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a b s t r a c t

The fastICA method is a popular dimension reduction technique used to reveal patterns
in data. Here we show both theoretically and in practice that the approximations used
in fastICA can result in patterns not being successfully recognised. We demonstrate this
problem using a two-dimensional example where a clear structure is immediately visible
to the naked eye, but where the projection chosen by fastICA fails to reveal this structure.
This implies that care is needed when applying fastICA. We discuss how the problem
arises and how it is intrinsically connected to the approximations that form the basis of
the computational efficiency of fastICA.
© 2020 TheAuthors. Published by Elsevier Inc. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Independent Component Analysis (ICA) is a well-established and popular dimension reduction technique that finds
n orthogonal projection of data onto a lower-dimensional space, while preserving some of the original structure. ICA
s also used as a method for blind source separation and is closely connected to projection pursuit. We refer the reader
o Hyvärinen et al. [13], Hyvärinen [12] and Stone [21] for a comprehensive overview of the mathematical principles
nderlying ICA and its applications in a wide variety of practical examples.
In ICA, the projections that are determined to be ‘‘interesting’’ are those that maximise the non-Gaussianity of the data,

hich can be measured in several ways. One quantity for this measurement that is used frequently in the ICA literature
s entropy. For distributions with a given variance, the Gaussian distribution is the one which maximises entropy, and all
ther distributions have strictly smaller entropy. Therefore, our aim is to find projections which minimise the entropy of
he projected data. Different methods are available for both the estimation of entropy and the optimisation procedure,
nd have different speed–accuracy trade-offs.
A widely used method to perform ICA in higher dimensions is fastICA [14]. This method has found applications in areas

s wide ranging as facial recognition [6], epileptic seizure detection [26] and fault detection in wind turbines [7]. Recent
orks on extensions of the algorithm can be seen in Miettinen et al. [18], Ghaffarian and Ghaffarian [8] and He et al. [10].
he fastICA method uses a series of substitutions and approximations of the projected density and its entropy. It then
pplies an iterative scheme for optimising the resulting contrast function (which is an approximation to negentropy).
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Fig. 1. Scatter plot of original data with densities of the projected data in the direction obtained by m-spacing ICA (solid line) and fastICA (dotted
line). Kernel density estimation was used to obtain the marginal densities shown.

Because of its popularity in many areas, analysis and evaluation of the strengths and weaknesses of the fastICA algorithm
is crucially important. In particular, we need to understand both how well the contrast function estimates entropy and
the performance of the optimisation procedure.

The main strength of the fastICA method is its speed, which is considerably higher than many other methods.
Furthermore, if the data is a mixture of a small number of underlying factors, fastICA is often able to correctly identify
these factors. However, fastICA also has some drawbacks, which have been pointed out in the literature. Learned-Miller
and Fisher [16] use test problems from Bach and Jordan [2] with performance measured by the Amari error [1] to compare
fastICA to other ICA methods. They find that these perform better than fastICA on many examples. Focussing on a different
aspect, Wei [23] investigates issues with the convergence of the iterative scheme employed by fastICA to optimise the
contrast function. In Wei [24] it is shown that the two most common fastICA contrast functions fail to de-mix certain
bimodal distributions with Gaussian mixtures, although some other contrast function choices (related to classical kurtosis
estimation) may give reliable results within the fastICA framework.

In this article we identify and discuss a more fundamental problem with fastICA. We demonstrate that the approxi-
mations used in fastICA can lead to a contrast function where the optimal points no longer correspond to directions of
low entropy.

To illustrate the effect discussed in this paper, we consider the example shown in Fig. 1. In this example, two-
dimensional samples are generated from a two-dimensional normal distribution, conditioned on avoiding a collection of
parallel bands (see Section 5 for details). This procedure produces a pattern which is obvious to the bare eye, and indeed
the projection which minimises entropy (solid lines) exposes this pattern. In contrast, the fastICA contrast function seems
unable to resolve the pattern of bands and prefers a direction with higher entropy which does not expose the obvious
pattern (dotted lines).

We remark that this failure by fastICA to recover the obvious structure is relatively robust in this example. Changing
the parameters used in the fastICA method does not significantly change the outcome, and the underlying structure is
still lost. It is also worth mentioning here that the example dataset was very simple to obtain and no optimisation was
performed to make the fastICA method perform poorly.

To obtain the projection indicated by the solid lines in Fig. 1 we used the m-spacing method [3] for entropy estimation,
ombined with a standard optimisation technique. The m-spacing entropy approximation is shown to be consistent in Hall
9] and converges to true entropy for large sample size. While the m-spacing entropy approximation theoretically makes
for an excellent contrast function for use in ICA, it is relatively slow to evaluate.
2
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Fig. 2. Plots showing an estimate of the density of the projected data (solid line), and the surrogate density f0 used in the fastICA method (dotted
line), for two different projections of the data. Panel 2(a) corresponds to the direction of highest entropy, found using m-spacing, and Panel 2(b)
corresponds to the direction found by fastICA. These two directions are shown by the solid line and dotted line respectively in Fig. 1.

Our main theoretical contribution helps explain why fastICA in the example in Fig. 1 performs poorly. To obtain the
contrast function in the fastICA method a surrogate to the true density is first obtained, and then it is approximated
through several steps to increase computational speed. In Section 4 we show convergence results for the approximation
steps, and conclude that the accuracy loss occurs at the initial stage where the real density is replaced by the surrogate
one. This is highlighted in Fig. 2(a), which shows the estimated density (solid line) along the direction that exposes the
pattern (i.e. the solid line in Fig. 1). The dotted line shows the surrogate density in this same direction that the fastICA
method uses in its approximation to entropy. Fig. 2(b) shows the analogue for the direction found by fastICA (i.e. the
dotted line in Fig. 1). This figure motivates this paper by highlighting the area where the approximations used in fastICA
diverge from the true values. The two densities in Fig. 2(a) are very different to one-another, and this error propagates
through the fastICA method to the approximation used for entropy. Note that the solid lines in Fig. 2 show the same
estimated densities as given in Fig. 1.

This paper is structured as follows. In Section 2, entropy and negentropy are introduced alongside associated estimates.
In Section 3 we describe the fastICA method. Section 4 contains some proofs which help to understand where errors are
introduced in the fastICA method. Section 5 contains details on the example given in Fig. 1. Some concluding remarks can
be found in Section 6. The code to produce the figures in this paper can be found at https://github.com/pws3141/fastICA_
code.

2. Entropy and negentropy

The aim of the fastICA method is to efficiently find a projection of given data which minimises entropy. Suppose we
have a one-dimensional random variable X with density f :R → [0, ∞). Then the entropy H of the distribution of X is
defined to be

H[f ] := −

∫
R
f (x) log f (x) dx, (1)

whenever this integral exists. We use square brackets to indicate that H is a functional, taking the function f as its
argument. In the special case of a Gaussian random variable with variance σ 2, the entropy can be calculated explicitly
and it takes the value η(σ 2) given by

η(σ 2) :=
1
2

(
1 + log(2πσ 2)

)
. (2)

It is known that this is an upper bound for entropy, namely the entropy of any random variable with variance σ 2 will
belong to the interval (−∞, η(σ 2)] [see, for example,4]. The negentropy J is defined as

J[f ] := η(σ 2) − H[f ],

where η(σ 2) is given by (2). This implies that J[f ] ∈ [0, ∞). Negentropy is zero when the density is Gaussian, and strictly
greater than zero otherwise.

As the definition of entropy involves the integral of the density, the estimation of entropy or negentropy from data
is non-trivial. For a survey of different methods to estimate entropy from data, see Beirlant et al. [3]. As an example, we
consider here the m-spacing estimator, originally given in Vasicek [22]. Suppose we have a sample of one-dimensional
points, y , y , . . . , y ∈ R, from a distribution with density f , and y , y , . . . , y is the ordering such that y ≤ y ≤
1 2 n (1) (2) (n) (1) (2)

3
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· · · ≤ y(n). Define the m-spacing difference to be ∆myi = y(i+m) − y(i) for m ∈ {3, . . . , n− 1} and i ∈ {1, 2, . . . , n−m}. The
m-spacing approximation for entropy H[f ] for the sample y = (y1, y2, . . . , yn) is given by

Hm,n(y) =
1
n

n−m∑
i=1

log
( n
m

∆myi
)

− 𭟋(m) + log(m), (3)

where 𭟋(x) = −
d
dxΓ (x) is the digamma function. This is a realisation of the general m-spacing formula given in Hall [9].

This approximation tends to the true value of entropy under certain conditions and so for a ‘‘large enough’’ number of
points should be comparable to the true value. This method has been used previously within an ICA method by Learned-
Miller and Fisher [16]. While the methods provide consistent estimates for the entropy, it is computationally expensive.
The main contribution to computational cost comes from the need to sort the sample y in increasing order.

The fastICA method provides a more efficient way to estimate negentropy J[f ] by using a series of approximations and
substitutions both for f and for J[·] to obtain a surrogate for negentropy J[f ] which is then subsequently maximised. The
reason behind these substitutions is to reduce computational cost, but the drawback is that the resulting approximation
may be very different from the true contrast function.

3. The fastICA algorithm

In this section we describe the fastICA method of Hyvärinen and Oja [14]. The theory behind this method was originally
introduced in Hyvärinen [11], although here we adjust the notation to match the rest of this paper. We will mention
explicitly where our notation differs from Hyvärinen [11] and Hyvärinen and Oja [14]. We will write ‘fastICA’ when we
are discussing the theoretical method, and ‘fastICA’ when we are discussing the R implementation from the fastICA
CRAN package [17].

The fastICA method to obtain the first loading from data D̃ ∈ Rn×p̃ follows the steps given below. Following the usual
convention, the rows of D̃ denote observations, the columns denote variables.

(i) Whiten the data to obtain D ∈ Rn×p with p = min(p̃, n − 1), such that 1
n−1D

⊤D = Ip [14, Section 5.2];
(ii) Iteratively find the optimal projection w∗, given by

w∗
= argmax

w∈Rp, w⊤w=1
Ĵ∗(Dw), (4)

where Ĵ∗ is an approximation to negentropy, given in Eq. (11).

If more than one loading is required, Step (ii) is repeated for each subsequent new direction, with the added constraint that
w must be orthogonal to the previously found directions. This can be implemented within the fastICA framework using
Gram–Schmidt orthogonalisation [14, Section 6.2]. This is known as the deflation fastICA method. There is also a parallel
fastICA method that finds all loadings concurrently, although in this paper we only consider the deflation approach.

In the literature regarding fastICA it is often the convergence of the iterative method to solve (4) that is examined. It
an be shown, for example in Wei [23], that in certain situations this iterative step fails to find a good approximation for
∗. In contrast, here we consider the mathematical substitutions and approximations used in the derivation of Ĵ∗(Dw).

Assumption 1 introduces the technical assumptions given in Hyvärinen [11, Sections 4 and 6], using slightly adjusted
notation.

Assumption 1. Let Gi, i ∈ {1, . . . , I} be functions that do not grow faster than quadratically. Let ϕ(·) denote the density
f a standard Gaussian random variable and assume that there are αi, βi, γi, δi, i ∈ {1, . . . , I}, such that the functions

Ki(x) :=
Gi(x) + αix2 + βix + γi

δi
(5)

satisfy∫
R
Ki(x)Kj(x)ϕ(x) dx = 1{i=j}; (6a)∫
R
Ki(x)xkϕ(x) dx = 0, k ∈ {0, 1, 2}, (6b)

for i, j ∈ {1, . . . , I}, where 1{i=j} = 1 if i = j and zero otherwise.

The functions Gi are given as Ḡi in Hyvärinen [11] and as Gi in Hyvärinen and Oja [14]. The functions Ki are described
in Hyvärinen [11, Section 6] and are called Gi there.

The fastICA algorithm only implements the case I = 1. In this case, the function G1 can be chosen nearly arbitrarily
so long as it does not grow faster than quadratically: It is easy to show that for every G which is not exactly equal to
a second order polynomial, a function K can be found that satisfies the conditions given in (6) by choosing suitable α ,
1 1
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β1, γ1 and δ1. For general I ∈ N, specific Gi, i ∈ {1, . . . , I} must be chosen for the conditions (6) to hold. With I = 2, the
unctions G1(x) = x3 and G2(x) = x4 are proposed in the literature [11, Section 7] and seem to be useful in practice, even
hough these functions violate the growth condition from Assumption 1. We have not found any examples of specific
unctions Gi that satisfy (6) for I > 2 in the fastICA literature.

Let w ∈ Rp with ∥w∥ = 1 and let y = (y1, y2, . . . , yn) = Dw ∈ Rn be the data projected onto w. Since the data
as been whitened, y has sample mean 0 and sample variance 1. Further, let f :R → R be the unknown density of the
opulation-level-whitened and projected data. Then f satisfies

∫
f (x) dx = 1,

∫
x f (x) dx = 0 and

∫
x2 f (x) dx = 1. We need

o estimate the negentropy J[f ] using the data y1, . . . , yn. Define

ci := Ef Ki(X) =

∫
f (x)Ki(x) dx (7)

or all i ∈ {1, . . . , I}. For I = 1, setting K (x) := K1(x), G(x) := G1(x) and c := c1, the derivation of the contrast function
sed in the fastICA method then consists of the following steps:

1. Replace f by a density f0 given by

f0(x) = A exp
(
κx + ζx2 + aK (x)

)
, (8)

for all x ∈ R. The constants A, κ , ζ and a are chosen to minimise negentropy (and hence maximise entropy) under
the constraints

∫
f0(x)K (x) dx = c. In Proposition 3 we will show that J[f0] ≤ J[f ].

2. Approximate f0 by f̂0 defined as

f̂0(x) = ϕ(x)
(
1 + cK (x)

)
(9)

for all x ∈ R. In Theorem 8 we will show J[f̂0] ≈ J[f0].
3. Approximate J[f̂0] by second order Taylor expansion,

Ĵ[f̂0] =
1
C

(
Ef G(Y ) − EϕG(Z)

)2
, (10)

where Y is a random variable with density f , Z ∼ N (0, 1), and C some constant. Note that, maybe surprisingly, Y
has density f , not f0. In Proposition 11 we will show that Ĵ[f̂0] ≈ J[f̂0].

4. Use Monte-Carlo approximation for the expectations in (10), i.e. use

Ĵ∗(y) =

(1
n

n∑
j=1

G(yj) −
1
L

L∑
j=1

G(zj)
)2

, (11)

where z1, . . . , zL are samples from a standard Gaussian and L is large. Here Ĵ∗(y) ≈ CĴ[f̂0].

he restriction to I = 1 here removes a summation from Step 1. and Step 2. therefore simplifying Step 3. and the associated
stimations in Step 4. Theoretically these steps can be completed for arbitrary I ∈ N, although in this case a closed-form
ersion equivalent to Step 3. is much more complicated.
The approximation (11) to the negentropy used in fastICA dramatically decreases the computational time needed to

ind ICA projections. Unlike the m-spacing estimator introduced in Section 2, the approximation Ĵ∗(Dw) is a simple Monte-
arlo estimator and does not require sorting of the data. The algorithm to solve (4) also benefits from the fact that an
pproximate derivative of w ↦→ Ĵ∗(Dw) can be derived analytically.
The steps in this chain of approximations are illustrated in Fig. 3 and we will investigate the approximation more

ormally in Section 4. In Step 1. of the procedure, we do not obtain a proper approximation, but have an inequality
nstead: f is replaced with a density f0 such that J[f0] ≤ J[f ]. As a result, the w which maximises J[f0] can be very
ifferent from the one which maximises J[f ]. In contrast, Steps 2. and 3. are proper approximations and in Section 4
e prove convergence of f̂0 to f0 for Step 2. and of Ĵ[f̂0] to J[f0] for Step 3. in the limit ∥c∥ → 0, where c = (c1, . . . , cI ).
tep 4. is a simple Monte-Carlo approximation exhibiting well-understood behaviour. From the above discussion, it seems
ensible to surmise that the loss of accuracy in fastICA is due to the surrogate used in Step 1. above.
We conclude this section with a few simple observations: Using (6), (5) and the fact that X and Z are standardised we

ind

ci = Ef Ki(X) = Ef Ki(X) − EϕKi(Z) = Ef

(
Gi(X) + αiX2

+ βiX + γi

δi

)
− Eϕ

(
Gi(Z) + αiZ2

+ βiZ + γi

δi

)
=

Ef Gi(X) + αi1 + βi0 + γi

δi
−

EϕGi(Z) + αi1 + βi0 + γi

δi
=

Ef Gi(X) − EϕGi(Z)
δi

.

hus, the fastICA objective function (ignoring the final Monte Carlo approximation) satisfies Ĵ[f̂0] ∝ c2 for the case I = 1,
onsidered above, and Ĵ[f̂0] ∝

∑I
i=1 c

2
i in the general case. Thus, fastICA can only see the data through the ci. If the data

are approximately Gaussian, we have Ef Gi(X) ≈ EϕGi(Z) and ci ≈ 0 for all i and thus Ĵ[f̂0] ≈ 0, but the opposite implication
does not hold. This is in contrast to the true negentropy, which satisfies J[f ] = 0 if and only if f is Gaussian.
5
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Fig. 3. Approximations used in fastICA: The fastICA contrast function Ĵ∗(y) is used in place of negentropy J[f ]. Note that the first step involves an
inequality rather than an approximation.

A first consequence of this argument is that projections where the true distribution is Gaussian will look ‘uninteresting’
to fastICA: for these directions w the objective function Ĵ∗(Dw) will be small and the search for the maximum in (4) will
e driven away from these directions. This is particularly relevant since for high dimensional data, where the search
olume is vast, projections along most directions are close to Gaussian [5,25], so fastICA will be able to exclude much of
he search volume. Conversely, if Ĵ[f̂0] and thus ∥c∥ is large, the projected density f is not Gaussian and by maximising
an approximation to) Ĵ[f̂0], the fastICA method will find directions which are ‘interesting’. But the above discussion also
hows that optima can be missed when Ĵ[f̂0] is small, but the projected density f is still far from Gaussian. This is the
case we are concerned with in this paper and thus we assume ∥c∥ ≈ 0 when we consider the fastICA approximations in
etail in the next section.

. Approximations used in the fastICA method

In this section, we investigate the validity of the approximation given in Section 3. We consider Step 1. in Proposition 3,
tep 2. in Theorem 8, and Step 3. in Proposition 11. Throughout this section, we consider arbitrary I ∈ N for completeness.
We first introduce some assumptions, in addition to Assumption 1, that are required for the mathematics in this section

o hold.

ssumption 2. There exists ε > 0 such that for all h ∈ RI with h⊤h < ε, we have

h⊤K (x) ≥ −
1
2

(12)

or all x ∈ R, where K (x) =
(
K1(x), K2(x), . . . , KI (x)

)
. In addition, there exists a function M:R → R such that

I∑
i=1

I∑
j=1

I∑
k=1

|Ki(x)Kj(x)Kk(x)| ≤ M(x) for all x ∈ R, (13a)∫
R

ϕ(x)M(x) dx =: M̃ < ∞. (13b)

Note that under the condition that each Gi does not grow faster than quadratically (given in Assumption 1), we can
always find some positive constants Bi, i ∈ {1, . . . , I} such that

|Ki(x)| ≤ Bi(1 + x2), (14)

for all x ∈ R. Note also that for I = 1 the condition given by (12) that there exists an ε > 0 such that for all h ∈ [0, ε),
we have hK (x) ≥ −1/2 is satisfied as follows. Let α, β, γ , δ be parameters for which (6) holds. Then, (6) holds also for
α, β, γ , −δ. Moreover, since G does not grow faster than quadratically, αx2 is the dominant term in K (x) as x → ±∞.
Therefore, to ensure that (12) holds it is enough to choose δ or −δ such that the sign is the same as that of α.

4.1. Step 1

We start our discussion by considering Step 1. of the approximations described in Section 3. We prove that the
distribution which maximises entropy for given values of c1, . . . , cI is indeed of the form (8) and thus that we indeed
have J[f0] ≤ J[f ].

Proposition 3. Let f be the density of the population-level-whitened data projected in some direction (thus with zero mean
and unit variance). Recall ci is defined by (7). The density f0 that maximises entropy in the set{

g:R → R ; g is a density function, and
∫

g(x)Ki(x) dx = ci, i ∈ {1, . . . , I}
}
,

R

6
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is given by,

f0(x) = A exp

(
κx + ζx2 +

I∑
i=1

aiKi(x)

)
(15)

or some constants κ , ζ , A and ai, i ∈ {1, . . . , I} that depend on ci, i ∈ {1, . . . , I}. It follows from this that J[f0] ≤ J[f ].

Proof. We use the method of Lagrange multipliers in the calculus of variations [see, for example,15] to find a necessary
condition for the density that maximises entropy given the constraints on mean and variance, and in (7). Let F [·]: C2

→ R
be a functional of the function g:R → R, with g ∈ C2, where C2 is the set of all twice continuously differentiable functions.
Then, the functional derivative δF/δg:R → R is explicitly defined by∫

R

δF
δg

(x)φ(x) dx :=
d
dε

F [g + εφ]

⏐⏐⏐
ε=0

= lim
ε↓0

(F [g + εφ] − F [g]

ε

)
, (16)

or any function φ ∈ C2. The right-hand side of (16) is known as the Gâteaux differential dF (g; φ). Define the inner
roduct of two functions by ⟨g, h⟩ :=

∫
R g(x)h(x) dx, with norm ∥g∥L2 := ⟨g, g⟩

1
2 =

(∫
R g(x)2 dx

) 1
2 . We want to solve the

following system of equations⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

U[g](x) :=
δ
δgH[g] + λ1

δ
δg V [g] + λ2

δ
δg P[g] + λ3

δ
δg Q [g] +

∑I
i=1 νi

δ
δg Ri[g] = 0;

V [g] = 0;
P[g] = 0;
Q [g] = 0;
Ri[g] = 0,

here λ1, λ2, λ3, νi are some real numbers, i ∈ {1, . . . , I}, H[g] is entropy as given in (1), and

V [g] := Var[g] − 1 =

∫
R
g(x)x2 dx −

(∫
R
g(x)x dx

)2
− 1; P[g] :=

∫
R
g(x) dx − 1;

Q [g] :=

∫
R
g(x)x dx; Ri[g] :=

∫
R
g(x)Ki(x) dx − ci.

sing (1) and (16) the term with H gives,

⟨
δH
δg

, φ⟩ = −
d
dε

∫ (
g(x) + εφ(x)

)
log
(
g(x) + εφ(x)

)
dx
⏐⏐⏐
ε=0

= −

∫ (
g(x)

φ(x)
g(x) + εφ(x)

+ φ(x) log
(
g(x) + εφ(x)

)
+ εφ(x)

φ(x)
g(x) + εφ(x)

)
dx
⏐⏐⏐
ε=0

= −

∫ (
1 + log g(x)

)
φ(x) dx = ⟨−1 − log g(x), φ⟩.

Now, looking at V [g] and using the constraint Q [g] = 0 we get,

⟨
δV
δg

, φ⟩ =
d
dε

(∫ (
g(x) + εφ(x)

)
x2 dx −

(∫ (
g(x) + εφ(x)

)
x dx

)2
− 1

)⏐⏐⏐⏐
ε=0

=

∫
φ(x)x2 dx − 2

(∫
φ(x)x dx ·

∫
g(x)x dx

)
= ⟨x2, φ⟩ − 2⟨x, φ⟩ · Q [g] = ⟨x2, φ⟩.

Let L[·]: C2
→ R be of the form L[g] =

∫
g(x)l(x) dx − k for some function l:R → R, and some constant k ∈ R. Then it is

easy to check that ⟨
δL
δg

, φ⟩ = ⟨l, φ⟩ and therefore
δP
δg

= 1,
δQ
δg

= x and
δRi

δg
= Ki. Putting this into the equation for U[g],

e have

U[g](x) = −1 − log g(x) + λ1 + λ2x2 + λ3x +

I∑
i=1

νiKi(x).

etting U[g] = 0 and solving for g gives, g(x) = f0(x) = exp[λ1 − 1 + λ2x2 + λ3x +
∑I

i=1 νiKi(x)] which is (15) with
= exp(λ1 − 1), κ = λ3, ζ = λ2 and ai = νi, i = 1, . . . , I . Note that the constants A, κ, ζ , and ai depend on ci indirectly

through the constraints on the Ki expressed as Ri[g] = 0. □

Remark 4. It is possible to specify a density f such that in some limit, H[f ] → ∞ whilst H[f0] remains bounded and
thus

⏐⏐J[f ] − J[f ]
⏐⏐ → ∞, with f the density given in (8). That is, in Step 1. of the fastICA method given in Section 3,
0 0

7
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the difference between the true negentropy and the surrogate negentropy can be arbitrarily large. For example, set the
density f to be a mixture of two independent uniform densities, i.e.

f (x) =
1
2

(
g(x; −1 − ε, −1) + g(x; 1, 1 + ε)

)
where ε ∈ R and g(· ; a, b) is the density function of a Uniform distribution in the interval [a, b]. Then we have expectation
and variance given by

Ef X = 0; Varf X = 1 + ε +
ε2

3
.

As the support of g(· ; −1 − ε, −1) is disjoint from that of g(· ; 1, 1 + ε), the entropy is given by,

H[f ] =
1
2

(
H[g(· ; −1 − ε, −1)] + H[g(· ; 1, 1 + ε)]

)
− log(2).

e have H[f ] → −∞ as ε → 0, since f tends to a pair of Dirac deltas. Also,

Ef Ki(x) =: ci →
1
2

(
Ki(−1) + Ki(1)

)
, (17)

s ε → 0. With f0 as in (8),

ci =

∫
Ki(x)f0(x) dx, (18)

nd,

H[f0] =

∫
f0(x) log(A) dx +

∫
f0(x)

(
ηx + κx2 +

I∑
i=1

aiKi(x)
)
dx

= log(A) + ηEf0X + κEf0X
2
+

I∑
i=1

aiEf0Ki(x) = log(A) + κ +

I∑
i=1

aici.

herefore, for H[f0] to be unbounded from below as ε → 0 we would require some κ → −∞, ai → −∞ or A → 0, as ci
is bounded by (17) and Assumption 2. However, this cannot occur whilst f0 satisfies (18).

4.2. Step 2

We now switch our attention to Step 2. of the approximations. As discussed in Section 3, we consider the case where
c → 0. The first step of our analysis is to identify the behaviour of the constants in the definition of f0 as c → 0. We then
rove some auxiliary results before concluding our discussion of Step 2. in Theorem 8.

roposition 5. Suppose Assumption 1 is satisfied, and let A, κ, ζ , a1, . . . , aI be defined as in Proposition 3, as functions of c.
Then

A −
1

√
2π

= O(∥c∥2), κ = O(∥c∥2), ζ +
1
2

= O(∥c∥2), ai − ci = O(∥c∥2), i ∈ {1, . . . , I},

as ∥c∥ → 0.

Proof. Define x = (c1, . . . , cI )⊤ ∈ RI and y = (A, κ, ζ , a1, . . . , aI )⊤ ∈ RI+3. Furthermore, let F :RI
×RI+3

→ RI+3 be given
by

F (x, y) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫
f0(x) dx − 1∫
f0(x)x dx∫

f0(x)x2 dx − 1∫
f0(x)K1(x) dx − c1

...∫
f0(x)KI (x) dx − cI

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where f0 is given in (15) and Ki in (5). Then, for the points x1 = (0, . . . , 0)⊤ and y1 = ( 1
√
2π

, 0, − 1
2 , 0, . . . , 0)

⊤, we have
F (x , y ) = 0.
1 1

8
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Assuming F is twice differentiable, we use the Implicit Function Theorem around (x1, y1). First, we need to show
DyF (x1, y1) is invertible. We have

DyF (x1, y1) =

(
M 0
0 −II

)
, M =

⎛⎝√
2 0 1
0 1 0
1 0 4

⎞⎠ .

Therefore, DyF (x1, y1) is non-singular, and so the Implicit Function Theorem holds. There exist some open set U ⊂ RI and
a unique continuously differentiable function g:U → RI+3 such that g(x1) = y1 and F

(
x, g(x)

)
= 0 for all x ∈ U . Then,

Dg(x) = −DyF
(
x, g(x)

)−1DxF
(
x, g(x)

)
. (19)

s g is continuous in the set U , there exists some ε > 0, such that for all c ∈ U with ∥c∥ < ε, g(x1 + c) = y1 + d for some
∈ RI+3. Using Taylor series we can expand g around x1 = 0 ∈ RI to obtain g(x1 + c) = g(x1) + Dg(x1) c + O(∥c∥2), and

Dg(x1) =
d + O(∥c∥2)

c
.

utting this together with (19) at x = x1 and rearranging gives,

d = −DyF (x1, y1)−1DxF (x1, y1) c + O(∥c∥2).

Now, since

DxF (x1, y1) =

⎛⎜⎝0 · · · 0
0 · · · 0
0 · · · 0

II

⎞⎟⎠ ∈ R(I+3)×I ,

one easily obtains that

d =

⎛⎜⎝0 · · · 0
0 · · · 0
0 · · · 0

II

⎞⎟⎠ c + O(∥c∥2),

and so,

y1 + d =

(
1

√
2π

0 −
1
2 c1 · · · cI

)⊤

+ O(∥c∥2), as c → 0.

his completes the proof. □

We now define the following functions y(·) and r(·) for future use. Let y:R → R be given by

y(x) := κx + (ζ +
1
2
)x2 +

I∑
i=1

aiKi(x), (20)

nd r:R → R given by

r(x) := ex − 1 − x. (21)

sing these definitions, we can write f0, given in Proposition 3, as

f0(x) = ϕ(x) ·
√
2πAey(x). (22)

he following lemmas are two technical results needed in the proof of Theorem 8.

emma 6. Let g:R → R and l:R → R be any functions and h:R → R+ be convex with h(0) = 0. Then,

sup
x∈R

⏐⏐l(x)h(εg(x))⏐⏐ ≤ ε sup
x∈R

⏐⏐l(x)h(g(x))⏐⏐
for all ε ∈ [0, 1].

Proof. As h is convex, for all λ ∈ [0, 1] and for all x, y ∈ R, we have h
(
λx+ (1−λ)y

)
≤ λh(x)+ (1−λ)h(y). Let ε ∈ [0, 1].

hen, substituting λ = ε, x = g(x) and y = 0, we have h
(
ε g(x)

)
≤ ε h

(
g(x)

)
, for all g(x) ∈ R, as h(0) = 0. Noticing that h

aps to the positive real line allows to conclude. □

emma 7. Let r:R → R+ be given as in (21). Then,

r(ε y) ≤ ε2r(y), for all y ≥ 0, and for all ε ∈ [0, 1]. (23)
9
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Moreover, for any function l:R → R, we have

sup
x∈R

⏐⏐⏐l(x)r(ε(1 + x2)
)⏐⏐⏐ ≤ ε2 sup

x∈R

⏐⏐⏐l(x)r(1 + x2)
⏐⏐⏐.

Proof. We will use the Taylor expansion of the exponential around 0 for both the left-hand and right-hand side of (23).
The left-hand side gives,

r(ε y) = exp(ε y) − 1 − ε y =

∞∑
n=0

εn

n!
yn − 1 − ε y = ε2

( ∞∑
n=2

εn−2

n!
yn
)
, absolutely convergent for all εy ∈ R

nd the right-hand side of (23) gives,

ε2 r(y) = ε2
( ∞∑

n=0

1
n!

yn − 1 − y
)

= ε2
( ∞∑

n=2

1
n!

yn
)
.

Putting these two results together,

r(ε y) − ε2 r(y) = ε2
( ∞∑

n=2

1
n!

yn(εn−2
− 1)

)
≤ 0,

as εn
− 1 ≤ 0 for all ε ∈ [0, 1] and n ∈ N+. This proves (23).

Let l:R → R be some function. Then, as r maps to the positive real line and using (23) with y = 1 + x2, we have
|l(x)r

(
ε(1 + x2)

)
| ≤ ε2

|l(x)r(1 + x2)|, for all x ∈ R. Taking the supremum over the real line we conclude. □

We now consider the error term between the density f0 that maximises entropy, and its estimate f̂0.

heorem 8. Suppose we have functions Ki, i ∈ {1, . . . , I} that satisfy Assumptions 1 and 2. Let f0 be given as in Proposition 3,
and let f̂0 be given by

f̂0(x) = ϕ(x)
(
1 +

I∑
i=1

ciKi(x)
)
.

Then for all δ < 1/2

sup
x∈R

⏐⏐eδx2(f0(x) − f̂0(x)
)⏐⏐ = O(∥c∥2) as c → 0.

Proof. Let ϕ(x) = (2π )1/2e−x2/2 be the density of a standard Gaussian random variable and let the function g:R → R be
defined by

g(x) :=
f0(x) − f̂0(x)

ϕ(x)
.

hen, with y:R → R as defined in (20) and using (22) we get,

g(x) =
√
2πA exp

(
y(x)

)
−
(
1 +

I∑
i=1

ciKi(x)
)

=
√
2πA

(
exp

(
y(x)

)
− 1 − y(x)

)
+

√
2πA

(
1 + y(x)

)
− (1 +

I∑
i=1

ciKi(x)) +
√
2πA

( I∑
i=1

ciKi(x) −

I∑
i=1

ciKi(x)
)
.

earranging this using the function r:R → R given in (21) and by expanding y(x) gives,

g(x) =
√
2πA · r

(
y(x)

)
+

√
2πA ·

(
κx+

(
ζ +

1
2

)
x2
)

+
(√

2πA− 1
) I∑

i=1

ciKi(x)+
√
2πA

I∑
i=1

(ai − ci)Ki(x)+ (
√
2πA− 1).

ote that the absolute value of g(x) can be bounded by the following terms,

|g(x)| ≤
√
2πA |r

(
y(x)

)
| +

√
2πA |κx| +

√
2πA |ζ +

1
2
|x2

+
√
2πA

⏐⏐ I∑
i=1

(ai − ci)Ki(x)
⏐⏐+ |

√
2πA − 1|

⏐⏐ I∑
i=1

ciKi(x)
⏐⏐+ |

√
2πA − 1|.
10
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We have,

|f0(x) − f̂0(x)| = |ϕ(x) · g(x)| = ϕ(x)
⏐⏐⏐√2πAr

(
y(x)

)
+

√
2πA

(
κx +

(
ζ +

1
2

)
x2
)

+ (
√
2πA − 1)

I∑
i=1

ciKi(x)

+
√
2πA

I∑
i=1

(ai − ci)Ki(x) + (
√
2πA − 1)

⏐⏐⏐.
e now multiply both sides by eδx2 and setting δ̃ =

1
2 − δ, so that eδx2ϕ(x) = (2π )−1/2e−δ̃x2 , we have

⏐⏐eδx2(f0(x) − f̂0(x)
)⏐⏐ = (2π )−1/2e−δ̃x2

⏐⏐⏐√2πAr
(
y(x)

)
+

√
2πA

(
κx +

(
ζ +

1
2

)
x2
)

+ (
√
2πA − 1)

I∑
i=1

ciKi(x)

+
√
2πA

I∑
i=1

(ai − ci)Ki(x) + (
√
2πA − 1)

⏐⏐⏐ ≤ T1(x) + T2(x)

+
1

√
2π

· T3(x) + T4(x) +
1

√
2π

· T5(x), (24)

here,

T1(x) :=
⏐⏐Ae−δ̃x2 r

(
y(x)

)⏐⏐; T2(x) :=
⏐⏐Ae−δ̃x2(κx + (ζ +

1
2
)x2
)⏐⏐;

T3(x) :=
⏐⏐(√2πA − 1)e−δ̃x2

I∑
i=1

ciKi(x)
⏐⏐; T4(x) :=

⏐⏐Ae−δ̃x2
I∑

i=1

(ai − ci)Ki(x)
⏐⏐;

T5(x) := |e−δ̃x2 (
√
2πA − 1)|.

If we show that ∥Ti∥∞ is at least of order ∥c∥2 as c → 0 for i ∈ {1, . . . , 5}, then we can conclude the proof by taking
he supremum of (24) over x ∈ R, which gives,

sup
x∈R

⏐⏐eδx2 (f0(x) − f̂0(x))
⏐⏐ = O(∥c∥2),

as c → 0.
For T1 first note that⏐⏐e−δ̃x2 r(y(x))

⏐⏐ ≤ max
σ∈{−1,1}

⏐⏐e−δ̃x2 r(σ · |y(x)|)
⏐⏐, for all x ∈ R,

and thus,

sup
x∈R

|T1(x)| ≤ A · sup
x∈R

σ∈{−1,1}

|e−δ̃x2 r(σ · |y(x)|)|. (25)

Next we choose γ such that,

q1 := sup
x∈R

σ∈{−1,1}

⏐⏐e−δ̃x2 r
(
σ · γ (1 + x2)

)⏐⏐ < ∞. (26)

This is always possible for some γ ∈ (−δ̃, δ̃), as r(0) = 0, and since e−δ̃x2 r
(
±γ (1 + x2)

)
is continuous and r

(
±γ (1 + x2)

)
grows no faster that eγ x2 as x → ±∞, it is beaten by e−δ̃x2 in the tails.

For y(x) as given in (20) and using (14) we can find an upper bound by

|y(x)| ≤ |κ| ·

(1 + x2

2

)
+ |ζ +

1
2
| · (1 + x2) +

I∑
i=1

|ai|Bi(1 + x2) = γ (1 + x2) ·
1
γ

(1
2
|κ| + |ζ +

1
2
| +

I∑
i=1

|ai|Bi

)
=: γ (1 + x2) · ε1, (27)

here γ is such that (26) holds. As c → 0, we have by Proposition 5, κ → 0, ζ → −1/2 and ai → ci. Therefore, we can
hoose c small enough (and depending on γ ) such that ε1 ∈ [0, 1]. Now, from (25), (27), the fact that r is convex with a
inimum at zero, and by Lemma 7 we get

sup
x∈R

⏐⏐T1(x)⏐⏐ ≤ A sup
x∈R

⏐⏐e−δ̃x2 r
(
σγ (1 + x2)ε1

)⏐⏐ ≤ ε2
1A sup

x∈R

⏐⏐e−δ̃x2 r
(
σγ (1 + x2)

)⏐⏐ = ε2
1 A q1.
σ∈{−1,1} σ∈{−1,1}

11
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By Proposition 5, we have A → 1/
√
2π as c → 0 and,

ε1 =
1
γ

(1
2
|κ| + |ζ +

1
2
| +

I∑
i=1

|ai|Bi

)
= O(∥c∥), as c → 0,

nd therefore ε2
1 = O(∥c∥2) as c → 0, and ∥T1∥∞ = O(∥c∥2) as c → 0.

For T2 we proceed similarly as for T1, and look for some ε2 ∈ [0, 1] such that |κx + (ζ +
1
2 )x

2
| ≤ ε2(1 + x2). We have,⏐⏐κx + (ζ +

1
2
)x2
⏐⏐ ≤ |κ|(

1 + x2

2
) + |ζ +

1
2
|(1 + x2) =

(1
2
|κ| + |ζ +

1
2
|
)
(1 + x2).

etting ε2 := ( 12 |κ| + |ζ +
1
2 |), by Proposition 5, ε2 = O(∥c∥2) as c → 0, and thus we can choose c sufficiently small such

hat ε2 ≤ 1. Let,

q2 := sup
x∈R

⏐⏐e−δ̃x2 (1 + x2)
⏐⏐ < ∞,

where q2 < ∞ since e−δ̃x2 (1 + x2) is continuous and tends to zero in the tails. From this, for ε2 ∈ [0, 1] as above, we can
apply Lemma 6 and get

sup
x∈R

⏐⏐e−δ̃x2 (κx + (ζ +
1
2
)x2)

⏐⏐ ≤ A sup
x∈R

⏐⏐eδ̃x2ε2(1 + x2)
⏐⏐ ≤ ε2 sup

x∈R

⏐⏐e−δ̃x2 (1 + x2)
⏐⏐ = ε2 q2.

hen,

sup
x∈R

⏐⏐T2(x)⏐⏐ = A sup
x∈R

⏐⏐eδ̃x2 (κx + (ζ +
1
2
)x2)

⏐⏐ ≤ A ε2 q2.

herefore, we have ∥T2∥∞ = O(∥c∥2), as c → 0.
For T3, as with the T2 term we want an ε3 ∈ [0, 1], such that |

∑I
i=1 ciKi(x)| ≤ ε3(1+ x2), so that we can apply Lemma 6

o show

sup
x∈R

⏐⏐e−δ̃x2
I∑

i=1

ciKi(x)
⏐⏐ ≤ ε3 sup

x∈R

⏐⏐e−δ̃x2 (1 + x2)
⏐⏐ < ∞.

irst, note that by (14),⏐⏐ I∑
i=1

ciKi(x)
⏐⏐ ≤

⏐⏐ I∑
i=1

ciBi(1 + x2)
⏐⏐ =

⏐⏐ I∑
i=1

ciBi
⏐⏐ · (1 + x2),

and thus we set ε3 :=
⏐⏐∑I

i=1 ciBi
⏐⏐. Clearly, ε3 = O(∥c∥) as c → 0. Now, with c sufficiently small such that ε3 ∈ [0, 1], we

have by Lemma 6,

sup
x∈R

⏐⏐e−δ̃x2
I∑

i=1

ciKi(x)
⏐⏐ ≤ sup

x∈R

⏐⏐e−δ̃x2(
|

I∑
i=1

ciBi|
)
(1 + x2)

⏐⏐ ≤ |

I∑
i=1

ciBi| · sup
x∈R

⏐⏐e−δ̃x2 (1 + x2)
⏐⏐ ≤ ε3 q2.

Therefore,

sup
x∈R

⏐⏐T3(x)⏐⏐ ≤ |
√
2πA − 1|ε3 q2

Thus, ∥T3∥∞ = O(∥c∥3), as c → 0, since |
√
2πA − 1| = O(∥c∥2) and ε3 = O(∥c∥) as c → 0.

Similar to the T2 and T3 terms, for T4 we want an ε4 ∈ [0, 1] such that
∑I

i=1(ai − ci)Ki(x) ≤ ε4(1 + x2). Note that⏐⏐ I∑
i=1

(ai − ci)Ki(x)
⏐⏐ ≤

⏐⏐ I∑
i=1

(ai − ci)Bi
⏐⏐ · (1 + x2),

y (14) and thus we set ε4 := |
∑I

i=1(ai − ci)Bi|, and by Proposition 5, ε4 = O(∥c∥2) as c → 0. Choose c small enough such
that ε4 ∈ [0, 1]. Then, by Lemma 6,

sup
x∈R

|T4(x)| ≤ A sup
x∈R

⏐⏐e−δ̃x2
I∑

i=1

(ai − ci)Bi(1 + x2)
⏐⏐ = ε4 A q2,

and since ε4 = O(∥c∥2) as c → 0, we have ∥T4∥∞ = O(∥c∥2), as c → 0.
For T5 we can use eδ̃x2

≤ 1 for all x ∈ R, and from Proposition 5 we have

T5(x) ≤ |
√
2πA − 1| = O(∥c∥2), as c → 0.

his completes the proof. □
12
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We have therefore shown that for sufficiently small c , the approximation f̂0 for the density that maximises entropy
iven the constraints in (7) is ‘close to’ f0. We have also shown that the speed of convergence is of order ∥c∥2.

.3. Step 3

We now turn our attention to Step 3. of the approximations, where we find approximations for the entropy and
egentropy of f̂0. For these proofs we require that f̂0(x) ≥ 0 for all x ∈ R, and thus f̂0 is a density.

Lemma 9 (Approximation of Entropy). Suppose Assumptions 1 and 2 hold, and let f̂0 be given as in Theorem 8. Suppose also
hat f̂0(x) ≥ 0 for all x ∈ R. Then the entropy of f̂0 satisfies

H[f̂0] = Ĥ[f̂0] + R(f̂0),

here,

Ĥ[f̂0] := η(1) −
1
2
∥c∥2,

ith η(·) given in (2), c = (c1, c2, . . . , cI )⊤, with the ci defined in Proposition 3 and the remainder term bounded by

|R(f̂0)| ≤ C M̃ · ∥c∥3,

for some constant C ∈ R, and M̃ given in Assumption 2.

roof. Set K (x) = (K1(x), K2(x), . . . , KI (x))⊤, for x ∈ R. Now, with f̂0 as in Theorem 8, expanding H[f̂0] gives,

H[f̂0] = −

∫
f̂0(x) log f̂0(x) dx = −

∫
ϕ(x)

(
1 + c⊤K (x)

)(
logϕ(x) + log

(
1 + c⊤K (x)

))
= −

∫
ϕ(x) logϕ(x) dx −

∫
ϕ(x)c⊤K (x) logϕ(x) dx −

∫
ϕ(x)

(
1 + c⊤K (x)

)
log
(
1 + c⊤K (x)

)
dx

= η(1) −

∫
ϕ(x)c⊤K (x)

(
−

1
2
log(2π ) −

1
2
x2
)
dx −

∫
ϕ(x)

(
1 + c⊤K (x)

)
log
(
1 + c⊤K (x)

)
dx

= η(1) − 0 −

∫
ϕ(x)

(
1 + c⊤K (x)

)
log
(
1 + c⊤K (x)

)
dx,

using the constraints given in (6). To obtain the approximation Ĥ[f̂0] and remainder R(f̂0) terms, we consider the expansion
of
(
1 + c⊤K (x)

)
log
(
1 + c⊤K (x)

)
around c = 0 using the Taylor series. Let q(y) = y log(y), y ∈ R. Then, we have

q′(y) = log(y) + 1; q′′(y) =
1
y
; q′′′(y) = −

1
y2

.

nd thus using Taylor series around y0 gives q(y0+h) = h+
1
2h

2
+R1(y0, h), where R1(y0, h) is the remainder term given by

R1(y0, h) =

∫ y0+h

y0

(y0 + h − τ )2

2

(
−1
τ 2

)
dτ = −h3

∫ 1

0

(1 − t)2

2(1 + th)2
dt

with the change of variables τ = (y0 + th).
Now let us pick y0 = 1 and h = c⊤K (x) and denote by R2(x) the corresponding remainder R2(x) = R1(1, c⊤K (x)). Then,

H[f̂0] = η(1) −

∫
ϕ(x)

(
c⊤K (x) +

1
2

(
c⊤K (x)

)2
+ R2(x)

)
dx, (28)

where the remainder term R2(x) is given explicitly by

R2(x) = −
(
c⊤K (x)

)3 ∫ 1

0

(1 − t)2

2
(
1 + tc⊤K (x)

)2 dt.

Now using (6) and setting

R(f̂0) := −

∫
R

ϕ(x) R2(x) dx (29)

we get from (28),

H[f̂0] = η(1) + 0 −
1
2

I∑
i=1

c2i + R(f̂0) = Ĥ[f̂0] + R(f̂0),

as needed to be shown. It remains to prove the bound for R(f̂ ).
0

13
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From Assumption 2 there exists some ε > 0 such that c⊤K (x) ≥ −1/2 for all c with c⊤c ≤ ε for all x ∈ R, and therefore,

|R2(x)| =

⏐⏐⏐(c⊤K (x)
)3 ∫ 1

0

(t − 1)2

2 · (1 + tc⊤K (x))2
dt
⏐⏐⏐ ≤

⏐⏐(c⊤K (x)
)⏐⏐3 ·

⏐⏐⏐ ∫ 1

0

(t − 1)2

2 · (1 − t/2)2
dt
⏐⏐⏐ = C ·

⏐⏐(c⊤K (x)
)⏐⏐3,

where C ∈ R, as the integral is of a continuous function over a compact set.
Now, there exists some δ > 0 such that for all c⊤c ≤ δ, ci ≤ ∥c∥ for all i ∈ {1, . . . , I}. Then, with c⊤c ≤ min(ε, δ), we

have

|R2(x)| ≤ C
I∑

i,j,k=1

⏐⏐Ki(x)Kj(x)Kk(x)
⏐⏐ · ∥c∥3

≤ C · M(x) · ∥c∥3

having used (13a) from Assumption 2. Putting this all together we obtain the bound for R(f̂0),⏐⏐R(f̂0)⏐⏐ ≤

∫
R

ϕ(x)|R2(x)| dx ≤ CM̃∥c∥3,

where M̃ is given in (13b), as required. □

Remark 10. Note that the density f̂0 has unit variance. Indeed, by (6),∫
f̂0(x)x2 dx =

∫
ϕ(x)

(
1 +

I∑
i=1

ciKi(x)
)
dx =

∫
ϕ(x)x2 dx +

I∑
i=1

ci

∫
ϕ(x)Ki(x)x2 dx = 1.

Therefore, the negentropy equivalent of the entropy approximation given in Lemma 9 is J[f̂0] = Ĵ[f̂0] + R(f̂0) with R(f̂0)
iven as in (29) and

Ĵ[f̂0] =
1
2
∥c∥2

=
1
2

I∑
i=1

c2i . (30)

roposition 11. With the same assumptions as in Lemma 9. Set I = 1. Then,

Ĵ[f̂0] ∝
(
Ef G(Y ) − EϕG(Z)

)2
,

here Y is a random variable with density f and Z ∼ N (0, 1).

Proof. By the constraints that need to be satisfied by K , given in Assumption 2, we have
∫

ϕ(x)K (x)xk dx = 0 for k = 0, 1, 2.
Substituting (5) for K (x) in (6) and solving these three equations gives an explicit expression for α, β, γ in terms of G,
given by,

α =
1
2

(∫
ϕ(x)G(x) dx −

∫
ϕ(x)G(x)x2 dx

)
; β = −

∫
ϕ(x)G(x)x dx; (31)

γ =
1
2

(∫
ϕ(x)G(x)x2 dx − 3

∫
ϕ(x)G(x) dx

)
.

Recall that c = EK (Y ) =
1
δ

(
EG(Y ) + αEY 2

+ βEY + γ
)
. Now using (31) and the fact that EY = 0 and EY 2

= 1 (since Y

as density f ), we get c =
1
δ

(
EG(Y ) − EG(Z)

)
. From (30) with I = 1, we have Ĵ[f̂0] =

1
2
c2, hence,

Ĵ[f̂0] =

(
EG(Y ) − EG(Z)

)2
2 δ2

.

his completes the proof, with C = 2 δ2 in Step 3. of Section 3. Note that δ can be found by solving the additional constraint
ϕ(x)K (x)2 dx = 1. □

This concludes our discussion of the approximations used in fastICA. We have shown that under certain conditions,
he approximations given in Steps 2., 3. and 4. in Section 3 are ‘‘close’’ to the true values. We will now give an example
here these approximations are indeed close to one-another, but the surrogate density of the projections, f0 from Step 1.

s not close to the true density f .

. Example

We now highlight the approximation steps as explained in Section 3 on a toy example. In this section we use example
ata as illustrated in Fig. 1, which was intentionally created in a very simplistic manner to further emphasise the ease at
14



E. Issoglio, P. Smith and J. Voss Journal of Multivariate Analysis 181 (2021) 104689

w

R
d

f
T
a
n

w

a
m
w

t
g

t
v
i
c

w

t
u
m
p
w

(

e

6

t
w
(
b
s
t

which false optima are found using the contrast function Ĵ∗(y). The data was obtained by pre-selecting vertical columns
here no data points are allowed. An iterative scheme was then employed, as explained below:

1. Sample n points from a standard two-dimensional Gaussian distribution;
2. Remove all points that lie in the pre-specified columns;
3. Whiten the remaining ñ points;
4. Sample n − ñ points from a standard two-dimensional Gaussian distribution.

epeat 2. - 4. until we have a sample of size n with no points lying in the pre-specified columns. No optimisation was
one to the distribution of these points to attempt to force the fastICA contrast function to have a false optimum.
We will use the m-spacing approximation (3) to obtain a contrast function that can be compared to the fastICA contrast

unction (11). Following Learned-Miller and Fisher [16], we chose m =
√
n, where n ∈ N is the number of observations.

his was chosen so that the condition m/n → 0 as n → ∞ is satisfied [3,22]. This approximation to entropy is a direct
pproximation to H[f ], and therefore does not involve an equivalent Step 1. from Section 3 where f is substituted by a
ew density f0.
Using the m-spacing method to find the first independent component loading, we want to obtain the direction

∗
:= argminw∈Rp,w⊤w=1 Hm,n(Dw). In the example of this paper, numerical minimisation is used to obtain w∗ and the

ssociated projection Dw∗. The contrast function to compare against the fastICA contrast function (11) is given by the
-spacing negentropy approximation, Jm,n(y) = η(1) − Hm,n(y) for directions w ∈ Rn on the half-sphere. Note that
∗

= argmaxw∈Rp,w⊤w=1 Jm,n(Dw). In general this contrast function is not very smooth, although a method to attempt
o overcome this non-smoothness (and the resulting local optima, which can cause numerical optimisation issues) is
iven in Learned-Miller and Fisher [16], and involves replicating the data with some added Gaussian noise.
To illustrate the kind of problems which can occur during the approximation from f to f̂0 and from J[f ] to Ĵ∗(y), we

construct an example where the density f in the direction of maximum negentropy is significantly different to f̂0 in the
same direction. This results in fastICA selecting a sub-optimal projection, as shown below. Here we just consider the case
I = 1 in Assumption 1, with one G = G1 and thus one K = K1. Moreover, in fastICA there is a choice of two functions
o use, G(x) := (1/α) log cosh(αx), α ∈ [1, 2], and G(x) := − exp(−x2/2). We have considered these two functions with
arying alpha, as well as the fourth moment contrast function given in Miettinen et al. [19]. Here, the function for Step 3.
n Section 3 is |Ef X4

−3|, and the empirical approximation of the expectation is used for Step 4., such that the approximate
ontrast function is |

1
n

∑n
i=1 y

4
i − 3|. In the example of this paper all choices give very similar results and thus we only

show the fastICA contrast function resulting from G(x) = (1/α) log cosh(αx), with α = 1 for simplicity.
With the data distributed as in Fig. 1, the negentropy over projections in the directions wθ = (sin(θ ), cos(θ )) with

θ ∈ [0, π ) found by the m-spacing approximation and used in the fastICA method is shown in Fig. 4. The contrast
function obtained by approximating J[f0] directly is also included as the dashed line. The three contrast functions
have been placed below one-another in the order of approximations given in Fig. 3 and so the y-axis is independent
for each. The search is only performed on the half unit circle, as projections in directions w1 = (sin(θ ), cos(θ )) and

2 = (sin(θ +π ), cos(θ +π )) for any θ ∈ [0, π ) have a reflected density with the same entropy. It is clear from Fig. 4 that
he fastICA result Ĵ∗ is poor, with the fastICA contrast function missing the peak of negentropy that appears when
sing m-spacing. The contrast function used in the fastICA method clearly differentiates between the direction of the
aximum and other directions, and thus in this example it is both confident and wrong (since there is a clear and unique
eak). This is also true of the direct approximation to J[f0], showing that issues occur at the first step of approximations,
hen J[f0] is used instead of J[f ].
As is shown in Section 4, for sufficiently small c , the approximation for the density f̂0 (given in (9)) is ‘‘close to’’ f0

given in (8)), and the speed of convergence is of order c2 for c → 0. Therefore, it is our belief (backed up by computational
experiments) that the majority of the loss of accuracy occurs in the approximation step where the surrogate f0 is used
instead of f , rather than in the later estimation steps for J[f̂0] and Ĵ∗(y). This can be seen by comparing numerically the
contrast functions J[f ], J[f0] and Ĵ∗(y) (shown in Fig. 4), and by comparing the densities f , f0 and f̂0. Here, J[f0] and Ĵ∗(y)
give similar directions for the maximum, and these differ significantly from the location of the maximum of J[f ]. This is a
fundamental theoretical problem with the fastICA method, and is not a result of computational or implementation issues
with fastICA. In particular, the fact that the dotted vertical line in Fig. 4 is at the maximum of Ĵ∗(y) indicates that the
ffect is not a convergence problem in the fastICA implementation.

. Conclusions

In this paper we have given an example where the fastICA method misses structure in the data that is obvious to
he naked eye. Since this example is very simple, the fastICA result is concerning, and this concern is magnified when
orking in high dimensions as visual inspection is no longer easy. There is clearly some issue with the contrast function
surrogate negentropy) used in fastICA. Indeed, this surrogate has the property of being an approximation of a lower
ound for negentropy, and this does not necessarily capture the actual behaviour of negentropy over varying projections
ince we want to maximise negentropy. To strengthen the claim that accuracy is lost when substituting the density with
he surrogate, we have shown convergence results for all the approximation steps used in the method.
15
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Fig. 4. Objective functions of m-spacing (solid line), J[f0] (dashed line) and fastICA method (dotted line) for projections of the data given in Fig. 1
n the directions θ ∈ [0, π ). These correspond to J[f ], J[f0] and Ĵ∗(y) in Fig. 3. The vertical lines give the directions which maximise the contrast
functions for m-spacing (solid line) and fastICA (dotted line).

To conclude this paper, we ask the following questions which could make for interesting future work: Is there a way, a
priori, to know whether fastICA will work? This is especially pertinent when fastICA is used with high dimensional data.
The trade-off in accuracy for the fastICA method comes at the point where the density f is substituted with f0. Therefore
ne could also ask: Are there other methods similar to that of fastICA but that use a different surrogate density which
ore closely reflects the true projection density?
If these two options are not possible, then potentially a completely different method for ‘‘fast’’ ICA is needed, one that

ither gives a ‘‘good’’ approximation for all distributions, or where it is known when it breaks down. An initial step in
his direction can be found in Smith et al. [20]. In this work the authors propose a new ICA method, known as clusterICA,
sing the m-spacing approximation for entropy discussed in this paper, combined with a clustering procedure.

RediT authorship contribution statement

Elena Issoglio: Conceptualization, Methodology, Formal analysis, Investigation, Writing - original draft, Writing -
eview & editing, Supervision. Paul Smith: Conceptualization, Methodology, Software, Formal analysis, Investigation,
riting - original draft, Writing - review & editing, Visualization. Jochen Voss: Conceptualization, Methodology, Software,

Formal analysis, Investigation, Writing - original draft, Writing - review & editing, Visualization, Supervision.

Acknowledgments

We thank the Editor, Associate Editor and referees for their helpful comments. P. Smith was funded by NERC DTP
SPHERES, Grant Number NE/L002574/1.

References

[1] S. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind signal separation, in: Adv. Neural Inf. Process. Syst., MIT Press, 1996, pp.
757–763.

[2] F. Bach, M. Jordan, Kernel independent component analysis, J. Mach. Learn. Res. 3 (Jul) (2002) 1–48.
[3] J. Beirlant, E.J. Dudewicz, L. Györfi, E.C. Van der Meulen, Nonparametric entropy estimation: An overview, Int. J. Math. Stat. Sci. 6 (1) (1997)

17–39.
[4] T. Cover, J. Thomas, Elements of Information Theory, John Wiley & Sons, New York, 2012.
[5] P. Diaconis, D. Freedman, Asymptotics of graphical projection pursuit, Ann. Statist. 12 (3) (1984) 793–815.
[6] B. Draper, K. Baek, M. Bartlett, J. Beveridge, Recognizing faces with PCA and ICA, Comput. Vis. Image Underst. 91 (1–2) (2003) 115–137.
[7] M. Farhat, Y. Gritli, M. Benrejeb, Fast-ICA for mechanical fault detection and identification in electromechanical systems for wind turbine

applications, Int. J. Adv. Comput. Sci. Appl. 8 (7) (2017) 431–439.
[8] S. Ghaffarian, S. Ghaffarian, Automatic building detection based on Purposive FastICA (PFICA) algorithm using monocular high resolution Google

Earth images, ISPRS J. Photogramm. Remote Sens. 97 (2014) 152–159.
[9] P. Hall, Limit theorems for sums of general functions of m-spacings, Mathematical Proceedings of the Cambridge Philosophical Society 96 (3)

(1984) 517–532.
[10] X. He, F. He, T. Zhu, Large-scale super-Gaussian sources separation using fast-ICA with rational nonlinearities, Internat. J. Adapt. Control Signal

Process. 31 (3) (2017) 379–397.
[11] A. Hyvärinen, New approximations of differential entropy for independent component analysis and projection pursuit, in: Proceedings of the

1997 Conference on Advances in Neural Information Processing Systems 10, MIT Press, 1998, pp. 273–279.
[12] A. Hyvärinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Netw. 10 (3) (1999) 626–634.
[13] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, John Wiley & Sons, New York, 2001.
[14] A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications, Neural Netw. 13 (4) (2000) 411–430.
[15] E. Lawrence, Partial Differential Equations, American Mathematical Society, New York, 1998.
16

http://refhub.elsevier.com/S0047-259X(20)30270-0/sb1
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb1
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb1
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb2
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb3
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb3
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb3
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb4
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb5
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb6
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb7
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb7
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb7
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb8
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb8
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb8
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb9
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb9
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb9
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb10
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb10
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb10
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb11
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb11
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb11
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb12
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb13
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb14
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb15


E. Issoglio, P. Smith and J. Voss Journal of Multivariate Analysis 181 (2021) 104689
[16] E. Learned-Miller, J. Fisher, ICA using spacings estimates of entropy, J. Mach. Learn. Res. 4 (Dec) (2003) 1271–1295.
[17] J. Marchini, C. Heaton, B. Ripley, FastICA: FastICA algorithms to perform ICA and projection pursuit, 2013, R package version 1.2-0.
[18] J. Miettinen, K. Nordhausen, H. Oja, S. Taskinen, Deflation-based fastICA with adaptive choices of nonlinearities, IEEE Trans. Signal Process. 62

(21) (2014) 5716–5724.
[19] J. Miettinen, S. Taskinen, K. Nordhausen, H. Oja, et al., Fourth moments and independent component analysis, Stat. Sci. 30 (3) (2015) 372–390.
[20] P. Smith, J. Voss, E. Issoglio, ClusterICA, 2020, in preparation.
[21] J. Stone, Independent Component Analysis: A Tutorial Introduction, MIT Press, Massachusetts, 2004.
[22] O. Vasicek, A test for normality based on sample entropy, J. R. Stat. Soc. Ser. B Stat. Methodol. 38 (1) (1976) 54–59.
[23] T. Wei, On the spurious solutions of the fastICA algorithm, in: 2014 IEEE Workshop on Statistical Signal Processing (SSP), 2014, pp. 161–164.
[24] T. Wei, A study of the fixed points and spurious solutions of the deflation-based FastICA algorithm, Neural Comput. Appl. 28 (1) (2017) 13–24.
[25] H. von Weizsäcker, Sudakov’s typical marginals, random linear functionals and a conditional central limit theorem, Probab. Theory Related

Fields 107 (3) (1997) 313–324.
[26] C.-H. Yang, Y.-H. Shih, H. Chiueh, An 81.6µW fastICA processor for epileptic seizure detection, IEEE Trans. Biomed. Circuits Syst. 9 (1) (2015)

60–71.
17

http://refhub.elsevier.com/S0047-259X(20)30270-0/sb16
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb17
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb18
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb18
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb18
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb19
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb20
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb21
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb22
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb23
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb24
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb25
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb25
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb25
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb26
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb26
http://refhub.elsevier.com/S0047-259X(20)30270-0/sb26

	On the estimation of entropy in the FastICA algorithm
	Introduction
	Entropy and negentropy
	The fastICA algorithm
	Approximations used in the fastICA method
	Step 1
	Step 2
	Step 3

	Example
	Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	References


