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ABSTRACT: Fractal parameters of porous media have been a focus of study in petroleum 

engineering and hydrogeology for several decades because they provide an effective way to 

describe the complexity of pore structure across a wide range of scales. This paper combines 

3D process-driven digital rock modeling with fractal analysis in order to understand the effect 

of varying sorting, compaction, cementation, and the fine grain fraction of binary models on 

the fractal parameters and specific surface area of porous media. Digital rock models (DRMs) 

were constructed to simulate sandstone using a process-driven modeling technique which 

simulates sedimentation. The fractal parameters of the resulting pore geometry were 

calculated using the box-counting method on 2D and 3D representations of the DRMs. Our 

simulations indicate that increasing compaction or cementation lead to significant decreases 

in fractal dimension, specific surface area (SSp) and porosity, showing that these two 

diagenetic processes can affect the pore microstructure of the rock significantly. While 

interface fractal dimension (Di) and SSp both increase slightly with decreases in sorting (grain 

size variety), and porosity decreases slightly. Examining the behavior of binary models, the 

porosity of our digital models shows a V-shaped curve as fine grain fraction increases from 0 

to 1, consistent with, but higher than the theoretical values, which we attribute to incomplete 

packing of the grains arising from the finite boundary of models. The value of both SSp and Di 

increase as the fine grain fraction increases.  

KEY WORDS: porous media, 3D digital rock modeling, fractal dimension, specific surface 

area, porosity 
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0  INTRODUCTION 

 

The pore microstructures of porous media such as sandstones, limestones, shales and soils are 

important in the study of petrophysics, subsurface geophysics, and reservoir engineering, 

since most of the world’s underground water, oil, gas and gas hydrate reserves are stored in 

them. Furthermore, porous rocks are increasingly also being used for the long-term storage of 

CO2 and the shorter term storage of hydrocarbon gases and energy in the form of compressed 

air.  

 It is well known that the geometry of pore space is highly tortuous, disordered and 

complex over a wide range of scales (Krohn, 1988a; 1988b). This complexity has great effects 

on the electrical conductivity (Katz and Thompson, 1985; Suman and Knight, 1997; Revil and 

Glover, 1998; Zhao et al., 2013; Luo and Pan, 2015), permeability (Hansen and Skeltorp, 

1988; Schlueter et al., 1997; Pape et al., 1999; Yu and Cheng, 2001; Wu; et al., 2019), 

imbibition (Cai and Yu, 2011), and other properties of porous media. Despite this however, it 

is difficult to evaluate the complexity of pore spaces and its impact on the other petrophysical 

properties quantitatively. 

Most natural porous media are composed of solid grains of various shapes and dimensions. 

Their pore structure presents an approximately self-similar geometry (Mandelbrot, 1982; Katz 

and Thompson, 1985; Hansen and Skjeltorp, 1988; Xie, 1993). In recent decades, fractal 

theory has been used increasingly in the study of surface roughness (Wong, 1986; Xie, 1993: 

Glover et al., 1994), pore structure analysis (Muller, 1996; Dutta and Tarafdar, 2003; Giri, 

2012; Giri et al., 2013), fractal fracturing (Isakov et al., 2001; Ogilvie et al., 2003; 2006), 

heterogeneity (Karimpouli and Tahmasebi, 2018) and permeability evaluation (Hansen and 

Skeltorp, 1988; Pape et al., 1999; Al-Zainaldin et al., 2017; Glover et al., 2018). Numerous 

studies have indicated that fractal dimension is an ideal parameter to describe the complexity 

of pore structure (Katz and Thompson, 1985; Krohn, 1988a; Krohn, 1988b; Muller, 1996; 

Dutta and Tarafdar, 2003; Giri, 2012; Giri et al., 2013; Wu; et al., 2019), but there is little 

information showing the effect of depositional process on the fractal dimension of a granular 

porous medium.  

In order to obtain the fractal dimension of an object, researchers developed several 

different computing methods which are now standard mathematical tools. These tools include 

the box-counting method (Russell et al., 1980), the fractional Brownian motion method 

(Mandelbrot, 1975), and the area measurement method (Shelberg et al., 1983; Peleg et al., 

1984). However, the box-counting method is the most frequently used algorithm for 

computing the fractal dimension of images, and is implemented in this work.  

The box-counting method is widely used to calculate the fractal dimension of complex 

patterns, because it is easy to apply and applicable for patterns both with and without 

deterministic self-similarity (Peitgen et al., 1992). In the box-counting algorithm, the 

resolution of images, the pre-processing of images and selection of the range of box size 
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could all affect the computation of fractal dimensions. Consequently, significant efforts have 

been made to improve the accuracy of the estimation of fractal dimensions (Sarkar and 

Chaudhuri, 1992; Jin et al., 1995; Baveye et al., 1998; Buczkowski et al., 1998; Gonzato et 

al., 1998; Foroutan-pour et al., 1999; Bisoi and Mishra, 2001; Xu and Weng, 2006; Pruess, 

2007; Li et al., 2009). 

Digital rock modeling (DRM) techniques have developed rapidly in recent years. There are 

mainly two ways to construct rock models. One way is based on physical measurements (e.g. 

X-ray CT, SEM, FIB-SEM) of rock samples; the other way is based on computer simulation. 

Most of the physical measurements can provide real 2D and 3D image of rocks, but they are 

usually very expensive and time-consuming. While the computer simulation provides a 

convenient, inexpensive, efficient and flexible way to build rock models and generate pore 

scale images. The most popular DRM techniques by computer simulation include the 

process-driven method (Bakke and Øren, 1997; Coelho et al., 1997; Jin et al., 2003; Nilsen et 

al., 1996; Øren et al., 2002; Pilotti, 2000; Zhu et al., 2012), the multiple point statistic method 

(Okabe and Blunt, 2005; Tahmasebi and Muhammad Sahimi, 2012), the continuum 

geometrical method (Biswal et al., 2007, 2009; Latief et al., 2010; Roth et al., 2011), the 

bidisperse ballistic deposition modelling (Tarafdar and Roy, 1998; Dutta and Tarafdar, 2003), 

and the stochastic method (Hazlett, 1997; Yeong and Torquato, 1998; Eschricht et al., 2005; 

Wu et al., 2020a; Wu et al., 2020b). These techniques provide us an ideal way to simulate a 

wide range of different rock textures with complex pore structures. 

In our study, the process-driven digital rock modeling approach is employed to build the 3D 

models using monodisperse and polydisperse spherical grains. The digital rock modeling process 

generates pore-scale images of porous media in three dimensions which can be analysed either in 

three dimensions or by using two-dimensional intersections through the 3D data volume. The 

box-counting method was then used to analyze the images and compute the fractal dimensions of 

pore structure. With the advantages of the process-driven DRM approach, we can control the size 

of all the grains comprising the models, and evaluate the effects of grain sorting, compaction and 

cementation on the fractal dimensions, porosity, and specific surface area of porous media. 

 

1  METHODOLOGY 

 

The two important methods involved in this study are (i) process-driven digital rock modeling, 

which is used to construct the sandstone models, and (ii) the box-counting method for computing 

the fractal dimensions of pore structure. 

 

1.1  Model construction 

The advantage of the process-driven approach to DRMs creation is that it creates realistic pore 

structures which represent sedimentary rocks well because the process of sedimentation is 

mirrored in the process by which the DRMs are constructed. Consequently, process-drive DRMs 
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represent primary depositional textures well, and the structure can then be modified to account for 

compaction and diagenesis. The method usually treats the three processes as three distinct steps; (i) 

sedimentation, (ii) compaction, and (iii) diagenesis (Bakke and Øren, 1997). In this study, our 

simulations implement only very simple rock models, consisting of a single mineral component 

represented by grains of various sizes. The pore structure is that space which is not occupied by 

grains. While much more complex models are easily possible, increasing complexity, by making 

models multi-mineralic for example, makes the results more difficult to interpret physically. 

Consequently, this work starts with the simplest scenarios and restricts itself to spherical grains. 

We have developed code to construct 2D and 3D sandstone models. The code is 

implemented in Matlab and uses the native program libraries. Studies based on the 2D models 

have been reported in one of our previous papers (Li et al., 2019). However, it was recognized 

that significant systematic errors could arise from restricting the modelling to two dimensions. In 

this work, we extend the creation and testing of DRMs to three dimensions. However, we will 

describe the process-driven approach using figures in two dimensions for clarity in print. 

Figure 1a-d shows schematically the sedimentation of spherical grains with a certain 

distribution of radii. Figure 1a shows a new (red) grain that has been generated randomly in 

order to conform to a pre-programmed grain size distribution, and is falling. Figure 1b shows 

the previous deposited grains are expanded according to the radius of the new grain and form 

a deposit surface where the centre of the new grain can be placed at. Figure 1c shows that the 

new grain finds a stable position, which globally minimizes its gravitational potential energy. 

Figure 1d shows the image of a digital rock which is formed by the sedimentation of a cohort 

of such grains. It is worthwhile noting that the pore space beneath the red grain, once it has 

settled, was capable of being occupied by a smaller grain. However, at the time of deposition, 

a smaller grain was not available. We call this effect incomplete packing. It occurs naturally, 

and shows how the sedimentation-driven DRM can incorporate this effect in a realistic way. 

Once the primary depositional structure has been created, we can subject it to compaction 

and cementation effects to obtain a more realistic rock model.  

Compaction can be implemented in two ways. In the first, the volume of the entire model is 

reduced by allowing the grains to overlap. The overlapping material is then removed. This process 

models the loss of matrix material by diagenetic dissolution. Moreover, the greatest loss of 

material occurs where the grains touch, which means that this process may model the process of 

pressure solution well. If the rock represents an open flow system such that the dissolved material 

is removed completely from the rock, this process results in a reduction of porosity because the 

loss of the bulk volume is always greater than the loss of overlapping material. If the flow system 

is closed, precipitation may occur, which will decrease the porosity of the rock further. 

In the second implementation of compaction, the overlapping material is not removed, but 

broken off and redistributed in the pores. This process models purely mechanical compaction by 

grain comminution. Purely mechanical compaction leads to a greater loss of porosity than that 

encountered for dissolution in an open system, as described immediately above, but may be 
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similar to that encountered if dissolved material is redeposited locally by precipitation in a closed 

flow system. We implement compaction assuming the material to be removed, which gives an 

overall small reduction in porosity (Fig. 1f).  

Cementation can also be added to the model (Fig. 1g). In our case we implement it by adding 

a uniform layer around grains where there is space to do so (i.e., not where grains touch). This 

approach to cementation is similar to that observed in nature, and results in an overall reduction in 

porosity.  

The final DRMs can be subject to edge effects, which arise from their creation. To reduce the 

edge effect of the box model, we carried out all of our analyses on sub-volumes of the entire 

model, which are sufficiently far from the periphery of the DRMs to obviate most edge-related 

artefacts. Figure 2 shows a flowchart describing the detailed procedure of the process-driven 

digital rock model construction. 

 

1.2  Fractal dimension and specific surface area calculation 

Fractal (self-similar) structures are very common in nature. Examples include coastlines, 

mountains, clouds (Mandelbrot, 1982), river networks (Tarboton et al., 1998), natural fracture 

sizes (Ogilvie et al., 2001), fracture surfaces (Glover and Hayashi, 1997) and fluid flow 

within natural fractures (Glover et al., 1997; 1998a; 1998b; Ogilvie et al., 2006), and the pore 

structure of sandstones (Krohn, 1988; Schroeder, 1991; Li et al., 2009). Thirty years ago it 

was recognized that the geometrical characteristics of these objects (e.g., length, area and 

roughness) are too complex to be described accurately by traditional Euclidean geometry. 

Therefore, a fractal dimension, which is a non-integer dimension, was defined and proposed 

to describe the fractal features of complex objects quantitatively (Mandelbrot, 1982).  

The fundamental definition of fractal dimension calculation is based on the theory of 

self-similarity. Self-similarity occurs when for a bounded set A in Euclidean space, A is the 

union of Nr distinct copies of itself, where each is similar to A scaled down by a ratio r. Thus, 

the fractal dimension D of the bounded set A can be expressed as 

 

0

log( )
lim

log(1/ )
r

r

N
D

r→
= ,         (1) 

 

where Nr is the least number of distinct copies of A at the scale r (Mandelbrot, 1982; Bisoi 

and Mishra, 2001; Li et al., 2009; Wang et al., 2012). 

Equation (1) can be used directly for those objects with ideal and deterministic fractals. 

For the objects without deterministic fractals, researchers have developed other methods to 

estimate their fractal dimensions, such as the box-counting method (Russell et al., 1980), the 

power spectrum method (Turner, 1998), and the perimeter-area relationship method 

(Mandelbrot, 1982). 

There are a large number of measurements that may be made on a porous medium, many 
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of which may be fractal. Putting those associated with fractures aside for simplicity, an 

inexhaustive list may include grain and pore volume, grain size, grain surface area and the 

area of the pore/grain interface (Krohn, 1988b; Schroeder, 1991; Li et al., 2009). We have 

chosen to study mainly the pore volume and surface area of the pore/grain interface in a 3D 

rock as these properties are important for applications involving rock-fluid interaction such as 

processes associated with surface conduction (Glover, 2015; Glover et al., 1994), sorption of 

pollutants, and sorption of radioisotopes in repositories for nuclear waste 

(Ghanbarian-Alavijeh et al., 2011; Brouers and Al-Musawi, 2018; Wang et al., 2019) as well 

as the transport and attenuation of elastic waves and heat through porous media (Yu et al., 

2018; Gudehus and Touplikiotis, 2016).  

We have developed a Matlab code to compute the fractal dimension of 2D and 3D images 

of digital rocks based on the box-counting method reported previously (Foroutan-pour et al., 

1999). Taking a 2D image as a simplified example, the computation process can be 

summarized in the following steps:  

1. Take a 512512 pixels sized square sub-area of the digital rock model (Fig. 3a and 

3b). 

2. The analysis may now be carried out for the distribution of pore volume or the 

pore/grain boundary. The former is described by the upper panels in Fig. 3 (i.e., Fig. 

3c1 to 3e1), while the pore/grain boundary is described by the lower panels in Fig. 3 

(Fig. 3c2 to 3e2). In order to obtain the fractal dimension of the pore/grain boundary, 

the interfaces between the pores and the solid particles are obtained by digital filtering, 

and are shown in Fig. 3c2 and 3d2 as white lines, making all the other parts of the 

sample black (i.e., the pore and grain parts). In order to obtain the fractal dimension of 

the pores, no further filtering is required. 

3. The image is gridded with a mesh of density ni×ni (where n = 2i, i is an integer), thus 

the side length of each box is rn = 512/n. All the boxes which contain white pixels are 

summed to obtain a count number Nr, (Fig. 3c1). In our case, the mesh density usually 

ranges from 2×2 up to 256×256. 

4. The mesh density is then increased to ni+1×ni+1 (where ni+1 = 2i+1). Now the side length 

of each box is rn = 512/ni+1. Once again all the boxes which contain the white pixels 

are summed to obtain a new count number Nr, (Fig. 3d1). 

5. Step 4 is repeated, incrementing i by one until i=8 (i.e., a minimum box size of 2×2 

pixels. Hence, we can obtain multiple pairs of (rn, Nr) data. 

6. A least-squares regression of log(Nr) as a function of log(1/r) can then be performed 

on the (rn , Nr) dataset, and the fractal dimension is obtained from the slope of the 

fitted line (Fig. 3e1 and 3e2). Hence, the fractal dimension of both the pore area Da 

(Fig. 3e1) and the pore boundary Db can be obtained (Fig. 3e2). 



7 

 

The same procedures can be modified to analyse the analogue properties of three 

dimensional DRMs. Hence, we can compute the fractal dimension of the pore volume Dv and 

that of the pore/grain interface Di by using 3D images of porous rock. 

In this work the specific surface area (SSp) is defined as the ratio of the total surface area 

of pore space to the total volume of pore space. 

 

2  RESULTS 

 

In order to reveal the potential influencing factors of the fractal dimension of porous media, 

we have calculated the fractal dimension parameters, porosity and specific surface area while 

varying the sorting, compaction, cementation and the fine grain fraction of binary models, one 

at a time.  

 

2.1  The effect of sorting (grain-size variety) 

Grain size variety is a good indicator of the sorting of grains. We have constructed seven 

types of model with varying grain-sizes.  

Table 1 lists the 7 grain-size mixtures examined in this paper, together with the modelling 

results for porosity, specific surface area and four types of fractal dimension. In each case the 

maximum grain size is 26 units. Mixture V1 is single-sized. Mixture V2 is bimodal with 

grains of 26 units together with others of 23 units. Subsequent mixtures add one more grain 

size to the mixture, always 3 units smaller each time. The process-driven depositional code 

was programmed to choose at random between available grain sizes with equal chances 

amongst the types available. Consequently, the result of modelling with the V2 mixture is a 

final model composed by number of 50% of grains of radius 26 units and 50% of grains of 

radius 23 units (but 59.1% to 40.1% on the basis of volume). By contrast Model V7 contains 

equal numbers of grains of 7 different sizes (14.28% or each), with the large grains 

contributing significantly more to the fractional volume (37.2%) than the smallest grains 

(1.08%). 

Figure 4 shows images of 3D models with different grain size variety. It is clear that, at 

least qualitatively, Model V1, which contains grains of one size, shows larger pore size, while 

Model V7, which contains grains of seven sizes, has smaller pore sizes. 

Figure 5 shows the evolution of the fractal dimension, specific surface area and porosity 

as grain size variety increases. Figure 5a and 5b shows that the fractal dimensions Di and Db 

increase slightly with increasing grain-size variety, while there is no significant change in Dv 

and Da. Figure 5c shows that the specific surface area (SSp) increases slightly with the increase 

of grain size variety, which is consistent with the grain surface area to grain volume ratio 

(SA/V = 3/r) decreasing in inverse proportion to grain size r. Figure 5d shows that the 

porosity decreases slightly as the grain size variety increases, which indicates the propensity 

for small grains to fill gaps created between the larger grains. The extent to which this was the 
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case in our modelling reflects the relatively small volume fractions of the smallest grains in 

the mixtures. Repeating the experiments with grain availability being uniform on the basis of 

grain volume is expected to produce significantly larger variabilities for SSp and porosity, but 

is not included in this paper, and would be recommended further step in modelling. 

 

2.2  The effect of compaction 

We have also attempted to investigate the evolution of fractal dimension, specific surface area 

and porosity with simplified compaction using our digital rock models. Figure 1 (parts d and e) 

shows schematic diagrams of the way we have implemented compaction. We constructed an 

initial digital rock model composed of grains with radius of 24, 20, 16 and 12 units before 

imposing different degrees of compaction on it. We quantify the degree of compaction using a 

compaction coefficient, Cp and the compaction effect can be expressed by 

 

x = xo(1-Cp1),          (2) 

y = yo(1-Cp2),          (3) 

z = zo(1-Cp3),          (4) 

 

where x, y, and z are the position coordinates of the centre of a grain after the compaction, xo, 

yo, and zo are the initial position coordinates of the centre of the grain, and Cp1, Cp2, and Cp3, 

are the compaction coefficient (1 > Cp > 0) along x-axis, y-axis and z-axis, which is 

proportional to the compaction effect. If the Cp tends to 0 there is no compaction, and if Cp 

tends to unity the compaction is so severe that only a single layer of grains remains. In this 

work we have used a range 0.24 > Cp > 0 and Cp1 = Cp2 = Cp3 = Cp.  

Table 2 shows the modeling data of the porosity, specific surface area and four types of 

fractal dimension for the models with different compaction coefficients Cp. Figure 6 shows 

some 3D models with different compaction coefficients. Comparing them, it is clear that 

porosity decreases significantly with the increase of compaction coefficient but it is difficult 

to form a qualitative assessment of how the fractal dimension and specific surface area might 

change. 

Figure 6a shows the initial state of the model without compaction. The model is then 

compacted by squeezing and overlapping the grains in the vertical and horizontal directions. 

This is formally the same as considering all the material from one of the grains in the overlap 

being removed from the model by a process such as dissolution and transport out of the model. 

Consequently, the implementation of compaction in this work reflects both the vertical and 

horizontal stress and pressure dissolution occurring to remove material (Renard and Dysthe, 

2003). 

Figure 7 shows that the porosity and fractal dimension parameters decrease as 

compaction increases, while specific surface area significantly increases while the compaction 

coefficient increases. It is clear that the process of compaction is, to some extent, simplifying 
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the complexity of the pore structure at the same time as the porosity is being significantly 

reduced.  

 

2.3  The effect of cementation 

The third model factor we have investigated is cementation. To do this we constructed an 

initial digital rock model composed of grains with radius of 26, 23, 20 and 17 units. We then 

induced different degrees of cementation to the model. It was assumed that the cementation 

took the form of a uniform layer of cement which grew on the surface of the original grains as 

shown in Figure 1f. This has the effect of enlarging the grains, but only at the points where the 

original grains are not touching. The degree of cementation has been quantified by using a 

cementation thickness. The cementation effect then is given by the following equation: 

 

R = Ro + Tc          (5) 

 

where Ro is the radius of a grain without cementation, R is the radius of the grain after 

cementation, and Tc is the thickness of cement layer. The implementation of the digital rock 

models is such that we can make the grains larger, representing cementation, and 

automatically discount the material which overlaps neighboring grains. In this way it is 

possible to generate the required geometries with very simple changes to our code. 

Table 3 shows the computing data of the porosity, specific surface area and four types of 

fractal dimension of the models with different cementation thickness. 

 Figure 8 shows some 3D models with different cementation thickness. Fig. 8(a) shows a 

model with no cementation (Tc = 0), while Fig. 8(c) shows a model with significant 

cementation effect (Tc = 8). Once again, these qualitative diagrams show clearly that the 

porosity decreases significantly. Furthermore, as cementation thickness increases the pore 

spaces become increasingly boxy in nature. It is expected that this geometry will have a lower 

fractal dimension. This hypothesis is borne out in Figure 9, which shows how the fractal 

dimension and porosity varies as the cementation thickness increases. However, the specific 

surface area increases significantly as the cementation thickness increases. This may be 

attributed to the poor connectivity of pores when the cementation thickness is large. 

 

2.4  The effect of the fine grain fraction of binary models 

We have also investigated so-called binary models, i.e., models composed of two types of 

grains (coarse and fine) in order to test a recently published theory of binary mixing (Glover 

and Luo, 2020). When the ratio of the diameters of coarse and fine grains is large enough, it is 

clear that porosity depends upon the extent to which smaller grains can pack between larger 

grains. However, mathematically, this also occurs to a limited extent when the relative rations 

of coarse and fine grains is closer providing there is imperfect packing.  

Figure 10a shows a schematic diagram of 2D binary mixtures of spherical grains where 
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the volume fraction of fine grains increases from zero to unity from the left to the right of the 

diagram (modified from Glover and Luo, 2020). The figure shows two competing processes, 

which were called the Interstitiation Process (IP), and the Replacement Process (RP) by 

Glover and Luo (2020). The IP process operates at low volume fractions of fine grains, where 

smaller grains fill the interstices between larger grains (reading from the left of Figure 10a, in 

the direction from the left to the right). The RP process operates at high volume fractions of 

fine grains, where coarse grains replace groups of fine grains as well as the pore space 

between them (reading from the right of Figure 10a, from the right to the left). 

The porosity of the binary mixture arising from such processes is a function of the 

volume fraction of the fine grains (Zhang et al., 2009; Glover and Luo, 2020), and their 

relation can be described by the following equations, 

 

 

(6) 

 

where n represents the theoretical porosity of the Interstitiation Process and decreases as the 

fraction of the fine grains (Vf) increases; N represents the theoretical porosity of the 

Replacement Process and increases as the fraction of the fine grains (Vf) increases; min 

represents the theoretical minimum porosity of a binary mixture; c is the porosity of pure 

coarse grains; f is the porosity of pure fine grains; Vfcrit is the fractional value of the fine 

grains where the porosity decreases to the minimum. 

The theoretical approach predicts that the porosity decreases at first and then increases as 

the fine grain fraction increases (Figure 10b), with the minimum porosity occurring for some 

mixture of fine and coarse grains. The Glover and Luo (2020) model represents a lower limit 

for the porosity not taking into account imperfect packing. Imperfect packing leads to 

porosities above the theoretical curves if the two end-members (f and c) exhibit better 

packing. The process-driven digital rock modeling approach we use usually can only produce 

imperfect packing models. 

We have constructed 3D binary models using our process-driven digital rock modeling 

approach. We can compare our digital results with the theoretical calculations. Figure 11a 
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indicates that the porosity of our digital models also shows a V-shape curve and is higher than 

the theoretical porosity, which means our digital binary models did not reach a complete 

packing and produced relatively high porosity. The Interstitiation Process (IP) describes the 

low Fs porosity behavior well, while the Replacement Process (RP) does not describe the high 

Fs behavior, since the data from the digital rock models can only be fitted by the IP curve at the 

left part of Figure 11a. 

The model with higher size ratio of coarse and fine grains displays lower porosity (Figure 

11a), so the grain size ratio can also affect the porosity of the binary model. Figure 11b, 11c 

and 11d indicate that the specific surface area and two fractal dimension parameters increase 

as the fine grain fraction increases. 

 

3  DISCUSSION 

 

3.1  Grain size variety and fine grain fraction 

Both the fine grain fraction of binary models and grain-size variety are related to the sorting 

of grains and affect the initial deposition state of the sedimentary rocks. The 3D digital rock 

modelling carried out in this paper provides us with a quick look at the effect of fine grain 

fraction and grain-size variety on the fractal dimension, specific surface area and porosity of 

porous media. These variables are also associated with the initial deposition of the rock, and 

hence associated with the rock’s initial microstructure and primary porosity.  

Our digital rock modelling shows that fractal dimension parameters Di and Db and 

specific surface area increase slightly with increasing grain-size variety, within the parameter 

range studied in this work (Fig. 5), while the porosity decreases slightly. In other words, the 

availability of a range of grain sizes allows a more efficient packing, reducing the porosity, 

while the resulting packing is more complex.  

This effect was also apparent in the binary modelling. Here, the radius ratio of the coarse 

to fine grains in the binary model affected the primary porosity throughout the entire mixing 

range (from 100% coarse grains to 100% fine grains) and the minimum porosity (Fig. 11a), 

which occurs between 0.17 and 0.25. The porosity was found to increase with decreasing 

coarse to fine grain size ratio. This is consistent with the expected behavior, which, for a 

binary mixture, allows small grains to better access and occupy spaces formed between larger 

grains if the coarse to fine grain size ratio is large. For smaller values of this ratio, the two 

grain sizes are nearer each other, and hence small spaces between the larger grains cannot be 

as easily occupied by the smaller of the two grain sizes. 

Theoretically, we should have c = f in Fig. 11a, since porosity is scale independent. 

Actually, the experiment data by Glover and Luo (2020) and our numerical simulations do not 

support this phenomenon. The main reason is the boundary effect of the vessel (model). Due 

to the size limitation of the vessel (model), vessel boundary can affect the arrangement of all 

the grains. This hinders the model from getting to the closest packing. The other reason is the 
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image resolution when we use digital rock models. For a given resolution, the surface of a 

large sphere is always much smoother than that of a small one. 

By contrast, the specific surface area and fractal dimensions were found to exhibit a 

different behavior, which has not been predicted by previously existing models (Yang, et al., 

2014; Gao, et al., 2017). Specific surface area SSp increases as the fraction of fine grains in the 

mix is increased with no critical mixing fraction at which SSp has a minimum value (Fig. 11b). 

Once again, this is expected. The surface area to volume ratio for spheres (and many other 

solids) increases as the size of the grain is reduced. The observed DRMs modelled results are 

simply the operation of this basic geometrical relationship in a model of fixed volume. The 

increase of SSp with increasing fraction of fine grains is more marked for mixtures with large 

coarse to fine grain size ratios, which is due to the larger surface area to volume ratios 

exhibited by smaller grains as well as the efficiency with which the addition of fine grains 

between the larger grains in the matrix add to the overall surface area. This process occurs up 

until a fraction of small grains which is about the same as the critical fraction shown in the 

porosity diagram (Figure 11a). After this point has been reached the addition of smaller grains 

must be carried out by the removal of the larger grains, hence the process of increasing the 

surface area is less efficient, because it must be the result of the net effect of removal of the 

surface area of the larger grains and addition of the surface area of the smaller grains to 

replace the larger grain. 

 Interestingly, the interface fractal dimension Di also shows a very similar behavior to SSp 

(comparing Fig. 11b to Fig. 11c), while the volume fractal dimension Dv shows a similar 

behavior to the porosity (comparing Figure 11a to Figure 11d). These associations suggest that 

the pairing SSp and Di , and the pairing  and Dv both depend on the same geometrical 

constraints.   

We have carried out a set of cross plots to examine interdependence between these four 

parameters, as shown in Figure 12. As expected, the relationship between specific surface area 

and Di is fairly linear, with very similar behavior for all three binary models taking part in the 

Interstitiation Process, trifurcating when the Replacement Process takes over at larger 

fractions of finer grains. The other cross plots show more complex behavior, but generally all 

three binary models have the same behavior during interstitiation, that follow different but 

often parallel curves during replacement. 

The behavior of the volume fractal dimension Dv is more complex and worth examining 

explicitly. The results of Dv as a function of the fraction of fine grains (Figure 11d) shows an 

initial decrease to a minimum value of Dv, followed by an increase in Dv. This is similar 

behavior to that exhibited by the porosity, but is different in two important ways. First, the 

critical value of the fraction of fine grains at which the minimum value of Dv occurs is not the 

same as that for porosity, but occurs at about half the value of the fraction of fine grains 

(between 0.1 and 0.2). Second, binary mixtures with a large coarse to fine grain size ratio 

exhibit a greater increase in Dv with increasing grain size ratio, which is the opposite of what 
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is observed for porosity. This suggests, counterintuitively, that greater complexity of pore 

space is associated with binary mixtures of two grain sizes which are similar. The cross-plot 

of porosity against Dv (Fig. 12d) shows that there is some relationship between these two 

parameters, but it is complex, with the critical value (lowest value of the parameter) for 

porosity and Dv being different, which contrasts with the situation when one compares 

porosity with Di (Fig. 12c), where they are much more consistent between each of the new 

models. 

  

3.2  Compaction and cementation 

The situation is rather different in the case of the diagenetic processes that modify the initial 

rock microstructure. Here, the fractal dimension and porosity decrease rapidly with increasing 

compaction and cementation effect (Fig. 7 and Fig. 9). While the loss of porosity is to be 

expected, one would imagine that both compaction and cementation would leave the rock 

pore space with a more complex microstructure and with a correspondingly higher fractal 

dimension. That this is not so in the results presented in this work may be associated with the 

simplifying assumption in this research of using only round grains. It may be the case that 

more sophisticated models are needed; models which take into account other important 

influencing factors such as grain shape, grain size distribution, rupture, deformation etc. 

These models are in the process of being designed.  

 However, both the compaction and cementation processes implemented in this work do 

not reduce pore volume randomly, but operate at grain boundaries, like their natural analogues. 

This form of pore volume reduction preferentially removes porosity that is not in the centre of 

pore volumes or the flow channels that they may form. Consequently, it is possible that the 

reduction in both Di and Dv reflect a decrease in complexity of the pore space as more direct 

channels are formed by blocking side cul-de-sac. If this interpretation is correct we would 

expect there to be a minimum in both Di and Dv followed by increasing fractal dimensions as 

Cp and Tc are increased past the point where compaction and cementation is blocking entire 

pathways for flow, i.e., close to the percolation threshold. 

 

3.3  Relationships between porosity, specific surface area and fractal dimension 

The relationships between the fractal dimension and their associated porosities and specific 

surface areas can be analysed using the results of numerical simulations on our DRMs. 

Besides the DRMs, we computed the fractal dimension of 12 real sedimentary rocks by their 

micro-CT images that published by Dong and Blunt (2009) (Table 4). 

Figure 13a and 13b show that the fractal dimension parameters Dv and Di have positive 

correlations with porosity. Figure 13c shows that the specific surface area (SSp) has a negative 

correlation with porosity. Figure 13d shows that the specific surface area (SSp) has a negative 

correlation with the fractal dimension parameter Dv for the data from the cementation and 

compaction modelling.  
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The cementation and compaction effect produce very similar impact on the porosity, 

specific surface area and fractal dimension (Fig. 13). The data from the grain size variety 

modelling show a very narrow span in the parameter space (Fig. 13). Therefore, the effect of 

grain size variety on porosity, fractal dimension and specific surface area is relatively weak.  

The data from the real rocks show a relatively narrow span in the parameter space too 

(Fig. 13). This indicates the real rocks did not experience very fierce cementation and 

compaction effects. Moreover, most of the data points from the real rocks fall into the span 

space of the digital rocks’ data. 

The results above indicate that the model parameters (e.g. cementation and compaction) 

of digital rock models can be adjusted easily and the simulated data can cover a larger range 

in the parameter space than the real rocks’ data. This is an important advantage of DRMs. 

  

4  Conclusions 

 

Using the process-driven digital rock modeling technique, we can easily construct digital rock 

models to simulate porous media (e.g., sandstones) and control the size of all the grains of 

which the models are composed. Our work demonstrates the advantage of digital rock 

modeling in the research of pore structure and its fractal features. 

The multiple model implementations carried out in this work indicate that: 

(1) the diagenetic processes of compaction and cementation give rise to significantly 

smaller fractal dimensions, specific surface area and porosities, as expected. This implies the 

development of less complex pore microstructures.  

(2) grain size variety (sorting) produces a much weaker impact on porosity, fractal 

dimension and specific surface area than compaction and cementation. Fractal dimension 

parameters Dv and Da display even no correlation with grain size variety.  

(3) for the binary models, the porosity of our digital models shows a V-shape curve as 

fraction of fine grains increases from 0 to 1, but our porosity is higher than the theoretical 

porosity due to the incomplete packing of the binary grains. The specific surface area and 

fractal dimension Di and Dv increase as the fine grain fraction increases. 

(4) the computation of the micro-CT image data of sedimentary rocks released by Dong 

and Blunt (2009) shows that that fractal dimension parameters Di and Dv and specific surface 

area do not show obvious correlations with permeability, but succolarity () shows a positive 

linear relationship with permeability (coefficient of determination R2 = 0.85). Therefore, the 

succolarity of the rocks may give a better correlation to permeability than porosity (R2 = 

0.721). 

(5) the best relationship to permeability was found to be the product of porosity and 

succolarity to the power of n and a coefficient S, where n is approximately 3 and S is a 

coefficient that we hypothesize depends on pore or pore throat size. 
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Table 1. Porosity, specific surface area and fractal dimension (D) of the 3D models composed of round 

grains with different grain-size varieties (GSV). (R: grain radius; SSp: specific surface area; Di: fractal 

dimension of the interface between the pore and grains in a 3D model; Dv: fractal dimension of the pore 

volume in a 3D model; Db: interface fractal dimension derived from a 2D slice; Da: pore area fractal 

dimension derived from a 2D slice). 

Model No. GSV 

(unit) 

Porosity 

(fractional) 

SSp 

(μm2/μm3) 

Di 

(-) 

Dv 

(-) 

Db 

(-) 

Da 

(-) 

V1 R = 26 0.378 0.274 2.747 2.853 1.641 1.816 

V2 R = 26,23 0.377 0.278 2.755 2.858 1.666 1.834 

V3 R = 26,23,20 0.367 0.302 2.767 2.859 1.666 1.827 

V4 R = 26,23,20,17 0.360 0.326 2.779 2.861 1.672 1.827 

V5 R = 26,23,20,17,14 0.348 0.354 2.788 2.861 1.700 1.819 

V6 R = 26,23,20,17,14,11 0.335 0.383 2.796 2.859 1.704 1.825 

V7 R = 26,23,20,17,14,11,8 0.331 0.394 2.799 2.858 1.708 1.810 
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Table 2. Porosity, specific surface area and fractal dimension (D) of the 3D 

models composed of round grains with different compaction coefficients (Cp). 

(Por: Porosity; SSp: specific surface area; Di: fractal dimension of the interface 

between the pore and grains in a 3D model; Dv: fractal dimension of the pore 

volume in a 3D model; Db: interface fractal dimension derived from a 2D slice; Da: 

pore area fractal dimension derived from a 2D slice). 

Cp 

(-) 

Porosity 

(fractional) 

SSp 

(μm2/μm3) 

Di 

(-) 

Dv 

(-) 

Db 

(-) 

Da 

(-) 

0.000 0.343 0.390 2.806 2.867 1.714 1.830 

0.030 0.335 0.407 2.809 2.866 1.719 1.825 

0.060 0.275 0.482 2.800 2.842 1.707 1.795 

0.090 0.215 0.573 2.780 2.811 1.679 1.748 

0.120 0.159 0.685 2.750 2.771 1.640 1.691 

0.150 0.109 0.813 2.704 2.717 1.605 1.643 

0.180 0.069 0.963 2.636 2.644 1.505 1.530 

0.210 0.038 1.164 2.539 2.543 1.368 1.387 

0.240 0.018 1.436 2.403 2.405 1.200 1.213 
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Table 3. Porosity, specific surface area and fractal dimension of 3D models with 

different cementation thickness (Tc). (SSp: specific surface area; Di: fractal dimension 

of the interface between the pore and grains in a 3D model; Dv: fractal dimension of 

the pore volume in a 3D model; Db: interface fractal dimension derived from a 2D 

slice; Da: pore area fractal dimension derived from a 2D slice). 

Tc 

(unit) 

Porosity 

(fractional) 

SSp 

(μm2/μm3) 

Di 

(-) 

Dv 

(-) 

Db 

(-) 

Da 

(-) 

0 0.360 0.326 2.779 2.861 1.672 1.827 

1 0.322 0.352 2.770 2.844 1.675 1.808 

2 0.257 0.406 2.747 2.806 1.656 1.765 

3 0.202 0.462 2.717 2.765 1.624 1.713 

4 0.142 0.539 2.666 2.702 1.566 1.633 

5 0.100 0.605 2.605 2.634 1.497 1.550 

6 0.063 0.694 2.517 2.538 1.388 1.428 

7 0.043 0.767 2.440 2.457 1.294 1.331 

8 0.029 0.849 2.359 2.371 1.192 1.223 
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Table 4. Measurement and computation result of the sedimentary rock samples (micro-CT image and 

permeability data released by Dong and Blunt (2009)). (SSp: specific surface area; Di: fractal dimension of the 

interface between the pore and grains in a 3D model; Dv: fractal dimension of the pore volume in a 3D model; 

Db: interface fractal dimension derived from a 2D slice; Da: pore area fractal dimension derived from a 2D 

slice; : succolarity). 

Sample code Permeability 

(mD) 

SSp 

(μm2/μm3) 

Porosity 

(-) 

Di 

(-) 

Dv 

(-) 

 

(-) 

S1 1678 0.61879 0.142 2.623 2.656047 0.152228 

S2 3898 0.538668 0.245 2.747 2.789885 0.24284 

S3 224 1.061754 0.168 2.823 2.82907 0.168731 

S4 259 1.055709 0.171 2.840 2.845779 0.170505 

S5 4651 0.309189 0.220 2.535 2.657774 0.228538 

S6 10974 0.315747 0.230 2.547 2.669289 0.317245 

S7 6966 0.407074 0.261 2.676 2.754173 0.266872 

S8 13169 0.419867 0.338 2.766 2.837893 0.334378 

C1 1102 0.500079 0.211 2.662 2.724738 0.227373 

C2 72 0.667869 0.146 2.633 2.667248 0.175625 

Berea sandstone 1286 0.640334 0.197 2.735 2.765244 0.1991 

A1 7220 0.507309 0.422 2.880 2.929091 0.320865 
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Fig. 1.  Schematic diagram of the process-based digital rock modeling, including sedimentation, 

compaction and cementation effects. (a) One new (red) grain is generated and falling. The grain size is 

generated stochastically from a predetermined final grain size distribution. (b) All the deposited grains 

are expanded according to the radius of the new grain and form a deposit surface where the center of 

the new grain can be placed at. (c) The new grain finds the lowest point on the deposit surface and gets 

to the most stable position. (d) The final image of the digital rock model. (e) Initial model without 

compaction (compaction coefficient Cp = 0) and cementation (cementation thickness Tc = 0). (f) The 

model with compaction effect (Cp = 0.15). (g) The model with cementation effect (Tc = 4 unit).  
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Fig. 2.  Flowchart of the process-driven digital rock model construction. 
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Fig. 3.  Schematic diagram of the fractal dimension calculation of a 2D image by the box-counting method (The image data come from the model V5 of 

Table 1) . (a) Image of the entire 2D digital rock model (white for pores; black for grains). (b) 512512 sub-image of the entire model. (c1) Sub-image divided 

by a n × n grid with a side-length rn = 512/n, for which the number Nrn of boxes containing white (pores) is counted. (d1) Sub-image divided by a denser m × 

m grid, used to obtain a new box count number Nrm. (e1) A linear fit to the plot of log(Nr) versus log(1/r), the slope of which is the fractal dimension (Da) of 

pore areas. (c2) The sub-image digitally filtered to show in white only those pixels at the interface between pores and grains. The sub-image is divided by a n 

× n grid with a side-length rn = 512/n, for which the number Nrn of boxes containing white (borders) is counted. (d2) Filtered sub-image divided by a denser m 

× m grid, used to obtain a new box count number Nrm. (e2) A linear fit to the plot of log(Nr) versus log(1/r), the slope of which is the fractal dimension (Db) of 

borders between pores and grains.  
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Fig. 4.  3D digital rock models with different grain size variety (Table 1 shows the grain size variety parameters of each model). 

(a) V1 (b) V4 (c) V7
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Fig. 5.  Variation of porosity, specific surface area and fractal dimension with the grain size 

variety (SSp: specific surface area; Di: fractal dimension of the interface between the pore and 

grains in a 3D model; Dv: fractal dimension of the pore volume in a 3D model; Db: interface 

fractal dimension derived from a 2D slice; Da: pore area fractal dimension derived from a 2D 

slice). SSp is defined as the ratio of the total surface area of pore space to the total volume of 

pore space. 
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Fig. 6.  3D digital rock models with different compaction coefficient (Cp). 

 

(a) Cp=0 (b) Cp=0.12 (c) Cp=0.24
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Fig. 7.  Variation of porosity, specific surface area and fractal dimension with the 

compaction coefficient (Cp) (SSp: specific surface area; Di: fractal dimension of the interface 

between the pore and grains in a 3D model; Dv: fractal dimension of the pore volume in a 3D 

model; Db: interface fractal dimension derived from a 2D slice; Da: pore area fractal 

dimension derived from a 2D slice). SSp is defined as the ratio of the total surface area of pore 

space to the total volume of pore space. 
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Fig. 8.  3D digital rock models with different cementation thickness (Tc). 

(a) Tc = 0 (b) Tc = 4 (c) Tc = 8 
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Fig. 9.  Variation of porosity, specific surface area and fractal dimension with the 

cementation thickness (Tc) (SSp: specific surface area; Di: fractal dimension of the interface 

between the pore and grains in a 3D model; Dv: fractal dimension of the pore volume in a 3D 

model; Db: interface fractal dimension derived from a 2D slice; Da: pore area fractal 

dimension derived from a 2D slice). SSp is defined as the ratio of the total surface area of pore 

space to the total volume of pore space. 
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Fig. 10.  (a) Schematic diagram of a 2D binary mixture of sphere grains. IP: Interstitiation 

Process; RP: Replacement Process. (b) Porosity versus fraction of fine grains. c: porosity of 

coarse grains; f: porosity of fine grains; min: the minimum porosity (after Glover and Luo, 

2020). 

IP RP

Fraction of fine grains
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Fig. 11.  Results from process-driven DRM and theory for binary grain mixtures. (a) Porosity, (b) specific surface area, (c) Di , and (d) Dv , each 

as a function of the fraction of fine grains. (Solid line is from the theoretical model; IP: Interstitiation Process; RP: Replacement Process; circles - 

Binary Model A (rc/rf = 24/5); diamonds - Binary Model B (rc/rf = 24/6); triangles - Binary Model C (rc/rf = 24/7); rc: radius of the coarse grains; 

rf: radius of the fine grains).
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Fig. 12.  Cross-plots of fractal dimensions against specific surface area (panels a and b) and 

porosity (panels c and d). SSp is defined as the ratio of the total surface area of pore space to 

the total volume of pore space. 
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Fig. 13.  Cross-plots of porosity against fractal dimension and specific surface area (SSp) and 

SSp against fractal dimension. 
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Fig. 14. Cross-plots of permeability against the main petrophysical parameters. (a) 

Permeability as a function of Di. (b) Permeability as a function of Dv. (c) Permeability as a 

function of specific surface area. (d) Permeability as a function of porosity. 
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Fig. 15.  Permeability as a function of succolarity (). 
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Fig. 16. Permeability as a function of the product 3. 

 

 

 

 

 


