeting domain. UCL93 cells were transfected with YF-RhoA (CA) and PACT-FRB-

HA. Translocation of  YF-RhoA to the centrosome was induced 24 hours later by the addition of  10 ȝm 

rapamycin (Calbiochem) for 10 minutes and washed, followed by serum starvation for 48 hours at 37°C to 

induce cilia formation. Cilia were stained with Arl13b and measurements were performed on an Olympus 

Imaging Systems inverted IX-71 microscope set to capture cellular fluorescence images with a CCD camera 

(Hamamatsu), driven by Simple PCI software (C Imaging Systems).

Immunofluorescence staining. Immunofluorescence staining was performed as previously described (26, 

27). Primary cilia were visualized using an antibody to Arl13b (Proteintech). HA- and myc epitope–tagged 

proteins were detected with anti-HA and anti-myc polyclonal antibodies (Santa Cruz Biotechnology) and 

Alexa Fluor 488 or 594 secondary antibodies (Invitrogen). F-actin was detected using Rhodamine-Phalloi-

din (Invitrogen). For mouse tissue, serial sections were dewaxed and rehydrated and antigen retrieval was 

carried out using Tris-EDTA (pH 9). DBA- and LTA lectin–positive cysts were identified using FITC-con-

jugated lectins (Vector Labs). Slides were viewed using an Imaging Systems inverted IX71 microscope 

(Olympus) configured for multifluorescence image capture. Images were acquired using SimplePCI imag-

ing software (Compix). For cilia length measurements, NIH ImageJ analysis software was used to measure 

greater than 100 cilia in at least 3 independent experiments. Cytochalasin D and the ROCK inhibitor 

Y-27632 were added to cells at the indicated concentrations for 3 hours before cilia length measurement. 

Super resolution microscopy was carried out on a DeltaVision/GE OMX optical microscope (version 4) 

for structured illumination (3D-SIM) and analyzed using Imaris image analysis software (Bitplane).

Matrigel 3D cyst assays. 3D Matrigel cyst assays were performed as previously described (62). In brief, 

OX161/C1 cells (1 × 105/well) were mixed with 70 ȝl Matrigel (Becton Dickinson), plated into 96-well 

plates in triplicate, and incubated for 30 minutes at 37°C to facilitate gel formation. Cells were then cultured 

for 12 days in the presence of  hydroxyfasudil (Tocris). Media was replaced every 2 days. The average cyst 

area was calculated by measuring cyst areas in individual wells on day 12. At least 65 cysts were measured 

in triplicate wells at each time point.

Effect of  hydroxyfasudil in vivo. Pkd1 deletion was induced by doxycycline injections at postnatal days (PNs) 

13–15 in tetracycline-inducible, kidney-specific Pkd1 mice (Pax8rtTA-TetO-Cre-Pkd1fl/fl) (72). Experimental ani-

mals were injected i.p. with hydroxyfasudil (10 mg/kg/day) or vehicle (sterile water) for 7 days from PN16. 

After sacrifice, following a schedule 1 method, blood and tissues were rapidly collected. Blood was collected 

and centrifuged at 2000 g for 10 minutes to collect serum that was quickly snap-frozen in liquid nitrogen and 

stored at –80°C until further analysis. Each kidney was cut transversally into 4 pieces. The top and bottom 

sections were snap frozen for biochemical analysis, whereas the middle section was embedded in cry-M-bed 

solution (Wolflabs) or immersed in 10% Neutral Buffered Formalin (MilliporeSigma) for histological analysis. 

After termination at PN23, terminal 2KW/BW was calculated and tissue sections were analyzed for cystic 

index, cilia length (Arl13b), and proliferation index (Ki67). Serum blood urea nitrogen measurements were 

carried out by the Department of Clinical Chemistry at Sheffield Children’s Hospital Foundation Trust.

Statistics. Data are presented as mean ± SEM. Two-tailed Student’s t test and one-way ANOVA 

corrected for multiple comparisons were used for statistical analysis, with P values greater than 0.05 

considered statistical significance.

Study approval. Animal studies were approved by the University of  Sheffield Medical School and 

carried out under Home Office license PF2A3AD69. A tetracycline-inducible, kidney-specific Pkd1 

mouse model (Pax8rtTA-TetO-Cre-Pkd1fl/fl) on a C57/BL6 background was a gift from the late David Huso 

(Baltimore PKD Center, Baltimore, Maryland, USA).
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