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A B S T R A C T

Smart Cities evolve into complex and pervasive urban environments with a citizens’ mandate to

meet sustainable development goals. Repositioning democratic values of citizens’ choices in these

complex ecosystems has turned out to be imperative in an era of social media filter bubbles, fake

news and opportunities for manipulating electoral results with such means. This paper introduces a

new paradigm of augmented democracy that promises actively engaging citizens in a more informed

decision-making augmented into public urban space. The proposed concept is inspired by a digital

revive of the Ancient Agora of Athens, an arena of public discourse, a Polis where citizens assem-

ble to actively deliberate and collectively decide about public matters. The core contribution of the

proposed paradigm is the concept of proving witness presence: making decision-making subject of

providing secure evidence and testifying for choices made in the physical space. This paper shows

how the challenge of proving witness presence can be tackled with blockchain consensus to empower

citizens’ trust and overcome security vulnerabilities of GPS localization. Moreover, a novel platform

for collective decision-making and crowd-sensing in urban space is introduced: Smart Agora. It is

shown how real-time collective measurements over citizens’ choices can be made in a fully decen-

tralized and privacy-preserving way. Witness presence is tested by deploying a decentralized system

for crowd-sensing the sustainable use of transport means. Furthermore, witness presence of cycling

risk is validated using o�cial accident data from public authorities, which are compared against wis-

dom of the crowd. The paramount role of dynamic consensus, self-governance and ethically aligned

artificial intelligence in the augmented democracy paradigm is outlined.

1. Introduction

Smart City urban environments co-evolve to complex in-

formational ecosystems in which citizens’ collective deci-

sions have a tremendous impact on sustainable development.

Choices about which transport mean to use to decrease noise

levels or carbon emissions, which urban areas may require

gentrification or new policies for improving safety are some

examples in which decision-making turns out to be com-

plex and dynamic [111]. It is apparent that the 4-year elec-

toral agendas of political parties based on which they un-

fold their policies are either impractical or outdated for such

urban ecosystems. Policy-making, participation and ulti-

mately democracy requires a revisit and a digital transfor-

mation for the better of citizens.

Existing social media platforms, powered by citizens’

personal data and centralized machine learning algorithms

can isolate citizens via informational filters bubbles and ma-

nipulate them using fake information [126, 77]. Citizens of-

ten feel powerless to influence public matters and, beyond

elections, there is no established channel for their voice to

be heard in centers of decision-making [61]. Despite the

technological capabilities to engage wisdom of the crowd

for decision-making, decisions remain to a high extent top-

down and political actions do not always align with elec-

toral political agendas [62]. The rise of populism, extrem-

ism and electoral manipulations showcase the risks of demo-

cratic values in decay [56].
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To address these challenges a new digital paradigm of

augmented democracy is introduced to empower a more in-

formed, engaging and responsible decision-making augme-

nted into public urban space, where the decisions have a di-

rect impact. In this sense, augmented democracy is envi-

sioned as a digital revive of the Ancient Agora of Athens,

a public assembly of citizens for discourse, deliberation and

collective decisions-making. Witness presence has been so

far the missing but required value in digital democratic pro-

cesses: the act of intervening and testifying about the phys-

ical world as well as the undertaking of responsibility for

these actions. For instance, making the rating of tra�c con-

gestion at di�erent streets conditional to secure digital evi-

dence about the citizen’s location and speed records at these

streets is an example of proving witness presence. Validat-

ing such digital evidences without relying to a trusted third

party is a highly inter-disciplinary and complex challenge

involving research from the areas of distributed systems, se-

curity, Internet of Things, social science, mechanism design

and others [40, 106, 70, 58, 38].

The envisioned scenario is the following: Citizens nav-

igate over several urban points of interest with augmented in-

formation. They make more informed and trustworthy choices

by proving witness presence in one of these points. They

also access live updates about the collective choices made

by other citizens in relevant points of interests. This pa-

per shows how this challenging scenario can be made tech-

nically feasible and viable using secure, privacy-preserving

and decentralized information systems, e.g. blockchain con-

sensus, as well as crypto-economic design principles to in-

centivize participation, engagement, while limiting adver-

E. Pournaras: Preprint submitted to Elsevier Page 1 of 19



Augmented Democracy in Smart Cities

sary behavior. The proposed solution consists of the three

following pillars: (i) participatory crowd-sensing, (ii) proof

of witness presence and (iii) real-time collective measure-

ments. Despite the complexity and ambition level of the pro-

posed endeavor, this paper demonstrates a first prototyped

system (testnet) that integrates and deploys all three pillars.

It also illustrates a use case scenario on cycling safety that

validates the quality of information acquired via citizens’

witness presence using o�cial data from public authorities.

The role that dynamic consensus, self-governance and artifi-

cial intelligence play in the proposed augmented democracy

paradigm is discussed.

Compared to related initiatives such as online petition/vo-

ting systems [48, 44], promising participatory budgeting ini-

tiatives for more equitable and transparent distribution of re-

sources [39] as well as other e-participation approaches [134],

the proposed augmented democracy paradigm fundamentally

di�ers in the following aspects: (i) It does not rely on trusted

third parties. (ii) It can operate in real-time and is not limited

to long-term decision-making.(iii) It encourages a more in-

formed and responsible decision-making by better integrat-

ing citizens’ choices into daily life and public space. (iv) It

has a broader inter-disciplinary scope and applicability. In

summary, the contributions of this paper are outlined as fol-

lows:

• A new three-tier paradigm of augmented democracy

in Smart Cities.

• The Smart Agora crowd-sensing platform for model-

ing complex spatio-temporal crowd-sensing scenarios

of augmented decision-making.

• The new blockchain consensus concept ‘proof of wit-

ness presence’ and a study of how it is technically re-

alized.

• A review of related initiatives on digital democracy

as well as blockchain-based approaches for proof of

location.

• The concept and realization of ‘collective measure-

ments maps’ that filter out geolocated data and deter-

mine the points of interest from which data are aggre-

gated.

• A first fully-fleshed working prototype of the augmented

democracy paradigm meeting minimal requirements

set for a proof of concept.

• A use case scenario on cycling safety demonstrating

the capacity of citizens’ witness presence to match ac-

curate information from o�cial public authorities.

This paper is outlined as follows: Section 2 outlines the

theory and current practice behind digital democracy initia-

tives. Section 3 introduces the vision and challenges of the

augmented democracy paradigm that consists of three pil-

lars. The first pillar of participatory crowd-sensing is illus-

trated in Section 4. The concept of proving witness pres-

ence is introduced in Section 5 that is the second pillar of

the proposed paradigm. The third pillar of real-time collec-

tive measurements is introduced in Section 6. The evalu-

ation methodology and experimental results are illustrated

in Section 7. Section 8 discusses dynamic consensus and

self-governance as well as the role of artificial intelligence

for augmented democracy. Finally, Section 9 concludes this

paper and outlines future work.

2. Theoretical Underpinning and Related

Work

Political philosophers and democratic theorists have ar-

gued that delegating the ‘right of sovereignty’ could not be

democratic resulting in aristocracy as well as in non-political

and illegitimate state [123]. The proposed augmented democ-

racy approach suggests new pathways to diminish this del-

egation, and reclaim sovereignty at a local and community

level. The higher feasibility of a ‘renewed version of demo-

cratic representation’ based on ‘smaller, decentralized, and

distributed (o�ine and online) citizen assemblies’ is earlier

hypothesized as the means to guarantee legitimacy when rea-

ching mass participation is challenging [98, 35]. A more

localized scope in collective decision-making can also mit-

igate the trilemma of democratic reform [60]: among the

principles of political equality, mass participation and delib-

eration, promoting any of the two, hinders the third. In par-

ticular, the current online crowd-civic platforms can only ad-

dress highly engaged deliberators. As such they cannot rep-

resent well the broader population and, in this sense, guar-

antee political equality.

Earlier contemporary theory has also suggested that while

represented democracy is technically feasible, it remains an

oxymoron, in contrast to direct democracy that comes as

the norm but impractical [122]. A proposed horizontal and

acephalous political order suggests legislative power held

by multiple actors and functioning within elected and citi-

zen assemblies at multiple times and spaces. Citizens come

with both electoral rights and rights to revoke or censure

laws [51]. This approach aspires to reconcile sovereignty,

representation, and participation with the latter settling a ‘sou-

rce of stability and innovation’, while representation is the

means to collect data and knowledge for public interest [95,

122]. New opportunities arise to experimentally test novel

radical ideas that have been so far approached by researchers

on a more theoretical basis, for instance, quadratic voting [74,

10] or a more egalitarian ranking aggregation of voting so-

lutions [52, 56].

Most research e�orts on digital democracy focus on on-

line petitions, voting and the design of collaboration plat-

forms for deliberation and collective decision-making. For

instance, WeCollect [29] is a Swiss independent non-profit

platform that moderates networking of citizens, collects sig-

natures for popular initiatives and referendums including top-

ics such as refugees, basic income, energy policies and other.

Such e�orts are also observed within the Zurich Political

Participation [24] portal that administrates online petitions

and self-initiatives published in newspapers. Such e�orts
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based on online petitions fundamentally di�er from the pro-

posed augmented democracy paradigm as they are not de-

signed for real-time feedback and interactions. Instead they

aim to increase participation into existing established demo-

cratic processes and provide new representation means to

various social groups.

CONSUL [4, 97] is an open-source citizens’ participa-

tion software that supports open, transparent and democratic

governance. The software supports debates, citizen propos-

als, participatory budgeting, voting and collaborative legis-

lation. CONSUL has been extensively used by city author-

ities and organizations all over the world with several local

projects featured online [4]. Further progress of such demo-

cratic initiatives in Spain has resulted in the open-source par-

ticipation solution of Decidim [8, 41] that configures partic-

ipation spaces such as initiatives, assemblies, processes and

consultations supported by face-to-face meetings, surveys,

proposals, voting and other. More specifically, the assem-

bly spaces provide the option of geolocating periodic meet-

ings, whose composition and agenda are self-organized by

participants. These two state-of-the-art platforms as well as

DemocracyOS [11] could benefit and work in synergy with

the proposed augmented democracy solution as it can posi-

tion more e�ectively collective decision-making in citizens’

daily life and the public space they experience.

There are other platforms with a narrower scope and fo-

cus. For instance, Crossiety [5] is a startup with a mobile app

implementing social networking functionality to connect lo-

cal communities and villages. Airesis [3] is an online de-

liberation tool that manages citizens’ shared proposals and

debates. It supports temporary anonymity, secret ballot, au-

ditable voting and the Schulze voting method [113]. De-

liberatorium [9] is designed to support crowds to deliberate

and have productive discussions about complex problems.

It combines argumentation theory and social computing in

a web-based system to promote dialogue, citizens’ retention

and engagement [68]. In contrast to the aforementioned de-

liberation and other engagement platforms [18, 12, 1], the

augmented democracy approach of this paper moves a step

forward by addressing quality aspects on collective decision-

making by empowering proof of claims and testimonies in

citizens’ choices.

Crowd-sensing and citizen science initiatives can also

provide insights and empirical evidence to policy makers.

For instance, Place Pulse [20, 55, 89, 111] is a platform for

mapping and measuring quantitatively urban qualities in cities

as perceived by citizens. Such qualities include how wealthy,

modern, safe, lively, active, unique, central, adaptable or

family friendly an urban space is. Another environmental

initiative is CrowdWater [6, 114] that is designed to collect

data about the water level, soil moisture and temporary stre-

ams to predict floods and water flows. None of the above ini-

tiatives is designed for direct online decision-making, never-

theless, the domain data they harvest can be used as empiri-

cal evidence in the proposed augmented democracy paradigm.

Finally, blockchain solutions for participatory and demo-

cratic processes are subject of active research [106, 115, 10].

Agora [2] and Follow My Vote [16] rely on a decentralized

voting protocol and consensus mechanism to establish se-

cure and transparent ballots as well as voting results that

are publicly verifiable. Democracy Earth [10] focuses on a

censorship-resistant social layer on top of distributed ledgers.

It runs intersubjective consensus [127] that uses social mark-

ers to incentivize participation on the blockchain economy

and earn rights. The system is designed to deploy border-

less democracies, universal basic income mechanisms and

credit scores, without the need to sacrifice privacy. Vote-

tandem [28] is based on blockchain technology with which

Swiss citizens can supply their vote to inhabitants in Switzer-

land excluded from voting, e.g. foreigners making up 25%

of the population. However such voting solutions have not

yet integrated in the public urban space and do not focus on

a higher situation awareness in collective decision-making.

3. Augmented Democracy: Vision and

Challenges

This paper envisions a digital revive of the ancient agora

of Athens, a public cyber-physical arena of discourse, where

citizens actively assemble, deliberate and engage in informed

collective decision-making about a wide range of complex

public matters. The scenario envisioned is the following:

Individual citizens, regional communities or policy makers

crowd-source complex decision-making processes augmented

into Smart Cities, for instance, decide how to better inte-

grate immigrants, how to improve public safety or transport

means, how to deal with gentrification and others. Such pro-

cesses are designed to encourage or even enforce a more in-

formed and participatory decision-making to improve indi-

vidual/collective awareness and the quality of decision out-

comes. In practice this means that a citizen with a commu-

nity mandate to participate in a collective decision-making

process uses a smart phone and navigates in the urban en-

vironment to visit or discover points of interests with aug-

mented information. For instance, after a natural disaster,

i.e. flooding, earthquake, etc., citizens can rate the severity

of damages at di�erent locations to orchestrate mitigation ac-

tions more e�ectively. Citizens have a saying, an informed

one, backed up by evidence of witness presence in the cyber-

physical space of Smart Cities. Witness presence is an added

value on citizens’ decision-making created at a certain loca-

tion, at certain time with a certain situation awareness when

performing a certain action. Such evidence-based collec-

tive decision-making process introduces highly contextuali-

zed spatio-temporal data, whose aggregation creates a live

pulse of the city, a public good created by citizens, for citi-

zens. For instance, live updates about the severity of dam-

ages in certain areas can engage remote volunteers for sup-

port or act as warning signals for civilians to avoid these ar-

eas and protect their life.

Such a scenario of a direct augmented democracy in Smart

Cities requires data-intensive information systems playing a

key role for the viability and trust of this challenging en-

deavor. A centralized design for these critical systems can
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pose several undermining risks: (i) Existing centrally man-

aged online social media, along with traditional media, are

often carriers of unaccountable and uncredible information

that is a result of manipulative nudging and spreading of fake

news [126, 77]. The damage in the participation level and

trust of citizens on democratic processes, such as elections

and referendums, can be unprecedented [78, 63]. (ii) The

most prominent global localization service, the GPS, is cen-

trally controlled, it has several security and privacy vulner-

abilities, i.e. spoofing and jamming [120], it is not accurate

enough and has restricted coverage, e.g. indoor localization

is not feasible [93]. (iii) Collective measurements and aware-

ness via Big Data analytics rely on trusted third parties that

are single point of failure. They usually collect and store

personal sensitive data and as a result profiling and discrim-

inatory actions over citizens become feasible.

This paper claims that in principle any digital democ-

racy paradigm cannot remain viable in the long term unless

the management of information systems is democratized. As

democracies cannot properly function even with benevolent

totalitarian forces, similarly, centralized information systems

for governance, however well they perform and simple to

manage, they can always be subject of manipulation and mis-

use in such a critical service for society.

The positioning of this paper is that decentralized infor-

mation systems, particularly distributed ledgers, consensus

mechanisms and crypto-economic models, can by used to

design a more informed and participatory collective decision-

making as shown within the three pillars of Figure 1. This is

possible by introducing the concept of witness presence as a

consensus model for verifying location and situation aware-

ness of collective decision-making in Smart Cities.

Each pillar involves a technical challenge addressed in

this paper: (i) How to design a general-purpose crowd-sensing

system for the Internet of Things to reason about the qual-

ity of decision-making in public space. (ii) How collective

decision-making can be made conditional of proving witness

presence using blockchain consensus to empower trust. (iii)

How to access real-time spatio-temporal collective measure-

ments made in decentralized and privacy-preserving way as

a result of witness presence. The rest of this paper illustrates

each of the three pillars in the proposed framework of aug-

mented democracy.

4. Participatory Crowd-sensing

At the foundations of the framework lies the award-win-

ning1 platform of Smart Agora, a pillar that empowers citi-

zens to (i) visually design and crowd-source complex decision-

making processes augmented in the urban environment as

well as (ii) make more informed decisions by witnessing the

urban environment for which decisions are made. Figure 2

outlines how an augmented democracy project is modeled2.

Decision-making processes are designed in a visual and

1Smart Agora has been part of the Empower Polis project that won the

1st prize at the ETH Policy Challenge [14].
2The modeled entities follow the concept of Hive [17].

Figure 1: An augmented democracy paradigm for Smart Cities
consisting of three pillars: (i) Crowd-sensing is performed
within participatory witness presence scenarios of augmented
reality in public spaces. (ii) Proof of witness presence is per-
formed by securely verifying the location and the situation
awareness of citizens without revealing privacy-sensitive infor-
mation. (iii) Real-time and privacy-preserving collective mea-
surements are performed, subject of witness presence.

Figure 2: Modeling a crowd-sensing project with Smart Agora.
A project consists of one or more assets, tasks, and assign-

ments. (i) An asset defines complex crowd-sensing processes
and consists of configurations about the point of interests, the
questions and the collected sensor data. (ii) A task stores and
manages the collected citizens’ data as defined by an asset.
(iii) An assignment links together an asset and a task and
launches the crowd-sensing process by selecting candidate cit-
izens for participation. In this visual example, Task 1 results
in crowd-sensing data from the Assignment 1 of Asset 1 to a
sample of the population. In contrast, Task 2 is the result of
Assignment 2 of Asset 1 to a different population sample as
well as Assignment 3 of Asset 2 to the whole population.

interactive way as follows: A number of points of interest

are determined in an interactive map as shown in Figure 3a.

Each point of interest hosts a number of questions3 that citi-

zens can answer on their smart phone if and only if they are

localized nearby the point of interest (see Figure 3b). An el-

lipse [64] with configurable size is determined around each

moving citizen. Localization is performed when a point of

interest falls in the ellipse, triggering an event that prompts

citizens to answer questions on their smart phone based on

what they witness in the public urban space they are located

3Radio, checkbox, likert and text box questions are currently supported.
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(a) Determining augmented point of interests with survey questions.
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(b) The Smart Agora App

Figure 3: The Smart Agora software platform.

that moment.

Points of interest can be given by an oracle [82, 84],

i.e. a policy maker running a specific voting campaign, or

they can be crowd-sourced to communities based on crypro-

economic incentive models. For instance, FOAM [30] relies

on token curated registries [107, 58] that realize economic

and reputation incentives for citizens to play the role of car-

tographers and contextualize crypto-spatial coordinates4 with

meta-information.

Each question as well as their possible answers can be

incentivized with rewards in the form of di�erent crypto-

currencies, i.e. utility tokens used for a value exchange re-

quired to run and incentivize the augmented democracy pa-

radigm. For instance, tokens created by a city council to

incentivize participation in a crowd-sensing project for im-

proving the quality of public transport can be collected and

used by citizens to purchase public transport tickets. Simi-

larly parking away from crowded city centers can be incen-

tivized with tokens that can issue discounts in nearby shops.

Sensor data can also be periodically collected and used for

supporting the two above pillars in Figure 1, i.e. sensor fu-

sion to prove claims of witness presence [129] or aggrega-

tion measurements over sensor data can be performed to in-

crease collective awareness [102].

A decision-making process can be designed in three nav-

4On-chain and o�-chain verifiable location information of FOAM con-

sisting of a geohash and an Ethereum smart contract address. It can approx-

imate resolution of one square meter that allows a maximum of 500 trillion

unique addresses.

igation modalities: (i) Arbitrary–the points of interests can

be arbitrary visited by citizens. Questions are always trig-

gered whenever citizens visit a new point of interest. (ii) Se-

quential–A sequence is determined for visiting the points of

interests. Only the questions of the next point of interest can

be triggered, imposing in this way an order. (iii) Interactive–

The next point of interest is determined by the answer of the

citizen in the current point of interest. The latter modality

can serve more complex decision-making processes as well

as gamification scenarios.

5. Proof of Witness Presence

Witness presence provides an added value in participa-

tory decision-making [75, 91]. Witnessing public happen-

ings and the complex urban environment of Smart Cities

empowers a Polis of active citizens that can directly influ-

ence real-world by intervening and testifying instead of re-

maining passive spectators of a reality for which others de-

cide, a limitation of current representative democracies. Ul-

timately, witness presence is about encouraging the taking of

responsibility on spot, a requirement for a viable democracy.

While witness presence can be seen as a political statement,

it is actually a highly complex techno-socio-economic prob-

lem in the context of the proposed augmented democracy

paradigm: Proving of being present at a certain location,

at a certain time with a certain situation awareness in or-

der to perform certain actions, while having the incentive to

participate. Section 5.1 and 5.2 review blockchain consen-

sus models for location proofs and social proofs respectively.

Section 5.3 also illustrates their synthesis into a blockchain

consensus network for proving witness presence.

5.1. A review on proof of location
At the core of witness presence lies proof of location that

is the secure verification of a citizen’s spatial position. It re-

quires accurate estimation of distances or angles of signals

exchanged between wireless transmitting devices. These dis-

tances are calculated by measuring signal attenuation or sig-

nal propagation times. Techniques of the former, i.e. Re-

ceived Signal Strength Indicator (RSSI) [88], are common

but do not provide accurate estimates, while techniques of

the latter, i.e. Time of Flight (ToF) with algorithms based

on triangulation, trilateration or multilateration, require syn-

chronized clocks to eliminate clock drifts of the oscillators [50].

For example, the Global Positioning System (GPS) relies on

high-precision atomic clocks on satellites that synchronize

with centralized master control stations on the ground. Re-

cently, decentralized algorithms for Byzantine fault-tolerant

clock synchronization have been studied [85, 72]. These al-

gorithms run by autonomous interactive wireless receivers

and transmitters, i.e. beacons, that self-determine via their

communication the geometry of their zone coverage with-

out third parties. By reaching an agreement about a com-

mon time5, specific locations can be accurately detected via

trilateration [86].

5Not necessarily a UTC time unless some oracle information is used.
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Table 1

A comparison of blockchain-based approaches for proof of location based on criteria that
can make the augmented democracy paradigm more viable.

Approaches GPS [93] Mobile Cellular Network [125] LPWAN [30] P2P Ad Hoc Networks [40]

Infrastructure-independent No No No Yes

Decentralization Low Low Medium High

Access Open Closed Open Open

Management Governmental-level Enterprise-level Community-level Self-organized

Disaster Resilience Medium Medium Medium High

Coverage Range Global National Urban Localized

Indoor Coverage No Yes Yes Yes

The proof of location required for the proof of witness

presence can be achieved with various trade-o�s using one

or more of the following infrastructures: (i) GPS, (ii) mo-

bile cellular network, (iii) low power wide area network (LP-

WAN) and (iv) peer-to-peer ad hoc (opportunistic) networks

consisting of several di�erent Internet of Things devices such

as smart phones, static beacons, wearables, wireless access

points, etc. Table 1 summarizes a comparison of the block-

chain-based approaches for proof of location.

On the one hand, GPS is a free service with planetary

coverage and as such it can be easily used by a Smart Agora

application for outdoor localization, as the current proto-

type supports. Similarly, GeoCoin relies on GPS for the

location-based execution of smart contracts [93]. However,

GPS is a single point of failure, it is highly susceptible to

fraud, spoofing, jamming and cyber-attacks, it does not pro-

vide any proof of origin or authentication and therefore it is

unreliable by itself to prove claims of locations. Moreover,

GPS cannot provide indoor localization, it underperforms in

high density urban environments, i.e. increased signal mul-

tipath, and its energy consumption is prohibitive for low-

power devices. Such vulnerabilities have been prominently

identified in smart watches6 as well as in military cyber-

attacks a�ecting thousands of civilian ships [31]. Despite

these limitations, there is active research on building secure

and privacy-preserving localization solutions based on GPS

by introducing additional protocol and security mechanisms,

for instance, GPS-based active crowd localization based on

digital signatures and bulletin boards applied for tracking

lost items [34, 131].

Mobile cellular network providers have been earlier pro-

posed to act as oracles to submit positioning information to

smart contracts that verify whether such positions are in-

cluded into virtual borders referred to as geofences [125].

Such geofences are represented by location encoding sys-

tems, for instance, Geohash and S2, that are hierarchical, i.e.

they can model di�erent cells at di�erent resolution level. A

geofence can be used by a local community to self-regulate

6Such vulnerabilities have been demonstrated by a German security re-

searcher after a smart watch vendor ignored vulnerability reports for more

than a year, leaving thousands of GPS-tracking watches open to attack-

ers [19].

its (i) decision-making territory and (ii) crypto-economic ac-

tivity resulting from the incentivized participation in decision-

making. The former determines the validation territory of

witness presence claims. The latter determines the geographic

areas in which transactions are permitted with collected to-

kens. For instance, Platin aspires to support such crypto-

currencies for humanitarian aid use cases [32]. To control

transaction costs for the execution of smart contracts, local-

ization can be performed with di�erent schemes: at regular

time or distance intervals, on demand or upon violation of a

citizen’s presence in a geofence. Localization via mobile cel-

lular networks can only though take place within the covered

area of the mobile operator and global coverage requires spe-

cial roaming service and collaboration between di�erent mo-

bile network operators. An alternative approach to overcome

this limitation is to allow cellular towers of any mobile net-

work to provide secure location services for the blockchain.

Such an approach is earlier introduced. It involves cellular

towers with a well defined location that issue location cer-

tificates and participate in mining location proofs. Trust is

achieved using cryptographically signed IP packets [54].

An alternative infrastructure to the proprietary and closed

networks of mobile operators is the use of Low Power Wide

Area Networks that allow access to an unlicensed radio spec-

trum [108]. LPWAN provide the following alternative trade-

o�s: long range, low power operation at the expense of low

data rate and high latency. For instance, The Things Net-

work [26] builds a global open LoRaWAN network of 7231

gateways in 137 cities run by local self-organized commu-

nities providing extensive coverage in urban environments.

FOAM intends to use this decentralized open infrastructure

for secure location verification enforced by smart contract

safety deposits. Proof of location is performed within a zone

(community operator) defined by at least four zone author-

ities (radio gateways) each managing a number of zone an-

chors (radio beacons). A zone anchor is a device with a ra-

dio transmitter, a local clock and a public key. It is capable

of engaging in a Byzantine fault-tolerant clock synchroniza-

tion protocol [85]. Zone anchors perform triangulations and

verify claims of presence via authentication certificates that

are fraud proof. A zone authority is a node with an Internet

connection that determines whether the zone anchors are in
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sync.

All of the above solutions among others [69, 71, 80] re-

quire additional special infrastructure. Mobile cellular net-

works and LPWAN may be unavailable or underperformimg

in cases of natural disasters and unpredictable high-density

mobility patters. In these scenarios, an alternative infrastru-

cture-independent and decentralized approach is the use of

peer-to-peer ad hoc (opportunistic) networks formed by self-

organized citizens’ devices running decentralized secure pro-

tocols based on blockchain proof of stake consensus mech-

anisms [40]. Proofs of location are performed between wit-

nesses and a prover, whose Bluetooth interactions verify the

identities of the involved devices as well as whether the lo-

cation claims of each device are reachable within the ra-

dio coverage supported by the communication technology

of the devices. Spatio-temporal mobility patterns of users

may influence the verification process and additional mea-

sures of verification may be required, for instance, analysis

of betweeness in pseudonym correlation graphs [132] or so-

cial tracking distance metrics [131]. Periodically changing

the device identifiers according to a Poisson distribution pre-

vents the reveal of real identities by observing location proof

records [132].

5.2. Situation awareness and proving witnessing
A few blockchain approaches combine network-based with

social-based proof of location [83, 32, 129]. For instance,

on-chain location claims at Platin consist of a public key and

a proof of correctness. In practice this is the output of one

out several locally executed algorithms that validate location

information based on the following three security pillars: (i)

sensor fusion, (ii) behavior over time and (iii) peer-to-peer

witnessing. Sensor fusion relies on multiple sources of sen-

sor data, i.e. GPS, wireless access points, cell tower and

Bluetooth oracles, for validation of location claims. Behav-

ior over time reasons about any behavioral anomaly that in-

dicates spoofing. Data-driven verification can be localized

to preserve privacy by design and prevent turning proofs of

witness presence to surveillance actions that can actually un-

dermine and manipulate democratic processes [65]. Peer-to-

peer witnessing using ad hoc opportunistic networks can be

used as an additional counter-measure to testify for attackers

that may replay sensor fusion or report fake behavior over

time.

Proofs of witness presence verify the situation awareness

required for a more informed collective decision-making.

For instance, assume a crowd-sensing collective movement

for a spatio-temporal safety assessment of bike riding in a

city. Citizens rate the safety of di�erent points of interests

in the city based on which new data-driven policies can be

designed to encourage the further safe use of bikes and the

improvement of the infrastructure, i.e. new bike lanes. Mak-

ing safety rating on the points of interest subject of prov-

ing witness presence can potentially improve the rating qual-

ity and as a result the e�ectiveness of a new designed pol-

icy. Beyond citizens proving their location, proving bike

riding experience, on spot or elsewhere, indicates a situa-

tion awareness with an added value and a higher potential for

a more e�ective policy. Verification can be performed on-

chain or o�-chain using witnesses, sensor fusion, i.e. anal-

ysis of GPS/accelerometer data, or even oracles, i.e. a bike

sharing operator.

Other means to verify witness presence include the fol-

lowing: Contextual QR codes [109], challenge questions,

puzzles and CAPTCHA-like tests [22], whose solutions re-

quire information mined at the point of interests. In addition,

collaborative social challenges [43, 36] between citizens are

means to introduce social proofs based on social psychol-

ogy as well as community trust for protection against social

engineering attacks [112]. Moreover, communities can also

institutionalize their own digital witnesses based on privacy-

preserving forensic techniques introduced in the context of

blockchain [121, 92].

5.3. Blockchain and consensus network
Figure 4 illustrates the blockchain-based Internet of Things

architecture with which witness presence claims are veri-

fied. The architecture is a layered one, starting from the

physical public space where localization in points of inter-

est is performed by wireless beacons using solutions such

as the ones reviewed in Table 1. Proofs of location can be

augmented with one or more layers of social proofs using

methods outlined in Section 5.2. Full nodes with compu-

tational power and an Internet connection participate in the

consensus network to further verify and cross-check the ad-

herence to protocol rules across the local nodes at each point

of interest. Verified witness presence claims are written to

the blockchain. They are a result of location proofs, so-

cial proofs and protocol adherence proofs performed over

the layered architecture.

The properties of blockchain consensus for proving wit-

ness presence are outlined as follows: (i) Validator set: The

validators of presence claims depend on the adopted approach

from Table 1. For instance, approaches such as LPWAN

and Peer-to-peer (P2P) Ad Hoc networks that rely on dis-

tributed networks of wireless beacons determine their val-

idator set based on their physical distance. Communication

constrained by physics result allows the validators in close

physical proximity to verify location claims around a point of

interest [70]. This set of validators can be further expanded

with nodes for proof of stake. Such nodes hold a public key

and stake a deposit token to validate social proofs. (ii) Val-

idator weight: The number of staked tokens can be used as

a weight. However, other (reputation) criteria related to the

level of participation and democracy could be engaged [128,

79, 57]: to what extent a geographic region decides public

matters via witness presence, the level of legitimacy of wit-

ness presence in a region, and other. (iii) Validator criteria:

Proof of work solves a cryptographic puzzle that verifies the

validity of a block (its nonce number) when its hash value

is lower than a di�culty threshold: sha(nonce)<difficulty.

In contrast, proof of witness presence requires matching the

signature to the validator set, meeting the minimum stake

requirement and having no slashing conditions, e.g. Byzan-
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Figure 4: A blockchain-based Internet of Things architecture
for proving witness presence. Points of interest in an urban
physical space can be determined by the transmission cover-
age zone of wireless beacons that act as secure location ser-
vice providers using triangulation and Byzantine fault-tolerant
clock synchronization [85]. Presence claims can be further
supported by social proofs on spot that verify the situation
awareness of citizens in collective decision-making. Witness
presence claims are further verified in a blockchain consensus
network that consists of (full) nodes with Internet connection.
They verify whether the rules for location and social proofs are
fulfilled. Location accuracy can be traced and checks for fraud
can be performed, for instance, comparing location claims from
different adjacent points of interest to verify whether clocks are
actually in sync. Verified witness presence claims are finally
written to the blockchain based on which a more responsible
participation in collective decision-making can be authorized.

tine fault-tolerant clock synchronization is successfully per-

formed for proving presence claims [85]. Verification rules

for robust spatio-temporal data can be further engaged here [90,

47]. (iv) Validator verifiability: For presence claims, signed

receipts of all clock synchronization messages received and

synced to the chain are required. The limits of transmission

coverage restrict the receipt of such messages from valida-

tors within the proximity of a point of interest [70]. Social

proofs require keeping the chain synced to verify that other

validators have staked and belong to the validator set.

In terms of the crypto-economic incentive model, a util-

ity token [42] can be used to reward (i) citizens and commu-

nities for introducing localization infrastructure for location

proofs, (ii) the establishment of social proofs in points of

interests for proving social claims, or (iii) the use computa-

tional resources for validation of the witness presence claims

in the consensus network. The rewards include minted new

tokens and transaction fees according to the protocol rules

enforced by the network itself that punishes adverse behav-

ior. In all these cases, permissionless participation requires

staking that is the commit of a deposit token value, while

faults resulting in violations of the protocol rules (slashing

conditions) result in penalties. These are usually magni-

tudes higher than the anticipated short term rewards. There-

fore, the entry cost, existence cost and exit penalty can make

proofs of witness presence resistant to Sybil attacks [96, 90,

47]. Note that citizens who make witness presence claims

require to pay a fee to witness presence service providers

of the local community7 in the same utility token, another

token or fiat money. These fees reward the further develop-

ment and maintenance of the infrastructure, i.e. supporting

witness presence in new points of interest, improving the

localization accuracy, increasing the bandwidth allocation,

augmenting further the points of interest with social proofs,

etc. Citizens may have a self-interest to reward such partici-

patory processes directly from their own funds as the means

to improve direct democracy and give themselves a stronger

voice on public matters. Such funds may also originate by

state authorities incentivized to improve the legitimacy of

collective decision-making in the same way that such funds

are reserved for conducting elections, e.g. running voting

centers. In other words, witness presence turns points of in-

terests into are a new type of digital voting centers for aug-

mented decision-making available at any time and location.

The transaction costs of proving witness presence claims

are dependent on mobility patterns and the density of the

witness presence claims made by citizens at each point of

interest. They also depend on the available radio beacons

covering a point of interest as such devices have physical

constraints on the rate of messages they can process. The

feasibility of permissionless Byzantine consensus protocols

to operate in real-time over wireless networks is recently

demonstrated [70]. Benchmark measurements of transac-

tion latency are available in earlier work based on which

the choice of inter-block time, the number of confirmation

blocks and process-level changes can be tuned [130]. Smart

contracts can be designed to load-balance transaction costs

between location proofs and social proofs: within a large

crowd concentrated on a point of interest, social proofs may

prove to be more reliable that location proofs made by over-

loaded radio beacons. Moreover, further performance im-

provements can be achieved via a hierarchical Plasma design

7These are the nodes performing the localization and the social proofs.

Therefore, no service fee needs to be payed to a central authority.
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that splits the blockchain into parent-child chains [99, 133,

15]. A child chain is constructed for each point of interest

running synchronous consensus for clock synchronization.

In contrast, a parent chain holds the staked tokens and the

smart contracts that represent the di�erent child chains. The

parent chain may rely on an asynchronous consensus net-

work in Ethereum such as Nakamoto in the case of proof of

work or Casper in case of proof of stake [76, 15, 42].

A self-sovereign identity management system [94] can

be used to authenticate citizens’ actions in the proposed per-

missionless distributed ledger, i.e. verifying the actual citi-

zen who issued a witness presence claim to prevent double

participation that can influence the result of collective deci-

sions [73]. Moreover, the information provided to the smart

contracts for social proofs can be further used for multi-factor

authentication [110, 33, 116]. Identity management services

do not need to rely on third parties and several such ser-

vices are earlier proposed and reviewed [81]. In particular,

UniquID [27] is an identity and access management service

for the Internet of Things that is open-source, permission-

less and relies on Ethereum [81]. LifeID is another self-

sovereign digital identity platform with which citizens con-

trol all transactions that require authentication of their iden-

tity without the need for third-party corporations or govern-

ment agencies. Zero-knowledge proofs are applied and the

minimum data required for verification are shared [124].

6. Real-time Collective Measurements

Real-time collective measurements are the aggregation

of citizens’ crowd-sensing data, e.g. decisions, made as a

result of witness presence. The computation of aggrega-

tion functions, e.g. summation, mean, max, min, standard

deviation, are some examples of such collective measure-

ments. They can be used as follows: Citizens receive real-

time crowd-sensing information. A collective awareness is

built that is used as live feedback for future crowd-sensing

decisions, i.e. the feedback loop in Figure 1. Collective

measurements may encourage or discourage witness pres-

ence, for instance, a warning system that guides authorities

to mitigate a physical disaster in certain points of interest,

while citizens are instructed to avoid dangerous ones.

A transparent and reliable system for collective measure-

ments is paramount for building collective awareness and

trust among citizens, both required for a viable augmented

democracy paradigm. Existing centralized polls and social

media often fail to provide reliable and trustworthy infor-

mation and are often subject of citizens’ profiling over col-

lected personal data, nudging and political manipulation [59,

126, 77]. Instead, the computations required for aggrega-

tion can be crowd-sourced to citizens using their personal

devices or computational resources of communities in a sim-

ilar fashion as the diaspora* social network [45] or Scuttle-

butt [23, 118]. Although decentralized computations for ag-

gregation are more privacy-preserving by design using dif-

ferential privacy and homomorphic encryption techniques,

their accuracy requires significant self-adaptations to cope

with the following: (i) continuous data streams as a result of

changes in decision-making, (ii) a varying spatio-temporal

participation level as well as (iii) (Byzantine) failures.

The relevance of these challenges in the augmented democ-

racy paradigm is the following: Citizens revisiting a point

of interest in the future may reevaluate an urban quality trig-

gering recomputations of the aggregation functions to reflect

changes on the input crowd-sensing data. The decision of a

citizen updates the aggregation functions as long as witness

presence is proved. If witness presence cannot be verified

anymore, corrective rollback operations on the aggregation

functions are performed to reflect the latest status of partic-

ipation. Similarly, any failure that cannot guarantee a cor-

rect execution of the aggregation protocol shall be treated

as a failure to verify witness presence and therefore, correc-

tive operations with rollback operations are performed in this

case as well. In summary: collective measurements provide

a live pulse of a crowd, whose localization at points of inter-

est is verified for witness presence.

A possible feasible decentralized approach to realize this

ambitious concept is the use of DIAS, the Dynamic Intelli-

gent Aggregation Service [7, 102]. DIAS is a network of in-

terconnected agents deployed in citizens’ personal devices or

in computational resources of regional communities around

points of interest. Agents perform a gossip-based commu-

nication to disseminate crowd-sensing data used as input in

aggregation functions computed locally by each agent. The

agents of DIAS are self-adaptive and can update the aggre-

gates in an automated way when input data change as well

as when agents join, leave or fail [100, 101]. They have this

capability by reasoning based on historic data in a privacy-

preserving way. Reasoning relies on a distributed memory

system that consists of probabilistic data structures, the Bloom

filters [102]. In simple words and practical terms, the mem-

ory system can reason whether the choice a citizen has changed

at a point of interest. It can also reason on whether a citizen

visits again or leaves a point of interest. Further technical

information about DIAS is out of the scope of this paper and

readers are referred to earlier work [102, 100, 101].

Collective measurements can be made conditional to dif-

ferent witness presence scenarios that are referred to as col-

lective measurements maps. Two types of such measure-

ments maps are introduced as an illustrative example: (i)

distributed and (ii) localized.

In the distributed measurements maps, aggregation func-

tions receive the input data of citizens, who prove witness

presence in one out of several possible points of interest.

In other words, a logical disjunction (OR) determines the

proof of witness presence at one possible point of interest as

the required condition to participate in the collective mea-

surements. This measurements map is relevant for federated

democratic processes of regional communities, for instance

collective decision-making in the spatial context of multi-

ple university campuses, i.e. an ‘eduroam’ version of aug-

mented democracy. Figure 5a-5d illustrate the augmented

democracy paradigm with a distributed measurements map.

In localized measurements map, aggregation functions
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(a) A snapshot of citizens moving around with their smart phones
to visit augmented points of interest.

(b) Each point of interest has a verified number of citizens proving
their witness presence.

(c) Citizens are interconnected in a decentralized network of gossip-
based communication over which collective measurements, i.e. data
aggregation, can be performed.

(d) Collective measurements are exclusively performed between the
citizens with a proof of witness presence.

(e) Regional community A (f) Regional community B (g) Regional community C (h) Regional community D

Figure 5: An illustration of the augmented democracy paradigm. Distributed measurements map in Figure 5a-5d: Collective
measurements are performed by proving witness presence at one out of several possible points of interest. Localized measurements

map in Figure 5e-5h: multiple localized collective measurements are performed by proving witness presence at a certain point of
interest.

receive citizens’ input data by proving witness presence at a

certain point of interest. This measurements map is relevant

for local regional communities that use their own compu-

tational resources to run their own collective measurements

and make them available to their local citizens. Figure 5e-

5h show an example. For each point of interest, aggregation

is restricted between the localized citizens proving witness

presence.

The two proposed collective measurements maps are not

the only options and more complex witness presence logic

can be designed. For instance, semantic collective measure-

ments can run by two DIAS networks aggregating crowd-

sensing data at points of interest corresponding to (i) tram

stations and (ii) bus stations respectively.

The communication complexity of such real-time collec-

tive measurements exclusively depends on the updates of the

input data in the aggregation functions. Such updates are

triggered by (i) changes of the input data and (ii) join and

leaves of nodes in the network that result in new input data

or data removals. The influence of such updates in the ag-

gregation accuracy is studied in earlier work [102, 100, 101].

In the augmented democracy paradigm, the following fac-

tors influence the trigger of such updates: (i) A higher num-

ber and density of the points of interest in which witness

presence can be verified (joins/leaves) is likely to cause a

higher number of input data updates and as a result higher

communication cost. This is especially the case for the dis-

tributed measurements maps. (ii) The citizens’ mobility pat-

terns over the points of interests. More frequent witness

presence claims in the di�erent points of interest result in

higher communication cost.
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7. Evaluation Methodology and Results

Evaluating the end-to-end integrated functionality of the

whole augmented democracy paradigm illustrated in Sec-

tion 3 is a challenging endeavor. This requires a rigorous

extensive evaluation of each proposed pillar that is subject

of active ongoing work [104]. Such detailed evaluation does

not fall within the scope and objectives of this paper. To

overcome the aforementioned challenge and come with a

very first proof of concept, a simple yet fully-fleshed ex-

perimental testnet scenario is designed with the following

requirements: (i) A realistic Smart City use case for par-

ticipatory crowd-sensing. (ii) Proof of witness presence in

two points of interest based on GPS. (iii) Real-time collec-

tive measurements in distributed measurements maps over

a small crowd of test users with di�erent realistic mobility

patterns.

Moreover, the quality of information collected based on

citizens’ witness presence is validated using empirical o�-

cial data from public authorities. More specifically, an ap-

plication scenario of cycling safety in Zurich is studied, in

which the perception of bike riders about the cycling safety

in di�erent urban spots is compared to an empirical safety

model built using o�cial data of the Federal Roads O�ce

collected from Swiss GeoAdmin [25, 49]. If the two safety

estimations match, then this is indication that witness pres-

ence in participatory crowd-sensing can indeed provide in-

formation quality comparable to the o�cial but costly data

collection methods.

7.1. Experimental testnet scenario
A testnet scenario on sustainable transport usage is in-

troduced to address the first requirement for a proof of con-

cept. The testnet scenario ran for about one hour on 3.6.2019

between 13:00-14:00 in Zurich. The goal of the testnet sce-

nario is to assess the preferred transport mean with which

citizens visit a place they witness. Such a use case is relevant

to transport engineers, who work with travel diaries. While

travel diaries are modeled based on traditional, costly and in-

frequent survey questions, the pervasiveness of the Internet

of Things promises new opportunities for more realistic and

real-time data collection based on which future tra�c flow

models can rely on [53, 105]. Similarly, city councils can es-

tablish new policies and incentives for citizens to make use

of more sustainable transport means.

This use case assumes a linear model of sustainability

over six transport means: 0. Car, 1. Bus, 2. Train, 3. Tram,

4. Bike, 5. Walking. These transport means are common

in Zurich and usually a destination can be reached fast with

several di�erent transport means. Car comes with the mini-

mum sustainability value of zero, while walking comes with

the maximum sustainability of 5. Although this linear model

is an oversimplification over several involved sustainability

aspects such as environment, health, safety, social and other,

it is intuitive and straightforward to engage test users as well

as interpretable. Therefore, the purpose of the use case is to

serve the realism of the testnet scenario rather than collect-

ing use case data for a rigorous analysis.

(a) Localization. (b) Aggregation.

Figure 6: Assessing the preferred transport mean to reach a
witnessed point of interest in terms of sustainability. Localiza-
tion triggers a question followed by live collective measuments
received from other test users localized to other points of in-
terest.

The second requirement is met by designing a decision-

making process in Smart Agora for the testnet scenario. The

test users make a choice via a likert scale question that pops

up in the Smart Agora app when they are localized at a point

of interest as shown in Figure 6a. Such a question is part

of six crowd-sensing Smart Agora assets created for six test

users, who are equally split into two groups.

To meet the third requirement, each crowd-sensing as-

set is designed in the sequential navigational modality with

two points of interest visited in reversed order among the

two groups to assess the distributed measurements maps of

DIAS, i.e. choices of test users are aggregated in real-time

from two di�erent remote points of interest. Figure 7 il-

lustrates the designed experimental scenario. Note that the

depicted walking path is the calculated Google Maps path

rather than the one that test users followed8. The actual

traces collected with Smart Agora within the localization cir-

cles are shown in Figure 10 of Appendix A.

To make sure that multiple test users are localized si-

multaneously in di�erent points of interest, a requirement

to evaluate the distributed measurements maps, a common

starting point is chosen, the building of the Chair of Com-

putational Social Science at ETH Zurich, which falls in close

proximity between the two points of interest: (i) Zurich Haupt-

bahnhof that is the main station of the Zurich city center

and (ii) ETH Zurich Hauptgebaüde that is the main build-

ing of ETH Zurich. Both groups start their navigation at the

same time, i.e. mimicking two swarms. This makes the par-

8Group 1 has followed a shortcut on the way to ETH Zurich Hauptge-

baüde by using the Polybahn [21].
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Figure 7: An overview of the testnet scenario: Two groups
each with three test users visit in reversed order the two point
of interests of (i) Zurich Hauptbahnhof and (ii) ETH Zurich
Hauptgebaüde starting from Stampfenbachstrasse 48, 8092,
Zurich, where the Chair of Computational Social Science of
ETH Zurich is situated. Group 1 (Orange) visits first Zurich
Hauptbahnhof and Group 2 (purple) visits first ETH Zurich
Hauptgebaüde. Each unique localization to one of the points of
interest triggers for a test user a question for assessing sustain-
able transport usage. While a test user remains localized, live
collective measurements among all other localized test users
are received. The three nested circles around each point of
interest visualize the three different ranges of localization that
each group member has: 50, 100 and 150 meters.

ticipation of the test users in the experimental process sim-

pler. However, this localization synchronicity is an undesir-

able experimental artifact as in reality mobility patterns dif-

fer among citizens. To limit the synchronicity e�ect, each

user has a localization circle with di�erent radius value: 50,

100 or 150 meters. The circle, instead of an ellipse, is used

here for simplifying the analysis and interpretability of the

localization traces.

Figure 8 illustrates the accuracy of the collective mea-

surements for each group and test user. The estimates of the

average transport sustainability that each test user receives

approximate well the actual values. Note that users with

higher localization radius receive aggregate estimates earlier

and they have a larger9 time span during which the receive

collective measurements.

Table 2 shows the choices of transport means made by

each test user at each point of interest. Overall, none of the

more unsustainable transport means, i.e. car, bus and train,

are chosen by test users to visit the points of interest. Walk-

ing and tram are the most popular means given that ETH

Zurich and the main train station are very well connected

with tram and are in close proximity with each other. The

mean sustainability of 4.17 for ETH Zurich Hauptgebaüde

is slightly higher than the one of 3.8 at Zurich Hauptbahn-

hof.

9Localization circles with lower size in which test users do not remain

for enough time may result in missing the receipt of collective measure-

ments as observed in the second group at the Zurich Hauptbahnhof point of

interest.
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(b) Group 2.

Figure 8: Accuracy of real-time collective measurements dur-
ing the testnet scenario on 3.6.2019 between 13:00 and 14:00
for 6 users split in 2 groups. The aggregation function cal-
culated is the average transport sustainability among all test
users localized in one of the two point of interests of Zurich
Hauptbahnhof and ETH Zurich Hauptgebaüde.

Table 2

Transport sustainability responses for the two points of inter-
est.

Group Test User Zurich Hauptbahnhof ETH Zurich Hauptgebaüde

1 1 5. Walking 3. Tram

1 2 3. Tram 5. Walking

1 3 5. Walking 5. Walking

2 1 3. Tram 4. Bike

2 2 3. Tram 5. Walking

2 3 4. Bike 3. Tram

Mean: 3.8 4.17

7.2. Witness presence for cycling safety
The cycling accident risk of the route in Figure 9b is stud-

ied that consist of four urban spots in Zurich. The risk esti-

mation of this route is derived by a continuous spatial risk es-

timation model of the Zurich area that uses kernel density es-

timation with input the road network, geolocated accidents,

their severity, and insurance compensation information [49].

The exact design of the model is out of the scope of this pa-

per and the estimated risk values are used here as a baseline

for comparison. In particular, this route is chosen for its ex-

treme risk gradient observed around its circumference, with

high risk at the top of the route and relative low/medium risk

elsewhere as shown in Figure 9a. The actual risk values of

the four urban spots are depicted in Figure 9b, while Fig-

ure 9c, 9d, 9e and 9f illustrate images from the four spots.

Note that each risk value of the urban spots is the mean risk

value of the road section leading to this spot.

The sequence of the actual cycling risk values across

the four urban spots is the baseline for comparison to the
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(a) Selected route from the risk map es-
timated from officially reported accident
data [49].

(b) Cycling route and
the risk in four urban
spots.

(c) Spot A with
risk value of
1.36.

(d) Spot B with
risk value of
0.42.

(e) Spot C with
risk value of
6.21.

(f) Spot D with
risk value of
8.31.

Figure 9: The setup for crowd-sensing cycling safety. The
empirical cycling risk values derived from the Federal Roads
Office official data of Swiss GeoAdmin [49] are compared to
the risk values collected by citizens’ witness presence.

perceived cycling risk estimated via the Smart Agora plat-

form. For this purpose, a crowd-sensing asset is designed

with Smart Agora using the sequential navigational modal-

ity with the same four urban spots of Figure 9b as points of

interest. The cycling risk of the road section from the earlier

to the next urban spot is assessed when the test cycling user

is localized at the next spot, where a likert scale question

pops up in the Smart Agora app evaluating cycling risk at a

linear scale between 1. very safe to 5. very dangerous. An-

swering the questions in all spots completes the cycling trip

of a test user and results in a sequence of perceived risk val-

ues to compare to the sequence of actual cycling risk values.

This comparison is made using both Pearson and Spearman

correlation [119] for both a numerical and ordinal match-

ing assessment between the two sequences of cycling risk

values. Pearson correlation is a measure of linear depen-

dence, i.e. a maximum value of 1 between two sequences of

values indicates a perfect linear relationship. However, the

actual cycling risk values derived via Gaussian kernel densi-

ties [49] denote measurements of a non-linear nature. There-

fore, the Spearman correlation is used to measure monotonic

relationships on the ranking of the cycling risk values.

Table 3 compares the perceived cycling risk values from

11 test users to the actual baseline cycling risk values. All

test users cycled over the route on 12.12.2018 around 15:00

with the same provided bike to minimize biases originated

from weather, light condition and the condition of di�erent

bikes. Correlation values are calculated using the mean and

median value of the perceived cycling risk for each urban

spot across all users. The Pearson correlation is 0.94 and

0.85 for the mean and median respectively, while the Spear-

man correlation is 1.0 for both mean and median.

Although the number of test users and urban spots is low

to reach strong conclusions, the high matching of the two cy-

cling risk estimations in all presented measures suggests that

the empirical evidence of cycling accidents matches well

with the risk that citizens witness. Therefore, a crowd-based

witness presence has a strong potential to verify the status of

an urban space and as a result reason about public space more

evidently. As an implication, policies designed based on ev-

idence stemming from witness presence promise higher le-

gitimacy for citizens.

8. Discussion

This section discusses dynamic consensus for proving

witness presence as well as the role of self-governance and

artificial intelligence in the augmented democracy paradigm.

8.1. Dynamic consensus and self-governance
Proof of witness presence can be validated in a private

(permissioned) or public (permissionless) network of nodes

running the consensus. For instance, a legally binding deci-

sion-making process run by city authorities may require a

private network of legally representative nodes, similarly to

poll clerks in general elections. In case of democratic institu-

tions that may not be well-established, a public network can

be a better fit for open self-governed communities encourag-

ing active participation. Moreover, meeting consensus per-

formance requirements using public networks requires ac-

cess to high-performing public clouds federated by commu-

nities or crowd-sourced computational resources deployed

by citizens in large-scale.

An adjustable consensus cost by blockchain platforms [117]

involves trade-o�s between transaction value vs. risk and

speed vs. cost. For instance, when performing collective

measurements such as the ones in Section 7.1, citizens choices

do not all have the same influence on the aggregation accu-

racy, e.g. the di�erence from the mean determines the influ-

ence. Therefore, witness presence claims can be prioritized

based on the influence of citizens’ choices on the collective

measurements. As a result, accurate estimates are faster with

lower transaction costs. Such costs can be further decreased

by relaxing the verification rules of the smart contracts exe-

cuting the proofs of witness presence according to the influ-

ence of citizens’ choices on the aggregation accuracy. In the

application scenario of cycling risk maps (Sectionl 7.2), op-

timum cycling risk threasholds can be derived to decrease

the transaction costs of witness presence (relaxed verifica-

tion rules) for citizens cycling in risky areas for accidents.

Such adjustments can be made within community do-

mains that determine validation rules, the number of con-

sensus voters as well as policies/regulations for smart con-

tract execution and data, e.g. General Data Protection Reg-

ulation (GDPR). Such domains can also also be used for the

self-governance of the augmented democracy paradigm with

blockchain providing an e�cient and e�ective automated

dispute resolution: reaching consensus on the design of a
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Table 3

Perceived cycling risk acquired via the Smart Agora app vs. the actual cycling risk calcu-
lated via an empirical model of real-world data [49] in the four urban spots of Figure 9.
Users’ responses are in the range [1, 5] with 1 for very safe and 5 for very dangerous.

Locations Test users: 1 2 3 4 5 6 7 8 9 10 11 Mean Median Actual cycling risk [49]

Spot A 2 2 2 1 1 1 1 2 2 1 2 1.55 2 1.36

Spot B 1 1 1 1 1 1 1 2 1 1 1 1.09 1 0.42

Spot C 2 1 1 1 2 3 1 3 4 2 2 2.0 2 6.21

Spot D 3 3 3 2 4 4 2 2 3 4 4 3.09 3 8.31

Pearson correlation: 0.94 0.85
Spearman correlation: 1.0 1.0

decision-making process, i.e. navigation modality and col-

lective measurements maps.

8.2. The role of artificial intelligence
Decision support systems such as digital assistants run

by artificial intelligence can make decision-making more in-

formed and e�cient by overcoming the humans’ limitations

in congitive bandwidth and the barier of expertise knowl-

edge required to reason about a citizen’s choice. However,

machine learning algorithms often require sensitive personal

data to operate and can be used to nudge citizens and un-

dermine democracy [66]. For instance, the spread of fake

news in social media can influence results of elections and

therefore massive manipulation of democratic processes is

possible using intelligent algorithms [37]. This paper dis-

tinguishes two socially responsible and ethically aligned ap-

plicability scenarios of artificial intelligence in the proposed

augmented democracy paradigm: (i) local intelligence and

(ii) collective intelligence.

Local intelligence concerns the use of open-source ma-

chine learning algorithms that run locally at personal de-

vices of citizens. These algorithms make use of localized

or remote open data and they can be used to assist citizens

in reaching complex decisions. For instance, a distributed

content-based recommender algorithm for more sustainable

grocery product choices can make use of public product data

related to sustainability. Representation models of these prod-

uct data can be computed by o�cial authorities and envi-

ronmental organizations before transferred to citizens’ smart

phone for personalization [67]. The limitation of local in-

telligence is that it assists decisions taken from an individ-

ual’s perspective and it cannot address complex coordination

problems that involve several citizens.

Collective intelligence can address such coordination prob-

lems, though the challenge of privacy and transparency re-

mains subject of active research. The concept of federated

learning is a promising approach for supervised machine

learning algorithms and is based on the concept “bring the

code to the data, instead of the data to the code" [46, 87]. The

concept of collective learning is introduced for solving NP

hard combinatorial optimization problems in a fully decen-

tralizated fashion given citizens’ constraints on privacy and

autonomy [103]. In the augmented democracy paradigm,

collective learning can address tragedy of the commons prob-

lems in which citizens’ choices need to satisfy both individ-

ual and collective objectives. Collective learning has been

applied10 to application scenarios of sharing economies, e.g.

reducing demand power peaks, load-balancing of bike shar-

ing stations, charging control of electric vehicles, tra�c flow

optimization and other.

9. Conclusion and Future Work

This paper concludes that the proposed augmented democ-

racy paradigm is a promising endeavor for building sustain-

able and participatory Smart Cities. A holistic approach for

augmented democracy is introduced based on three pillars

that cover participatory crowd-sensing, proof of witness pres-

ence and real-time collective measurements. Smart Agora

can model a broad spectrum of collective decision-making

scenarios given the di�erent types of collected data and nav-

igational modalities. Proving witness presence becomes a

cornerstone to a more informed and responsible decision-

making. The cycling safety use case scenario illustrated in

this paper confirms the accurate information acquired via

wisdom of the crowd. Moreover, witness presence has the

potential to cultivate high level of engagement and partic-

ipation integrated in the citizens’ daily life and the public

space they belong. Linking real-time collective measure-

ments to witness presence provides an added value to crowd-

sourced data analytics made by citizens, for citizens. This

paper shows how blockchain consensus and crypto-economic

design can realize such a grand vision by validating location

proofs and incentivizing physical presence. Several local-

ization approaches are reviewed. An experimental testnet

scenario is designed and launched to provide a first techni-

cal proof of concept of the proposed augmented democracy

paradigm.

Future work focuses on addressing the limitations of this

work. These includes the expansion of the testnet scenario

with smart contracts running in the blockchain and provid-

ing more advanced and secure proofs of witness presence,

beyond GPS and by composing complex social proofs. The

10EPOS, the Economic Planning and Optimized Selections is the project

studying collective learning [13].
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influence of mobility patterns and infrastructure on trans-

action costs and latency requires a further dedicated study.

Relying on token curated registries, for instance the ones of

FOAM [30], for the participation of test users is also subject

of future work. Moreover, further use cases in conjunction

with city authorities and local communities are required to

assess what navigational modalities and collective measure-

ments maps find applicability in real-world. The role of self-

governance and an ethically aligned artificial intelligence are

expected to play a key role in realizing augmented democ-

racy at large-scale.
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