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ABSTRACT Participation in residential energy demand response programs requires an active role by
consumers. They contribute flexibility in how they use their appliances as the means to adjust energy
consumption, and reduce demand peaks, possibly at the expense of their own comfort (e.g., thermal).
Understanding the collective potential of appliance-level flexibility for reducing demand peaks is challenging
and complex. For instance, physical characteristics of appliances, usage preferences, and comfort require-
ments all influence consumer flexibility, adoption, and effectiveness of demand response programs. To
capture and study such socio-technical factors and trade-offs, this paper contributes a novel appliance-level
flexible scheduling framework based on consumers’ self-determined flexibility and comfort requirements.
By utilizing this framework, this paper studies (i) consumers’ usage preferences across various appliances,
as well as their voluntary contribution of flexibility and willingness to sacrifice comfort for improving
grid stability, (ii) impact of individual appliances on the collective goal of reducing demand peaks, and
(iii) the effect of variable levels of flexibility, cooperation, and participation on the outcome of coordinated
appliance scheduling. Experimental evaluation using a novel dataset collected via a smartphone app shows
that higher consumer flexibility can significantly reduce demand peaks, with the oven having the highest
system-wide potential for this. Overall, the cooperative approach allows for higher peak-shaving compared
to non-cooperative schemes that focus entirely on the efficiency of individual appliances. The findings of this
study can be used to design more cost-effective and granular (appliance-level) demand response programs
in participatory and decentralized Smart Grids.

INDEX TERMS Appliance scheduling, flexibility, demand response, smart grid, distributed optimization.

I. INTRODUCTION
The European 2030 climate and energy framework has set
three key targets for the year 2030: At least 40% reduc-
tion in greenhouse gas emissions, 27% share of renewable
energy, and 27% improvement in energy efficiency from
the 1990 levels [1]. Meanwhile, the global electricity con-
sumption in residential sector, which accounts for 30-40%
of the total energy usage, is ever increasing [2], [3]. This
forces the utility companies to expand their energy generation
and transmission capacity to address the occasional peak
demands. [4]. Energy demand response programs aim to
match the demand to the available supply to reduce/prevent
peak energy demands, thus, improving grid stability,
avoiding blackouts, and reducing pollution [5]–[7]. In the
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residential sector, this matching can be realized by consumers
(households) adjusting and altering their electricity usage
from their normal consumption patterns, either by changing
the appliance time-of-use (load-shifting), or by reducing the
energy consumption. This adjustment represents the level of
consumer flexibility, and can be in response to price changes
over time, or incentive rewards designed to induce lower
electricity use at times of high demand, or when system
reliability is jeopardized [8]–[10].

Given the prominent role of residential consumers in
participatory demand response programs, it is crucial to
understand their energy usage habits, preferences, comfort
requirements, and flexibility. Recent research also highlight
the socio-technical aspects of Smart Grids, and the impor-
tance of designing residential demand response programs in
a more bottom-up, and consumer-centric manner [11], [12].
Consumer’s age, income, household size, and working hours,
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as well as increasing attention to privacy, self-determination,
and autonomy, influence the adoption and effectiveness of
demand response programs [13]. Previouswork on residential
demand response programs commonly formulate consumers’
flexibility and preferences as a set of constraints [14], [15].
However, consumers’ flexibility and preferences are not
always hard constraints [13], rather they vary based on the
appliance type, time-of-use, individual characteristics and
behavior [16], conventions [17], monetary incentives [18],
and social practices involving the appliances [19]. Hence,
various studies consider consumer flexibility and pref-
erences as objective functions, leveraging multi-objective
optimization of appliance-level schedules, aiming to min-
imize consumer inconvenience, electricity cost, and peak
load, simultaneously [7], [20]. Furthermore, depending
on their intrinsic interests and incentives, consumers can
decide to further cooperate with the demand response pro-
gram (i.e., voluntarily contribute flexibility), and sacrifice
their comfort for the collective goal of reducing demand
peaks. To the best of authors’ knowledge, this trade-off
between consumer cooperation and demand peak reduc-
tion has not been previously studied. Lastly, most litera-
ture on residential appliance-level load scheduling analyzes
single households, thus neglecting the collective poten-
tial of coordinated appliance scheduling among multiple
households, as well as the impact of individual appli-
ances, and their usage features on potential load-shifting and
peak-shaving [7], [21].

Designing an appliance-level flexible scheduling frame-
work that effectively captures such socio-technical trade-offs
and coordinate energy demand across multiple households in
a decentralized manner is the challenge that this paper tack-
les. To this end, this paper proposes a novel appliance-level
energy scheduling framework that relies on consumers’
self-determined flexibility and comfort requirements, to reg-
ulate energy demand. By utilizing the framework, this paper
studies (i) consumers’ usage preferences across various appli-
ances, as well as their voluntary contribution of flexibility and
willingness to sacrifice comfort for improving grid stability,
(ii) impact of individual appliances on the collective goal
of reducing demand peaks, and (iii) the effect of variable
levels of flexibility, cooperation, and participation on the out-
come of coordinated appliance scheduling. In the proposed
framework, the collective goal is to prevent demand peaks
(peak-shaving/clipping) by means of load-shifting. whilst for
individual consumers, the objective is to maximize comfort
by using their appliances at the desired time [22]. Prevent-
ing demand peaks can be achieved by leveraging consumer
flexibility in appliance usage, and uniformly distributing
the demand across the day (i.e., minimizing demand vari-
ance) [9], [23], [24]. In this setting, consumer flexibility is
considered to be the contribution of alternative appliance
usage schedules. For instance, multiple schedules as a result
of shifting an appliance usage earlier or later in time from the
intended usage time [23], [25]–[27]. This flexibility creates
a degree of freedom for coordination within the framework

to optimize the selection between these alternatives in a way
that reduces the peak-load [11], [16]–[18].

However, coordinating consumers’ schedules for reducing
demand peaks remains challenging due to several factors.
The two objectives of maximizing comfort and reducing
demand peaks can be opposing, as certain appliance usages
might be delayed (or advanced), thus lowering consumers’
comfort [28], [29]. Moreover, given consumer flexibility and
usage preferences, such coordination requires selecting a
subset of discrete schedules based on a quadratic cost func-
tion (minimizing demand variance), which is an NP-hard
combinatorial optimization problem [28], [30]. This calls for
approximation mechanisms to find a near-optimal and com-
putationally feasible solution [31], [32]. This paper addresses
these challenges by introducing a decentralized network of
autonomous scheduling agents, each representing a consumer
(i.e., a household with multiple appliances). These agents
cooperatively coordinate to select a subset of consumers’
schedules to reduce demand peaks. To optimize agents’ selec-
tions, this paper applies the I-EPOS (Iterative Economic
Planning and Optimized Selections) [28] system, to perform
fully decentralized, privacy-preserving, and multi-objective
combinatorial optimization. Depending on the appliance and
its automation level, these coordinated schedules can be exe-
cuted via smart appliances [33], home energy management
system (HEMS) [34], or presented as recommendation to the
consumers [35].

In summary, the contributions of this paper are the fol-
lowing: (i) A novel appliance-level scheduling framework
based on consumers’ self-determined flexibility and com-
fort requirements, performing multi-objective optimization
of appliance schedules across multiple households, aim-
ing to reduce demand peaks. (ii) A data-driven analysis of
appliance-level socio-technical factors, such as cooperation
level, and unfairness that influence consumers’ flexibility
and the collective demand peak reduction. (iii) Impact anal-
ysis of individual appliances on reducing demand peaks
(with oven being the most impactful), and a quantitative
comparison to related work which reveals that in compari-
son to improving appliance efficiency, flexible coordinated
scheduling can further reduce demand peaks in Smart Grids.
(iv) A new dataset on flexible scheduling of appliances by
residential consumers. The rest of this paper is outlined as
follows: Sections II and III summarize related work, and
provide an overview of the framework operations, respec-
tively. Section IV introduces the flexible scheduling model,
and Section V illustrates the distributed combinatorial opti-
mization system. In Section VI the experimental methodol-
ogy of the paper along with the dataset, survey, and mobile
application are illustrated. Section VII shows the experimen-
tal evaluation. Finally, Section IX concludes this paper and
outlines future work.

II. RELATED WORK
Demand response programs for Smart Grids have been
subject to extensive research [21], [35]. Several studies
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attempt to model markets and pricing schemes to coordi-
nate consumers’ energy demand with the supply. Exam-
ples include game-theoretic approaches [27], [36], [37],
heuristic evolutionary algorithms [38], and agent-based
techniques [39], [40]. Previous studies identify residential
appliance scheduling via demand response programs as a
viable approach for improving Smart Grid efficiency and
utilization [6], [10], [26], [35]. Often, such programs adopt
load-shifting to achieve peak-shaving, or valley-filling on
the aggregated demand [3], [6]. To perform load-shifting,
the consumers’ flexibility in appliance usage is calculated,
often using the following two approaches: (i) Estimation
of flexibility based on extrapolated consumption data [5],
[23]–[26], [41]–[46]. (ii) Simulating the operating times of
appliances, as well as usage habits [10], [26], [32], [47]–[54].

Utilizing consumer flexibility, optimal load scheduling
of household appliances based on multi-objective optimiza-
tion have been subject of previous studies. Such stud-
ies leverage mixed integer programming [31], [55], [56].
heuristic methods [30], [31], [57], or non-exact approxi-
mation methods [31], [58]–[61]. Among which, Yahia and
Pradhan [56] utilizes various multi-objective optimization
schemes to simultaneously minimize electricity cost and con-
sumer inconvenience, to reduce demand peak, acrossmultiple
households. Setlhaolo and Xia [58] proposes a non-linear
model to co-optimize consumption cost and carbon emis-
sions, though they do not address reducing demand peaks.
Weighted summulti-objective optimization models have also
beed studied to minimize electricity cost and consumer
inconvenience based on time-of-use pricing [61], or incen-
tives [59]. However, these studies often only consider a single
household, thus ignoring the collective potential of coor-
dinated appliance scheduling among multiple households,
or do not consider consumers’ self-determined flexibility
contribution and cooperation in the collective goal of reduc-
ing demand peaks [31], [56]. Additionally, within the setting
of coordinated appliance scheduling, the impact of individ-
ual appliances on the collective goal of reducing demand
peaks requires further studies [7], [21]. To address this,
the framework introduced in this paper leverages consumers’
self-determined flexibility, comfort requirements, and coop-
eration across multiple households to study the collective
potential of appliance load scheduling for reducing peak
demands.

Additionally, given usage constraints and number of dis-
crete options/schedules, coordinating appliance schedules
across multiple households for reducing demand peaks is
non linear (minimizing demand variance), NP-Hard, and
combinatorially complex [30]. Distributed optimization, and
genetic algorithms are utilized to cope with this complex-
ity, and to approximate a near-optimal solution between
consumers’ demand and the available energy supply of
the utility company [31]. Genetic algorithms formulated as
multi-objective optimization problems are utilized to simul-
taneously minimize: electricity cost and consumer dissat-
isfaction [57], cost and delays in appliance usage [62],

and cost and consumer inconvenience [55]. However, these
studies do not address the distributed and privacy sen-
sitive nature of appliance usage data. To this end, this
paper utilizes and expands I-EPOS to provide a distributed,
privacy-preserving coordination and optimization scheme for
consumers’ schedules [28].

Lastly, recent research also highlight the socio-technical
aspects of Smart Grids and emphasized the need to design
demand response programs in a more bottom-up, and
consumer-centric manner [11], [12]. These studies argue that
socio-technical aspect such as age, income, household size,
and working hours, as well as increasing attention to privacy,
self-determination, and autonomy influence the adoption and
effectiveness of demand response programs [13]. Addition-
ally, consumer flexibility does not only depend on the appli-
ances and monetary incentives [18], but on individual char-
acteristics (i.e., intrinsic motivations such as environmen-
tal awareness) [16], conventions [17], and social practices
involving the appliances [19]. However, flexibility estima-
tions based on extrapolated or simulated data often fail to cap-
ture such socio-technical factors, and do not account for the
scenarios where consumers’ behavior deviates from the norm
(e.g., having guest, or going on holidays). Thus, this paper
utilizes a personalized scheduling agent for each consumer.
Using this scheduling agent, consumers directly determine
their data and privacy preference, schedules, flexibility, usage
preference, scheduling constraints, and voluntary contribu-
tion of flexibility for reducing demand peaks, on a daily
basis.1

III. OVERVIEW AND FRAMEWORK OPERATIONS
Figure 1 illustrates the framework, and its four main opera-
tions. (i) Each consumer interacts with a prototyped digital
assistant running as an app on a smartphone, acting as a
personal scheduling agent. Via this scheduling agent, con-
sumers indicate their appliances’ schedules (i.e., starting time
and duration of operation), and usage constraints, such as
which appliances should not be used in parallel.2 Consumers
also indicate the discomfort level they are willing to tolerate
as an indicator of flexibility, such as to what extent the
appliance usage can shift in time from the desired opera-
tional time. This discomfort level determines how willing
they are to contribute to the collective goal, i.e. reducing
demand peaks. (ii) The consumers submit their appliance
schedules and flexibility for the next day to the scheduling
agent.3 By leveraging flexibility, multiple alternative energy

1While this approach does require a higher level of engagement from
consumers, recent research has shown that values such as increased control
and autonomy can improve the acceptance and adoption of such programs
[18], [63], [64].

2Scheduling is a well-established approach in literature [22], [33], [65]–
[71], and has been utilized in several real-world application domains [28],
[40], [72].

3Previous studies have shown that daily energy usage follows a
semi-repetitive manner [54]. Hence, the consumers can choose to schedule
once for each day, and only modify them if required. This greatly reduces
the scheduling effort on part of the consumers.
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FIGURE 1. Overall scenario: The consumer u initializes its scheduling agent and adds appliances information, usage constraints, and
cooperation level. Then, the consumer submits the appliance schedules with their flexibility values. The scheduling agent generates all
possible plans for each appliance based on Algorithm 1, combines the plans for all appliances, and applies consumers’ constraints and
preferences on the plans. Then, the scheduling agent samples plans based on a local sampling mechanism, and provides them as input to
I-EPOS. Based on consumers’ cooperation level, I-EPOS coordinates and selects a subset of these plans with the aim of reducing demand
peaks. Finally, the selected plan is presented to the consumer via the scheduling agent to be executed by smart appliances, home energy
management systems (HEMS), or used as recommendations.

consumption patterns are generated using the scheduling
agent (Section IV), each called a plan.4 The scheduling
agent then removes the conflicting plans based on con-
sumers’ constraints (e.g., not showering while the oven is on).
(iii) Reducing demand peaks, computationallymodeled as the
minimization of a non-linear cost function, i.e. variance of
total energy demand across the day [34], [40], requires coor-
dination among consumers’ schedules, which is an NP-hard
combinatorial optimization problem [28], [30]. This calls
for approximation mechanisms to find a near-optimal solu-
tion at low computational cost [31], [32]. This framework
relines on a decentralized network of autonomous schedul-
ing agents, each representing a residential household with
multiple appliances. These agents interact and coordinate to
select a subset of consumers’ schedules to reduce demand
peaks.5 To optimize agents’ selections, this paper utilizes and
extends the I-EPOS (Iterative Economic Planning and Opti-
mized Selections) [28] system, to perform fully decentralized,
privacy-preserving, and cooperative combinatorial optimiza-
tion. (iv) Finally, the coordinated plans are submitted back to
the scheduling agent. Note that this paper studies a range of
personal appliances, ranging from highly automated (wash-
ing machine), to low automation (TV). Depending on the
appliance and its automation level,6 the recommended usage
plans can be executed automatically via the home energy
management system (HEMS) (in case of washing machines),
or presented directly to the consumer as recommendations
(in case of TV). The above framework can be operationalized

4Note that a schedule specifies the intended appliance usage. and is
defined independent of the appliance energy consumption. But the plans
specify the exact energy consumption of the appliance during its use.

5Crucially, the selected plans should not violate the consumers’ comfort
expectations, or the physical constraints of the Smart Grid, for instance,
the power generator limits [23].

6Such as allowing for direct control, and interruptible/deferrable
operation.

in different scales depending on the available computational
resources. Ranging from cooperative micro grids (e.g., smart
building) where individual appliances form atomic units,
to hierarchical scenarios where the lowest levels are house-
holds that aggregate to form neighborhoods, and districts.
In the next sections the above scenario is illustrated in more
detail.

TABLE 1. Mathematical notations used in this paper.

IV. FLEXIBLE APPLIANCE SCHEDULING
The utilized mathematical notations are presented in Table 1.
A consumer u ∈ U schedules the usage of appliance h ∈ Hu.
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Algorithm 1 Plan Generation
Input: schedule S : 〈s, d, f 〉 for appliance h, time

granularity g (default: minutes), scheduling
horizon (default: 24h)

Output: P: list of all plans for schedule S
1 /* number of plans based on flexibility
2 k ← 2 ∗ f / g+ 1
3 /* list of all plans including the plan with f = 0
4 Initialise array P of size k
5 /* calculate the plan length
6 n← 24h/g (based on the scheduling horizon)
7 e← energy consumption of h per g
8 for i in 0 to k − 1 do
9 /* create a vector of 0’s size n for each plan
10 Vi : < v1, . . . , vn >← 0
11 for j in 0 to d − 1 do
12 /*s− f should be ≥ 0 as day-before schedules are

not allowed vs−f+j← e
13 end
14 f ← f − 1
15 add Vi to P
16 end

A schedule is defined as: 〈s, d, f 〉, where s is the preferred
starting time, d is the duration in minutes, and f is the appli-
ance flexibility in minutes. This flexibility means that the
consumer is willing to shift its original starting time s, either
earlier or later, by f minutes. A plan i of consumer u (pu,i ∈
Pu) is defined as a sequence of real values 〈v1, . . . , vn〉 of size
n = 1440 (i.e., 24*60, number of minutes in a day). Each vj
represents the energy consumption of the appliance on the
jth minute of the day. For each schedule, using the flexibility
provided by the consumer, the scheduling agent generates all
possible plans (Pu) based on Algorithm 1. A schedule with
flexibility f results in multiple plans, where the earliest plan
starts at s− f , and the latest plan at s+ f .

Associated with each plan is its discomfort, caused by pos-
sible changes from the intended starting time of the appliance
usage. Intuitively, the closer a plan is to the preferred starting
time, the lower the discomfort it imposes on the consumer,
which in turn increases its acceptance and adoption. This
discomfort is calculated by a local cost function: fL(pu,i). The
plan derived by f = 0 is represented as pu,o and its discomfort
is 0 (i.e., fL(pu,o) = 0). An example of such a process is shown
in Table 2.

A. CONSTRAINTS AND PREFERENCES
The plans that do not adhere to consumers constraints are
removed from Pu. For instance, if the consumer does not
wish to shower while the oven is on, or use the washing
machine after 9 pm. Moreover, consumers’ preferences for
different plans are measured by their discomfort, with higher
preference given to plans with lower discomfort. If the con-
sumer schedules multiple appliances, the scheduling agent

TABLE 2. Consumer u schedules the kettle usage at 6pm, for 10’ and has
2’ flexibility: 〈18:00,10′,2′〉. This means that the preferred starting time
is 18:00 but the consumer is flexible for the start time to be between
17:58 to 18:02. Hence, 5 different plans are generated, the first one
starting from 17:58 and ending at 18:08 and the last one starting from
18:02 and ending at 18:12. Assume that fL(pu,i ) calculates the discomfort
as the absolute difference of the plan start time from the preferred
starting time. The 5 possible starting times and their discomfort are listed
below.

combines the plans from appliances. This process is per-
formed as follows: assume consumer u schedules hi with
f = p, and hj with f = q. Each schedule generates 2f + 1
plans,7 hence, 4pq + 2p + 2q + 1 combined plans. Each
combined plan represents the aggregated energy consumption
of the two appliance plans. The discomfort of a combined
plan is the average discomfort of the plans. This process is
performed by the scheduling agent.

B. CONSUMERS’ COOPERATION LEVEL
The collective goal of the proposed framework (reducing
demand peaks throughout the day) is measured by the global
cost function: fG(C), where C = {pu,s | ∀u ∈ U )} is the
set of all selected plans by the consumer, and pu,s ∈ Pu is
the selected plan that consumer u intends to execute. This
can be achieved by minimizing the variance of consumers’
total energy demand across the day [34], [40]. To do so,
the framework leverages consumers’ flexibility to shift their
appliance usage in time. Such an approach requires collective
action and cooperation by the consumers, and can reduce
consumers’ comfort, due to the shift in appliance usage time.
Thus, the consumers can determine their cooperation level
in two phases: (i) plan generation (scheduling), and (ii) plan
selection.

1) PLAN GENERATION (SCHEDULING) PHASE
For a given schedule 〈s, d, f 〉, if consumer u determines a
high flexibility value, then the scheduling agent creates a
high number of possible plans |Pu| � 1. A high number
of possible plans increases the computational complexity and
the storage capacity requirements of the agent.8 Assume that
consumer u needs to submit k < |Pu| plans to the demand
response program, and the plans in Pu are sorted based on
their discomfort. The consumer can utilize various plan sam-
pling mechanisms on Pu in order to indicate the cooperation
level. A simplified version of the social value orientation
theory [73] is used to study the range of non-cooperative

7f number of plans with starting time before s, another f with starting time
after f , plus the plan with f = 0.

8For example, in a scenario with 100 agents, each with 10 plans, the solu-
tion space size is 10100.
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(minimizing discomfort) to fully cooperative (minimizing
demand peaks) behaviors. A non-cooperative consumer sam-
ples k plans with the lowest discomfort, while the fully coop-
erative consumer samples k plans with highest discomfort.
Intuitively, due to the popularity of certain actions, the coop-
erative consumers provide the demand response program
with more diverse plans. For instance, using the oven is a very
common between 6-7pm [19]. Thus, a cooperative consumer
that shifts the oven usage before 6pm or after 7pm, is more
likely to contribute significantly to reducing demand peaks.

2) PLAN SELECTION PHASE
Based on the sampled plans, ∀u ∈ U , plan pu,s is selected
(Section V) according to the following equation:

arg
k

min
s=1

(
(1− λ) ∗ fG(C)+ λ ∗ fL(pu,s)

)
(1)

in which λ := 0 ≤ λ ≤ 1 is the weight assigned to the
discomfort and is determined by each consumer, indicating
the cooperation level in the plan selection phase, and k is the
number of plans for consumer u A higher λ value indicates a
non-cooperative consumer (minimizing discomfort). Various
incentivisation schemes (e.g., monetary rewards) can be used
to motivate consumers to set lower λ values.

V. COORDINATED PLAN SELECTION
Reduction of demand peaks by minimizing the variance of
consumers’ total energy demand across the day, requires
coordination between different consumers and their energy
usage plans [21], [28], [35]. To perform this coordination
and optimize the selection of plans, consumers’ scheduling
agents employ the I-EPOS system [28] as a multi-agent,
fully decentralized, self-organizing, and privacy-preserving
combinatorial optimization mechanism.9 Each I-EPOS agent
has a set of discrete energy consumption plans, generated by
the corresponding scheduling agent. I-EPOS coordinates and
selects a subset of consumers’ plans aiming to minimize the
variance of the total energy demand across the day aiming to
reduce/prevent demand peaks (fG: MIN-VAR) [28]. To this
end, I-EPOS agents self-organize in a tree-topology [74]
as a way of structuring their interactions, facilitate the
cost-effective aggregation of plans, as well as performing
coordinated optimization and decision-making. I-EPOS per-
forms consecutive learning iterations. Each iteration has two
phases: the bottom-up (leaves to root) phase and top-down
(root to leaves) phase. During the bottom-up phase of each
iteration, agent u selects the plan pu,s which satisfies the
following multi-objective optimization objective:

ptu,s = arg
k

min
s=1

(
(1− λ)

(
σ 2(at−11 − at−1u + atu

− pt−1u,s + p
t
u,s
))
+ λ

(
fL(ptu,s)

))
(2)

9Accessible online at https://github.com/epournaras/EPOS (last accessed:
May 2020)

where σ 2 is the variance function, and t is an iteration of I-
EPOS. at−11 =

∑|U |
u=1 p

t−1
u,s is the aggregate plan at iteration

t − 1 of the selected plans of all agents, summed up at
the root. at−1u and atu shows the aggregate plan calculated
by summing up the selected plans of agents in the branch
below agent u, at iterations t − 1 and t , respectively. pt−1u,s
and ptu,s are the selected plans of agent u at iteration t − 1
and t , respectively. Finally, consumers’ cooperation level is
included in the objective via the λ parameter.
The coordination among consumers is performed by each
agent aggregating its selected plan ptu,s with atu, and com-
municating the aggregated plan to the parent agent in the
tree topology. In the top-down phase, agents are notified
about at−11 . After the final iteration F is completed, pFu,s is
presented to the consumer by the scheduling agent of con-
sumer u. Moreover, at each iteration t , the average discomfort
Dt across all agents, is calculated as:

Dt =
1
|U |

U∑
u

(fL(ptu,s)). (3)

Additionally, at each iteration t , the deviation of discom-
fort values across all agents is referred to as unfairness 9 t ,
calculated as:

9 t
=

√√√√ 1
|U |

U∑
u

(fL(ptu,s))2 − (
1
|U |

U∑
u

fL(ptu,s))2. (4)

Further elaboration on I-EPOS is out of the scope of this paper
and the interested reader is referred to previous work [28].

A. COMPLEXITY, OPTIMALITY, AND PRIVACY
The computational and communication complexity of the
above algorithm are O(kt log |U |) and O(t log |U |), respec-
tively. Where k is the maximum number of plans per agent,
t is the number of iterations, and |U | is the number of
agents/consumers [28]. This allows for efficiency and scala-
bility to scenarios with higher number of agents. In regards to
the addressed objective function if this paper (NP-Hard com-
binatorially complex optimization), previous research [75]
has revealed that compared to the state-of-art, I-EPOS has
a superior performance profile. Regarding optimality, in a
solution spaces of size 220 I-EPOS empirically finds solutions
in the top 33% of all solutions in the first learning iteration,
and top 3.35% in the last learning iteration [28]. Lastly,
the preservation of privacy is based on the fact that each agent
only shares the aggregated plan to the parent agent in the tree
topology, and does not disclose preferences, pu,s, Pu, or λ.

VI. EXPERIMENTAL METHODOLOGY
This section introduces the data collection, plan sampling
mechanisms, and the experimental design of this paper.

A. DATA COLLECTION
Modeling and evaluating appliance-level flexible scheduling
is challenging, as such low granularity and privacy-sensitive
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FIGURE 2. Participant information in the collected dataset. Continent
refers to where participants currently reside in. EU stands for Europe,
AS for Asia, and AM for the Americas. House size represents the number
of bedrooms. House type shows the distribution of participants living in
apartments (AP), semi-detached housed (SD) or other types of houses.
House year-built shows the distribution of the year the participants’
house was built. These features are specifically chosen to provide a
comparison baseline with the REFIT dataset [76], and to assist in
determining consumption profiles.

data are usually not (openly) available by power utilities.
Moreover, large-scale social studies linked with consumers
actual energy consumption behavior at the appliance level are
usually costly, over-regulated, and require complex interven-
tions by power utilities. To overcome such limitations that
have significantly restricted the scope of earlier research [25],
[26], [29], two datasets are combined to make this research
feasible: (i) A new real-world dataset10 collected in a field
study using an Android mobile application, based on the
illustrated scenario in Section III. This dataset contains appli-
ance usage schedules and flexibility from 51 participants11

across four days, from 4 to 8 February 2018, together with
complementary survey data. This dataset contains appliance
usage schedules and flexibility from 51 participants across
four days, from 4 to 8 February 2018, together with a com-
plementary survey. To the best of the authors’ knowledge, this
dataset is the first pilot study which addresses consumers’
self-determined flexibility, as well as the cooperation level at
the appliance level. Table 3 illustrates the distribution of the
schedules and plans across different household appliances.
This dataset is further analyzed in Section VII. (ii) The state-
of-the-art REFIT dataset [76], including electrical load mea-
surements from 20 households at aggregate and appliance
level, timestamped and sampled at 8-second intervals.

1) MOBILE APPLICATION
An Android mobile application12 (Figure 3) was developed
and distributed among the participants, as their personal
scheduling agent. The scheduling agent is in charge of receiv-
ing the schedules, generating the plans, enforcing constraints
and preferences, interacting with I-EPOS, and presenting the
selected plans to the consumers.

10Available online: [77] (last accessed: May 2020)
11The participants were recruited through a cross-university campaign.
12Accessible online at https://github.com/epournaras/EPOS-Smart-Grid-

Scheduler (last accessed: May 2020)

TABLE 3. Distribution of schedules and plans among appliances.

FIGURE 3. Developed Android mobile application as the consumers’
scheduling agent: (a) Sample of survey questions, (b) The schedule
submission phase. (c) Schedules for different appliances. (d) Selected
plan after I-EPOS execution.

2) PARTICIPANTS SURVEY
Accompanying the data collection, a survey was conducted
to gain better insight into participants’ energy consumption
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behavior, flexibility, and cooperation. The participants were
invited to answer questions about demographic, household,
and energy usage preferences, such as discomfort threshold,
willingness to schedule appliances, and their cooperation
level.13 The detailed questionnaire and responses are pre-
sented in Appendix C.

3) APPLIANCE ENERGY CONSUMPTION
Figure 2 shows some general information about the partic-
ipants and their living situation. Each participant is con-
sidered a consumers, and based on the household informa-
tion, the scheduling agent matches each consumer in the
collected dataset to the closest household in the REFIT
dataset [76], to estimate consumers’ appliance energy con-
sumption. To estimate the consumption profile of a given
consumer, the scheduling agent utilizes a linear scoringmodel
of four household features: number of occupants, the built
year, the house type, and the number of bedrooms. These
features have been empirically assigned weights of 0.533,
0.267, 0.133, and 0.067, respectively. The assignment of these
weights is based on the importance of each feature on house-
hold energy usage [78], [79].14 Appendix A illustrates the
household matching process and the distribution of profiles
among consumers in more detail.

B. PLAN SAMPLING MECHANISM
This paper utilizes five different plan sampling mechanisms,
each sampling 10 plans from Pu for all consumers. Each
sampling mechanism indicates a particular cooperation level
for consumers at the plan generation (scheduling) phase
(Section IV-B.1).

1) Top Ranked: Non-cooperative (selfish) consumer;
samples the top 10 plans from the plan space (P) with
the lowest discomfort.

2) Top Poisson: Semi-non-cooperative (semi-selfish)
consumer; samples 10 plans from the plan space,
skewed towards lower discomfort. Modeled via a
Poisson distribution15 on Pu ordered by increasing
discomfort.

3) Uniform: Balanced (fair) consumer; samples 10 plans
uniformly distributed across the plan space.

4) Bottom Poisson: Semi-cooperative (semi-altruistic)
consumer; samples 10 plans skewed towards the higher
discomfort from the plan space.Modelled via a Poisson
distribution15 on P ordered by decreasing discomfort.

5) Bottom Ranked: Fully-cooperative (altruistic) con-
sumer; samples the top 10 plans from the plan space
with the highest discomfort.

13The survey is conducted according to the GDPR guidelines, and the
identity of participants remains anonymous.

14However, as this paper mostly studies the consumers’ scheduling and
socio-technical factors affecting it, these weights do not affect the findings.
The linear combination is used for the sake of simplicity and interpretability.

15With a λ parameter of 2 for the Poisson distribution.

TABLE 4. I-EPOS parameters used in experiments.

C. EXPERIMENTAL DESIGN
Table 4 illustrates the I-EPOS parameters used for the exper-
iments. Each experiment is executed 10 times, and the
reported results are averaged across all simulations. In each
simulation of I-EPOS, the agents are randomly assigned to
a position in the tree topology. The topology is a balanced
binary tree. The consumers schedules were collected during
4 days. The first 3 days with 51 and the last day with 50 con-
sumers.16 The presented results are the average across the
four days. The λ parameter (cooperation level) is determined
based on the survey results of each consumer, specifically the
question P7 in Appendix C: ‘‘I would like to accept discom-
fort to make more efficient energy usage.’’ The plan sampling
mechanisms (Section VI-B) are used as a system-wide setting
for all scheduling agents. The scheduling agent samples and
provides 10 plans to I-EPOS (k = 10).17 The plan dimensions
(24*60) are the number of minutes in a day, where the value
on each dimension shows the total energy usage on that
minute by the consumer. The discomfort is normalized and
calculated as the distance between the pu,o and pu,s, with the
plan derived from f = 0 having discomfort 0, the furthest
plan (s± f ) from the original starting time has discomfort 1.
The global cost function is MIN-VAR, which minimizes the
variance of consumers’ total energy demand, hence reducing
demand peaks. Below is the list of experiments and their
methodology.

1) FLEXIBLE APPLIANCE SCHEDULING AND REDUCING
DEMAND PEAKS
These experiments study the effect of consumers’ flexibility
and cooperation in scheduling their appliances from three
perspectives: (i) reducing demand peaks and demand vari-
ance, (ii) average discomfort, and (iii) unfairness. Each agent
sets its own λ value (cooperation level) provided by the
corresponding consumer (Section VI-C). In addition, three
other fixed system-wide values of λ = 0.0, 0.5, and 1.0 are
evaluated. The experiments are repeated across the five dif-
ferent plan sampling mechanisms.

16On the last day one of the consumers did not schedule.
17In Appendix B more experiments with 5 and 100 plans are shown to

illustrate the effect of k on the demand response program.
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FIGURE 4. Comparison of appliance usage probability throughout the day with and without consumer flexibility.

2) IMPACT OF INDIVIDUAL APPLIANCES ON REDUCING
DEMAND PEAKS
These experiments study the impact of individual appliances
on the collective goal of reducing demand peaks. Due to
consumers’ preferences, appliance type (TV or computer
usage), or costly hardware, the scheduling agent cannot con-
trol all the appliances. Thus, understanding the load-shifting
potential of various appliances for reducing demand peaks
is essential for providing effective and efficient demand
response solutions. To calculate this impact, 7 experiments
are performed, each time excluding one of the appliances
from the demand response program by setting the flexibility
of the excluded appliance to 0. Furthermore, these experi-
ments analyze existing appliance-usage features to determine
whether such features can be utilized (individually or in
combination) to calculate the importance, and the impact of
various appliances on the demand response program. For each
appliance, the studied features include: average flexibility,
average duration per use, average usage duration per day,
relative flexibility, energy consumption, and percentage of
plans in the dataset.

3) INCREASED EFFICIENCY VS. FLEXIBLE
COORDINATED SCHEDULING
Earlier research has studied the impact of more efficient use
of appliances on the Smart Grid; specifically the increased
energy efficiency of kettles if consumers avoid overfill-
ing [47]. To compare the reduction of demand peaks between
the two approaches of ‘‘increased energy efficiency’’ and
‘‘flexible coordinated scheduling’’, the following methodol-
ogy is used: Scenario (a) ‘‘Efficient Kettle’’: the potential
energy savings of the kettle from a previous study [47] are
applied to the consumers of the collected dataset, during
peak hours (6:30-8:30 and 19:30-21:30). Scenario (b) ‘‘Flex-
ible Kettle’’: the I-EPOS experiments are performed by set-
ting the flexibility of all appliances to 0, except the ket-
tle. Using this methodological approach, in both scenarios,
the two systems can only use the kettle to reduce demand
peaks.

4) VARYING ADOPTION OF RECOMMENDED PLANS
Consumer participation is necessary for demand response
programs to achieve their targets [80]. Given consumer auton-
omy over the execution of recommended plans by the frame-
work, their participation and adoption level greatly affect
how well the framework achieves its targets [80]. This effect
is analyzed by utilizing the following methodology: The
consumers are sorted in descending order, based on their λ
value. The reduced adoption is calculated by changing the
λ value of the top n-percent of the consumers with λ 6= 1
to 1. The consumers with λ = 1 purely minimize their
discomfort, hence, they do not provide any alternative plans
and effectively do not participate in the demand response
program. Utilizing the above methodology, this experiment
studies the necessary level of participation and adoption by
consumers to still achieve effective demand peaks reduction.

VII. RESULTS AND FINDINGS
This section illustrates the results and findings based on the
experimental designs in Section VI.

A. DATASET ANALYSIS
Figures 4a and 4b show the probability of appliance usage
across the days without and with consumer flexibility.
As illustrated, the inclusion of flexibility makes the like-
lihood of appliance usage more spread-out across the day.
For instance, the usage probability the dish washer without
flexibility is very high around 7pm (Figure 4a). However, this
probability is more distributed across 6-8pm when flexibility
is included. Figure 5 shows the density distribution18 of dura-
tion, flexibility, and relative flexibility (flexibility/duration)
for all schedules. For instance, while the computer has the
longest average duration (300’) out of all appliances, its
flexibility is relatively low (47’). On the other hand, the oven
has a low duration on average (52’), however, it has a rel-
atively high flexibility (60’). Thus, the oven can contribute
more to distributing the energy demand across the day than

18Calculated using the Gaussian kernel density estimator with the nrd0
[81] algorithm for determining the bandwidth.
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FIGURE 5. Density of duration, flexibility, and relative flexibility of various appliances.

TABLE 5. Relative flexibility of appliances throughout the day (Median):
The morning hours are between 00:00 - 08:59, mid day between 09:00 -
16:59, and evening between 17:00 - 23:59. This splitting is made based on
the common demand patters throughout the day [82].

the computer. Table 5 illustrates the changes in the relative
flexibility of the appliances throughout the day. Additionally,
Table 9 in Appendix B illustrates the distribution of appliance
schedules throughout the day. The values of λ, as an indicator
of consumers’ cooperation level, are based on their answer
to question P7 (Appendix C). The participants are assigned
one of the 5 discrete values between 0 to 1, with the resulting
distribution: λ = 1 (5.88%), 0.75 (35.3%), 0.5 (27.5%), 0.25
(21.6%), 0 (27.5%). Intuitively, a λ value of 1 means that the
consumer exclusively minimizes discomfort, while a λ value
of 0 means the consumer is only concerned reducing demand
peaks. The average λ value specified by the participants is
0.48.

B. EXPERIMENTAL RESULTS
This section illustrates the results of the experiments based
on the methodology described in Section VI-C.

1) FLEXIBLE APPLIANCE SCHEDULING AND REDUCING
DEMAND PEAKS
Figure 6a illustrates the variance of consumers’ total demand
at the final iteration of I-EPOS, for different sampling mecha-
nisms and across different values of λ. Note that having lower
variance means the demand is more spread out across the
day, resulting in reduced demand peaks. The general trend
across all sampling mechanisms is that with the increase
of λ, the demand variance increases, as agents with higher
λ values focus more minimizing discomfort than cooperating
to reduce demand peaks (Equation 2). The Top Poisson is the
most sensitive case, with 44.48% increase in variance from
λ = 0 to λ = 1. More drastic is the impact of different sam-
pling mechanisms on demand variance. For instance, chang-
ing the plan sampling mechanism from Top Ranked to Top
Poisson, decreases demand variance by 54.35% for λ = 0,
54.29% for λ = 0.5, 52.44% for consumer specified, and
20.80% for λ = 1. These differences are due to the entropy
and diversity of consumers’ sampled plans [29], [40]. For
instance, in Top Ranked the agents always sample 10 plans
with the lowest discomfort; thus, the plans are very similar
and the entropy among them is low. Hence, I-EPOS cannot
perform effective optimization in such a non-diverse plan
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FIGURE 6. Total demand variance, average discomfort, and unfairness
across various plan sampling mechanisms for different values of λ. The
average λ specified by consumers is 0.48. The λ = 0, 0.5, and 1 are set as
system-wide parameters, meaning all agents have the same value of λ.

space. Overall, the best performing sampling mechanism is
the Bottom Poisson that reduces the demand variance by
51.71% compared to Top Ranked.

DISCOMFORT AND UNFAIRNESS
Figure 6b illustrates the average discomfort among con-
sumers for different sampling mechanisms and across differ-
ent values of λ. Within the same plan sampling mechanism,
higher λ values result in lower average discomfort. This is
because the higher λ values correspond to less cooperative
consumers, which tend to choose the plans with the lower
discomfort. Hence, the best performing sampling mechanism
regarding reducing demand peaks (Bottom Poisson), results
in one of the highest average discomfort. This phenomenon
is further studied in Figure 7, where the distribution of dis-
comfort across selected plans at the final iteration of I-EPOS
is illustrated. For instance, in Top Ranked, the discomfort
values are highly concentrated around 0, while in the Bottom

Ranked the values are concentrated around 1.19 Overall, by
changing the plan sampling mechanism from Top Ranked to
Top Poisson, Uniform, Bottom Poisson, and Bottom Ranked,
the average discomfort rises by a factor of 5.9, 0.5, 1.05,
and 0.42, respectively. Figure 6c shows the unfairness cal-
culated by Equation 4. With the exception of the Bottom
Ranked sampling mechanism, the unfairness decreases with
the increase of λ. Among the plan sampling mechanism,
the average unfairness in Top Ranked, Top Poisson, Uniform,
Bottom Poisson, and Bottom Ranked are 0.175, 0.304, 0.216,
0.137, and 0.133, respectively.

PEAK-TIME LOAD-SHIFTING
Figure 8 shows consumers’ aggregated energy demand across
different sampling mechanisms. Note that while the total
energy demand is the same in all scenarios, by utilizing the
framework, the demand is distributed more evenly across the
day. Additionally, Figure 8 illustrates the peak demand reduc-
tion capability of the framework, calculated as the percentage
of the baseline demand (λ = 1) that can be shifted away
from peak hours (5-9pm) by leveraging consumer flexibility
(λ = 0).

2) IMPACT OF INDIVIDUAL APPLIANCES ON REDUCING
DEMAND PEAKS
Figure 9 illustrates the impact of various appliances on reduc-
ing demand peaks. Overall, across all plan sampling mech-
anisms, the oven has the highest impact. After the over, the
kettle and dish washer are the next appliances with the highest
impact. This impact is attributed to a multitude of factors,
such as appliance scheduling flexibility, average duration per
usage, average usage duration per day, relative flexibility
(Table 5), energy consumption, and the number of plans in the
dataset. Table 6 ranks the appliances based on these factors,
and shows the correlation of each factor with the impact
ranking. Note that while no single factor can fully explain
the impact ranking of various appliances, relative flexibility
(0.52) and energy consumption (0.61) have the highest pos-
itive correlation to the impact ranking, while average usage
duration is negatively correlated,20 and the correlation with
flexibility is not significant. This indicates that to achieve
effective reduction in demand peaks, the demand response
programs can focus on appliances with high relative flexi-
bility and high energy consumption. Table 10 in Appendix B
illustrates the detailed numerical results of this experiment.

3) INCREASED EFFICIENCY VS FLEXIBLE
COORDINATED SCHEDULING
Figure 10 illustrates the results of scenarios (a) ‘‘Efficient
Kettle’’ and (b) ‘‘Flexible Kettle’’, defined in Section VI-C.3.
In these experiments, the upper-bound is the scenario where
none of the appliances are flexible, and the lower-bound is

19This observation supports the insight regarding differences in plan
entropy and diversity across plan sampling mechanisms (Section VII-B.1).

20As the usage of appliances with high usage duration, such as Computer,
cannot be effectively shifted in time.

119890 VOLUME 8, 2020



F. Fanitabasi, E. Pournaras: Appliance-Level Flexible Scheduling for Socio-Technical Smart Grid Optimization

FIGURE 7. Density of consumers’ discomfort across different plan sampling mechanisms.

FIGURE 8. Consumers’ total energy demand and peak-time load-shifting for different values of λ across different plan sampling
mechanisms. The collective goal is to reduce demand peaks by minimizing the variance to consumers’ total energy demand. Hence,
the more ‘‘flat’’ the energy consumption, the lower the demand variance. The vertical lines indicate peak demand time between 5-9pm,
and the adjacent percentages illustrate the peak-time load-shifting capability of the framework; calculated as the percentage of the
baseline demand (λ = 1) that can be shifted away from peak hours by leveraging consumer cooperation (λ = 0).

FIGURE 9. Impact of individual appliances on reducing demand peaks. The ‘‘Computer’’ illustrates the scenario where the flexibility of
computer schedules are set to 0. By doing so, the computer is effectively excluded from the demand response program, and so on. The
‘‘lower-bound’’ is the scenario where all of the appliances are included in the demand response program, with schedule flexibility
determined by the consumer. The ‘‘upper-bound’’ scenario is when the schedule flexibility of all appliances are set to 0.

TABLE 6. Determining factors in appliance impact on reducing demand peaks: The appliances are sorted and ranked according to various usage factors.
The total usage duration refers to scenarios where the given appliance is scheduled multiple times per day. Additionally, the ranking based on the impact
on reducing demand peaks is illustrated. The correlation between each factor and the impact ranking is calculated based on Kendall ranked correlation
coefficient [83].

where all appliances are flexible. In scenario (a), the total
energy demand decreases by 4.73%, and on average the
demand variance reduces by 2.04% compared to the upper-
bound, indicating that more efficient usage of kettles indeed
reduces demand peaks. In scenario (b), the total energy
demand remains the same. However, on average the demand
variance reduces by 29.8% compared to the upper-bound.
A critical observation here is the role of plan sampling

mechanism. In the schemes with lower consumer flexibility,
i.e., Top Ranked, Top Poisson (referred to as ‘‘Efficiency
Superior’’), the increased efficiency approach performs bet-
ter. However, in schemes where consumers are relatively
more flexible, i.e., the Uniform, Bottom Poisson, and Bot-
tom Ranked (referred to as ‘‘Flexibility Superior’’), opti-
mized flexible scheduling performs better. These results
show that in scenarios with high overall flexibility and
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FIGURE 10. Comparison of the demand variance between the efficient
kettle and the flexible kettle. Energy consumption of the efficient kettle is
based on estimated reduce in energy consumption if the consumers do
not overfill [47]. The flexible kettle is the scenario where only the kettle is
flexible and the schedule flexibility of all other appliances is set to 0. The
lower-bound is the scenario where appliances are flexible, and
upper-bound is where non of the appliance are flexible.

cooperation, flexible coordinated scheduling of appliances
can further contribute to the effective reduction of demand
peaks.

4) VARIABLE ADOPTION OF RECOMMENDED PLANS
Figure 11 illustrates the increase in demand variance,
due to the reduced adoption of recommended plans by
the consumers. Top Poisson is the most sensitive sam-
pling mechanism, as with 30% reduced participation,
the demand variance already increases by 61.83%. The
Bottom Ranked is the most resilient sampling mechanism
where the demand variance can be reduced by 16.98%
even if 40% of consumers do not adopt the recommended
plan.

VIII. SUMMARY OF THE FINDINGS
The key findings of this paper are summarized as follows:
• Consumers’ flexibility in appliance scheduling depends
on various socio-technical factors, such as the appliance
type, usage habits, and the time of the day.

• Cooperative consumers contribute energy consumption
plans with higher levels of entropy and diversity, and
also provide more flexibility to the demand response
program, thus allowing for more effective reduction of
demand peaks.

TABLE 7. Households in the REFIT dataset.

• Among the 7 appliances involved in the experiments,
the oven has the most significant role in reducing
demand peaks. Among appliance characteristics, higher
relative flexibility and energy consumption are the two
factors with the highest correlation with the impact on
reducing demand peaks.

• While increased appliance efficiency is an effective
approach to improve the grid reliability, in compari-
son, flexible coordinated scheduling can further reduce
demand peaks, especially in scenarios with an overall
high consumer flexibility.

• Decrease in consumer participation and adoption of rec-
ommended plans negatively affect the collective goal of
reducing demand peaks. However, the degree of such
effect varies among the plan sampling mechanisms, with
Bottom Ranked being the most resilient.

FIGURE 11. Impact of reduced levels of participation on the demand response program. The consumers are sorted in a descending order
according to their λ value. The n% reduced participation means that the top n percent of consumers with λ 6= 1 is changed to 1. The ‘‘no
optimization’’ regions indicate the scenarios where, due to the lack of consumers’ flexibility, no reduction of demand variance is possible.
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TABLE 8. Appliance energy consumption (kWh) for households in the
REFIT dataset. TD: Tumble Dryer, WD: Tasing machine, DW: Dish Washer.

IX. CONCLUSION AND FUTURE WORK
This paper concludes that socio-technical Smart Grid opti-
mization aiming to reduce demand peaks, is feasible by
decentralized coordination of flexible appliance-level energy
usage schedules. The findings of this paper confirm that
consumers’ flexibility in appliance usage indeed varies across
several socio-technical factors, such as applicant type, usage
habits, and time of the day. Additionally, consumers cooper-
ation and willingness to sacrifice comfort (by voluntary con-
tribution of flexibility) to improve Smart Grid stability and
reliability, greatly facilitates the reducing of demand peaks
across the day, with the oven having the highest system-wide
potential for this. Further research can address the inclu-
sion of the markets and the role of dynamic energy pricing,
such as incentive mechanisms (e.g., discounts). The proposed
framework can be evaluated in pilot tests with energy util-
ity companies to analyze the long-term improvement and
efficiency. Moreover, the framework and methodology of
this paper can be expanded to study additional appliances,
such as PV panels, electric heating, and cooling devices,
where power consumption can be adjusted as well. Lastly,
additional societal and behavioral factors, such as consumers’
environmental awareness, and carbon emissions in appliance
usage, can be included in the proposed framework to provide
a more comprehensive study.

APPENDIX A
PROFILE ASSIGNMENT TO CONSUMERS
The estimation of consumers’ appliance energy consumption
is based on the households from REFIT, illustrated in Table 7.
Based on consumers’ household information, each consumer
is assigned to one of the REFIT households. The matching is
performed using a linear scoring function:

Score = 0.533 ∗ Occupancy+ 0.267 ∗ Size

+ 0.133 ∗ Type+ 0.067 ∗ Year-built (5)

The weights are based on the importance each feature
on determining the household. The linear combination is
used for the sake of simplicity and interpretability. Though,
more complex formulations are possible. For each consumer,
the matching scores are calculated for all houses. The house
with the highest matching score is assigned to the con-
sumer. The energy consumption of consumers’ appliances
are then calculated based on the assigned house. This con-
sumption data is illustrated in Table 8. If the assigned house
does not include one of the consumers’ appliances, the next
best-matched house is used to calculate the appliance energy
consumption. The energy consumption of the oven and hob
are based on average consumption of some models available
in the market. Figure 12 illustrates the consumers’ assigned
house distribution in the collected dataset.

FIGURE 12. Distribution of assigned houses across all consumers. The
profiles are based on Table 7.

TABLE 9. Distribution of appliance schedules throughout the day. The
morning hours are between 00:00 - 08:59, mid day between 09:00 -
16:59, and evening between 17:00 - 23:59. This splitting is made based on
the common demand patters throughout the day [82].

APPENDIX B
EXPANDED EXPERIMENTS AND EVALUATIONS
Table 9 shows the distribution of appliance schedules
throughout the day. The observed usage patterns, such as
high usage of Hob around lunch and dinner times, are in
accordance with previous research on appliance usage [19].
Figure 13 and Figure 14 illustrate the results of I-EPOS exper-
iment with 5 and 100 plans per agent, respectively. The key

VOLUME 8, 2020 119893



F. Fanitabasi, E. Pournaras: Appliance-Level Flexible Scheduling for Socio-Technical Smart Grid Optimization

TABLE 10. Effect of individual appliances on demand variance. The ‘‘Computer’’ illustrates the scenario where the flexibility of computer schedules are
set to 0. By doing so, the computer is effectively excluded from the demand response program, and so on. The ‘‘lower-bound’’ is the scenario where all of
the appliances are included in the demand response program, with schedule flexibility determined by the consumer. The ‘‘upper-bound’’ scenario is when
the schedule flexibility of all appliances are set to 0.

FIGURE 13. Total demand variance, average discomfort, and unfairness
for 5 plans per agent across various plan sampling mechanisms for
different values of λ. The average λ specified by consumers is 0.48. The
λ = 0, 0.5, and 1 are set as system-wide parameters, meaning all nodes
have the same value of λ.

findings of the results illustrated in the paper, e.g., increase of
variance with with increase of λ, are observed here as well.
The higher number of plans results in lower variance, but
higher average discomfort and unfairness. Table 10 shows

FIGURE 14. Total demand variance, average discomfort, and unfairness
for 100 plans per agent across various plan sampling mechanisms for
different values of λ. The average λ specified by consumers is 0.48. The
λ = 0, 0.5, and 1 are set as system-wide parameters, meaning all nodes
have the same value of λ.

more detailed results of the impact of individual appliances
on demand variance.

APPENDIX C
DETAILED SURVEY
See Table 11.
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TABLE 11. Survey and results.
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TABLE 11. Continued. Survey and results.
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