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Abstract

We model a molecular device as a molecule attached to a set of leads treated at the tight-
binding level, with the central molecule described to any desired level of electronic structure the-
ory. Within this model, in the absence of electron-phonon interactions, the Landauer-Büttiker
part of the Meir-Wingreen formula is shown to be sufficient to describe the transmission factor
of the correlated device. The key to this demonstration is to ensure that the correlation self-
energy has the same functional form as the exact correlation self-energy. This form implies that
non-symmetric contributions to the Meir-Wingreen formula vanish, and hence conservation of
current is achieved without the need for Green’s Function self-consistency. An extension of
the Source-Sink-Potential (SSP) approach gives a computational route to the calculation and
interpretation of electron transmission in correlated systems. In this picture, current passes
through internal molecular channels via resonance states with complex-valued energies. Each
resonant state arises from one of the states in the Lehmann expansion of the one-electron
Green’s Function, hole conduction deriving from ionised states, and particle conduction from
attached states. In the correlated device, the dependence of transmission on electron energy
is determined by four structural polynomials, as it was in the tight-binding (Hückel) version
of the SSP method. Hence, there are active and inert conduction channels (in the correlated
case, linked to Dyson orbitals) governed by a set of selection rules that map smoothly onto the
simpler picture.

1 Introduction

The possibility of constructing devices from
single molecules was modelled by Aviram and
Ratner as long ago as 1974.1 The intervening
half century has seen the growth of a vast re-
search literature on nanoscale devices, compris-
ing thousands of theoretical and experimental
papers, reviews and books.2–8 There are many
interesting phenomena observed in connection
with nanoscale devices, such as Coulomb block-
ade, the Kondo effect, negative differential re-
sistance, current rectification, current bistabil-
ity and hysteresis. These non-linear effects are
described in the reviews listed above. The
simplest nanoscale molecular electronic device

(MED) is generally recognised as being com-
posed of three parts (see Fig. 1a), a left lead
(L) attached to a molecule (M), the latter be-
ing attached to a right lead (R). The lead L
may be regarded as a source of electrons, whilst
the lead R is a sink. Landauer9 wrote the con-
ductance for an electron of given spin σ passing
through a single-channel lead as

Gσ = G0Tσ, (1)

where Tσ is the probability of transmission for
elastic scattering of electrons of fixed spin σ.
The quantity

G0 =
e2

h
≈ (25.8 kΩ)−1, (2)
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is interpreted as the ‘quantum of conductance’
between leads and molecule.10 Conversely, h/e2

is the quantum unit of resistance for the trans-
mission through a nanoscale device. It implies,

Figure 1: a) A molecule, M, attached to semi-
infinite left- and right-hand wires, L and R, show-
ing the numbering scheme adopted for atoms in the
wires. b) The SSP molecular device, comprising a
molecule attached to source and sink atoms nL and
nR via multiple contacts in the molecule. Dotted
lines indicate molecule-lead contact interactions. c)
SSP model of the two-lead device with simple con-
nections, where nL = nR = 1, and each lead termi-
nal atom is connected to exactly one atom in the
molecule.

for a bias voltage of 1 V, that approximately
5× 1014 electrons (of both spins) pass through
the device, with a transit time of around 2 fs.11

This time is short compared to a typical molec-
ular bond vibration with a frequency of around
10−14 Hz, which suggests that transmission is
a purely electronic process with no vibronic
component. The regime in which electrons are
transported through the molecule without ex-
change of energy, i.e. with elastic scattering, is
known as the coherent tunnelling regime. It
dominates the transport process when the elec-
tron residence time in the MED is short com-
pared to the time needed to excite electronic
or vibronic excitations. However, measured re-
sistances in many cases are greater by orders
of magnitude than the 25.8 kΩ quoted above.
In such situations vibronic (phonon) inelastic
scattering interactions become important (see
Ref. 12 chapter 16). In cases where the lead-

molecule interaction is weak, and when temper-
atures are low, the electron-electron interaction
dominates, and one enters the Coulomb block-
ade regime. This manifests itself in terms of a
series of steps in the device I-V curve. These
steps are produced by changes in the number
of electrons occurring when the applied bias is
large enough.

Scattering approaches to MEDs have been de-
veloped using a Green’s function (GF) formal-
ism by Ratner et al.13–15 and Datta et al.16,17

The Landauer-Büttiker (LB) formula for the
transmission of an electron with spin σ, in a.u.
for a device with a single eigenmode is13

Tσ = trGr
MMΓ

L
MMG

a
MMΓ

R
MM, (3)

where the matrices ΓL
MM and ΓR

MM are the scat-
tering (also known as tunnelling) rate matrices
for leads L and R. The quantities Gr,a

MM are the
retarded and advanced molecular GFs (c.f. sec-
tion 2.3) defined in the presence of interaction
with the leads. The total current, allowing for
the distribution of electrons in the leads is,12

Jσ =
1

2π

∫
Tσ(fL − fR)dE, (4)

where the Fermi distribution function, fX for
X = L or R, is

fX = [exp((E − µX)/kBT ) + 1]−1 , (5)

and µX is the chemical potential in lead X. The
flow of particles and holes through the device in
Eq. (4) is determined by the balance of chemical
potentials in the two leads, and the transmis-
sion, Tσ(E).

The LB formula was derived assuming that
the electrons in the device were non-interacting.
Interaction effects have been included in the-
ories of transmission in the work of Car-
oli et. al.,18 and Meir and Wingreen.19 Meir
and Wingreen recognised that the MED is
not in equilibrium, and hence used the non-
equilibrium GF (NEGF) method20–23 to de-
rive equations for the current through a steady-
state molecular device. The Meir-Wingreen
(MW) formula for the current of spin σ elec-
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trons through lead L is

JLσ = i

∫
dE

2π
trΓL

MM(fL∆GMM +G<
MM), (6)

In Eq. (6) we adopt a convenient notation

∆X = Xr − Xa, (7)

which we will use throughout this paper for
the difference between retarded and advanced
forms of various quantities. The retarded,
advanced and lesser molecular GFs (see sec-
tion 2.3) include effects of lead-molecule and
electron-electron interactions. Eq. (6) is clearly
not symmetric in terms of the lead indices, L
and R, but a symmetrized version19 is often
used in computations.

The most popular computational methods
based on the MW formula use density func-
tional theory (DFT) to describe electron-
electron interactions.24–26 These methods as-
sume that the (retarded and advanced) GFs can
be expanded in Lehmann27 form in terms of the
Kohn-Sham (KS) orbitals and orbital energies.
This implies that the KS orbital energies are
sufficiently accurate representations of the ioni-
sation and attachment energies of the molecule.
It is true that the HOMO orbital energy is, in
the limit of the exact DFT functional, equal to
the exact ionisation energy, but the situation
for other energy levels, and especially the at-
tachment spectrum, is uncertain.28,29 Further-
more, standard DFT functionals underestimate
the fundamental (HOMO-LUMO) molecular
gap.30–34 The true form of the complete GF
as a functional of the electron density is un-
known, although a ‘complex orbital’ DFT for
non-equilibrium systems has been derived.35

In practice, calculations use various standard
(i.e. relevant to equilibrium ground states) ap-
proximate exchange-correlation potentials, and
that predicted transmission can vary by an or-
der of magnitude depending on this choice.36

Notwithstanding these problems, DFT has been
very successful in predicting transmission in
strongly coupled systems in the coherent tun-
nelling regime. Transmission in weakly coupled
systems, on the other hand, tends to be overes-
timated.37

It has been traditional in theoretical physics
to use the ‘equations of motion’ (EOM) tech-
nique to calculate GFs. The EOM are gener-
ated from the commutation relations between
creation operators and the Hamiltonian. They
give chains of matrix relations that are often
truncated in an ad hoc manner. This technique
has been applied with success to coupled quan-
tum dots.38–41

An alternative approach is to use a correlated
GF based upon the GW method,42 which ex-
presses the self-energy as G × W , where G is
the GF, and W is the screened electron-electron
interaction arising from the sea of electrons.
Since the self-energy is itself used to determine
G, the GW method requires iteration to self-
consistency. Whilst this is computationally ex-
pensive, it has the advantage that the resulting
GF can be shown to satisfy conservation rules in
terms of the electronic charge,27 and hence the
computed transmissions through leads L and R
are necessarily equal. A number of GW calcula-
tions of MED conduction have appeared.37,43,44

A comparison of DFT and GW approaches has
been published by Solomon et al.45

The methods discussed thus far are very ef-
fective in dealing with the coherent tunnelling
regime where there are fixed numbers of elec-
trons on the molecule. The Master Equa-
tion approach is more appropriate for treat-
ing the Coulomb blockade regime.46–49 Sophis-
ticated methods for dealing with both coherent
tunnelling and Coulomb blockade have recently
been developed.50

Our approach in the current paper is to
link the sophisticated theoretical approaches
outlined above with the simpler Source-Sink-
Potential (SSP) model proposed by Ernzerhof
and co-workers.51,52 This model has significant
advantages for interpretation and design. From
the SSP model in its graph-theoretical formu-
lation53 it is possible to derive clear links be-
tween molecular electronic structure of a π sys-
tem and predicted transmission for a given de-
vice connection pattern. The graph-theoretical
approach has also been used to link conductiv-
ity to chemical concepts such as ‘curly arrow’
mnemonics.54,55 It is also possible to use SSP
directly in ab initio calculations.56
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In the present work we consider the steady
state of an SSP-like model with one-electron
leads, a one-electron contact interaction and a
molecule with two-electron interactions. Under
these assumptions the MW formula, Eq (6),
separates formally into Landauerand non-
Landauer contributions. We show that the
Landauer part is equivalent to the LB formula
in Eq (3), but containing correlated molecu-
lar GFs. We also show that the non-Landauer
contribution is exactly zero for a self-energy
having the functional form of the exact corre-
lation self-energy. We then derive an extended
version of the SSP formalism that is equivalent
to this correlated Landauer-Büttiker formula.
This allows a seamless progression in level of
treatment and interpretation of the molecu-
lar component of a device, from tight-binding,
through self-consistent-field theory to corre-
lated Hamiltonians.

For design of MEDs, an intuitive understand-
ing of the nature of the internal channels for
conduction through a molecule is advantageous.
It has been noted in the literature57 that these
internal channels are poorly understood, but
their connection with molecular orbital sym-
metry has been noted by Solomon.58 A link
between sophisticated and model calculations,
as an aid to interpretation, has also been pro-
vided by Borges.59 Quantum interference effects
are often characterised by reversals and bifurca-
tions of ring current.60–63 As a cautionary note,
Solomon et al.64 have also shown that through-
space, rather than through-bond, terms fre-
quently dominate conduction through a molec-
ular bridge.

A simplified graphical method has been de-
scribed65 for prediction of antiresonances, i.e.
of vanishing transmission. Ernzerhof66 has used
simple chemical ideas and his SSP model to pro-
vide understanding of ballistic transmission in
nanographenes. The SSP model has also been
used successfully53,67–75 to interpret molecular
conduction in terms of the internal conduction
channels provided by Hückel molecular orbitals.
These channels can be active or inert,73 and
the transmission spectrum follows interpreted
in terms of selection rules.76 The emphasis of
the present paper is to show that these advan-

tages are retained in a more realistic correlated
description of the central molecule.

Ernzerhof77 has formulated a correlated SSP
method based on a CI wavefunction for a device
with a fixed number of molecular electrons and
a single scattered electron. This gives a natural
description of Pauli Blockade,12 but does not
allow for the possibility of hole conduction. A
similar restriction applies to our own versions of
the CI-based SSP method.74 Such methods are
appropriate for devices composed of quantum
dots, where Pauli blockade has been observed
experimentally.78,79 In contrast, the GF-based
correlated SSP method proposed here is even-
handed in its treatment of particle and hole con-
duction.

The structure of the paper is as follows. Sec-
tion 2 presents the required theory and is di-
vided into subsections. We reprise the SSP
model of molecular transmission (2.1), describe
the device Hamiltonian (2.2), give a brief intro-
duction to Green’s functions (2.3), and the MW
formula (2.4), and the roles of Landauer and
non-Landauer contributions. The theory sec-
tion continues with the explicit connection be-
tween the NEGF and SSP methods (2.5), shows
how an extended correlated SSP model can be
built, and describes how the concepts of the
tight-binding SSP model are preserved in the
extended model (2.6). Specimen calculations
are presented in Section 3. Section 4 gives a
discussion of our main findings, and Section 5
draws general conclusions.

2 Theory

2.1 SSP Transmission

To begin with, we restrict our discussion to a
Hückel (tight-binding) model. We assume that
the molecule has a single resonance parame-
ter βM, and coulomb parameter αM. In the
usual system of units, αM is set to zero, and
βM is taken as −1 so that αM acts as the ori-
gin, and |βM| as a natural unit for energy level
diagrams. The molecular adjacency matrix, A,
has Apq = βM if p 6= q and p is bonded to q,
(p∼q,) and Apq = 0 otherwise. We consider a
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connection in which single molecular atoms L
and R interact with the terminal atoms L and
R of the leads via connection matrix elements
βLL and βRR, respectively. We shall refer to
this as a simple connection between molecule
and leads (see Fig. 1c), compared to the general
connection shown in Fig. 1b, which has multiple
lead-molecule interactions and will be treated in
section 2.5.

We have previously derived analytical expres-
sions for electronic transmission in a device
with simple single-atom connections.53,67–72,76

For an incoming beam of electrons with energy
E, these solutions are written in terms of five
molecular structural polynomials (SP), which
comprise graph-theoretical characteristic poly-
nomials53

s = det (E1−A) ,

t = det (E1−A)[L ,L ] ,

u = det (E1−A)[R ,R ] ,

v = det (E1−A)[LR ,LR ] ,

 = (−1)L+R det (E1−A)[L ,R ] , (8)

where the superscripts in braces indicate the
rows (left) and columns (right) corresponding
to connection atoms L and R that are to
be struck out from the characteristic matrices.
Only four of the polynomials are independent.
The polynomial, , with row L and column
R removed from the determinant, satisfies the
Jacobi-Sylvester relation80

2 = ut− sv. (9)

The expression for the overall transmission of
SSP devices is then53

T (E) = B
j2

|D|2
, (10)

where

B = 4βLβR sin qL sin qR(βLLβRR)
2. (11)

The function in the denominator is

D(E) = βLe
−iqLβRe

−iqRs− βRe
−iqRβ2

LL
t

− βLe
−iqLβ2

RR
u+ β2

LL
β2
RR
v. (12)

The wavevectors qL and qR are functions of E
satisfying the dispersion relations

E = αL + 2βL cos qL = αR + 2βR cos qR, (13)

appropriate for the semi-infinite wires in
Fig. 1b, assuming Hückel parameters (αL, βL)
and (αR, βR) within left and right wires, respec-
tively.

It is convenient to define reduced ‘hatted’ SPs
as the ratios

t̂ = t/s, û = u/s, ̂ = /s, v̂ = v/s. (14)

The hatted SPs, together with the definition
D̂ = D/s, give Eq. (10) in scaled form as

T (E) = B
̂2

|D̂|2
. (15)

The SPs s, t, u, and v are characteristic polyno-
mials of the molecular graph G, and the three
vertex-deleted subgraphs G − L , G − R and
G − L − R . The formulas (10) and (15) show
the direct link between transmission and the
pattern of connections for this simplest possi-
ble model of the molecular electronic structure.

The hatted SPs also provide a first contact
between SSP and GF methods, since they are
equal to matrix elements of the GF in the AO
basis for the one-electron Hückel Hamiltonian:

gHück
MM = (E1−A)−1. (16)

We can write them as spectral resolutions,

t̂ =
∑

λ

|ULλ|
2

E − ǫλ
= gHück

MM (E)LL ,

û =
∑

λ

|URλ|
2

E − ǫλ
= gHück

MM (E)RR ,

̂ =
∑

λ

ULλU
∗
Rλ

E − ǫλ
= gHück

MM (E)LR , (17)

in which the ǫλ are Hückel MO energies, and
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the Upλ are expansion coefficients for the cor-
responding eigenvectors. The polynomial v̂ is
also related to the Hückel GF matrix elements
through Eq. (9).

This method may seem limited theoreti-
cally in that it is based on a tight-binding
(Hückel theory) description of electronic struc-
ture. However, it has enabled us to recognise
that conduction in a specific device can be un-
derstood in terms of internal molecular chan-
nels associated with the molecular orbitals, that
these channels produce the peaks in the trans-
mission spectrum, and can be classified accord-
ing to a small set of conduction cases 76 depend-
ing upon the multiplicities of the roots of the
structural polynomials (SPs) defined in Eq. (8).
Furthermore, internal channels can be classi-
fied as inert or active.73 The advantages to be
gained by interpreting the conduction process
in this way are significant.

2.2 The Device Hamiltonian

A note on the underlying device Hamiltonian is
required, as we intend to consider a more gen-
eral molecular Hamiltonian. The device com-
prises two leads, left (L), right (R), and a
molecule (M), with device Hamiltonian

H = HM +HL +HR + V, (18)

where the perturbation, V , contains the inter-
action terms between the molecule and leads.
The perturbation is switched on adiabatically
at time t = −∞, so that at finite times the
system has evolved into a fully interacting de-
vice that can be considered to be in a steady
state. There is no flow of current in the unper-
turbed system, since it comprises separate leads
and molecule, each of which is in an equilibrium
state.

Our focus will be on conduction through a
correlated molecule, so we adopt a molecular
Hamiltonian that contains two-electron inter-
actions,viz.

HM =
∑

pq

hpqa
†
paq +

1

2

∑

pqrs

〈pr|qs〉a†pa
†
raqas,

(19)

where we have expressed the Hamiltonian
in terms of a basis of orthonormal spin-
orbitals. This is, in principle, the exact
non-relativistic (spinless) Born-Oppenheimer
Hamiltonian. However, in practice any set of
orthonormal spin-orbitals, {ψp}, will be finite
and hence incomplete.

One might choose a model Hamiltonian rep-
resentation in which molecular one- and two-
electron integrals (hpq and 〈pr|qs〉) were either
parameterised or computed ab initio. In the for-
mer case, there is a range of possibilities, from
the strictly one-electron Hückel model, through
Hubbard81 or PPP.82–84 In the latter, DFT or
ab initio models could be used.

The Hamiltonian for each lead is that for a
Hückel (tight-binding) semi-infinite chain,

HX = αX

∑

p

a†pap + βX
∑

p∼q

a†paq, (20)

with X = L, or R, and p∼q restricting the
summation to directly bonded atoms. Coulomb
and resonance parameters, (αX, βX), completely
specify the leads, and each lead is a source or
sink of electrons (or holes) conducted through
the molecule.

The Hamiltonian for connection between
molecule and leads, V , is written as

V = VLM + VRM + VML + VMR, (21)

where

VXM =
∑

p∈X,q∈M

hpqa
†
paq, (22)

and VMX = V †
XM, again with X = L or R.

The definition of the Hamiltonian outlined
in this section restricts two-electron interac-
tions to the molecular region. Any physics in-
volving such interactions in the region between
molecule and leads is therefore excluded. Such
effects, however, can be introduced by redefin-
ing the molecule to include the nearest lead
atoms. Similarly, interaction between vibra-
tions (phonons) and electronic degrees of free-
dom can be included in the Hamiltonian, and
hence in the MW formula.12,18 In this paper
we restrict ourselves to electron-electron inter-
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actions, and this allows us to obtain a strong
result about Landauer and non-Landauer con-
tributions to transmission.

2.3 A Green’s Function Toolkit

The following section collects useful definitions
and relationships.

2.3.1 Definitions

The retarded (Gr) and advanced (Ga) pure-
state one-electron GFs are85

Gr
pq(t, t

′) = −iθ(τ)〈
{
ap(t), a

†
q(t

′)
}
〉

Ga
pq(t, t

′) = iθ(−τ)〈
{
ap(t), a

†
q(t

′)
}
〉, (23)

where τ = t−t′,
{
ap, a

†
q

}
is an anti-commutator

of destruction (ap) and creation (a†q) operators,
and the expectation value is

〈· · · 〉 = 〈ΨN
0 | · · · |Ψ

N
0 〉. (24)

The ground state function, |ΨN
0 〉, of the N -

electron system, satisfies the Schrödinger equa-
tion defined with a non-relativistic Born-
Oppenheimer many-electron Hamiltonian,

H|ΨN
0 〉 = EN

0 |ΨN
0 〉, (25)

where the ground-state energy is EN
0 . The unit

step function is

θ(τ) =

{
1 for τ > 0

0 for τ ≤ 0
. (26)

Spin-orbital creation and destruction operators
are in the Heisenberg picture,86

ap(t) = eiHtape
−iHt, a†p(t) = eiHta†pe

−iHt, (27)

where the wavefunction is time independent,
and the system evolves because the operators
obey the Heisenberg equation of motion.

Introducing a resolution of the identity in-
side the operator products in Eq. (23), it is
clear that the retarded and advanced GFs de-
pend only upon the time difference τ = t − t′.
One can introduce energy-dependent GFs by a

Fourier transform to give

Gx
pq(E) =

∫ +∞

−∞

eiEτe−η|τ |Gx
pq(τ)dτ, (28)

where x is r or a, and η is a positive infinitesimal
used to ensure that the integrand remains finite
as τ → ±∞.

The important temperature-dependent gener-
alisations87 of the definitions in Eq. (23), in
which the pure-state average is replaced by a
grand canonical ensemble,27 are not discussed
here since they are not used in the present
work. We use the Keldysh non-equilibrium GF
(NEGF) approach20–23 which allows the full ap-
paratus of many-body theory to be used for
non-equilibrium systems. Here, we are not con-
cerned with the details of the preparation of an
initial state, so we use a perturbation switched
on and off adiabatically at t = −∞, and t =
+∞, implying that the theory is defined with
respect to the contour defined in Fig. 2. This

Re(t)

Im(t)

Forward branch

Backward branch

Figure 2: The Keldysh contour, showing forward
and backward branches.

two-part contour gives GFs where the ordering
of operators is made with respect to their po-
sition along the whole contour extending be-
tween −∞ and +∞ and back to −∞, and is ap-
propriate for computation of steady-state cur-
rents. For steady-state systems it can be shown
that the NEGFs are invariant to translation in
time,27 i.e. they depend only upon τ = t − t′.
Hence, we can define Fourier transform NEGFs
through Eq. (28). We use this energy represen-
tation of the GFs throughout.

The notation for one-electron NEGFs uses su-
perscripts to distinguish the relative positions
of the two times t and t′ on the two parts of the
Keldysh contour using superscripts. We can de-
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fine a matrix of GFs as

G =

(
Gc G<

G> Gc̃

)
. (29)

Gc is the chronological (causal) GF,85 which
has both times on the forward contour:

Gc
pq(τ) = −iθ(τ)〈ap(t)a

†
q(t

′)〉

+ iθ(−τ)〈a†q(t
′)ap(t)〉

= −i〈T
[
ap(t)a

†
q(t

′)
]
〉, (30)

where T is the Wick chronological operator that
places operators in increasing time order from
right to left. Gc̃ has both times on the back-
ward contour, so

Gc̃
pq(τ) = −iθ(−τ)〈ap(t)a

†
q(t

′)〉

+ iθ(τ)〈a†q(t
′)ap(t)〉

= −i〈T̃
[
ap(t)a

†
q(t

′)
]
〉, (31)

where T̃ is the anti-chronological operator, a
Wick-like operator that orders time arguments
in decreasing time from right to left. The pres-
ence of the T̃ operator emphasises that order
along the contour is used in the Keldysh defini-
tions, and that time runs in the opposite sense
along the backward branch.

The remaining two blocks of Eq. (29) have
times on opposite sections of the contour. The
lesser GF, G<, has time t on the forward and
t′ on the backward branch of the contour. The
greater GF, G>, has the reverse contour ascrip-
tion. Hence,

G<
pq(τ) = i〈a†q(t

′)ap(t)〉,

G>
pq(τ) = −i〈ap(t)a

†
q(t

′)〉. (32)

2.3.2 Dyson Equations

Equilibrium and non-equilibrium two-time GFs,
G, satisfy Dyson equations, which are derived
using time-dependent perturbation theory to
express the exact GF in terms of a zeroth-order
GF for which we shall use a lower-case notation,
g. Each of these component GFs is defined with
respect to basis orbitals for a part of the device,
i.e. the leads, L and R, or the molecule, M. The
GF matrix blocks are labelled accordingly, so

that G<
ML, is a matrix block with rows referring

to the molecule, and columns to lead L.
The zeroth-order GFs describe an equilibrium

system with no coupling between the leads and
the molecule, and gx

LL, g
x
MM, and gx

RR are lead
L, molecule M, and lead R GFs, respectively,
with x = r, a, >, etc.

The Dyson equation allows dressed GFs, Gx,
to be expressed in terms of zeroth-order un-
dressed GFs, gx, as

Gx = gx + gxΣxGx, where x = r, a, (33)

where the self-energy, Σ, contains the effects of
the perturbation through all orders, and each
term is implicitly E-dependent. Using matrix
algebra, this equation can be recast as

(gx)−1Gx = 1+ΣxGx, (34)

or the inverse form

(Gx)−1 = (gx)−1 −Σx. (35)

For NEGFs, the Dyson equation retains the
form of Eq. (33) provided we use the whole ma-
trix G(E). To obtain an equation for a single
block, such as G<, it is necessary to separate
out the different Keldysh contour blocks us-
ing matrix multiplication. This gives the more
complicated Keldysh equation,12,27

G< = (1+GrΣr)g< (1+ΣaGa) +GrΣ<Ga.
(36)

By using Eq. (34) and its adjoint this equation
simplifies to the product form

G< = Gr
[
(gr)−1g<(ga)−1 +Σ<

]
Ga. (37)

2.3.3 The Embedding Self-energy

The perturbation theory for a molecular device
is defined in terms of the one-electron interac-
tion, V, in Eq. (21). Using matrix block multi-
plication, it follows that for x = r, a, the molec-
ular block of Dyson’s equation is

Gx
MM = gx

MM +
∑

X=L,R

gx
MMVMXG

x
XM, (38)
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and off-diagonal blocks are

Gx
XM = gx

XXVXMG
x
MM, for X = L,R, (39)

using the block-diagonal nature of the zeroth-
order GFs. Substitution of Eq. (39) into
Eq. (38) leads to a Dyson equation for the
molecular GF12,27

Gx
MM = gx

MM + gx
MMΩ

x
MMG

x
MM, (40)

where the embedding self-energy is

Ωx
MM = Ω

x,L
MM +Ω

x,R
MM,

Ω
x,X
MM = VMXg

x
XXVXM, for X = L,R. (41)

Scattering rate matrices can now be defined
(see Ref. 27, p. 266) as

ΓX
MM = i∆ΩX

MM for X = L,R. (42)

2.3.4 The Correlation Self-energy

Although the molecular GF, gMM, is of zeroth
order in terms of the device perturbation, V, it
is the exact GF for a correlated molecule. It can
be expanded as a perturbation series in terms
of electron correlation.86 The Dyson equation
reads

gx
MM = g

HF,x
MM + g

HF,x
MM Mx

MMg
x
MM, (43)

where x = r, a, and M is the electron correla-
tion self-energy and g

HF,x
MM is the Hartree-Fock

(HF) GF. The retarded and advanced HF GFs
are12

(gHF,r,a
MM )pq = δpq(E

r,a − ǫp)
−1, (44)

where ǫp are HF orbital energies, E r,a = E± iη,
and η is a positive infinitesimal.

The simplest approximation to M comes from
second-order perturbation theory,86 and is ex-
pressed in terms of HF spinorbitals and orbital
energies as

Mx,(2)
pq =

1

2

∑

ija

〈pa||ij〉〈ij||aq〉

Ex − ǫija

+
1

2

∑

abi

〈pi||ab〉〈ab||iq〉

Ex − ǫabi
, (45)

where

ǫpqr = ǫp + ǫq − ǫr. (46)

The inverse form of the Dyson equation (see
Eq. (35)) can be used twice to give

(Gx
MM)

−1 = (gx
MM)

−1 −Ωx
MM,

= (gHF,x
MM )−1 −Ωx

MM −Mx
MM (47)

The MW formula in Eq. (6) includes the
quantity ∆GMM defined in Eq. (7), which can
also be simplified using the inverse form of the
Dyson equation:

∆GMM = Gr
MM

[
(Ga

MM)
−1 − (Gr

MM)
−1
]
Ga

MM

= Gr
MM

[
(gHF,a

MM )−1 −Ma
MM −Ωa

MM

− (gHF,r
MM )−1 +Mr

MM +Ωr
MM

]
Ga

MM.

(48)

Using Eq. (44) and the definition of Ex it fol-
lows that

(gHF,r
MM )−1 − (gHF,a

MM )−1 = 2iη1 = 0, (49)

and hence we have again a product form

∆GMM = Gr
MM [∆ΩMM +∆MMM]G

a
MM.

(50)

The lesser GF, G<
MM, can also be simpli-

fied, using the Keldysh equation in the form
of Eq. (37) to give

G<
MM =

∑

X

Gr
MX(g

r
XX)

−1g<
XX(g

a
XX)

−1Ga
XM,

(51)

where we have used the fact that Σ< = 0 for
the one-electron perturbation V, because one-
electron operators carry a single time-point in
the time-dependent perturbation theory ( see
Ref. 12, p. 185, Eq. (7.23)).

All the zeroth-order NEGFs, g<
XX, describe

equilibrium electron distributions, and there-
fore satisfy the fluctuation-dissipation theorem
(see Ref. 27, p. 177)

g<
XX = −fX(g

r
XX − ga

XX) = fX∆gXX, (52)
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which is true for the interacting-electron GF,
g<
MM, as well as its non-interacting lead coun-

terparts. The X = M term of Eq. (51) can be
simplified using Eq. (52), and the Dyson equa-
tion Eq. (43) in the inverse form, Eq. (35), to
give

(gr
MM)

−1g<
MM(g

a
MM)

−1 = −fM∆M. (53)

For the lead block contributions to Eq. (51), we
use Eq. (39) and its adjoint, so that it can be
simplified using Eq. (52) and the Dyson equa-
tion in the inverse form, Eq. (35), to give

Gr
MX(g

r
XX)

−1g<
XX(g

a
XX)

−1Ga
XM =

− fXG
r
MM∆ΩX

MMG
a
MM, for X = L or R. (54)

Finally, collecting all the terms together,

G<
MM =−Gr

MM

(
fL∆ΩL

MM + fR∆ΩR
MM

+ fM∆MMM)G
a
MM. (55)

To emphasise, this expression has been derived
using only the Keldysh equation, Eq. (36), and
matrix partitioning in terms of the blocks L,R
and M.

We now have all the necessary quantities ex-
pressed in terms of retarded and advanced GFs
and self-energies, allowing us make a simple
partition of the MW formula.

2.4 The Meir-Wingreen formula

The MW formula,19 Eq. (6), for the steady-
state current was derived using NEGF tech-
niques,20–23 and is exact for interacting sys-
tems. It was derived using the same zeroth-
order starting point as the present paper. To
be explicit, the zeroth-order molecular GF is
fully correlated. Eq. (6) can be simplified using
Eqs. (50) and (55) to give

JLσ =
i

2π

∫
dEtrΓL

MMG
r
MM

{
(fL − fR)∆ΩR

MM

+ (fL − fM)∆MMM

}
Ga

MM. (56)

This expression depends on distinct self-
energies, the embedding self-energy, Ω, aris-
ing from the lead-molecule interaction, and

the correlation self-energy, M, arising from
the electron-electron interactions. These de-
scribe physically distinct effects. This enables
a partition of Eq. (56) into the Landauer and
non-Landauer terms described below. This par-
tition was first noted by Caroli,18 (for details
see Ref. 12, p. 216, Eqs. (8.34) and (8.35)) in
the context of electron-phonon interactions.

2.4.1 The Landauer Current

The Landauer current, depends directly on the
scattering rate matrix for lead L. It describes
the elastic scattering of a particle (or hole)
by the lead-molecule interactions without ex-
change of energy with the molecule. Using
Eqs. (41), (52) and (42), and using the defi-
nition of the rate matrices in Eq. (42), the total
elastic current, JLB, is found to be (in a.u.)

JLB
Lσ =

1

2π

∫ +∞

−∞

(fL − fR)T
LB
Lσ dE, (57)

where the expression for the elastic transmis-
sion,

T LB
Lσ = trGr

MMΓ
L
MMG

a
MMΓ

R
MM, (58)

is a correlated Landauer-Büttiker formula. It is
identical in form to the uncorrelated expression
in Eq. (3). The dressed GF, G

r,a
MM, however,

now contains the effects of molecular electron
correlation (in principle to all orders). It also
contains the molecule-lead interaction to all or-
ders.

The NEGF method makes no distinction be-
tween source and sink leads. The direction of
current flow is determined solely by the differ-
ence in the distribution functions, fL and fR.
Clearly T LB

Lσ is symmetric in lead labels, and
JLB
Rσ can be derived by exchanging them. Hence,

JLB
Lσ + JLB

Rσ = 0, (59)

so that total elastic current into the molecule
from the two leads is zero, which is equivalent
to Kirchhoff conservation.
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2.4.2 The non-Landauer Current

The non-Landauer current, JnonLB,

JnonLB
Lσ =

i

2π

∫
dEtrΓL

MMG
r
MM×

(fL − fM)∆MMMG
a
MM, (60)

depends directly upon the correlation self-
energy.

The correlation self-energy, MMM(E), in-
volves propagation of a particle (or hole)
together with electron excitation (or de-
excitation), so that energy is lost from (or
gained by) the electron beam. In the steady
state approximation, the energy lost by exci-
tation must be balanced by energy gained by
de-excitation, and we might therefore expect
this term to be zero, as will now be proved.

It is a striking fact that the analytical form
of the exact retarded/advanced correlation self-
energy has been known. It is88–90

Mx(E) = M∞ +Mh(Ex) +Mp(Ex), (61)

where

M∞
pq = lim

E→∞
Mx

pq(E) = Fpq(ρ1 − ρHF
1 ) (62)

is a Hermitian static term accounting for the
change in the density-dependent Fock operator,
F (ρ), on going from the Hartree-Fock density to
the exact one-density. The energy-dependent
hole and particle terms are

Mh
pq(E

x) =
∑

i

XpiX
∗
qi

Ex − Λi
,

Mp
pq(E

x) =
∑

a

YpaY
∗
qa

Ex − Λa
, (63)

which are expressions analogous to the
Lehmann expansion of the GF (see Eq. (99)).
In the present case, however, the Dyson-like
orbital coefficients, Xpi, Ypa, and the poles Λi,
Λa, cannot be identified in terms of the exact
states of the molecular system. We can easily

deduce that

∆Mpq =
π

2i

{
∑

i

XpiX
∗
qiδ(E − Λi)

+
∑

i

YpaY
∗
qaδ(E − Λa)

}
, (64)

has Dirac delta function contributions at each
pole of the correlation self energy. It is obvi-
ous from Eq. (47), that the poles of the self-
energy are the zeroes of G, which implies in
turn that the non-Landauer current, JnonLB, is
indeed zero.

Thus, there are no non-Landauer terms aris-
ing from electron-electron interactions in the
current model. This is not the case when
electron-phonon interactions are included in the
Hamiltonian. Such interactions couple electron
and phonon GFs, producing terms in which en-
ergy is passed to (and from) the molecule into
the phonon modes. These interactions are im-
portant in some experimental contexts, for ex-
ample in the study of vibronic effects in MEDs
via the IELTS technique.8 It should be noted
that for electron-phonon interactions, the non-
Landauer term is usually called the ‘inelastic
scattering’ term. Such nomenclature seems less
appropriate for electron-electron interactions.
In our treatment, the term vanishes.

Computations of molecular conduction using
the GF formalism must, of necessity, use ap-
proximate forms for the self-energy. Not all ap-
proximation schemes reproduce the form shown
in Eq. (61). The methodologies known to sat-
isfy this requirement include the second-order
GF, the 2ph Tamm-Dancoff approximation,91,92

and a range of algebraic diagrammatic con-
struction approaches due to Cederbaum et al.88

Approximations that respect the form of the
correlation self-energy guarantee that the cal-
culated electron current is symmetrical in terms
of the leads. There is no need for any ad hoc
symmetrisation of the MW formula in this case.

2.5 Comparing NEGF and SSP

This section postulates an Ansatz for a Source-
Sink-Potential (SSP) method that differs in two
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ways from the standard formulation.73 It allows
a more general connection between leads and
molecule. It also includes the effects of molec-
ular electron correlation. We use it to explore
the relationship between the NEGF and SSP
approaches for correlated molecules.

2.5.1 The uncorrelated SSP method

The conventional SSP method51,52,63,77,93–100 as-
sumes a tight-binding (Hückel) representation
for the whole device. In our recent reformu-
lation,73 we define scattering wavefunctions in
source (L) and in sink (R) leads as

ψL =
∑

p∈L

cLpφp, ψ
R =

∑

p∈R

cRpφp, (65)

where the coefficients

cLp =
1

NL
(e−iqLp + reiqLp), cRp =

τ

NR

eiqRp, (66)

provide the boundary conditions for elastic
scattering.

The source wavefunction, ψL, is a combina-
tion of a forward travelling wave (i.e. towards
the right in Fig. 1a, in the direction of de-
creasing atom number), and a reflected wave,
with wavevectors −qL and qL respectively. The
reflected wave arises from scattering from the
molecule with reflection coefficient, r. The sink
lead has a forward-travelling wave component
with wavevector qR and transmission coefficient
τ . Normalisation constants, NL and NR, are
determined such that each wire transmits one
electron with spin σ. This leads to73

N2
L = 2βL sin qL, N

2
R = 2βR sin qR. (67)

Eqs. (65), (66) and (67) imply that

0 ≤ T SSP
Lσ = 1− |r|2 = |τ |2 = T SSP

Rσ ≤ 1. (68)

We now assume that atoms 1 to nL in lead L,
and 1 to nR in lead R, have multiple contacts
with the molecule, as shown in Fig. 1a. The
secular equation for the outermost atom in lead
L interacting with the molecule (nL, in Fig. 1)

is

−βL(c
L
nL+1 + cLnL−1) + (E − αL) c

L
nL

−
∑

p∈M

(VLM)nLpcp = 0. (69)

The aim of the SSP method is to replace the
semi-infinite lead with a finite lead truncated
at atom nL (and atom nR in lead R), as shown
in Fig. 1b. The outer terminal atoms become
the source and sink for current in the device. To
achieve this, we eliminate cLnL+1 using Eq. (66),

cLnL+1 =
1

NL

(
e−i(nL+1)qL + rei(nL+1)qL

)
. (70)

The unknown quantity r can be expressed in
terms of the coefficient cLnL

, using Eq. (66)
again, as

r = e−inLqL(NLc
L
nL

− e−inLqL). (71)

Substituting these two equations into Eq. (69),

(E− αL − βLe
iqL

)
cLnL

− βLc
L
nL−1

−
∑

p∈M

(VLM)nLpcp

= −
2iβL sin qL

NL

e−inLqL

= −iNLe
−inLqL , (72)

where the inhomogeneous term has been moved
to the right-hand side. The secular equations
are truncated at atom nL: for lead atoms closer
to the molecule, the standard Hückel secular
equations for a chain of length nL apply.

The source term in Eq. (72) manifests in two
ways. First, there is the inhomogeneity, which
can be thought of as equivalent to the bound-
ary condition for an incoming elastic scattered
wave in lead L such that Eq. (68) is satisfied.
Secondly, the matrix element multiplying cLnL

becomes

E − αL − βLe
iqL = βLe

−iqL , (73)

where we have used the Hückel dispersion rela-
tions (of Eq. (13)). The result is that all atoms
to the left of nL are replaced by a complex po-
tential, βLe

iqL , on atom nL, the source potential,
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a non-Hermitian term that creates the incoming
current.

The secular equation for the terminal atom on
lead R can be treated in the same way. In this
case, there is no inhomogeneous term because
only a transmitted wave exists in the sink lead,
and

cnR
= τeinLqR , (74)

so that τ can be expressed simply in terms of
the coefficient on the outermost contact atom,
nR in the right-hand lead. The secular equa-
tions for lead R are similarly derived, and the
diagonal interaction on atom nR becomes

E − αR − βRe
iqR = βRe

−iqR . (75)

We conclude that the uncorrelated SSP equa-
tions are

PSSP



cM
cL
cR


 =




0

bL

0


 , (76)

where the inhomogeneous term, bL, has a single
non-zero element (corresponding to the source):

(bL)p = δp,nL
(−iNLe

−inLqL). (77)

The SSP device matrix is

PSSP =



E1− hM −VML −VMR

−VLM E1− hL 0
−VRM 0 E1− hR


 .

(78)
where the matrices hM, hL, and hR are Hückel
Hamiltonian matrices for the various parts of
the SSP device, including the extra source and
sink complex potentials implied by Eqs. (73),
and (75). The components of the device vector
cM, cL, and cR specify the device wavefunction
in terms of basis functions on the molecule and
source and sink atoms.

We can use the expressions for the coefficients
cnL

and cnR
in Eq. (66) to show that

T SSP
Lσ = 1− |r|2 = NL(cnL

+ c∗nL
)−N2

L|cnL
|2,

T SSP
Rσ = |τ |2 = N2

R|cnR
|2. (79)

Hence, solution of the SSP matrix equation,

Eq. (76), yields SSP coefficients which can be
used via Eq. (79) to give the transmission.
Eqs. (76) and (78) give the essence of the un-
correlated SSP model for a device with multiple
contacts between leads and molecule. They are
now ready to be modified to include electron
correlation.

2.5.2 Correlated SSP

The Hückel SSP device matrix Eq. (78) can also
be written in terms of undressed GFs in the
form

PSSP =



(gr,Hück

MM )−1 −VML −VMR

−VLM (gr
LL)

−1 0
−VRM 0 (gr

RR)
−1


 ,

(80)

Here, we have used Eq. (16) to identify the
Hückel molecular GF.

Retarded/advanced GFs for semi-infinite
leads can be expressed analytically12,101 in
terms of the wavevector, qX, as

(gxXX)pp′ =
e±ip>qX

βX

sin (p<qX)

sin qX

(81)

where X = L or R, and p> and p< are the larger
and smaller of the atom labels p and p′, respec-
tively, for the general connection in Fig. 1a.

The matrix (gr
LL)

−1 can be deduced directly
from the SSP secular equations derived in the
previous section, i.e.

(gr
LL)

−1 =

(
E r1− hHück 0

0 βLe
−iqL

)
. (82)

We use the analogous definition for gr
RR. The

inverse of (gr
LL)

−1 reproduces the expression in
Eq. (81), so the bar indicates that we are using
the inverse of the nL × nL block of gr

LL, rather
than the inverse of the infinite-dimensional ma-
trix. The specification of retarded GFs in
Eq. (80) arises from the sign of the complex
terms in source and sink potentials.

For the correlated version of the SSP equation
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we make the obvious Ansatz

Pcorr
SSP =



(gr

MM)
−1 −VML −VMR

−VLM (gr
LL)

−1 0
−VRM 0 (gr

RR)
−1.


 ,

(83)

where gr
MM is the correlated GF for the iso-

lated molecule (i.e. without interaction with
the leads), and the distinction between retarded
and advanced GF could be suppressed for rea-
sons already noted.

Finally, the correlated SSP equation is

Pcorr
SSP



cM
cL
cR


 =




0

bL

0


 , (84)

where the nL × 1 element column vector, bL, is
a source term to be determined subsequently.
We emphasise here that the entries, c(E), in the
correlated solution vector are for an SSP elastic-
scattering device at energy, E. The interpreta-
tion of the c coefficients will emerge: they rep-
resent the composition of a device wavefunction
that gives transmission consistent with the MW
equation.

To summarise, Eq. (84) is the form of the SSP
equation extended to include electron correla-
tion, consistent with the MW approach, and re-
taining the interpretive advantages of the SSP
method.

2.5.3 Equivalence of SSP and MW

To solve the correlated SSP equation, Eq. (84),
we need the inverse, (Pcorr

SSP)
−1. Eq. (83) can

be written as an inverse Dyson equation in the
style of Eq. (47):

Pcorr
SSP = (gr)−1 −V = (Gr)−1, (85)

where (gr)−1 is the block diagonal part of P.
The dressed GF, Gr, has a physical signifi-

cance. Its poles are complex-valued, represent-
ing device resonances corresponding to the pres-
ence of an extra electron or hole in the sea of
correlated electrons. The imaginary parts of
these poles are inversely related to the lifetimes
of the resonances. We conclude that these life-

times represent transit times for the particles or
holes crossing the device.

The SSP solution vector follows from Eq. (85)
as

cM = Gr
MLbL, cL = Gr

LLbL, cR = Gr
RLbL,

(86)

where we have marked the matrix blocks, M, L,
and R explicitly.

We can now deduce transmission probabilities
from the general expressions for current in a
scattering process as

T SSP
Lσ =

1

i
(c†LVLMcM − c

†
MVMLcL),

T SSP
Rσ =

1

i
(c†MVMRcR − c

†
RVRMcM), (87)

where the first equality gives the current from
L to M, and the second from M to R.

Using Dyson’s equation in the form of
Eq. (33), and accounting for the block diag-
onal nature of the undressed GFs, the SSP
vector becomes

cM = Gr
MMVMLg

r
LLbL,

cL = (gr
LL + gr

LLVLMG
r
MMVMLg

r
LL)bL,

cR = gr
RRVRMG

r
MMVMLg

r
LLbL. (88)

If we look first at the transmission in the
right-hand lead, substitution of Eqs. (88) into
Eq. (87), using the cyclic property of the trace,
gives

T SSP
Rσ =−

1

i
trGa

MMVMR∆gRRVRMtrG
r
MM

×VMLg
r
LLbLb

†
Lg

a
LLVLM

= trGa
MMΓ

R
MMtrG

r
MM

×VMLg
r
LLbLb

†
Lg

a
LLVLM. (89)

Comparison with Eq. (58), keeping in mind
Eq. (59), implies that

VMLg
r
LLbLb

†
Lg

r
LLVLM = ΓL

MM, (90)

is a sufficient condition ensuring that the cor-
related SSP and LB formulae for elastic trans-
mission are identical. From the definition in
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Eq. (42),

gr
LLbLb

†
Lg

a
LL = i(gr

LL − ga
LL), (91)

and hence

bLb
†
L = i(ga

LL)
−1(gr

LL − ga
LL)(g

r
LL)

−1

= i
(
(ga

LL)
−1 − (gr

LL)
−1
)
. (92)

where gx
LL is the inverse of the first nL elements

of the matrix gx
LL. We can use Eq. (82) and its

complex conjugate to show that

i
(
(ga

LL)
−1 − (gr

LL)
−1
)
=

(
0 0

0 2βL sin qL

)
.

(93)

It is now evident that the choice of inhomo-
geneity term in the SSP equation Eq. (77) is a
sufficient condition for

T SSP
Rσ = T LB

Lσ = T LB
Rσ , (94)

so that the correlated SSP and LB formulae give
exactly the same elastic transmission.

To close the circle, we now find the the SSP
current in the left lead. Derivation of the L to
M current from Eq. (87), T SSP

Lσ , is a little more
involved. Using the same methodology as for
the right-hand transmission,

T SSP
Lσ =

1

i
trΓL

MM (Ga
MMVML∆gLLVLMG

r
MM

− ∆GMM) , (95)

where we have imposed Eq. (90) once more. We
can re-express the ∆GMM term in Eq. (95) us-
ing Eq. (50) so that it becomes

T SSP
Lσ = trGr

MM

{
ΓR

MM + i∆MMM

}
Ga

MMΓ
L
MM,
(96)

which apparently contains a non-Landauer
term through the correlation self-energy factor.
However, as we have seen in section 2.4.2, the
non-Landauer term vanishes, and

T SSP
Lσ = T SSP

Rσ = T LB
Lσ = T LB

Rσ . (97)

We conclude that the correlated SSP equation
provides a practical route for obtaining corre-

lated expressions for the elastic transmission us-
ing modifications of standard quantum chemi-
cal procedures.

2.6 Channels for Conduction

The development so far in this section has been
for fully general SSP devices in the sense of Fig-
ure 1. For the final part of this section, we re-
vert to devices with simple connections between
molecule and leads as outlined in section 2.1.
Such a connection mode maximises the influ-
ence of the electronic structure of the molecule
on the conduction process.

The solutions to the correlated SSP equations
can be obtained by using matrix partitioning.
The first row of Eq. (84) can be solved to give
cM in terms of the lead coefficients as

cM = gr
MM(VMLcL +VMRcR). (98)

The Lehmann spectral expansion27 of the ad-
vanced GF can be written as

(gr
MM)pq =

∑

λ

fλpf
∗
λq

Er − EN
0 + EN−1

λ

+
∑

λ

fλqf
∗
λp

Er + EN
0 − EN+1

λ

. (99)

The quantities defined in the numerators in
Eq. (99) are coefficients of the Dyson orbitals
(DOs), expanded in terms of a basis of HF
molecular spin-orbitals {φp}. The DO coeffi-
cients are

fλp = 〈ΨN−1
λ |a†p|Ψ

N
0 〉 ionisation poles,

fλp = 〈ΨN
0 |a

†
p|Ψ

N+1
λ 〉 attachment poles. (100)

The first term in the Lehmann representation is
a sum over (N−1)-electron states (correspond-
ing to hole conduction), whilst the second is
over (N+1)-electron states (corresponding to
particle conduction). The poles of the one-
electron GF give, in principle, the exact ioni-
sation and attachment energies.

The equations for the leads, after elimination
of cM by substituting Eq. (98) into the SSP

15



equations for cL and cR, give

(
a b
b∗ c

)(
cL
cR

)
=

(
−iNL

0

)
, (101)

in which

a = βLe
−iqL −VMLg

r
MMVML

= βLe
−iqL − β2

LL

∑

λ

|fLλ|
2

E − ξλ
,

b = −VMLg
r
MMVMR

= −βLLβRR

∑

λ

fLλf
∗
Rλ

E − ξλ
,

c = βRe
−iqR −VMRg

r
MMVMR

= βRe
−iqR − β2

LL

∑

λ

|fRλ|
2

E − ξλ
. (102)

Here, we have used Eq. (99) to write the GFs
in terms of poles and Dyson orbital amplitudes.
We can immediately recognise that

t̂ =
∑

λ

|fLλ|
2

E − ξλ
, û =

∑

λ

|fRλ|
2

E − ξλ
,

̂ =
∑

λ

fLλf
∗
Rλ

E − ξλ
, (103)

are the correlated analogues of the hatted struc-
tural polynomials (SPs) defined in Eq. (17).
Here, the Hückel MO coefficients have been re-
placed by Dyson orbital coefficients, and the
Hückel orbital energies by (undressed) GF pole
energies.

Simple algebra leads directly to an expression
for the transmission that has exactly the form of
Eq. (15) but now with correlated definitions to
replace those of Eq. (17). The correlated SPs
satisfy the same interlacing theorems as their
Hückel theory counterparts.102 We can, there-
fore, take over all the machinery derived in the
Hückel case73 for the interpretation of conduc-
tion in terms of internal conduction channels
and selection rules.

Degenerate poles in Eq. (99) constitute a
‘Dyson shell’. We can use the correlated SSP
equations to derive an expression73 for the cur-

rent through a shell Λ as

JL→Λ,σ = B
∑

λ∈Λ

fLλf
∗
Rλ

E − ξλ

̂

|D̂|2
, (104)

where D̂ = D/s, and B is given by Eq. (11). In
common with any orbital-based partition, indi-
vidual shell currents may be negative, or may
exceed unity for parts of the energy range.73

However, the shell currents satisfy the sum rule,
in that they add up to the total transmission.
Dyson shells emerge naturally using the corre-
lated SSP method as a description of internal
conduction channels.

The classification of internal channels as inert
or active 73 also applies to the correlated SSP
method. Active shells conduct, and give rise to
specific maxima in the transmission function.
Inert shells do not conduct at any energy and
have no influence on the shape of the transmis-
sion function. The inert/active distinction can
be used to give a considerable saving of compu-
tational effort in determining the shell currents
and the transmission function.

The existence of hatted SPs for the correlated
SSP method enables the conduction properties
of a two-lead device at GF pole energies to be
classified in terms of 11 cases for distinct con-
tact atoms (3 cases for ipso devices with iden-
tical contact atoms, L = R ). The cases can
be determined using the number of repeated
roots in the SPs.76 Conduction may occur at the
poles corresponding to inert shells, but then oc-
curs only through the other active shells. DO-
based SPs retain the interlacing properties of
their uncorrelated counterparts, even though
they can no longer be associated with specific
unweighted graphs.

One small technical detail is that we have
not defined the s polynomial for the corre-
lated SSP equations. The appropriate defini-
tion is through GF ionisation and attachment,
by analogy with Hückel theory as:

s =
∏

λ

(E − ξλ), (105)

where the product ranges over attachment poles
(ξλ = EN+1

λ − EN
0 ), and ionisation poles (ξλ =
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EN
0 −EN−1

λ ). With this choice for s, the corre-
lated versions of hatless polynomialst, u, j, and
v can all be recovered.

3 Calculations

In this section we present some practical ap-
plications of the SSP technique for solving
the correlated LB equations. We choose a
tight-binding (Hückel) molecular Hamiltonian
to which we add two kinds of electron inter-
action term. The first is the Hubbard in-
teraction81 which comprises single-centre two-
electron integrals, each of which is set equal to
a parameter, U . The second term includes two-
centre two-electron integrals82,83 set to a pa-
rameter, W . We restrict these terms to atoms
that are directly π-bonded. We refer to this as
the edge-PPP (ePPP) method, since directly
bonded atoms are represented by graph edges
in graph theory. ePPP is a simple extension
to the one-electron tight-binding method with
only two extra parameters. The Hamiltonian is

HePPP = HHück + UβM
∑

p

npαnpβ

+WβM
∑

p∼q

npnq, (106)

where the occupation-number operators are

npσ = a†pσapσ, np = npα + npβ. (107)

We have arbitrarily used values of U = −βM,
and W = −βM/2 in all calculations. Electron
repulsion in the HF and correlated calculations
causes the GF poles to shift to higher energies.
Since the lead Hamiltonians are constructed
from one-electron Hamiltonians (i.e. not having
any electron repulsion terms included) it was
felt appropriate to re-centre the molecular GF
spectra so that the Fermi level of the molecule
was at zero in units of βM.

All calculations were carried out with our own
software using the Maple 2019 computer alge-
bra program.103 The transmission was calcu-
lated for two-lead unbiassed symmetric devices,
i.e. with lead parameters αL = αR = 0, with
βL = βR = 3βM, and βM = −1.

We used three levels of approximation, the
lowest being the Hückel (tight-binding) ap-
proximation, and the second being HF with
a closed-shell wavefunction. Finally, we com-
puted the correlated GFs at second-order (GF2)
using the HF ground-state function as a ref-
erence. The GF2 equations for the molecule
were constructed and solved using the su-
peroperator technique.104 The operator ba-
sis for the GF2 superoperator matrix con-
tains the single operators {apα} that dominate
the Koopmans configurations,105,106 and hole-
hole-particle and particle-particle-hole opera-
tors (the h3-operators) for describing ‘shake’
configurations. GF2 overestimates the correla-
tion corrections to Koopmans ionization and at-
tachment energies, and shake states are poorly
described, but it does give a lowest order ac-
count of the effects of electron correlation and
is computationally tractable. A detailed discus-
sion of the accuracy of GF calculations of ioni-
sation energies in molecules is given by Ortiz et
al.107

The dimension of the GF2 superoperator ma-
trix, after accounting for spin, is (n+m)(nm+
1), where n is the number of occupied, and m is
the number of virtual orbitals in the HF basis.
Diagonalization of the superoperator Hamilto-
nian matrix gives the GF2 pole energies and the
Dyson orbitals used to construct the SSP sec-
ular equations, which were then solved at each
particle/hole energy, E.

Transmission curves were obtained by tak-
ing 1000 evenly spaced points across the band.
Three extra energy points were inserted at each
peak maximum and half-height point, to en-
sure that all peaks (including shake peaks) were
sampled. Peak widths and half-height points
were estimated using a perturbation expansion
for the complex-valued dressed GF poles.

Results of calculations are shown for butadi-
ene (Fig. 3), benzene (Fig. 4) and pentalene
(Fig. 5). The Hückel results are in part a) of
each figure, whilst parts b) and c) contain HF
and GF2 results, respectively. The undressed
molecular GF pole energies are marked with
vertical lines, coloured red for ionisation (hole
conduction) and blue for attachment (particle
conduction). Pole lines are solid for Koopmans,
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and dotted for shake poles. Shell currents are
displayed in solid colour only for the Koopmans
conduction channels. All energies are in units
of βM.

3.1 Butadiene

The butadiene device has leads attached to sep-
arate terminal atoms. All channels are active
in each of the calculations. The total transmis-
sion and the four individual MO currents at the
Hückel level (see Fig. 3a) show four maxima in
the transmission, one near each Hückel eigen-
value. Each maximum is dominated by a single
shell current that has zero transmission at other
pole energies. Transmission is symmetric about
E = 0 because of the bipartite nature of the
molecular graph.108 The poles of gHück

MM are the
Hückel eigenvalues, at ±1.6180 and ±0.6180,
and the energy splitting between hole states
is the same as between particle states. The
dressing of the GF arising from the molecule
lead-interaction pushes its poles into the com-
plex plane. Thus, the poles of GHück

MM are at
±1.6343± i0.0950 and ±0.6343± i0.2532. The
poles in Gr

MM are the zeroes of the denominator
D(E) in the formula in Eq. (10), and their con-
jugates arise from the complex conjugate GF,
Ga

MM (i.e. from D(E)∗). These eight complex
poles are responsible for the four peaks shown in
the figure. The imaginary components of these
resonances are related to their lifetimes.109 We
observe that the outermost two resonances have
lifetimes longer by a factor of almost three times
the inner.

The HF calculations (see Fig. 3b) used a
four-electron closed-shell ground state with two
doubly-occupied MOs, so the undressed GF has
again four poles, one for each MO. The poles of
the HF GF are at 0.6094, −0.3184, −1.9334,
and −3.2038. The transmission is not symmet-
ric about any particular energy in the HF case;
the splitting between the hole states is 0.928,
whilst that between particle states is 1.270.

GF2 (see Fig. 3c) uses the same closed-
shell ground state, and gives 20 non-degenerate
poles, all lying within the band (−6 ≤ E ≤ 6)
and giving active conduction channels. The po-
sitions and widths of the Koopmans poles are
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Figure 3: Total transmission (black curves)
and Koopmans shell currents (coloured) for end-
connected butadiene calculated using a) Hückel, b)
HF, and c) GF2 approximations. Vertical lines
mark Koopmans (solid)/shake (dotted) poles of the
undressed molecular GF; ionisation poles are in red,
attachment in blue. Units, Hubbard parameters
and centering of the transmission spectrum are de-
scribed in the text.
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similar to those in the HF calculation. The
ionisation poles, have DO norms of 0.9367 and
0.9866. The attachment poles have norms of
0.9884 and 0.8674. Departure of the DO norm
from unity is a measure of how strongly Koop-
mans configurations interact with their shake
counterparts. The shake poles all have low DO
norms, the largest, 0.1252, being from pole 13
at E = −2.4951, which is energetically closest
to the rightmost Koopmans particle peak. The
shifts exhibited by the peaks in T LB

σ are largest
in the centre of the band and decrease towards
the edges. The same is true of peak widths.

3.2 Benzene

In Hückel theory (see Fig. 4a) the eigenvalues
of benzene are 2, 1, −1, and −2, with eigen-
vector symmetries a2u, e1g, e2u, and b2g, respec-
tively, corresponding to the D6h point group.
We present results for the ortho-connected de-
vice because in this case the doubly-degenerate
shells, e1g and e2u, are split by the lead-molecule
interaction, the device having lower symme-
try than the molecule. The complex dressed
poles are at energies ±1.0027 ± 0.0569i and
±1.0452± 0.1658i. These shells are active and
produce characteristic double-peak structures
around T LB

σ = 0 at the Koopmans orbital en-
ergy. The meta-device has the same symme-
try, but the para- and ipso-devices possess the
full molecular symmetry. In these cases the
dressed poles remain doubly-degenerate. The
non-degenerate levels, a2u, and b2g are also ac-
tive, each producing a maximum in the spec-
trum corresponding to the dressed poles at
±2.0199± 0.1198i.

The HF calculations (see Fig. 4b) use a six-
electron closed-shell ground state. The MOs
are determined by point group symmetry and
are identical to their Hückel counterparts. The
eigenvalues, in units of βM, are 2+U/2+4W/3,
1+U/2+ 5W/3, 1+U/2+ 7W/3, −2+U/2+
8W/3, in the order a2u, e1g, e2u, and b2g. As be-
fore, we have re-centred the spectrum to allow
for the shift to higher values. Peak shapes and
splittings differ slightly from the Hückel results.

GF2 (see Fig. 4c) has a superoperator Hamil-
tonian matrix of dimension 60. The 60
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Figure 4: Total transmission (black curves) and
Koopmans shell currents (coloured) for ortho-
connected benzene calculated using a) Hückel, b)
HF, and c) GF2 approximations. Parameters and
conventions as in Figure 3.
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poles comprise 30 ionisations and 30 attach-
ments. There are many highly degenerate
shells, viz. two 9-fold, 5-fold, and 4-fold, and
eight 2-fold degenerate shells. The remainder
are singly degenerate. Fourteen shells are ac-
tive, and the rest are inert. The two doubly
degenerate shells corresponding to the e1g and
e2u Koopmans primary poles produce the dou-
ble peak structures seen in the Hückel and HF
calculations. All double degenerate shells in the
spectrum share this property, although it can-
not be seen in the figure because of the narrow
widths of the shake lines.

The high degeneracy of many of the shells
arises because the h3 basis operator block of
the superoperator matrix is diagonal and con-
tains only orbital energies. Since there are two
doubly-degenerate MO shells at the HF level,
there are many degenerate combinations of
triple indices. In a higher-order ‘non-diagonal’
GF approximations,107,110 two-electron interac-
tions would remove this ‘accidental’ degeneracy,
leaving only the degeneracy coming from point
group symmetry.

3.3 Pentalene

At equilibrium the physical pentalene molecule
is distorted, with C2h symmetry, but our cal-
culations retain the D2h symmetry of the un-
weighted graph. We also choose a ‘para’ device
with connections to antipodal vertices in the
mirror plane that bisects the ring-fused bond.
The molecule is also a non-alternant, so the
Hückel transmission shown in Fig. 5a is not
symmetric about E = 0. With the molecule
placed in the xy-plane, Hückel MOs 1, 4 and
7 have b1u, 2 and 6 have b2g, 3 and 8 have
b3g, and MO 5 has au symmetry. The au and
b3g orbitals are inert because they are antisym-
metric with respect to the mirror plane passing
through the contact atoms. Hence, MOs 3, 5
and 8 are inert, and the remaining five MOs
are active. This leads to five complex conju-
gate pairs of dressed poles at 2.3577± 0.0496i,
1.4463 ± 0.1715i, 0.4814 ± 0.1818i, −1.4463 ±
0.1715i, and −1.8391 ± 0.1113i. Note that the
inert orbital eigenvalues are shown, although
there are no corresponding transmission peaks.
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Figure 5: Total transmission (black curves)
and Koopmans shell currents (coloured) for
symmetrically-connected pentalene calculated us-
ing a) Hückel, b) HF, and c) GF2 approximations.
Parameters and conventions as in Figure 3.
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The HF transmission calculation, (see
Fig. 5b) effected using a 1b21u1b

2
2g1b

2
3g2b

2
1u closed-

shell ground state, has exactly the same sym-
metry analysis. The re-centred transmission
graph looks very similar to the Hückel graph,
except that again peak heights, splittings and
widths are slightly different.

GF2 calculations (see Fig. 5c) were carried
out with the same four-electron ground state.
There are 128 triple operators in the GF2 ba-
sis. Each can easily be classified in terms of
the D2h irreducible representations since the
group is abelian and the HFMOs are symmetry
adapted. Out of a total of 136 operators, only
67 lead to active shells. Pentalene is expected
to be typical of larger organic molecules in that
it has a plethora of shake peaks. The inner-
most of these interact strongly with the nearby
Koopmans feature, leading to a more complex
interpretation of the transmission curve.

4 Discussion

Our aim in this paper was to adapt an existing
‘wavefunction’ approach to ballistic conduction
(the SSP model) to allow for molecular corre-
lation, retaining interpretability as far as pos-
sible. The main requirement was that the new
approach should produce results exactly equiv-
alent to those from the MW formulation at each
given level of molecular-electronic structure
theory. This aim has been realised for all rungs
on the ladder of electronic-structure approxima-
tions from Hückel tight-binding through self-
consistent field, to GF treatments of electron
correlation.

4.1 Connecting MW and SSP

The first step in this programme was to sepa-
rate the Landauer and non-Landauer contribu-
tions to the MW formula and show that the lat-
ter vanishes in the absence of electron-phonon
interactions. An extended SSP Ansatz yield-
ing the elastic correlated LB transmission func-
tion for a two-lead device was then proposed
and verified. As the SSP model gives an ex-
plicit device wavefunction, it follows that in

the new approach the conduction eigenchan-
nels, which correspond to molecular orbitals
(shells) in tight-binding and SCF implementa-
tions, have their natural extension in channels
based on Dyson orbitals (shells). These chan-
nels obey selection rules,73 albeit based on mod-
ified definitions of structural polynomials, and
have clear links to ionisation/attachment pro-
cesses and shake states of the correlated molec-
ular system. The correlated LB formula ex-
tracted from the MW formula19 is symmetric
in terms of scattering rate matrices, ΓX

MM, be-
tween the molecule and the individual leads.
The strength and direction of current are de-
pendent on the differences in chemical poten-
tial.

Within the SSP model, a device is modelled
as a central molecule connected to semi-infinite
leads. Leads and their connections to the
molecule are described by a one-electron tight-
binding (Hückel) Hamiltonian. The molecular
Hamiltonian may include one- and two-electron
interactions. The molecular part of the prob-
lem may therefore be treated with empirical,
semi-empirical, or ab initio methods, with or
without inclusion of correlation. ab initio cal-
culations with SSP have been undertaken by
Fias56 et al. using the DFT method to describe
the molecule.

In contrast to our previous work,53,73 our
zeroth-order starting approximation here is
the fully correlated molecule, with internal
electron-electron interactions treated to arbi-
trary accuracy, so the embedding self-energies
that we use depend on the leads and the lead-
molecule interaction only.

4.2 Consequences for Interpreta-

tion

In the second step, we establish the consistency
of the correlated LB formula with respect to a
proposed modification of the SSP equations. In
contrast to NEGF methods, the transmission in
the SSP approach is determined by boundary
conditions on a device wavefunction. The con-
ceptual advantages of this wavefunction-based
method lie in the chemical interpretability of
the internal molecular channels for conduction.
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These channels are determined by the attached
and ionised states appearing in the Lehmann
representation of the equilibrium molecular GF.
The properties of these channels are defined in
terms of the characteristics of the Dyson or-
bitals associated with each of the GF poles.
The sets of orbitals and poles define spectral
expansions of structural polynomials, which in
turn generate selection rules. The relevant for-
mal properties of the polynomials are retained
regardless of the level of theory, from Hückel
through to sophisticated GF formalisms.

Channel analysis of this kind gives a ready
interpretation of the transmission curves that
we have calculated. These have peaks arising
from both Koopmans and shake GF poles. The
Koopmans poles produce broad peaks. The
poles of the dressed GF corresponding to each
of these Koopmans peaks have larger imaginary
parts than their shake counterparts. Dyson or-
bitals offer a means by which ionisation and
attachment sectors can be identified from the
structure of the DO coefficients for a given peak
of the transmission spectrum, corresponding to
the red and blue regions in the figures. Each
peak may be classified as being due to hole or
to particle conduction.

4.3 Relevance to Pauli Blockade

Pauli blockade has been observed in quantum
dots in situations where electrons can jump be-
tween dots already containing electrons. Elec-
tron transport through a generic two-site sys-
tem has been reported,78 with one electron
trapped permanently on the second site. For
reverse bias, a transport channel through two-
electron singlet states is always available. In
the reported experiment, for a sufficiently large
forward bias, a triplet state with an electron on
each site is sooner or later occupied and further
electron transport is blocked due to Pauli ex-
clusion. The device acts as a current rectifier.
A similar case is reported by Kodera et al.79

To describe such cases, one could modify the
tight-binding SSP method74,96 so that a de-
vice wavefunction is constructed from all elec-
tron configurations with a fixed molecular core
topped by an orbital relevant to the scattered

electron. Such an approach would be different
from the GF methods described in this paper.
One could adopt a CI approach based upon an
N-electron molecular HF ground state config-
uration, in which configurations with a single
extra electron were used to describe the scat-
tered electron. We have used this approach
(without two-electron interactions) in our pre-
vious work.74 Of necessity, this (CI) wavefunc-
tion represents electron transmission through
virtual molecular orbitals only and results in a
truncated transmission spectrum which is sup-
pressed at energies corresponding to occupied
orbitals. This CI Ansatz is appropriate to ex-
perimental situations in which the number of
electrons in the device is well specified, and
where bias eliminates hole-conduction terms.
In contrast, the present GF approach includes
both particle- and hole-conduction via virtual
and occupied manifolds and restores the trans-
mission function at low energy. An alternative
CI-based SSP method for separate treatment of
hole-conduction could be envisaged using only
(N − 1)-electron molecular configuration func-
tions. Finally, we note that efficient implemen-
tation of the correlated LB equation is possible
because the transmission depends only on GFs,
which can be computed using minor changes to
pre-existing codes. The efficiency comes from
the reformulation of the correlated LB equa-
tion is terms of the SSP model. The algorithm
is separated into two parts. First we solve for
the molecular GF equations for those pole en-
ergies and DOs that are important for the con-
duction process. These data feed into the SSP
equations to be solved for a series of incoming
particle/hole energies. The transmission calcu-
lations, therefore, are not affected by the degree
of sophistication used to describe the molecular
GF.

4.4 Consequences for calculations

Finally, the separation of the MW formula into
Landauer and non-Landauer terms may have
some useful consequences for alternative meth-
ods for calculation of transmission. The cor-
relation self-energy has the correct functional
form in the present approach, where electron-
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electron interaction within the molecule is taken
fully into account before coupling to the leads.
This is the key to the elimination of non-
symmetric terms in the MW formula and en-
sures conservation of current.

Conservation of current in GF calculations of
MED transmission is usually imposed by requir-
ing that the self-energy be a derivative of the
well-known Φ(G) functional.27 Hence, the self-
energy depends implicitly upon the dressed GF
for the whole device. The GF, therefore, needs
to be determined self-consistently. A com-
monly used method is the GW approach.37,43,44

The present work shows that current conserva-
tion can be achieved without self-consistency.
It should be said, however, that relinquishing
self-consistency involves the algebraic diagram-
matic construction88 of the self-energy, which
is also computationally expensive, especially if
taken beyond GF2.

In this paper we have restricted ourselves to
the calculation of the transmission, T , at zero
bias. The calculation of I-V curves requires re-
peated calculations of T for different values of
lead bias potential. In our approach, the corre-
lation self-energy is unaffected by the lead bias,
because the undressed molecular GF, gMM, does
not experience any effects from the leads, so the
poles of the self-energy do not shift. The GW
method, on the other hand, includes diagram-
matic contributions from the contact potential,
V, inside correlation self-energy terms as re-
quired for self-consistency.

5 Conclusion

The Meijer-Wingreen formula, the starting
point of our work, gives an exact expres-
sion for the current through a molecular de-
vice described using one-electron leads and
lead-molecule interaction, but with a Born-
Oppenheimer Hamiltonian for the molecule.
The leads and the molecule, in the absence of
lead-molecule interactions are in separate equi-
librium states. This implies that correspond-
ing (lesser) GFs satisfy exactly the fluctuation-
dissipation theorem. This allows us to use stan-
dard Dyson and Keldysh equations of NEGF

theory to show that one term in the expression
for current derived from the Meir-Wingreen
formula is exactly zero when electron-phonon
interactions are neglected. We have shown
that the remaining elastic-scattering term is a
Landauer-Büttiker expression that is symmet-
ric in the leads and includes the effects of molec-
ular electron correlation, in principle, exactly.

The correlated expression for transmission
can be computed using an extension of the SSP
model. This mode of calculation provides ac-
cess to internal conduction channels associated
with the SSP wavefunction, and a quasiparticle
interpretation of conduction with lifetimes con-
nected to the imaginary parts of the pole ener-
gies of the dressed GF. The conduction channels
can be analysed in terms of the same small set
of conduction cases derived previously for the
tight-binding approximation.76 The molecular
part of the calculations may be conducted using
ab initio or semi-empirical methods. Some illus-
trative calculations with a simple model Hamil-
tonian show the qualitative effects of inclusion
of intramolecular electron interaction on elastic
transmission.
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