
This is a repository copy of An Assessment of Quantitative Predictions of Deterministic 

Mixed Lubrication Solvers.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/165566/

Version: Accepted Version

Article:

Wang, Y orcid.org/0000-0002-0830-4434, Dorgham, A, Liu, Y et al. (4 more authors) 
(2021) An Assessment of Quantitative Predictions of Deterministic Mixed Lubrication 
Solvers. Journal of Tribology, 143 (1). ISSN 0742-4787 

https://doi.org/10.1115/1.4047586

© 2020 by ASME. This manuscript version is made available under the terms of the 
Creative Commons Attribution License, which permits use, distribution and reproduction in 
any medium, provided the original work is properly cited. To view a copy of this license, 
visit http://creativecommons.org/licenses/by/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



 

American Society of 

Mechanical Engineers 

 

 

ASME Accepted Manuscript Repository 
 

Institutional Repository Cover Sheet 

 

 

    

 
First Last  

 

 

ASME Paper Title: An Assessment of Quantitative Predictions of Deterministic Mixed Lubrication Solvers 
 

 

  
 

 

Authors: 

Wang, Yuechang; Dorgham, Abdel; Liu, Ying; Wang, Chun; Wilson, Mark C. T.; Neville, Anne; Azam, 

Abdullah 
 

 

ASME Journal Title: Journal of Tribology 
 

 

 

Volume/Issue    ____143/1________________________              Date of Publication (VOR* Online)   ___28 Jul 2020___ 

 

ASME Digital Collection URL: 

https://asmedigitalcollection.asme.org/tribology/article-abstract/143/1/011601/108470

Assessment-of-Quantitative-Predictions-of?redirectedFrom=fulltext 
 

 

 

DOI: https://doi.org/10.1115/1.4047586 
 

 

 

 

 

 

 

*VOR (version of record) 

 
 



Journal of Tribology 

 

1 

 

An assessment of quantitative predictions 
of deterministic mixed lubrication solvers 
 
Yuechang Wang, first author 
Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

Leeds LS2 9JT, UK  

y.wang1@leeds.ac.uk 

 

Abdel Dorgham, second author 
Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

Leeds LS2 9JT, UK  

a.dorgham@leeds.ac.uk 

 
Ying Liu, third author1 
State Key Laboratory of Tribology, Tsinghua University  

State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China  

liuying@mail.tsinghua.edu.cn 

 

Chun Wang, forth author 
Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

Leeds LS2 9JT, UK 

c.wang@leeds.ac.uk 

 

Mark C.T. Wilson, fifth author 
Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

Leeds LS2 9JT, UK  

m.wilson@leeds.ac.uk 

 

Anne Neville, sixth author 
Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

Leeds LS2 9JT, UK  

a.neville@leeds.ac.uk 

 

Abdullah Azam, sixth author 
Institute of Functional Surfaces, School of Mechanical Engineering, University of Leeds, 

Leeds LS2 9JT, UK  

a.azam@leeds.ac.uk 

 

 

 

ABSTRACT 

 
1 Corresponding author. Tel: +86 10 6278 2336; Fax: +86 10 6278 2336. 



Journal of Tribology 

 

2 

 

 

The ability to simulate mixed lubrication problems has greatly improved, especially in concentrated 

lubricated contacts. A mixed lubrication simulation method was developed by utilizing the semi-system 

approach which has been proven to be highly useful for improving stability and robustness of mixed 

lubrication simulations. Then different variants of the model were developed by varying the 

discretization schemes used to treat the Couette flow terms in the Reynolds equation, varying the 

evaluation of density derivatives and varying the contribution of terms in the coefficient matrix. The 

resulting pressure distribution, film thickness distribution, lambda ratio, contact ratio, and the 

computation time were compared and found to be strongly influenced by the choice of solution scheme. 

This indicates that the output from mixed lubrication solvers can be readily used for qualitative and 

parametric studies, but care should be taken when making quantitative predictions. 

Keywords: Mixed lubrication; Deterministic model; Numerical simulation 

 

1. Introduction 

Contacting surfaces in mechanical components are important for transmitting power 

and motion. To reduce the power loss and improve the efficiency and life of mechanical 

components, the contacting surfaces are usually lubricated [1]. In engineering practice, 

rough surfaces are universal. and they affect the thickness of lubricant film within the 

contact. When the film thickness is not large enough to separate the two surfaces, solid to 

solid contact starts to occur and ultimately, the effect of roughness becomes dominant. 

Under such conditions, the lubrication state is referred to as the mixed lubrication regime 

where fluid lubrication and solid to solid contact occur simultaneously. Mixed lubrication 

is inevitable in engineering applications. Therefore, modelling and predicting the 

performance of the mixed lubricated contacts is one of the key challenges and popular 

topics in lubrication science, and great efforts have been made in this field. 
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Generally, there are two types of mixed lubrication models: stochastic (roughness 

defined by stochastic parameters) and deterministic (roughness defined at each grid node). 

One milestone in the stochastic mixed lubrication model development was made by Patir 

and Cheng [2]. Later, several improvements to the stochastic model were introduced [3-5]. 

Stochastic models use mean values, which results in loss of localized information, such as 

detailed pressure and film thickness variations which are important for studies on 

lubrication breakdown and failures. Therefore, stochastic models will not be discussed 

further in this study. 

In the last two decades, more studies have focused on deterministic modelling 

approaches. The very first deterministic models considered simple geometry and roughness 

models [6-8] but later studies involved complex three-dimensional surface topographies 

[9-11]. The numerical solution methods for deterministic models have also improved 

overtime [12-15]. 

To solve the Reynolds equation, it is discretized to form a set of linear algebraic 

equations. The coefficient matrix of the discretized Reynolds equation is generally 

constructed from the Poiseuille flow terms alone. Deterministically solving a mixed 

lubrication model involves dealing with very thin lubricant films. Such thin films weaken 

the validity of Poiseuille flow and make the coefficient matrix lose its diagonal dominance, 

which results in loss of efficiency and accuracy of the linear algebraic solvers. A solution 

to this problem was proposed by Ai et al. [9] in the form of semi-system approach. The 

basic concept of the semi-system method is that both Poiseuille flow terms and Couette 

flow terms are used to construct the coefficient matrix, ensuring diagonal dominance even 

under severe contact conditions. Based on the semi-system method, Hu and Zhu [13] 
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proposed a mixed lubrication model for point contact elastohydrodynamic lubrication 

(EHL) problems which could handle the complete lubrication behavior from boundary to 

full film lubrication regimes. According to this model, when the film thickness was small 

enough, localized contact occurred. Parametric [16] and experimental [17] studies have 

proved the capability of this model. 

The Reynolds equation is solved by first discretizing (several different discretization 

schemes available) and then solving the resulting linear algebra problem. Until now, it is 

presumed that all the different solution methods and discretization schemes produce 

identical results under similar working conditions. In the past, Liu et al. [14] studied the 

effects of differential scheme and mesh density on the point contact EHL film thickness 

predictions and recommended that for ultrathin films (below 10~20 nm), dense meshes 

should be used. They also suggested that the first-order backward schemes are better when 

dealing with these ultrathin films. Further, Zhu et al. [15] pointed out that the accurate 

calculation of roughness derivatives is critical for ensuring numerical accuracy. But no 

study addresses the issue of repeatability of predictions from a mixed lubrication (EHL) 

solver due to the different implementations of the mathematical model.  

Therefore, the current study aims at developing this understanding by utilizing a series 

of key implementations. Various implementation cases are selected by considering, the 

information included into the coefficient matrix (main diagonal or tridiagonal), the 

different ways of dealing with the density derivative (numerical differentiation or 

differentiating its empirical equation) and finally linking these to the separate and 

combined implementations of the Couette terms. The results from these implementations 

are presented as pressure distribution, film thickness distribution, lambda ratio, and the 
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contact ratio. A comparison among the individual cases was made foror the waviness 

surfaces as well as the numerically generated rough surfaces. To ensure the validity of the 

simulations, the results for the waviness surface are first compared against the work of 

Venner et al. [18]. The findings from the current study have direct implications on the use 

of semi-system method in lubrication simulations.  

This paper is organized by first presenting the equations representing the mixed 

lubrication regime. Both dimensional and non-dimensional equation sets are given. Then 

the different discretization cases are outlined, and the derivation of the density term is 

discussed. Finally, six representative cases are chosen to analyze the consistency of the 

solver and the results are presented for all these cases. The predictions from the current 

study are compared against Venner’s work [18] to establish the validity of the current model. 

Finally, results are presented for the rough surface simulations and discussion is made on 

the use of the findings from the lubrication solvers for quantitative predictions. 

2. Details of the mixed lubrication model 

A typical set of basic equations that formulate a rough surface point contact EHL 

problem are given in this section [13]. The definitions of all the symbols used below are 

given in the Nomenclature.  

The steady state Reynolds equation is used to focus our attention on the discretization 

schemes and not the transient effects: 

 
( )3 3

1 2

12 12 2

hu uh p h p

x x y y x

 
 

    +   
+ =          

 (1) 

The x and y represent the coordinate axes, p is the pressure distribution, h is the film 

thickness distribution,  is the density,  is the viscosity, and u1 and u2 are the velocity of 

ball and disc surfaces. The terms on the L.H.S. of equation 1 represent the Poiseuille flow 
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terms while the terms on the R.H.S. represent the Couette flow terms. 

Film thickness equation: 

 ( ) ( ) ( ) ( )
2 2

0 1 2, , , ,
2 2x y

x y
h x y h x y x y v x y

R R
 = + + + + +  (2) 

In Eq. (2), the first term on the R.H.S. gives the minimum undeformed gap, h0, the 

second and third terms represent the paraboloid Hertzian macro-geometry where Rx, Ry are 

radii of curvature in x and y direction, the fourth and fifth terms give the roughness (micro-

geometry) of the contacting bodies ( ) while the last term is the deformation, v. 

Elastic deformation equation [19]: 

 ( ) ( )
( ) ( )2 2

,2
,

e

p
v x y d d

E x y

 
 

  

=
− + −

  (3) 

where Ee is the equivalent Young’s modulus. 

Load balance equation: 

 ( )= ,w p x y dxdy

  (4) 

where w is the applied load. 

These four equations (Eqs. (1-4)) together form the complete system of equations 

describing the point contact EHL problems. Due to the fact that since extremely high-

pressure value is observed in the contact zone, the viscosity and density of the lubricant are 

also function of pressures. The Barus viscosity pressure equation [20] is used to represent 

the changes in viscosity and the Dowson-Higginson density pressure equation [21] 

represents changes in density in this study and are given below. 

Barus viscosity pressure equation: 

 ( )0= exp p    (5) 
where  is the pressure-viscosity coefficient, and  is the ambient viscosity. 

Density pressure equation: 
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0

0.6
1

1 1.7

p

p




= +
+

 (6) 

where p is the pressure in GPa, and  is the ambient density. 

The detailed information about the non-dimensionalization for these equations can be 

found in Appendix A. The resulting non-dimensional Reynolds equation is, 

 
( )

x y

HP P

X X Y Y X


 

      + =          
 (7) 

It is important to mention that the Poiseuille flow terms are discretized by the second 

order central difference method and the discretization is given in Eq. (8), assuming that the 

discrete intervals are the same in x and y directions i.e. (X = Y). 

 

( )

( )

1 2, 1, 1 2, 1 2, ,

2

1 2, 1,
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i j i j

y y y

i j i j i j i j i j
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i j i j

P PP P
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X P

  
 



  



− − − +

+ +

− − − +

+ +

 − +        +             + 
 − +
 +

  + 

 (8) 

For the Couette flow terms, the first order backward difference method is used, as 

suggested by Liu et al. [14]. But it should be pointed out that the Couette flow terms, 

( )H X  , can be expressed in two different ways: the combined form and the separate 

form. The combined form is given as, 

 
( ) ( ) ( )

, 1,i j i j
H HH

X X

  −
−


 

 (9) 

This form is expected to give reasonable results for conditions where the effects of 

roughness is limited. When dealing with extreme cases or when the roughness dominates 

the contact behavior, the separate form generally gives better numerical accuracy and 

efficiency, and is given as, 

 
( )H H

H
X X X

  
  

= +
  

 (10) 
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Two further cases result due to the density term, X  . Due to the fact that the 

density variation as a function of pressure is given by the formulation, Eq. (6) which is an 

empirical equation, the derivative of density can be estimated by either taking the 

derivative of this empirical equation (6) or using numerical differentiation. The latter 

method is given in Eq. (11).  

 
, 1, , 1,

, ,

i j i j i j i j

i j i j

H HH
H H

X X X X

   − −− − 
+  +

   
 (11) 

Instead of calculating the derivatives of density by direct finite difference, Ai et al. [9] 

used the chain derivation rule, given in Eq. (12). 

 
( ) , 1, , 1,

, ,=
i j i j i j i j

i j i j

P P H HPH P H
H H

X X P X X X X

    − −− −   
+ +  +

      
 (12) 

where, 

 ( )
,

, 2

,1

a i j

i j

b i j

C H

C P
 =

+
 (12) 

where Ca and Cb are the non-dimensional coefficient in Eq. (6) and their values are 0.6ph 

and 1.7ph respectively.  

Once the Poiseuille and the Couette flow terms have been discretized, a linear equation 

set with unknown pressures, P is obtained. The discrete Reynolds equation can be 

represented by only taking Pi,j, Pi+1, j, and Pi-1, j as the unknowns and all terms related to Pi, 

j-1 and Pi, j+1are moved to the R.H.S, which makes the coefficient of the linear equation set 

a tridiagonal matrix and can easily be solved. The form of the linear equation set is shown 

below. 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

, 1, , , , 1, ,

s s s s s s s

i j i j i j i j i j i j i jP P P b  + + +
− ++ + =  (13) 

Where 
( )
,

s

i j , 
( )
,

s

i j , 
( )
,

s

i j , and 
( )
,

s

i jb  are the coefficients, (s) denotes the iteration index. 

It should be noted that the terms involving Pi, j-1 and Pi, j+1 are moved to the R.H.S with the 
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term bi,j. The expressions of the coefficients are listed in Appendix B. An iterative 

procedure is used to solve Eq. (13). Typically, the coefficient matrix in Eq. (13) is only 

constructed from the Poiseuille flow terms alone and this significantly reduces the 

numerical stability, especially in the case of ultrathin lubricant films. The main diagonal 

terms in the coefficient matrix become very small, and it losses its diagonal dominance and 

convergence becomes difficult. To overcome this reduced stability, the semi-system 

method constructs the coefficient matrix in Eq. (13) from both the Poiseuille and Couette 

flow terms. To consider the Couette flow terms, the calculation procedures of the elastic 

deformation v, are taken into account by representing it as a function of the unknown 

pressures. 

The non-dimensional elastic deformation V is determined by the pressure distribution. 

The discrete equation used to compute the elastic deformation is 

 

1 1
,

, , ,

1 1

M N
i j

i j k l k l

k l

V D P
− −

= =

=   (14) 

In this equation, D is called the influence matrix and is calculated based on Eq. (3), M 

and N are the number of discretization points in the x and y directions, respectively. The 

detailed procedure for obtaining the influence coefficients, D can be found in work [22]. 

Eq. (14) can be expressed as a function of unknown pressures, Pij, Pi+1 j, and Pi-1 j, and the 

deformation is also expressed in the form of multiple diagonal terms which can then be 

added to Eq. (13) to implement the semi-system method. Whether the influence coefficient 

has been written in terms of the pressure, Pij alone or in terms of the three pressures, Pij, 

Pi+1 j, and Pi-1 j, two different formulations result: one with main diagonal terms only and 

the other with main as well as secondary diagonals, respectively. Huang et al. [23] only 

extracted the main diagonal terms, but Ai et al. [9] also extracted the secondary diagonal 
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terms. 

Based on the above discussion, different possibilities for formulating the system are 

possible by combining the single and multiple diagonal formulations, the separate and 

combined approaches and the different density derivatives. A total of six choices result for 

implementing the semi-system method and are summarized in Table 1. The numbers ‘0’ 

and ‘1’ in the table represent the different combinations. ‘1’ means that the method 

described in the header of the particular column was used and ‘0’means that the method 

mentioned in the header of that particular column was not used. All the detailed expressions 

and formulae for these different implementations are provided in Appendix B. 

3. Contact configuration and numerical simulation details 

Two sets of simulation cases were considered. The first set of simulations were 

performed for the waviness surface and the second set of simulation cases used computer 

generated rough surfaces. 

The input parameters of the EHL problem and waviness surface were extracted from 

the work of Venner et al. [18]. The equation for generating waviness surface is, 

 ( ), cos 2 s
w x

X X
R X Y A  − =   

 (15) 

Where Rw is the waviness surface data which is used as roughness data in Eq. (2), Ax 

is the non-dimensional waviness amplitude, Xs is the location of waviness start in x 

direction,  is the non-dimensional wavelength. The waviness amplitude is 0.08 ȝm and 

wavelength is 59 ȝm [18]. In this paper, the starting location of waviness is at the start 

location of the calculation domain. The calculation domain is Xs ≤ X ≤ Xe and Ys ≤Y ≤Ye, 

where Xs = -2.5, Xe = 1.5, Ys = -2, Ye = 2. The discrete grid density is 1024×1024, unless 

otherwise stated. This grid density has been proved to be dense enough in literature [14,15]. 
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The parameters of the EHL problem are listed in Table 2. The values of dimensionless 

speed parameter U selected in this paper varies from 4×10-16 to 4×10-11 where the results 

for U =  4×10-11 correspond to the simulations results of Venner et al. [18] and are used to 

validate the implementation methods and the computer codes used in this paper.  

Besides the waviness surface, numerically generated Gaussian isotropic rough surfaces 

were used in this work. The rough surfaces were generated based upon the method from 

Wu [24], and the generated rough surface data, as used in this study, is also provided as 

supplementary data with this paper. The attached data is a random number matrix 

(1024×1024) following Gaussian distribution with a unit root-mean-square variance (Rq). 

Rough surfaces with any other Rq values can be obtained by multiplying the data with that 

specific Rq value. In the current study, the Rq used is the same as the amplitude of the 

waviness surface. 

The iterative pressure calculation procedure stops when the convergence criteria have 

been met. The convergence criteria for pressure distribution and load balance calculation 

are defined based on Eq. (16) and Eq. (17), respectively.  

( ) ( )

( )

1s s

Ps

P P

P


+ −





                             (16) 

( )1s

W

W W

W


+ −





                             (17) 

W in Eq. (17) is the non-dimensional applied load and W(s+1) is the calculated load 

capacity at the newest iteration step. The terms P  and W are the threshold values which 

for both pressure distribution and load balance calculation were set as 1×10-6. Moreover, 

to improve the numerical calculation efficiency, as suggested by Liu et al. [14], when the 
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dimensionless film thickness values were less than 1×10-6, solid contact was assumed to 

occur. It should be noted that the criterion used here for establishing a solid contact still 

lacks firm theoretical basis. Zhu [1] discussed this issue and tried to connect this threshold 

value to the molecular length of lubricant. To ensure that the selection of this criteria has 

no effect on the outcomes presented in the current study, the value of minimum film 

thickness for establishing solid contact was kept the same for the different implementations 

of numerical models presented in this study. Another important aspect about the asperity 

contact is that the contact behavior is resolution dependent [25]. Thus, the input roughness 

data and the size of solution domain are kept fixed for comparing corresponding 

simulations. 

With ultrathin lubricant films, it is hard to plot fine film thickness distribution in the 

Hertzian contact zone by common plotting methods as the different regions with different 

film thickness values cannot be identified due to the very small overall film thickness 

values involved. Venner et al. [18] used pseudo interference graphs to tackle this problem. 

The dimensionless film thickness data was represented by the corresponding intensity 

values based on Eq. (18). 

 ( ) ( )2 ,
, 0.5 0.5cosH

H X Y
I X Y

 
= +   

 (18) 

where  is non-dimensional wavelength for which the default value used in this study is 

0.05. 

For the simulation results with rough surface, the lambda ratio () and contact ratio 

(Ac) are used to identify different contact configurations. In this work, the lambda ratio is 

not defined as the minimum film thickness value divided by the composite surface 

roughness as the minimum film thickness loses generality when rough surface is used. 
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Instead, the average film thickness value in the Hertzian contact zone (hac) is used. The 

corresponding equation is 

 = ac

x

H

A
  (19) 

The contact ratio is defined as the number of contact grid points divided by the total 

number of grid points in the Hertzian contact zone as shown in Eq. (20). 

 
c

c

Hertz

N
A

N
=  (20) 

where Nc is the number of contact points in the Hertzian contact zone, and NHertz is the total 

number of grid points of the Hertzian contact zone. 

Relative computation time is calculated for different implementing methods with the 

same EHL simulation parameters. The relative computation time is defined as the ratio of 

computation time of different methods and the computation time when (0,0,0) method is 

used. In addition, the actual computation time (in seconds) is also provided for the (0,0,0) 

implementation. It should be noted that both the actual and relative computation time are 

not comparable with different speed parameter values, because some iteration coefficients 

were modified to get converged results within acceptable time when the speed parameter 

was changed. All the simulations were conducted with MATLAB 9.7 on a laptop with a 

2.5-GHz Intel Core I7 processor. 

4. Simulation results and discussion 

4.1 Waviness surface (validation and discussion of results) 

In Fig. 1, the pressure and film thickness profiles are presented at Y = 0, from the 

present work for all six implementation cases. All these schemes produce similar results 

with slight differences in the pressure peak height towards the exit of the contact region. In 

Fig. 2, the (0,0,0) implementation case is considered and the pressure and film thickness 
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profiles are plotted. Three different grid sizes i.e. 256×256, 512×512, and 1024×1024 

were used to ensure that the differences were not related to the grid. The pressure and film 

thickness results are also extracted from reference [18] and plotted in Fig. 2 for comparison. 

It can be readily seen that the qualitative and quantitative match is very good but, once 

again, slight differences exist in the prediction of pressure peak height towards the exit of 

the contacting region. 

To further investigate the effect of the numerical implementations, the contours of 

corresponding pressure and film thickness distributions are shown in Fig. 3 and Fig. 4, 

respectively. It is evident from these contour plots that the converged results from all the 

six implementations are the same. It is important to note that in Fig. 4, the method proposed 

by Venner (given in Eq. (16) [18]) is used to plot film thickness contours. 

Next, the speed parameter in the simulations was reduced from U = 4×10-11 to lower 

values of U = 4×10-12, 4×10-13, and 4×10-14 successively. Fig. 5 shows the corresponding 

pressure and film thickness profiles at Y = 0 for these different speeds. It shows that as the 

speed decreases, the discrepancies between the different implementing methods increases. 

In order to show this effect more comprehensively, pressure and film thickness 

distributions in the Hertzian contact zone with U = 4×10-14 are plotted in Fig. 6 and Fig. 7 

respectively. These plots correspond to the profiles in Fig. 5. No big differences in the 

pressure distribution results with different implementing methods can be observed. 

However, the implementation method used has dramatic influence on the film thickness 

distribution. 

In the following, the results from these different implementations are analyzed to 

access the key reasons for the discrepancies among the output. To facilitate discussion, the 
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different implementations have been labeled as (a) to (f) in Fig. 7. A close look at the film 

thickness distribution in (a) and (b) indicates that the different derivation methods adopted 

for evaluation of the density derivative does not affect the output of the solver. Also, 

looking at (a) and (e), (c) and (f), respectively, it can be clearly seen that whether the 

separate or combined form of derivation is used, the output of the solvers is unaffected. 

But when comparing (a), (b), (c) and (e), it can be readily seen that the output is very 

different for the case of (c) than for (a), (b) and (e). A look at the implementation schemes 

suggests that the key difference is the inclusion or exclusion of the effect of Couette flow 

in the secondary diagonal terms. The results in (c) are significantly different from the other 

implementations because the effect of Couette terms is only included in the main diagonal. 

Therefore, for the waviness surfaces, the output of the solver is not reliable when the effect 

of Couette terms is only included in the main diagonal terms.  

An interesting phenomenon can be observed by looking at the output (c) and (d). These 

two methods only differ in the definition of the density derivative (differentiating the 

empirical equation or using finite differences) but the output from both the cases is 

different. Also, it seems that the output from (c) is not correct. Therefore, it can be inferred 

that the solution method can be stabilized if the density derivative is defined through the 

chain rule (see Eq. (12)). This stability can be linked to the additional pressure derivative 

that appears in the derivation of density. 

The next task is to compare the time involved in each of these implementation 

methods. Table 3 lists the relative simulation time and the actual computation time for the 

(0,0,0) method. With U = 4×10-11, using (0,0,0) method results in the fastest convergence, 

and the relative computation time values obtained by implementing other five methods are 
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almost the same. Similarily, when U = 4×10-12 was used, all the six implementation 

methods result in nearly the same computation time. With lower speed parameter values 

(U = 4×10-12 and U = 4×10-13), the computation time for using (0,0,0) method is the 

shortest. One interesting phenomenon here which does not occur with higher speed is that 

all the implementation methods that only consider the effect of Couette flow on the primary 

diagonal, indexed as (0,1,0), (0,1,1), and (1,1,0) result in near thirty times higher 

computation effort. The other two factors; combined or separate form of Couette flow term 

and the different density derivative implementation methods, have far little effect on the 

computation time. This indicates that for the waviness surfaces with lower speed 

parameter, even including the effect of Couette flow in the primary diagonal alone could 

dramatically reduce the computation efficiency. These results also indicate that overall 

using (0,0,0) method results in the highest computational efficiency (shortest computation 

time).  

With the relative computation time required and the accuracy for each of these cases 

in mind, it is believed that, for the waviness surfaces, the (0,0,0) implementation that 

considers separate form, effect of Couette flow included in the secondary diagonals as well 

and the density derivative implemented through finite differencing, is the most suitable for 

computations and is recommended. 

4.2 Numerically generated isotropic Gaussian surface 

Next, a critical assessment is made on the effect of these implementations on the output 

of mixed lubrication solvers when numerically generated rough surfaces are used. The 3-

dimensional visualization and roughness profiles along X = 0 and Y = 0 of the generated 

surface is shown in Fig. 8. In the first set of simulations, the speed parameter is fixed as U 
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= 4×10-13. This speed value is selected to ensure that it is a full film case for all the 

implementations. The simulations with lower speed where asperity contact is impossible 

to avoid, will be presented later in this section.  

The pressure and film thickness profiles at Y = 0 are presented in Fig. 9 for all the 

different implementation methods. Contrary to the waviness surface case, there are obvious 

differences among the different profiles corresponding to the each of the methods used. 

The contours of pressure and film thickness within the Hertzian contact zone are further 

shown in Fig. 10 and Fig. 11. All these distributions were normalized to the interval 

between 0 and 1 to generate these graphs with the same color scale. The corresponding 

lambda ratio and relative computation time are also compared and are listed in Table 4. 

The actual computation time of using (0,0,0) method is also provided. 

The film thickness distribution plots in Fig. 11 are much clearer than the pressure 

distribution plots in Fig. 10. As the differences can be seen more clearly in Fig. 11, only 

the differences in the film thickness predictions are discussed. Once again, to facilitate 

discussion, the different implementations in Fig. 11 have been labelled as (a) to (f). First, 

it is important to note that the output of the solvers for the rough surface simulations is 

quite different from the output by the respective solvers for the case of waviness surfaces. 

Comparing in pairs, (a) and (e), like (c) and (f), suggest that for rough surface simulations, 

the use of combined or separate form of the Couette terms does affect the output of the 

solver. Moreover, comparing the pair, (a) and (c), the pair (b) and (d) and the pair (e) and 

(f), it can be seen that, unlike the waviness surface results, whether the effect of Couette 

terms is included in the main diagonal alone or the secondary diagonal as well, the output 

from the solvers is not affected. To access the effect of density derivative, a comparison of 
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the pair (a) and (b) and the pair (c) and (d), suggests that the implementation of the density 

derivative also affects the output of rough surface simulations. These results provide further 

evidence that the quantitative predictions from the mixed lubrication solvers should be 

treated cautiously. 

To further provide evidence to support our argument, the lambda ratio values are listed 

in Table 4. These values also show that the output is solver or implementation dependent. 

Corresponding to the film thickness distribution plots in Fig. 11, there are totally three 

groups of lambda ratio values, (a):0.77 and (c):0.77, (b):1.76 and (d):1.76, (e):0.26 and 

(f):0.27, in which the group (a) and (c) has moderate lambda ratio and is used as the 

benchmark for comparison. Comparing group (e), (f) and group (a), (c), it can be seen that 

the use of the combined form of Couette terms dramatically reduces the film thickness 

which results in a much smaller lambda ratio. Moreover, comparing group (b), (d) and 

group (a), (c), it can be concluded that if the chain derivation rule for calculating the 

derivatives of density is used, the film thickness is significantly enhanced. As the 

differences among these three groups of lambda ratios are rather big, it is difficult to 

recommend which kind of implementation method is best.  

A comparison of the computation time taken to reach convergence by each of these 

implementations suggests that the method (0,0,0) is still the most efficient. Furthermore, 

(0,1,0), (0,1,1), and (1,1,0) cases still require longer computation time than other cases. 

The trend is similar to that observed in the case of waviness surfaces at low speeds. This 

indicates that for the generated rough surfaces without asperity contact, only including the 

effect of Couette flow in the primary diagonal could reduce the computation efficiency. 
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In order to test the different implementing methods with asperity contact, an ultralow 

speed parameter value of U = 4×10-16 is imposed, and the simulations are repeated. Fig. 12 

shows the pressure and film thickness profiles at Y = 0 for all the different implementations. 

The contours of contact area are plotted in Fig. 13 instead of contours for pressure and film 

thickness. This is to ensure that the effect of asperity contact is actually compared. Table 5 

lists the lambda ratio, contact ratio, and relative computation time values with the actual 

computation time of using the (0,0,0) implementation. From Fig. 12, the discrepancies in 

pressure and film thickness profiles is less compared to the case of no asperity contact for 

the different implementations. The different implementations have been labelled again to 

facilitate discussion. Based on the contact area graphs (Fig. 13), the pair (a) and (e) and the 

pair (c) and (f), show, similar to the case of no asperity contact that the use of combined or 

separate form of Couette terms in the solvers does change the output. Next, looking at the 

pair, (a) and (c), the pair, (b) and (d) and the pair (e) and (f) suggests that the inclusion of 

the effect of Couette flow in the main diagonal alone or the main as well as secondary 

diagonals, does not affect the output of the solver. Finally, the pair (a) and (b) and the pair 

(c) and (d) suggest that the different formulations of the density derivative give different 

results, but the effect is less pronounced compared to the case of no asperity contact.  

According to Table 5, the lambda ratio and contact ratio values could be divided into 

three groups as well, which is similar to the lambda ratio values in Table 4. Interestingly, 

as the effect of different formulations of the density derivative terms is less obvious 

compared to when no asperity contact occurs. This can be clearly seen when comparing 

case (a), (b), (c), and (d) as these result in nearly the same lambda ratio and contact ratio 

values. Moreover, it could be inferred that these outputs have convergent trend as the 
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severity of contact increases. Then, the question comes to how to choose between the 

combined form and the separated form of the Couette term. Although some researchers 

preferred the separated form [9,10,13,15], there is still no solid evident that which one is 

the most accurate and should be recommended. 

Next, the computation time in Table 5 is analyzed. Unlike the two cases presented 

above (waviness surface and the rough surface without asperity contact), the (0,0,1) 

implementation is the most efficient (shortest computation time). Interestingly, the 

computation time for the (0,0,0) implementation (shortest for the waviness and no asperity 

contact case) is even longer than the (0,1,0) and the (0,1,1) cases. Another important thing 

to notice is that the differences in relative time among all the different implementations is 

not as great as the case of waviness surface or the case of rough surface with no asperity 

contact. 

In summary, the implementation method for the semi-system method has dramatic 

influence on the simulation output. A key point to stress is that the effect varies from case 

to case and is highly dependent upon the problem being simulated. For the waviness 

surface, like the rough surface, as the lubricant film gets thinner, the discrepancies become 

greater. However, when using numerically generated isotropic Gaussian rough surfaces, 

unlike the waviness surfaces, modifying the diagonal or secondary diagonal terms does not 

affect the output. In this case, other parameters like, the combined or separated form of the 

Couette terms and the chain derivation rule for the derivatives of density are the key factors 

affecting the output. In case of severe asperity contact, when the speed reduces, only the 

combined or separated derivatives of the Couette term matters and the effect of the different 

formulations for the density derivative is negligible. 
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A comparison of computational times further complicates the process of selection of 

the adequate implementation method as, once again, it is dependent upon the problem at 

hand. For the simulation cases presented above, as long as the waviness surfaces or rough 

surfaces (without asperity contact) are considered, the (0,0,0) implementation is 

computationally the most efficient but when rough surfaces with asperity contact are 

considered, the (0,0,1) implementation gives the least computation time. 

Finally, combining the effect of different implementation methods on the accuracy and 

efficiency of simulation output, the (0,0,0) implementation method is recommended for 

waviness surfaces. However, it is hard to say which implementation method should be 

recommended when generated rough surfaces are used.  

5. Conclusions 

In this paper, mixed lubrication solvers were developed by considering the combined 

or separate form of the Couette flow terms, including the effect of the Couette flow terms 

in the main diagonal alone or the secondary diagonal as well and formulating the density 

derivative by either using finite differencing or using chain rule. These different 

implementations were tested for waviness surfaces and numerically generated rough 

surfaces. The output from the solver was found to be highly influenced by the choice of 

the implementation. The main conclusions can be summarized by the following points: 

1) For the waviness surfaces, the inclusion of the effect of Couette terms in the 

diagonal terms alone gives different results compared to when their effect is 

included in the secondary diagonals as well. And combining the accuracy and 

efficiency of the solver, the (0,0,0) implementation method is recommended. 

2) For the rough surfaces, if the asperity contact is not considered (full film cases) 
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the formulation of the density derivative is the key factor affecting the output 

while the inclusion of Couette terms in the main diagonal alone or secondary 

diagonals could be neglected. 

3) For the rough surfaces, if the asperity contact is considered (mixed contact) the 

solver output was found to be only slightly affected by the choice of density 

derivative formulation but the combined or separate formulations of the Couette 

terms influences the solver output most. 

4) Irrespective of the accuracy of the output, for the rough surface simulations (full 

film) the computational efficiency was found to be the best for the 

implementation, (0,0,0) which involves separate form of Couette flow terms, 

includes the effect of Couette flow terms in the main as well as secondary 

diagonals and not using the chain rule for density formulation. For the rough 

surface (mixed contact) the computationally best implementation, (0,0,1), had 

density derivative formulated using chain rule. 

Therefore, when using EHL and mixed lubrication solvers care should be taken when 

using their output for quantitative predictions. And more attention should be paid to how 

to get enough accurate output through deterministic mixed lubrication solvers. 
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 NOMENCLATURE 
 

Ax non-dimensional waviness amplitude 

b radius of Hertzian contact 

Ca Cb dimensionless coefficients for pressure-density equation 

,

,

i j

k lD  influence coefficient used in elastic deformation computation 

Ee equivalent Young’s modulus 

h, H dimensional and non-dimensional film thickness 

h0 reference value in film thickness equation 

Nc, NHertz number of contact points and total number of points of the Hertzian 

contact zone 

p, P dimensional and non-dimensional pressure  

ph maximum Hertzian contact pressure 

Rx, Ry radii of curvature in x and y directions 

Rw waviness surface 

Rq root-mean-square variance 

u1, u2 velocity of ball and disc surfaces 

us entrainment speed 

U dimensionless speed parameter ( )0 2s e xU u E R=   

v, V dimensional and non-dimensional elastic deformation 
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w dimensional load 

x, X dimensional and non-dimensional coordinates in rolling direction 

Xs start location of the computation domain and waviness in x direction 

Xe end location of the computation domain in x direction 

y, Y dimensional and non-dimensional coordinates in the perpendicular 

direction to the rolling direction 

Ys, Ye start and end location of the computation domain in y direction 

 pressure-viscosity coefficient 

( )
,

s

i j ( )
,

s

i j ( )
,

s

i j ( )
,

s

i jb  coefficients and right side in the discrete Reynolds equation 

  rough surfaces 

X , Y  dimensionless mesh spacing in x and y direction 

x  y  dimensionless coefficients for Poiseuille flow 

  viscosity and ambient viscosity 

 ratio of average film thickness in the Hertzian contact zone and the 

amplitude or Rq of surfaces 

  density and ambient density 

  dimensionless density 

,i j  dimensionless product of derivation of density and film thickness 

 non-dimensional wavelength 
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Fig. 2 Comparison of the pressure and film thickness profiles at Y = 0 of Venner’s 
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Fig. 6 Pressure distributions in the Hertzian contact zone with six implementation 
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Fig. 7 Film thickness distributions in the Hertzian contact zone with six 

implementation methods (Waviness surface, U = 4×10-14, =5×10-5) 

Fig. 8 Visualization of generated rough surface (a) 3D view (b) Profile along X= 

0 (c) Profile along Y=0 

Fig. 9 Pressure and film thickness profiles at Y = 0 with six implementation 

methods (Rough surface, U = 4×10-13 ) 

Fig. 10 Pressure distributions in the Hertzian contact zone with six different 

implementation methods (Rough surface, U = 4×10-13) 
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Fig. 11 Film thickness distributions in the Hertzian contact zone with six 

implementation methods (Rough surface, U = 4×10-13) 

Fig. 12 Pressure and film thickness profiles at Y = 0 with six different 

implementation methods (Rough surface, U = 4×10-16 ) 

Fig. 13 Contact area in the Hertzian contact zone with six implementation methods 

(Rough surface, U = 4×10-16) 
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Table 1 Six implementation methods of the semi-system method 

Table 2 Parameters of the EHL problem 
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Table 4 Lambda ratio and relative simulation time (Rough surface, U = 4×10-13) 
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Appendix A 

The steady state Reynolds equation: 

( )3 3

1 2

12 12 2

hu uh p h p

x x y y x

 
 

    +   
+ =          

       A(1) 

is non-dimensionalized by introducing the following dimensionless variables: 

2

0 0

= , , , , ,
h

xhRx y P
X Y H P

a b a p

  
 

= = = = =  

where a and b are the radius of Hertzian contact in two principal directions. In point 

contact, a equals b. ph is the maximum Hertzian contact pressure value. Rx is the radius of 

curvature in the x direction, and  and   are respectively the ambient viscosity and 

density of the lubricant.  

 The non-dimensional form of A(1) is then 

( )
x y

HP P

X X Y Y X


 

      + =          
                A(2) 

where  

3 3

2

012

h
x y

s x

a p H

u R

 
 

= =                                

1 2

2
s

u u
u

+
=                                       

                                       

Film thickness equation: 

( ) ( ) ( ) ( )
2 2

0 1 2, , , ,
2 2x y

x y
h x y h x y x y v x y

R R
 = + + + + +      A(3) 

In non-dimensional form: 
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( ) ( ) ( ) ( ) ( )( )
2 2

00 1 22 2

,
, , , ,

2 2

x x
h x y R RX Y

H x y H x y x y v x y
a a

 = = + + + + +  A(4) 

Elastic deformation equation: 

( ) ( )
( ) ( )2 2

,2
,

p
v x y d d

E x y

 
 

  

=
 − + −
                  A(5) 

In non-dimensional form: 

( )
( ) ( )

2 2 2

,2
=

P
V d d

X Y

 
 

   − + −
                       A(6) 

The Hertzian contact formulas are used as follows: 

1

33

2

xwR
a b

E

 = =  
 

, 
2

3

2
h

w
p

a
=                          A(7) 

 

Load balance equation: 

( ) ( )= ,w t p x y dxdy

                          A(8) 

In non-dimensional form: 

2
=

3
W


                                 A(9) 

Barus viscosity pressure equation: 

( )0= exp p                                A(10) 

In non-dimensional form: 

( )=exp hp P                              A(11) 

Density pressure equation: 
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                             A(12) 

In non-dimensional form: 

1
1
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b

C P

C P
 = +

+
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where 

0.6 , 1.7a h b hC p C p= =                       A(14) 
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Appendix B 

Expressions of the discrete Reynolds equation according to six discrete methods.  

The discrete equation set has the form shown below. 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1

, 1, , , , 1, ,

s s s s s s s

i j i j i j i j i j i j i jP P P b  + + +
− ++ + =                        

Index No. (1 1 0) 

( ) ( )
, 1 2,

s x s

i j i j  −=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ), 1,

, 1 2, 1 2, , 1 2 , 1 2 , , 1, ,

s x s x s y s y s s si j i j

i j i j i j i j i j i j i j i j i jD D X       −
− + − + −

 = − + + + − −    

( ) ( )
, 1 2,

s x s

i j i j  +=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), 1,

, , 1 2 , 1 , 1 2 , 1 , , 1, ,1

s y s s y s s s si j i j

i j i j i j i j i j i j i j i j i j ijij i j
b P P H H D D P X      −

− − + + −−
 = − + + − − −    

Index No. (1 0 0) 

( ) ( ) ( ) ( )( ), 1,

, 1 2, , 1, 1, 1,

s x s s si j i j

i j i j i j i j i j i jD D X    −
− − − −= − −   

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ), 1,

, 1 2, 1 2, , 1 2 , 1 2 , , 1, ,

s x s x s y s y s s si j i j

i j i j i j i j i j i j i j i j i jD D X       −
− + − + −

 = − + + + − −    

( ) ( ) ( ) ( )( ), 1,

, 1 2, 1, 1 1,

s x s s si j i j

i j i j ij i j i j i jD D X    −
+ + − += − −   

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( )
( ) ( )( )

, 1,

, , 1, ,1

, 1,

, , 1 2 , 1 , 1 2 , 1 , 1, 1, 1, 1

, 1,

1, 1 1, 1

s si j i j

i j i j i j i j ijij i j

s y s s y s s s si j i j

i j i j i j i j i j i j i j i j i j i j

s si j i j

ij i j i j i j i j

H H D D P

b P P D D P X

D D P

   

   

 

−
−−

−
− − + + − − − −

−
+ − + +

 − − −
 
 = − + + − −  
 
− −  

 

Index No. (0 1 0)  

( ) ( )
, 1 2,

s x s

i j i j  −=  
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), 1, , ,

, 1 2, 1 2, , 1 2 , 1 2 , , , , , , 1, ,

s x s x s y s y s s s s si j i j i j i j

i j i j i j i j i j i j i j i j i j i j i j i j i jD D D D X        −
− + − + −

 = − + + + − − + −  

( ) ( )
, 1 2,

s x s

i j i j  +=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

, 1,

, , 1 2 , 1 , 1 2 , 1 1, , , , ,

, ,

1, , , , ,

s y s s y s s s si j i j

i j i j i j i j i j ij ij i j i j i j i j i j ij

s si j i j

ij ij i j i j i j i j i j ij

b P P H H D D P X

H D D P X

    

   

−
− − + + −

−

 = − + + − − −  
 + − − −  

 

Index No. ( 0 1 1) 

( ) ( ) ( )
, 1 2, ,

s x s s

i j i j i j X  −= +   

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), 1,

, 1 2, 1 2, , 1 2 , 1 2 , , , , ,

s x s x s y s y s s s si j i j

i j i j i j i j i j i j i j i j i j i jD D X       −
− + − +

 = − + + + − − +  
( ) ( )
, 1 2,

s x s

i j i j  +=  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), 1,

, , 1 2 , 1 , 1 2 , 1 1, , , , ,

s y s s y s s s si j i j

i j i j i j i j i j ij ij i j i j i j i j i j ijb P P H H D D P X     −
− − + + −

 = − + + − − −    

Index No. (0 0 0) 

( ) ( ) ( ) ( )( ) ( ) ( )( ), , , 1,

, 1 2, , 1, 1, 1, , 1, , 1,

s x s s s s si j i j i j i j

i j i j i j i j i j i j i j i j i j i jD D X D D X      −
− − − − − −= − −  − −   

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), 1, , ,

, 1 2, 1 2, , 1 2 , 1 2 , , , , , , 1, ,

s x s x s y s y s s s s si j i j i j i j

i j i j i j i j i j i j i j i j i j i j i j i j i jD D D D X        −
− + − + −

 = − + + + − − + −  

( ) ( ) ( ) ( )( ) ( ) ( )( ), , , 1,

, 1 2, 1, 1 1, 1, 1,

s x s s s s si j i j i j i j

i j i j ij i j i j i j ij i j ij i jD D X D D X      −
+ + − + + += − −  − −   

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )

, 1,

1, , , , ,

, , 1 2 , 1 , 1 2 , 1
, , , 1,

, 1, 1, 1, 1, , 1, , 1, 1

,

1, , ,

s si j i j

ij ij i j i j i j i j i j ij
s y s s y s s

i j i j i j i j i j
s s s si j i j i j i j

i j i j i j i j i j i j i j i j i j i j

s i j

ij ij i j i j i j

H H D D P
b P P X

D D P D D P

H D

  
 

   

  

−
−

− − + +
−

− − − − − − −

−

 − − −
 = − + + 
 − − − −  

− − −
+

( )( )
( ) ( )( ) ( ) ( )( )

,

1, ,

, , , 1,

1, 1 1, 1, 1, 1, 1,

s i j

i j i j ij

s s s si j i j i j i j

ij i j i j i j i j ij i j ij i j i j

D P
X

D D P D D P



   

−

−
+ − + + + + +

 
  
 − − − −  

  

Index No. (0 0 1) 

( ) ( ) ( ) ( ) ( )( ), 1,

, 1 2, , , 1, , 1,

s x s s s si j i j

i j i j i j i j i j i j i jX D D X     −
− − −= +  − −   

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), 1,

, 1 2, 1 2, , 1 2 , 1 2 , , , , ,

s x s x s y s y s s s si j i j

i j i j i j i j i j i j i j i j i j i jD D X       −
− + − +

 = − + + + − − +    
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( ) ( ) ( ) ( )( ), 1,

, 1 2, 1, 1,

s x s s si j i j

i j i j ij i j ij i jD D X    −
+ + += − −   

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

, 1,

1, , , , ,

, , 1 2 , 1 , 1 2 , 1
, 1, , 1,

, 1, , 1, 1 1, 1, 1,

s si j i j

ij ij i j i j i j i j i j ij
s y s s y s s

i j i j i j i j i j
s s s si j i j i j i j

i j i j i j i j i j ij i j ij i j i j

H H D D P
b P P X

D D P D D P

  
 

   

−
−

− − + +
− −

− − − + + +

 − − −
 = − + + 
 − − − −  

 

 


