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Abstract

Traditional tensegrity structures comprise isolated compression members lying inside a continuous network of tension

members. In this contribution, a simple numerical layout optimization formulation is presented and used to identify

the topologies of minimum volume tensegrity structures designed to carry external applied loads. Binary variables and

associated constraints are used to limit (usually to one) the number of compressive elements connecting a node. A

computationally efficient two-stage procedure employing mixed integer linear programming (MILP) is used to identify

structures capable of carrying both externally applied loads and the self-stresses present when these loads are removed.

Although tensegrity structures are often regarded as inherently ‘optimal’, the presence of additional constraints in the

optimization formulation means that they can never be more optimal than traditional, non-tensegrity, structures. The

proposed procedure is programmed in a MATLAB script (available for download) and a range of examples are used to

demonstrate the efficacy of the approach presented.

Keywords Layout optimization · Tensegrity structures · Mixed integer linear programming

1 Introduction

Tensegrity structures were pioneered by Fuller (1962) and

Snelson (1965), and according to their original definitions
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tensegrity structures are arrangements of pin-jointed mem-

bers with a maximum of one compression member (strut)

at each joint, with no such limitation on tension members

(cables). Fuller’s original aspiration was to use tensegrity

structures to form the ‘largest and strongest structure per

pound of structural material employed’, considering appli-

cations such as very large stadium roofs. This indicates that

tensegrity structures were considered to be highly struc-

turally efficient, something that will be explored here.

To date tensegrity structures have been used only occa-

sionally for real-world terrestrial structures, and then largely

for their architectural appeal, e.g. Kenneth Snelson’s Needle

Tower (Snelson 2014), the Messeturm in Rostock (Schlaich

2004) and the Kurilpa Bridge in Brisbane (Arup 2009).

Tensegrity structures have also been suggested for use in

space due to the fact that their form can readily be con-

trolled, aiding deployability (Tibert 2002; Furuya 1992).

Subsequent workers—after Fuller and Snelson—have

sought to provide more precise definitions of what constitu-

tes a viable tensegrity structure, bringing in additional consi-

derations, such as the requirement that there exist a state

of self-stress, or that there must exist infinitesimal mecha-

nisms, resisted by self-stress forces. For example, on the

basis of the latter, Obara et al. (2019) have suggested that

Snelson’s well-known X-shaped module (comprising two
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diagonal struts compressed via a cable ring, Snelson (1965))

should not be considered as a true tensegrity. However, it

should be borne in mind that when seeking to optimize a

given problem, the more considerations (or ‘constraints’)

that are included, the higher the objective function is likely to be.

Returning to Fuller’s original aspiration to realize strong

and light structural forms that serve a practical purpose,

here the aim will be to identify minimum volume tensegrity

structures carrying external applied loads. This contrasts

with studies where the aim is to find a tensegrity structure

that resembles a pre-determined shape, without considering

any external loads on the structure (e.g. Kanno 2013a, Liu

and Paulino 2019). Consideration of loads permits a simple

and intuitive optimization formulation to be developed,

where the goal is to minimize structural volume subject to

stress and basic tensegrity structure typology constraints.

Use of a simpler objective function may also lead to simpler

structures in the case of large-scale problems. It should

however be noted that when externally applied live loads are

involved, a state of self-stress will be required to maintain

the configuration of the tensegrity structure when the loads

are removed.

Optimization schemes have already been widely applied

to the design of tensegrity structures, either seeking to iden-

tify structural forms for a given set of element (i.e. bar and

cable) connectivities (e.g. Koohestani 2012; Cai and Feng

2015; Masic et al. 2006; Xu and Luo 2010) or as a tool

for determining optimal tensegrity configurations between

nodes (e.g. Gan et al. 2015; Kanno 2013b; Zhang and

Ohsaki 2007). Mathematical optimization methods applied

to such structures have included mixed integer linear

and non-linear programming (MILP/MILNP) (e.g. Kanno

2013b; Pandian and Ananthasuresh 2017; Liu and Paulino

2019), sequential quadratic programming (SQP) (e.g. Masic

et al. 2006) and also heuristic search methods such as

genetic algorithms (GA) (e.g. Koohestani 2012; Xu and Luo

2010; Gan et al. 2015). Common objectives of the optimiza-

tion have been (i) to minimize the volume of the structure;

(ii) to maximize structural stiffness; or (iii) combining these

goals to minimize the mass-to-stiffness ratio. Note

that when using optimization to identify new forms of

tensegrity structures without loads and supports, it can be

difficult to identify a suitable optimization objective (e.g.

Kanno (2013b) seeks to minimize the number of cables

in the structure; Liu and Paulino (2019) choose to max-

imize the sum of the forces in the structure; Koohestani

(2012) uses a parameter aimed at ensuring the stability of

the realized structure and convergence of the minimiza-

tion process). In addition, various practical issues have been

taken into account in optimization, e.g. controlling intersect-

ing members by Kanno (2013b), and member buckling by

Masic et al. (2006).

The layout of a tensegrity structure refers to the positions

of the nodes and the way these are connected by elements,

taking into account the types of element involved (i.e.

bar in compression or cable in tension). Although most

tensegrity optimization studies described in the literature

have involved optimizing structures with predefined node-

member connectivities, seeking to optimize nodal positions,

exceptions to this include the studies by Kanno (2013a) and

Kanno (2013b), who defines a ‘ground structure’ and seeks

to find the tensegrity structure with the minimum number of

cables/cable lengths, Ehara and Kanno (2010) and Pandian

and Ananthasuresh (2017), who use a two-step MILP

procedure whereby the number of bars are first maximized

and the number of cables are then minimized, and Xu

et al. (2018), who consider a variable ‘ground structure’

(which can be controlled by additional constraints) and seek

to minimize the number of cables and equalize element

lengths and force densities. However, most of the examples

considered by the aforementioned authors have been very

small-scale problems. For example, Masic et al. (2006)

considered 3D structures with up to 9 nodes, Xu et al. (2018)

structures up to 13 nodes and Kanno (2013b) structures up

to 16 nodes. Furthermore, the 13 node structure described

by Xu et al. (2018) required 30 min to solve and the

16 node structure described by Kanno (2013b) took more

than 18h to solve. Although Liu and Paulino (2019) have

recently shown that reasonably large tenegrity topology

optimization problems can be tackled via the use of MILP

at moderate CPU cost (e.g. a problem with a ground structure

comprising 4108 elements was solved in 706s), unlike in the

present contribution, they are concerned with free-standing

tensegrity structures, without loads or supports.

The aim of the current contribution is to describe a simple

problem formulation capable of solving practical problems,

involving applied loads and supports, in reasonable time

frames, making it suitable for use at the conceptual design

stage. In this context, the constraints imposed will be basic

tensegrity constraints, and not e.g. stability constraints that

have a significant impact on computational expense (e.g.

see Weldeyesus et al. 2019); however, the pre-stress stability

of the example problems considered will be checked in

a post-processing step. To achieve this, mixed integer

linear programming is used to solve a modified version

of the traditional numerical layout optimization (‘ground

structure’) problem. Section 2 describes the formulation

of the optimization problem and Section 3 presents three

tensegrity optimization examples followed by a design

application in Section 4.
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2 Formulations

2.1 Standard layout optimization formulation

The standard truss layout optimization process (Dorn et al.

1964; Gilbert M and Tyas A 2003; Pritchard et al. 2005)

involves a series of steps, as shown in Fig. 1a–d. Firstly the

design domain, load and support conditions (i.e. transla-

tional fixities of nodes) are specified (Fig. 1a); secondly,

nodes are generated inside the design domain (Fig. 1b) and

then potential member connections are created by intercon-

necting these nodes, forming a ‘ground structure’ (Fig. 1c);

finally, the optimal layout is identified by solving the under-

lying linear programming (LP) problem (Fig. 1d). The basic

single load case plastic layout optimization formulation can

be written as follows:

min
a,q

V = lTa (1a)

s.t. Bq = f (1b)

−σ−a ≤ q ≤ σ+a (1c)

a ≥ 0, (1d)

where V is the volume of the structure; l = [l1, l2, ..., lm]T

is a vector of member lengths with m denoting the number

of members, and a = [a1, a2, ..., am]T is a vector containing

the member cross-sectional areas. q = [q1, q2, ..., qm]T

is a vector containing the internal member forces, and

f = [f1x, f1y, f1z, f2x, f2y, f2z, ..., fnx, fny, fnz]
T is a

vector containing the external forces applied on nodes, with

n denoting the number of nodes. Also, σ+ and σ− are

limiting tensile and compressive stresses respectively. B is

a 3n × m equilibrium matrix comprising direction cosines.

The optimization variables in Eq. (1) are member areas a

and internal forces q; therefore, Eq. (1) is a LP problem,

which can be solved efficiently using modern LP solvers.

Note that with the ‘ground structure’ layout optimization

formulation used in this paper, the ‘optimal’ solution

obtained will be the minimum volume structure for the

particular grid of nodes employed; as the number of nodes

are increased, this can be expected to approach the true

optimal solution for the problem. It should also be noted that

although the basic layout optimization procedure ensures

that the structure is in static equilibrium with the applied

loads, it does not ensure that the structure generated is

stable.

2.2 Ensuring discontinuous compression

For traditional tensegrity structures (or ‘class I’ tensegrity

structures according to Skelton and de Oliveira 2009), it is

required that no more than one compression member (i.e.

bar) meets at each joint. This discontinuity condition for

compression members is presented as a linear inequality by

Fig. 1 Steps in truss layout optimization: a specify design domain, loads

and supports; b discretize domain using nodes; c interconnect nodes

with potential truss members, forming a ‘ground structure’; d use

optimization to identify the optimal truss layout; e result with discon-

tinuous compression constraint; f result with self-stress load case
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Ehara and Kanno (2010), Kanno (2013b), Xu et al. (2018),

and Liu and Paulino (2019). The same approach is followed

in the current formulation.

For the j th node, the discontinuity constraint on comp-

ression members can be written as:

m
∑

i=1

NC
ji ti ≤ 1, (2)

where, NC
ji is the connectivity coefficient of member i. This

is known in advance from the ‘ground structure’, obtained

using:

NC
ji =

{

1 if member i connects to joint j

0 otherwise
. (3)

And ti is a binary variable used to indicate whether member

i is in compression:

−tiδmax ≤ qi, (4)

where, δmax is a sufficiently large positive number. This

means that member i is not in compression if ti = 0.

In the standard layout optimization formulation, overlap-

ping collinear members (e.g. dashed lines in Fig. 2a) can be

removed from the ‘ground structure’ since they only intro-

duce linear dependant constraints in Eq. (1b), and will not

affect the solution. However, in this study, with additional

constraints (2) and (4), collinear members in a compres-

sive chain are now independent so overlapping members

should not be removed; otherwise, sub-optimal solutions

may be obtained. On the other hand, these constraints have

no effect on tensile members, which can still overlap a com-

pressive member, potentially leading to impractical designs

(e.g. Fig. 2b). To address this, the following constraint can

be added:

m
∑

i=1

N
Q
kiqi + ti(δmax − δmin) ≤ δmax, (5)

where, N
Q
ki is the collinear member coefficient for members

i and k, which is obtained using:

N
Q
ki =

{

1 if member i overlaps member k collinearly

0 otherwise
,

(6)

and which can be established in advance of the optimization

from the ‘ground structure’ used. δmin is a sufficiently small

positive number. Note that constraint (5) does not restrict

collinear cables (i.e. tensile members), since these are

still practical. Thus, additional binary variables for tensile

members are not required, thereby keeping computational

costs as low as possible.

With the aforementioned constraints, problem (1) can be

extended to tensegrity structures as follows:

min
a,q,t

lTa (7a)

s.t. Bq = f (7b)

−σ−a ≤ q ≤ σ+a (7c)

NCt ≤ 1 (7d)

−δmaxt ≤ q (7e)

NQq + (δmax − δmin)t ≤ δmax (7f)

a ≥ 0 (7g)

ti ∈ {0, 1}, for i = 1, 2, .., m, (7h)

where, NQ and NC are coefficient matrices formed by

relevant coefficients in Eqs. (3) and (6), respectively. t =

[t1, ..., tm]T is a vector containing binary variables which

indicate whether compression members are active or not.

Problem (7) is an MILP problem, which can be solved using

highly developed commercial solvers; the Gurobi (2018)

solver is used in the present study.

A convenient way to determine parameters δmax and δmin

is to scale the maximum and minimum non-zero inter-

nal forces identified in a solution generated via standard lay-

out optimization (1). This is a computationally inexpensive

step, since this does not involve the constraint on discon-

tinuous compression members. Values of 100 and 0.01 are

used for δmax and δmin respectively in the present study.

The effect of imposing the discontinuous compression

constraint on the layout optimization example shown in

Fig. 1 is shown in Fig. 1e; i.e. three adjacent compression

members are replaced with a single long compression mem-

ber. A MATLAB script (available in the electronic supple-

mentary data) has been written to perform the optimization

studies described herein, optimizing either (1) or (7); brief

usage instructions are provided in Appendix A.

2.3 Imposing self-stress condition

The MILP layout optimization formulation (7) will iden-

tify an optimal structure for a given set of external loading

and support conditions. However, in the case of structures

Fig. 2 Chain of collinear members: a all members connecting four nodes H , I , J and K , with dashed lines indicating collinear members; b invalid

chain of compression (blue) and tension (red) members
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with live applied loading, when this is removed the structure

may not be capable of standing. For example, referring

to Fig. 1e, if the horizontally aligned tensile member is a

cable, unable to transmit compression, then once the load

is removed the structure will fold up. To address this kind

of issue, tensegrity structures are often self-stressed. It is

therefore useful to explore means by which self-stresses can

be introduced.

2.3.1 Inclusion of a self-stress load case

An additional self-stress load case can be included in the

formulation by adding further constraints and variables to

Eq. (7) as follows:

Bsqs = 0 (8a)

−σ−a ≤ qs ≤ σ+a (8b)

−qs − δmaxt ≤ 0 (8c)

qs − rq + δmax(t − 1) ≤ 0, (8d)

where, Bs is an equilibrium matrix of size dependent on

the presence or otherwise of external supports in the self-

stress load case; qs is a vector of member internal force

variables for the self-stress load case. Constraints (8a) and

(8b) are equilibrium and stress constraints under the self-

stress load case, respectively. Constraint (8d) defines the

minimum level of self-stress, calculated as a proportion

of the compressive force in each strut in the main load

case, with parameter r specifying the desired self-stress

ratio. Also, constraint (8c) ensures that only the active

compressive members (i.e. ti = 1) from the first load case

are considered when computing self-stress. These load cases

are now used together; Eqs. (7) and (8) can be combined to

give:

min
a,q,t

lTa (9a)

s.t. Bq = f (9b)

Bsqs = 0 (9c)

−σ−a ≤ q ≤ σ+a (9d)

−σ−a ≤ qs ≤ σ+a (9e)

NCt ≤ 1 (9f)

−δmaxt ≤ q (9g)

−qs − δmaxt ≤ 0 (9h)

qs − rq + δmax(t − 1) ≤ 0 (9i)

NQq + (δmax − δmin)t ≤ δmax (9j)

a ≥ 0 (9k)

ti ∈ {0, 1}, for i = 1, 2, .., m (9l)

Applying problem formulation (9) to the layout optimiza-

tion problem shown in Fig. 1 now results in the structure

shown in Fig. 1f; i.e. a more complex structure is generated

that is both capable of carrying the applied load, and will

not fold down when the external live load is removed.

2.3.2 Post-processing approach

Although a self-stress state can be achieved by explicitly

adding a self-stress load case, as described in the preceding

section, the associated computational cost is likely to be

significant, adversely impacting the scale of problems that

can be tackled. A simple and efficient post-processing step

is therefore also proposed as follows.

Instead of using (9), once problem (7) has been solved,

active compression members (and their internal forces)

can be used as inputs to an additional post-processing

optimization step that seeks to identify the set of additional

tension cables required to provide a viable state of self-

stress; in this step, all that is necessary is to set appropriate

bounds on existing force and area variables, and to then

solve problem (1) with external loads removed, and also

supports removed if required:

min
a,q

V = lTa (10a)

s.t. Bsqs = 0 (10b)

−σ−a ≤ qs ≤ σ+a (10c)

qs
i ≤ rq0

i , for i ∈ C (10d)

qs
i ≥ 0, for i ∈ T (10e)

a ≥ a0, (10f)

where, q0
i is the internal force in member i identified

after solving (7), and a0 is a vector containing member

areas obtained previously. C and T are sets containing

compressive and tensile members, respectively. Compared

with the approach described in Section 2.3.1, the post-

processing step only involves solving (10), which is an

LP problem; therefore, the associated computational cost is

negligible.

3 Numerical examples

Here a number of numerical examples are presented to

demonstrate the efficacy of the methods described. Firstly,

2D problems are used to compare the tensegrity structures

with (near-) optimum truss layouts; then 3D tensegrity

structures are considered, now taking into account the

self-stress state. All examples were run using a PC with

an Intel(R) Core(TM) i7-4800MQ processor with 16.0GB

of RAM, running Microsoft Windows 10 and MATLAB

R2015a. In the figures, compression members (i.e. bars)

are indicated in blue and tension members (i.e. cables) in

red. Member line thicknesses are taken to be proportional

to member cross-sectional area, where tension members
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are assumed to have solid circular cross sections and

compression members to have circular hollow cross sections

with a ratio of internal radius to outer radius of 0.94,

corresponding to typical CHS (Circular Hollow Section)

sections used in practice. Also, the yield stress has been set

to σ+ = σ− = σ , unless specified otherwise.

3.1 Half-wheel example (2D)

The problem of the most efficient structure to carry a

midspan point load P between two simple supports located

a distance L apart is first considered. A rectangular design

domain of width L and sufficient height above the supports

leads to the well-known half-wheel solution when tensegrity

constraints are not present.

The optimization was initially carried out using nodes

laid out in a Cartesian grid comprising 9 × 6 nodes.

Then, with a view to obtaining improved solutions, the

optimization was carried out using nodes laid out in a 2D

polar coordinate system, with angular increments of π/15

and radial increments of L/8. However, in this case, it was

observed that only nodes at a radial distance of L/2 from

the loaded point were utilized. Thus, an optimization was

carried out with ground structure nodes at a radial distance

of L/2 and angular increments of π/24.

Standard and tensegrity solutions are compared in

Table 1. Firstly, it is clear that the solutions obtained using

the polar coordinate system are superior to those obtained

using a Cartesian grid, due to the nature of the optimal

solution. Secondly, it is clear that the optimal tensegrity

structure obtained using the polar coordinate system

also resembles the half-wheel solution, with compressive

elements terminating in close proximity to one another,

though not touching. The optimal tensegrity structure in

this case had a volume of 1.894PL/σ , which is 20.6%

greater than that of the known optimal solution. Use of

a finer grid would reduce this volume gap, though in the

limit the associated solutions would include compressive

elements terminating a vanishingly small distance apart.

The solutions shown are qualitatively similar to those

previously obtained for this problem by Park (2013). Note

that the truss solution obtained using the Cartesian grid

(shown in Table 1) is in unstable equilibrium with the

applied load; as mentioned in Section 2, this is allowed

by the basic truss layout optimization formulation, and in

practice would need to be stabilized by additional members

of nominal cross section.

3.2 Tensegrity prism example (3D)

The next example involves a tensegrity prism. A Cartesian

grid comprising 3 × 3 × 6 nodes in a 2L × 2L × 5L design

space (in the x × y × z directions) was considered. Supports

were located at the base—at (0, 0, 0), (L, 2L, 0) and

(2L, 0, 0)—and gravity loads of P applied at the top of the

domain—at (L, 0, 5L), (0, L, 5L) and (2L, L, 5L)—with

load and support locations chosen so as to avoid trivial

solutions involving vertical bars.

The solution obtained via solving problem (7) is shown

in Fig. 3b; this has a volume of 20.6PL/σ , with the solution

obtained in 140s. The structure generated resembles a

typical tensegrity prism solution, though has fewer tensile

elements; this is because a self-stress state has not yet been

imposed. To address this, the two approaches described

in Section 2.3 will be performed, with pre-stress ratio

r = 1.0. Both approaches generate the same solution

Table 1 Half-wheel example: optimum truss and tensegrity configuration of 2D simply supported structure to support a midspan point load

(members in compression shown in blue and members in tension in red)

*Difference in volume with respect to the optimal volume determined analytically (0.5πPL/σ )
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Fig. 3 Tensegrity prism example: a the ‘ground structure’ containing 1431 potential members; b structures generated with discontinuous

compression; c inclusion of self-stress following the steps described in Section 2.3

shown in Fig. 3c with the volume increased to 36.4PL/σ ,

an increase of 77%. If a reduced self-stress ratio r is

used then this volume increase would be correspondingly

lower. However, despite the identical solution, the CPU

time associated with the multiple load case approach

is 27,926s, whereas when the post-processing approach

is used the total CPU time is still 140s, since the

CPU cost associated with solving (10) is negligible

(0.05s). When varying the self-stress ratio from 0.1 to

1.0, the post-processing approach was shown to be from

62 to 199 times faster than using the multiple load case

approach.

The realized tensegrity prism comprises 3 compression

members and 12 tension members, derived from a ground

structure that had 1431 possible connections. Out of the

54 nodes in the ground structure, only the 3 loading points

and the 3 support points are part of the realized structure.

Note that the tensegrity prism in Fig. 3c does not satisfy the

super-stability condition given in lemma 4.5 in Zhang and

Ohsaki (2015). However, it is possible to choose appropriate

materials and sections to satisfy pre-stress stability (i.e. ‘a

prestressed pin-jointed structure is stable in the state of self-

equilibrium in the directions of infinitesimal mechanisms’,

see Zhang and Ohsaki (2015), page 117). For example,

when the elastic modulus is set to 100σ , the structure (with

supports) is pre-stress stable, i.e. the tangent stiffness matrix

(sum of linear stiffness matrix K and geometrical stiffness

matrix KG under self-stress, see also Zhang and Ohsaki

(2015), Chapter 4) is positive semi-definite. However, it

should be noted that this may not always be possible. Table 4

provides a stability load factor, which is the maximum

self-stress multiplier to give a positive semi-definite tangent

stiffness matrix. This stability load factor is the minimum

eigenvalue of the generalized eigenvalue problem Kφ =

−λKGφ, where φ is an associated eigenvector (for more

details, see Przemieniecky (1968), pages 396–398).

3.3 Kanno tower example (3D)

In the next example, an inclined five-layer tensegrity tower,

similar to that presented by Kanno (2013b), is considered.

The ground structure (both the nodal locations and the

connections allowed) was defined using the description

of the structure provided by Kanno (2013b); see Fig. 4.

Three loads of 50N were applied in the gravity direction

and stress limits in tension and compression of 10MPa

and 2MPa, respectively, were specified. An optimization

was then run using formulation (7), and the outcome

layout is shown in Fig. 5a. The proposed process took

0.42s to solve, compared with 63,000s reported in Kanno

(2013b). However, it should be noted that Kanno sought to

minimize the number of cables and considered additional

constraints such as bar collisions, slack in tension cables

and the presence of cable-only nodes, whereas here the

aim is simply to identify the minimum volume tensegrity

structure. To impose a self-stress state, the two approaches
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Fig. 4 Kanno tower example: ground structure and connectivity used

by Kanno (2013b), also used to generate the structure shown in Fig. 5

in Section 2.3 were utilized, both of which generated the

solution shown in Fig. 5b, with a volume increment of 4.9%.

However, when the elastic modulus is set to 1 GPa, the

self-stress load factor for a globally stable structure is found

to be 0.802. One solution to improve stability is to reduce

self-stress (Zhang and Ohsaki 2007). Here the maximum

self-stress ratio, 0.769, can be identified rapidly by using the

post-processing approach in conjunction with the bisection

method.

To investigate the effects of varying the number of

nodes and connections in the ground structure, Kanno’s

original ground structure was successively refined. In the

first refined ground structure (‘refined I’), each node in the

original structure was replaced by three other nodes lying

in a circle of radius 0.5m centred at the location of the

original node, and lying on the plane of the layer occupied

by the original node. In the next refined structure (‘refined

II’), nodes in the ‘refined I’ structure were then replaced

by two nodes (at ±0.5m on the vertical axis). Both of

these node replacement processes were only carried out for

intermediate layers (layers 2, 3 and 4), with the top and

Fig. 5 Kanno tower example:

optimal structure for five-layer

tower, using the ground

structure and member

connections used by Kanno

(2013b); a solution obtained

with discontinuous compression

and b solution obtained after

inclusion of self-stress
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bottom layers kept unchanged. As such both the original and

refined ground structures had exactly the same loading and

support conditions. Two connectivity cases were considered

for both the original and refined ground structures. The

‘restricted’ connectivity case follows the case considered by

Kanno, who disallowed connections between layers 1 to 4,

1 to 5, and 2 to 5; a second, ‘full’ connectivity case was

also considered, in which all possible connections between

nodes were allowed.

Results are summarized in Table 2. When the number of

nodes available was increased, it was observed that a more

efficient structure could be obtained, consuming a lower

volume of material, though requiring greater computational

effort (e.g. comparing rows 1 and 3 of Table 2, the volume

reduces by 55%, whereas the CPU time increases from

less than 1s to nearly 6min). However, it was observed

that increasing the number of connections significantly

improved the objective value whilst only requiring a

marginally higher CPU time (e.g. comparing rows 1 and 2

of Table 2, the volume reduces by 47%, whilst the CPU time

increases only by 1s). A possible explanation for this is that

the tensegrity constraint in Eq. (2) may be easier to comply

with if there are more options available.

4 Design application: Kent ‘Tensegritree’

The proposed method has also been used to study the design

of a ‘Tensegritree’ structure, similar to that recently installed

at University of Kent, UK (Daro et al. 2015). Here the

design consists of 16 radially extending arms with nodes

in each arm lying on a parabolic curve. Separate parabolic

curvesrepresent even (−0.25x2 + 1.283x, see Fig. 6a and b)

and odd numbered branches (−0.15x2+0.900x, see Fig. 6c)

respectively. The design space can be refined by changing

the number of nodes in each branch and the design space

altered by changing the depth and the terminal points of the

parabolic segments.

The elements shown in grey in Fig. 6 are predefined bars,

prescribed by constraining them to carry compression and

introducing a lower limit on member area. The members

in green are assumed to act as rigid supports. However,

Fig. 6 Kent ‘Tensegritree’ example: branch geometries employed

(in metres). a branches 2,6,10,14; b branches 4,8,12,16; c branches

1,3,5,7,9,11,13,15 Predefined bars are shown in grey, supports in green

and nodes in the ground structure in black

Table 2 Kanno tower example: effect of initial ‘ground structure’ on solutions obtained

# Ground struct. Connectivity No. nodes No. connections CPU time Vol. (post-processed)

(post-process) (s) (×10−6m3)

1 Original Restricted 16 93 0.42 (0.05) 5968.3 (6258.3)

2 Original Full 16 120 1.70 (0.06) 3164.7 (4302.2)

3 Refined I Restricted 36 567 351 (0.04) 2677.0 (2959.9)

4 Refined I Full 36 630 407 (0.03) 2469.4 (3476.7)

5 Refined II Full 66 2145 204,16 (0.06) 2228.5 (2680.4)
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Fig. 7 Kent ‘Tensegritree’ example: alternative structures with point

loads applied along the perimeter. Prescribed members are shown

in green; a–c solution obtained with discontinuous compression; d–f

solution obtained after inclusion of self-stress (with additional ten-

sion ring manually added to ensure pre-stress stability shown in

yellow)
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members passing through the vertical ‘trunk’ and/or lying

on the bottom plane, except for those on the outer ring, are

disallowed, though member intersections are not explicitly

checked for.

The optimization was carried out considering a set of

permanent downward loads of magnitude 10kN applied on

the external perimeter nodes (see Fig. 7), and assuming an

allowable stress of 100MPa. The ground structure contained

97 nodes and 4266 potential members, and the optimal solu-

tion of 9.591×10−2m3 was computed with a CPU time of

3827s. The initial optimized structure is shown in Fig. 7a–c.

Theself-stress condition was then imposed using the post-

processing approach described in Section 2.3.2; the result-

ing structure has a volume of 1.199×10−1m3 when a self-

stress ratio of 1.0 was used.

To check pre-stress stability, the elastic modulus of all

elements used to form the structure was taken as 205GPa,

and compression elements were modelled using circular hol-

low sections with a ratio between inner and outer diameters

of di

do
= 0.94. However, the generated structure was found

not to be pre-stress stable. To address this, a linear buck-

ling stability analysis was run to identify unstable modes;

the most affected members were found to be those radi-

ating outwards to the points of application of the external

loads. Therefore, an additional ring of cable elements (of

7mm diameter) was added (yellow lines in Fig. 7d–f), inter-

linking each of the loaded points. Also, to ensure that these

remained in tension at all times, pre-stress was applied. This

modification increased the volume of the structure by just

1.33%; the resulting load factor computed to be 38.

It is worth noting that, even though the post-processing

step in Section 2.3.2 does not always guarantee a pre-stress

stable solution, it provides an extremely efficient means of

generating self-stressed structures, providing a good starting

point for subsequent manual design interventions, if requi-

red. In this case, the structural analysis tool Karamba3D

(Preisinger 2013) was employed to verify stability, operat-

ing within the flexible Rhinoceros/Grasshopper parametric

modelling environment.

5 Discussion

In Section 3, various 2D and 3D tensegrity structures were

generated using the proposed formulation.

The 2D half-wheel example provides a practical demon-

stration of the fact that the optimal tensegrity structure must

always consume at least as much material as the corre-

sponding conventional truss solution; indeed in this case, the

optimal tensegrity structure will tend towards the optimal

Fig. 8 Tensegrity prism with

four loads and supports:

a solution generated by the

optimization procedure that

cannot be automatically

stabilized using the proposed

post-processing procedure,

which involves adding

additional tension members;

b alternative solution generated

by the inclusion of a self-stress

load case
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Table 3 Comparison of methods of including self-stresses

Examples Self-stress Multiple load case Post-process approach Volume difference (%) Speed up factor

ratio r in Section 2.3.2 approach in Section 2.3.1

Vol. CPU cost (s) Vol. CPU cost (s)

Fig. 3 0.1 22.18 7484 22.18 120 0 62

0.5 28.5 11,262 28.5 156 0 72

1.0 36.40 27,926 36.40 140 0 199

Fig. 5 0.1 5986 3.1 5986 0.4 0 8

0.5 6069 3.1 6069 0.6 0 5

1.0 6258 4.7 6258 0.6 0 8

Fig. 8 0.1 28.55 13,463 a a – –

0.5 37.15 26,094 a a – –

1.0 b b a a – –

a, infeasible. b, solver terminated after 24h run time

truss solution as more and more nodes are used in the ground

structure, assuming that in the limit compression members

are permitted to terminate a vanishingly small distance apart

from one another.

The tensegrity prism examples show that if loads and

supports are used in conjunction with a conventional lay-

out optimization formulation, supplemented by 0-1 binary

variables to facilitate imposition of the tensegrity constraints,

then structures that are in unstable equilibrium with the ap-

plied loads are likely to be generated. To include a self-stress

state in such structures, an efficient post-processing step

has been proposed. Compared with the more conventional

multiple load case formulation described in Section 2.3.1,

the post-processing step may not always find a set

of additional tension members from within the ground

structure to provide a viable self-stress condition; e.g. see

the example shown in Fig. 8. However, in many cases, the

post-processing step, which has negligible CPU cost, has

been found to be capable of obtaining identical solutions

to those obtained via the multiple load case approach; see

Table 3.

In the case of the Kent ‘Tensegritree’ example, the post-

processing step was supplemented by a manual step that

involved placing an additional ring of cables to address

the instability mechanism identified via a standard elastic

analysis. In this case, the modifications increased the

volume of the structure by only a very small amount.

Table 4 summarizes some properties of the generated

structures, where ds is the degree of statical indeterminacy

and dk is the degree of kinematical indeterminacy. Since

global stability is not directly addressed in this approach,

it needs to be checked afterwards. Stability load factors

Table 4 Summary of the status of the generated structures

Examples Self-stress No. nodes No. struts No. cables Statical Kinematical Stability load factor

ratio r indeterminacy ds indeterminacy, dk under self-stressa

Prism (Fig. 3c) 1.0 6 3 12 3 0 66

Prism 0.5 6 3 12 3 0 126

Prism 0.1 6 3 12 3 0 607

Kanno tower #1 (Fig. 5b) 1.0 16 8 47 13 0 0.8

Kanno tower #1 0.5 16 8 46 12 0 1.5

Kanno tower #1 0.1 16 8 45 11 0 7.3

Kanno tower #2 1.0 14 7 41 12 0 7.1

Kanno tower #3 1.0 32 16 121 47 0 9.1

Kanno tower #4 1.0 21 10 79 32 0 13.7

Kanno tower #5 1.0 40 18 152 57 1 12.7

Tengegritree (Fig. 7d–f) 1.0 53 24 207 78 0 38b

aMaximum self-stress multiplier, which is obtained as the minimum eigenvalue of the generalized eigenvalue problem Kφ = −λKGφ, where φ

is an associated eigenvector. bResult obtained after manually adding tensile ring
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under self-stress are provided, showing that most generated

structures are self-stress stable; the only exception is the

example in Fig. 5b using a high self-stress ratio r = 1.0. It

should also be noted that the geometrical stiffness matrices

are not positive semi-definite, so super-stable status is not

achieved.

Finally, since no attempt is made to automatically detect

and disallow intersecting compression members, these may

be present in the solutions generated using the proposed

approach. However, rather than introducing additional con-

straints to disallow intersections directly in the optimiza-

tion formulation, at significant computational expense, a

pragmatic alternative is to use geometry optimization in a

post-processing rationalization step (e.g. see He and Gilbert

2015). This involves adjusting the positions of the nodes to

improve the solution, in this case increasing its practicality;

this will be the subject of future work.

6 Conclusions

A simple formulation that can identify the layouts (element

connectivities) of minimum volume tensegrity structures for

problems with external applied loads and supports has been

presented:

– The simple mixed integer linear programming (MILP)

formulation proposed is capable of obtaining solutions

comparatively quickly. For example, a tensegrity prism

problem previously considered by Kanno (2013b) was

solved more than 5 orders of magnitude more quickly

using the proposed formulation, albeit without the

additional constraints on bar collisions, cable slack and

cable-only nodes that Kanno (2013b) considered.

– A simple and computationally inexpensive post-

processing procedure has been proposed to apply self-

stress to the tensegrity structures generated. This has

been found to be a computationally inexpensive alterna-

tive to applying self-stress via the use of a multiple load

case formulation.

– Although in the interests of computational efficiency

the proposed methods do not explicitly ensure that the

generated structures are pre-stress stable, subsequent

analysis of the example structures considered herein

showed that the great majority were in fact pre-stress

stable. When this was not the case, it was found that this

could be addressed via a simple manual post-processing

step.

– Although tensegrity structures are often considered

inherently ‘optimal’, the presence of additional con-

straints in the optimization formulation means that

they can never be more ‘optimal’ (or lower volume

in this case) than non-tensegrity structures. In fact it

is shown that as increasingly fine nodal discretizations

are employed, compression members may terminate in

closer and closer to proximity to one another, with the

optimizer trying to reduce the influence of the con-

straints that limit the number of compressive elements

at each joint to one.
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Appendix A: MATLAB script

A MATLAB script is provided in the electronic supplemen-

tary data to enable optimization problems to be solved and

solutions visualized. The script includes the following key

functions:

– tensegrityopt3D is the main function and

includes the workflow of the layout optimization

method.

– createGS creates the ‘ground structure’, e.g. Fig. 1c.

– getBoundary sets up load and support conditions.

– calcB creates the equilibrium matrix B.

– solveTruss creates and solves problems (1) and

(7).

– showTruss and plotBar enable visualization of the

structure generated.

A.1 Gurobi installation

The Gurobi optimizer is required to run the MATLAB script

provided. To install Gurobi for MATLAB:

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
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Table 5 MATLAB commands

to solve example problems Problem MATLAB command

Table 1: Cartesian tensegrityopt3D([], 0, 8, 5, 0)

Table 1: Polar tensegrityopt3D(‘wheel’, 0)

Fig. 3 tensegrityopt3D(‘prism’, 1)

Fig. 5 tensegrityopt3D(‘tower1’, 1)

Table 2: #2 tensegrityopt3D(‘tower2’, 1)

Table 2: #3 tensegrityopt3D(‘tower3’, 1)

Table 2: #4 tensegrityopt3D(‘tower4’, 1)

Table 2: #5 tensegrityopt3D(‘tower5’, 1)

Fig. 8 tensegrityopt3D(‘prism4’, 0)

– Obtain Gurobi from http://www.gurobi.com

– Obtain a Gurobi license code (free for academic use)

and install it as per the instructions provided.

– Run the gurobi setup.m script located in the Gurobi

installation folder to add it to MATLAB.

A.2 Solving example problems

The half-wheel example problem shown in Table 1 can be

solved by entering:

tensegrityopt3D([], 0, 8, 5, 0)

in the MATLAB command window.

The source code can be modified to solve different

problems. However, to avoid the need to modify the code,

the script can also read in example problems from data

files. Thus, files that include data describing the ‘ground

structure’ and also the relevant load and support conditions

for each example are provided in the ‘CSV’ subfolder; see

Table 5 for details.

Layout optimization problems may not have a unique

global optimal solution; this means there can exist several

layouts corresponding to the same optimal volume. Only

one such layout is shown in this paper.
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