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Bioenergetic defects in muscle fibers of RYRT mutant
knock-in mice associated with malignant hyperthermia
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Mutations in the skeletal muscle ryanodine receptor gene
(RYRI) can cause susceptibility to malignant hyperthermia
(MH), a potentially lethal genetic condition triggered by volatile
anesthetics. MH is associated with hypermetabolism, which has
directed research interest into oxidative phosphorylation and
muscle bioenergetics. The most common cause of MH in the
United Kingdom is the ¢.7300G>A RYRI variant, which is pres-
ent in ~16% of MH families. Our study focuses on the MH sus-
ceptible G2435R-RYR1 knock-in mouse model, which is the
murine equivalent of the human ¢.7300G>A genotype. Using a
combination of transcriptomics, protein expression, and func-
tional analysis, we investigated adult muscle fiber bioenergetics
in this mouse model. RNA-Seq data showed reduced expression
of genes associated with mitochondria and fatty acid oxidation
in RYRI mutants when compared with WT controls. Mitochon-
drial function was assessed by measuring oxygen consumption
rates in permeabilized muscle fibers. Comparisons between
WT and homozygous G2435R-RYR1 mitochondria showed a
significant increase in complex I-facilitated oxidative phospho-
rylation in mutant muscle. Furthermore, we observed a gene-
dose-specific increase in reactive oxygen species production in
G2435R-RYR1 muscle fibers. Collectively, these findings pro-
vide evidence of metabolic defects in G2435R-RYR1 knock-in
mouse muscle under basal conditions. Differences in metabolic
profile could be the result of differential gene expression in met-
abolic pathways, in conjunction with mitochondrial damage
accumulated from chronic exposure to increased oxidative
stress.

The ryanodine receptor isoform 1 (RyR1) is a calcium release
channel expressed predominantly in the sarcoplasmic reticu-
lum (SR) of skeletal muscle. Mutations in the RYRI gene result
in dysregulation of intracellular Ca>" homeostasis and are the
primary genetic cause for malignant hyperthermia (MH) sus-
ceptibility, a dominantly inherited disorder that presents with
potentially fatal hypermetabolic reactions after exposure to vol-
atile anesthetic agents or succinylcholine (1). Clinical diagnosis
of MH susceptibility uses a combination of genetic screening
and pharmacological challenge testing (2). At present, the Eu-
ropean Malignant Hyperthermia Group recognizes 48 func-
tionally characterized RYRI variants for use in prospective
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DNA diagnosis of MH (www.emhg.org). Within this list, the
RYRI ¢.7300G>A variant is the most prevalent within the
United Kingdom, found in almost 16% of MH families (3). This
missense variant results in a p.G2434R amino acid change
which, despite being the most common variant, generally
presents with a weaker phenotype compared with other var-
iants (4). Given its prevalence, a new mouse RyR1 knock-in
model (G2435R-RYR1), equivalent to the human ¢.7300G>A
genotype, was recently developed to further our understand-
ing of MH (5).

Individuals who are susceptible to MH may have no phe-
notype without exposure to anesthesia or can present with a
range of muscle-related features such as myopathy, exer-
tional heat illness, rhabdomyolysis, exercise intolerance,
weakness, and cramping (6, 7). Whereas the primary feature
of the hypermetabolic reaction during anesthesia is a mas-
sive increase in [Ca®"];, mitochondrial dysfunction, which
has been found in other MH mouse models (Y522S-RYRI,
R163C-RYR1, and T48261-RYR1) (8—10), may contribute to
the nonanesthesia phenotypes.

Structural anomalies such as mitochondrial swelling and de-
formation, which appear to increase in severity with age, have
been observed in homozygous (HOM) T48261-RYR1 and het-
erozygous (HET) Y522S-RYR1 mice (8, 11, 12). Evidence of
reduced mitochondrial content has been seen in all HET RYR1
knock-in MH mouse models investigated (9-11). The mito-
chondrial injury observed in HET Y522S-RYR1 and HET
R163C-RYR1 muscle has been attributed to increased oxida-
tive stress because of increased production of reactive oxy-
gen species (ROS) (8,9, 13). All of these murine models have
also been shown to have hypermetabolism after exposure to
an anesthetic challenge and elevated resting calcium ([Ca%®* o)
in their skeletal muscle fibers (12, 14, 15).

However, there are limitations in the methods previously
used to study mitochondrial function. Studies using isolated
mitochondria are limited by the absence of their normal cellu-
lar environment and lack of interaction with other organelles.
This can be detrimental in the study of conditions such as MH
because it is intimately dependent on SR function and calcium
regulation. Likewise, mitochondrial studies in cultured myo-
tubes, which are immature myofiber precursors, have limita-
tions because of differences in their calcium signaling and or-
ganelle structure compared with adult muscle fibers (16, 17).
Here we have conducted a study to investigate bioenergetics in
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Figure 1. A, expression heatmap of sample-to-sample distances as calculated from the variance-stabilizing transformation of count data for overall gene
expression. Clustering of 12 RNA-seq samples gives an overview of relationships between genotypes, reflected by the intensity of square colors. B, principle
component analysis scatter plot of gene expression showing the variance among three biological replicates in each genotype. Percentages on each axis repre-

sent the percentages of variation explained by the principal components.

the G2435R-RYR1 MH-susceptible mouse model using a com-
bination of transcriptomics, protein expression, and muscle
fiber functional analysis. Similar to previously characterized
RYR1 knock-in mouse models, HET and HOM G2435R-RYR1
mice have elevated [Ca®" ], and fulminant MH reactions in
response to anesthetic exposure (5). We performed respirome-
try and real-time oxidative stress analysis on adult muscle
fibers, allowing measurements to be made within the context of
native muscle structure and signaling properties. We hypothe-
sized that G2435R-RYR1 mouse muscles will exhibit differen-
tial gene expression governing metabolic pathways that con-
tribute toward mitochondrial dysfunction. We used HET
T48261-RYR1 knock-in mice for comparison because they are a
well-documented model with previously demonstrated altera-
tions in their metabolic profile (10, 12).

Results
Differential gene expression

RNAseq was performed on poly(A)-selected mRNA samples
extracted from WT, G2435R-RYR1 HET, G2435R-RYR1
HOM, and T4826I-RYR1 HET mice. A sample-sample dis-
tance heatmap (Fig. 1A) was used to visualize overall gene
expression between samples, and through the dendrogram
we can see clustering of WT and G2435R-RYR1 HET sam-
ples showing a close relationship between these two geno-
types. In contrast, the T4826I-RYR1 HET samples formed
their own distinct cluster alongside a pair of G2435R-RYR1
HOM samples, which suggests that these two genotypes
have more divergent transcriptome profiles than G2435R-
RYR1 HETs compared with WT. Principal component anal-
ysis (Fig. 1B) displays highest degrees of variability between
the T48261-RYR1 HET and G2435R-RYR1 HOM samples as
shown by the distant clustering on the PC1 axis (31%
variance). Variability on the PC2 axis is greatest within the
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G2435R-RYR1 HOM genotype because one sample does not
seem to cluster (26% variance).

Transcriptomes from each RYR1 knock-in genotype were
compared with WT to identify differentially expressed genes.
Differences with adjusted p values < 0.05 were considered sig-
nificant following the protocol outlined in the DESeq2 R pack-
age. In the WT versus G2435R-RYR1 HOM and WT versus
T48261-RYR1 HET comparisons, a cohort of 393 (98 up-regu-
lated and 295 down-regulated) and 206 (82 up-regulated and
124 down-regulated) differentially expressed genes were found,
respectively. In contrast, the WT versus G2435R-RYR1 HET
knock-in comparison showed only one gene differentially
expressed, Blvrb, which was found to be up-regulated in all
RYR1 knock-in genotypes.

Pathway and gene ontology analysis

Pathway and gene ontology analyses were conducted on
WT versus G2435R-RYR1 HOM and WT versus T4826I-
RYR1 HET gene lists. Pathway analysis of down-regulated
genes in the WT versus G2435R-RYR1 HOM comparison
showed a set of seven significantly enriched pathway terms,
many of which are involved in cellular energy production
(Table 1). Within this set, five pathway terms, “fatty acid
B-oxidation WikiPathways1269,” “mitochondrial long-chain
(LC) fatty acid B-oxidation WP401,” “fatty acid biosynthesis
WP336,” “tricarboxylic acid (TCA) cycle WP434,” and “fatty
acid oxidation WP2318,” were also found down-regulated in
the WT versus T48261-RYR1 HET comparison, but only the
last term was statistically significant. The gene ontology anal-
ysis of down-regulated genes showed that the top 10 enriched
biological processes from the WT versus G2435R-RYR1
HOM comparison were all involved in either fatty acid oxida-
tion or fatty acid transport into mitochondria (Table 2). The
gene ontology analyses of down-regulated genes in the WT
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Table 1

Pathway analysis using Enrichr. The top 10 downregulated pathways are shown for the WT versus G2435R-RYR1 HOM and WT versus T4826l-
RYR1 HET comparisons, in combined score order (log of p-value from Fisher’s exact test multiplied by z-score of deviation from expected
rank). This pathway analysis was produced using significantly downregulated genes (adjusted p-values < 0.05) generated from DESeq2, as
input for Enrichr. Statistically significant pathway terms are annotated with an asterisk (adjusted p-values < 0.05)

Pathway analysis of down-regulated genes

Down-regulated pathway terms

Combined score

WT versus G2435R-RYR1 Homozygous Fatty acid B oxidation WP1269* 899.71
Mitochondrial LC-fatty acid 3-oxidation WP401* 603.77
Fatty acid biosynthesis WP336* 171.71
Fatty acid oxidation WP2318* 161.68
TCA cycle WP434* 159.44
PPAR signaling pathway WP2316* 125.38
Amino acid metabolism WP662* 53.75
Retinol metabolism WP1259 41.55
Synthesis and degradation of ketone bodies WP543 35.75
Acetylcholine synthesis WP175 22.42

WT versus T48261-RYR1 Heterozygous Fatty acid oxidation WP2318* 206.46
Fatty acid biosynthesis WP336 176.4
Fatty acid B oxidation WP1269 95.6
Heme biosynthesis WP18 52.16
Irinotecan pathway WP475 45.29
TCA cycle WP434 43.18
Toll like receptor signaling WP88 39.4
Tryptophan metabolism WP79 25.6
ErbB signaling pathway WP1261 23.91
Mitochondrial LC-fatty acid B-oxidation WP401 23.76

Table 2

Gene ontology enrichment analyses using Enrichr. The top 10 most enriched biological processes (GO_BP) are shown, generated using
downregulated gene lists from both the WT versus G2435R-RYR1 HOM and WT versus T48261-RYR1 HET comparisons. Statistically significant
ontology terms are annotated with an asterisk (adjusted p-value < 0.05) Additional results from these analyses can be found in the support-

ing information (Tables S1-S4)

Gene Ontology enrichment analysis of down-regulated genes

Adjusted
(GO_BP) biological process p-value Down-regulated genes
WT versus G2435R-RYR1 Fatty acid B-oxidation (GO:0006635)" 8.84E—08 Abcd3, Acadll, Acadl, Acadm, Acadvl, Acatl, Decrl,
homozygous comparison Etfa, Etfdh, Hadha, Hadhb, Hsd17b4
Fatty acid catabolic process (GO:0009062)" 1.05E—05 Abcd3, Acadll, Acadl, Acadm, Acadvl, Acatl, Decrl,
i Hadha, Hadhb, Hsd17b4, Mut
Fatty acid oxidation (GO:0019395) 1.50E—05 Abcd3, Acadll, Acadl, Acadm, Acadvl, Acatl, Decrl,
Hadha, Hadhb, Hsd17b4
Fatty acid B-oxidation using acyl-CoA dehydrogenase 8.25E—05 Acadll, Acadl, Acadm, Acadvl, Etfa, Etfdh
(GO:0033539)" )
Long-chain fatty acid transport (GO:0015909) 2.62E—03 Acach, Acsl1, Cd36, Cptlb, Cpt2, Prkaa2
Mitochondrial transmembrane transport (GO:1990542)" 9.58E—03 Acach, Afg312, Cptlb, Cpt2, Prkaa2, Timm29
Fatty acid transmembrane transport (G0O:1902001) 1.17E—-02 Acach, Cptlb, Cpt2, Prkaa2
Carnitine shuttle (GO:0006853) ) 1.33E—02 Acacbh, Cptlb, Cpt2, Prkaa2
Regulation of fatty acid oxidation (GO:0046320) 1.97E—02 Acadl, Acadvl, Lonp2, Mlycd
Regulation of acyl-CoA biosynthetic process 2.19E—02 Dlat, Dld, Pdhal, Pdpr
(G0:0050812)
WT versus T48261-RYR1 Fatty acid catabolic process (GO:0009062) 4.12E-01 Acadm, Decrl, Echsl, Nudt7, Nudt19
heterozygous comparison Response to alkaloid (GO:0043279) 8.03E—01 Chrnal, Chrnd, Ryrl
Cardiolipin acyl-chain remodeling (GO:0035965) 8.38E—01 Lclatl, Taz
Fatty acid B-oxidation (GO:0006635) 9.62E—01 Acadm, Decrl, Echsl, Etfa
Sarcoplasmic reticulum calcium ion transport 1.00E +00  Ryrl, Sin
(GO:0070296)
Regulation of acyl-CoA biosynthetic process 1.00E + 00  Dlat, Pdpl
(G0:0050812)
Cardiolipin metabolic process (GO:0032048) 1.00E + 00  Lclatl, Taz
Acetyl-CoA metabolic process (GO:0006084) 1.00E + 00 Acssl, Nudt7
Regulation of acetyl-CoA biosynthetic process from 1.00E + 00  Dlat, Pdpl
pyruvate (GO:0010510)
Fatty acid B-oxidation using acyl-CoA dehydrogenase 1.00E + 00  Acadm, Etfa

(GO:0033539)

versus T48261-RYR1 HET gene list shared several of the same
terms surrounding fatty acid metabolism but were not statis-
tically significant (adjusted p values > 0.05) (Table 2). The
only shared observation between the WT versus G2435R-
RYR1 HOM and the WT versus T48261-RYR1 HET compari-
sons was an enrichment of genes in the cellular component
gene ontology terms “mitochondrion” and “mitochondrial
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matrix” (Table S1 and Table S2). The WT versus G2435R-
RYR1 HOM comparison featured the highest number of dif-
ferentially expressed genes in the mitochondrion term.
Among these, genes of interest include Ndufs1, Ndufs2, Sdha,
and Ugcrc2, which encode for mitochondrial complexes I, II,
and III of the electron transport chain (Table S1). In contrast,
analysis of up-regulated genes from each comparison showed

SASBMB


https://www.jbc.org/cgi/content/full/RA120.013537/DC1
https://www.jbc.org/cgi/content/full/RA120.013537/DC1
https://www.jbc.org/cgi/content/full/RA120.013537/DC1
https://www.jbc.org/cgi/content/full/RA120.013537/DC1
https://www.jbc.org/cgi/content/full/RA120.013537/DC1

=

600
B RYRTWT

[ G2435R-RYR1 HET
El G2435R-RYR1 HOM
3 T4826I-RYR1 HET

*
400+ |_|

200

Oxygen flux per muscle mass (pmol/s*mg)

e
~ T T T T T T
+ N N N 5N D
S $ 2 3 S o
A A PN
o° N0 & %)
<
B)
2.004
B RYR1WT
1.754 1 G2435R-RYR1 HET
’ Bl G2435R-RYR1 HOM
3 T48261-RYR1 HET
1.504
Z
. 1.251
0
S
o
° 1.00
e
o
o
% 0.75-
™
0.504
0.254
0.00 T T T T T
e 5N S 5 N
\a X S <2 Sl
¥ & & ¢ S
Qo o [¢)
o\\ x\\\
&

Figure 2. Boxplots summarizing respirometry data. These data were ana-
lyzed using a Kruskal Wallis H test with post hoc Dunn's test, and significant
pairwise comparisons are annotated with an asterisk (p < 0.05). The top
image (A) shows mass-specific oxygen consumption rates in each genotype,
and the bottom (B) shows flux control ratios that represent the same set of
data normalized to Cl+Cllgrs) (dashed line).

no significant enrichment of pathways and gene ontology
terms, aside from a few cellular component gene ontology
terms found in the WT versus G2435R-RYR1 HOM compari-
son (Table S3 and Table S4).

Respirometry

Mass-specific oxygen consumption rate (pmol/s*mg) signifi-
cantly differed among RYR1 genotypes in the LEAK (p <
0.001), CI+Cllgrs) (p = 0.024), and mass-specific complex IV
assay (CIVmax) (p = 0.017) states. Post hoc pairwise compari-
sons (Fig. 2A4) between WT and G2435R-RYR1 HETs showed
no significant differences, whereas the G2435R-RYR1 HOMs
differed only in CIV\ax), with significantly lower output than
WT (p = 0.027). This finding suggests that G2435R-RYR1
HOM skeletal muscle fibers may have lower mitochondrial
content than WT fibers. T4826I-RYR1 HET knock-ins had
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lower oxygen flux in LEAK (p < 0.01 against all genotypes)
and a greater electron transport system (ETS) capacity
(CI+ClIgrs)) compared with G2435R-RYR1 HOM mice
(p = 0.023).

Oxygen flux was then normalized to a common reference
state, CI+ClI(gts), to obtain flux control ratios (FCR) (Fig. 2B).
These ratios provide a measure of function as a proportion of
ETS capacity, which is independent of mitochondrial content.
In contrast to raw data, a comparison of normalized data
showed that FCR differed significantly among RYR1 genotypes
in the LEAK, Cloxphos), and CI+Clloxpros) states (all p <
0.001). Pairwise FCR comparisons within the LEAK state did
not differ from raw data after normalization. However, Clox.
pros) FCR showed significantly higher values in G2435R-RYR1
HOM compared with WT (p = 0.014), suggesting a greater reli-
ance on complex I function because it forms a higher propor-
tion of the ETS capacity. This effect appears to carry over to the
CI+ClI(oxpros) combined state, which is also significantly
higher in G2435R-RYR1 HOM (p = 0.004). On the other hand,
T48261-RYR1 HET knock-ins showed significantly lower CIox-
pros) and CI+ClIloxpros) FCR compared with G2435R-RYR1
HET and HOM knock-ins, which implies that different RYR1
variants can alter skeletal muscle mitochondrial function in dif-
ferent ways.

Oxidative stress and protein expression

ROS generation in fibers with exposure to hydrogen perox-
ide (H,O,) was assessed using the CellROX Green reagent. The
increase in the CellROX Green fluorescence signal intensity
generated over 30 min after treatment with 1 mm H,O, was sig-
nificantly different among genotypes (Fig. 3, A and B). The two-
way mixed analysis of variance (ANOVA) showed a significant
interaction between genotype and time on ROS generation, F
(10, 480) = 13.05, p < 0.001. When compared with WT mice,
G2435R-RYR1 HOM mice showed significant increase in ROS
at each time point, and significant differences were seen in
G2435R-RYR1 HET mice at 20 min and beyond (Fig. 34). Area
under the curve analysis showed that the area for WT fibers
(10,6133 = 10,923) was significantly less than for either G2435R-
RYR1 HET (154722 * 17,844, p = 0.028) or G2435R-RYR1
HOM (21,2481 * 11,617, p = 0.013) fibers. Comparisons between
HET and HOM G2435R-RYR1 knock-ins also showed a signifi-
cant difference (p = 0.008) related to gene dose (Fig. 3B).

Western blot analyses quantifying citrate synthase expres-
sion, a marker for mitochondrial content (Fig. 3C), showed no
significant differences between genotypes at the protein level
(WT versus HET p = 0.997, HET versus HOM p = 0.878, WT
versus HOM p = 0.911). Based on their important roles in the
ROS pathway we measured the expression of both NADPH-ox-
idase 2 (NOX2) and superoxide dismutase 1 (SOD1). NOX2
catalyzes the reduction of molecular oxygen into superoxide
ions and SOD1 is responsible for their breakdown (18). NOX2
expression levels were significantly higher in G2435R-RYR1
HOM versus WT muscle (0.74 = 0.07 versus 0.44 = 0.07, p =
0.047) (Fig. 3D). In contrast, the opposite was seen with SOD1,
which was significantly decreased in G2435R-RYR1 HOM
compared with WT muscle (0.68 = 0.08 versus 0.33 = 0.08, p =
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Figure 3. G2435R-RYR1 mice show increased oxidative stress. A, This graph shows fluorescence signal changes with 5 um CellROX Green fluorescent dye,
which reflect ROS levels in FDB muscle fibers treated with 1 mm of H,O, for 30 min, normalized, and compared with WT mice (n = 41 fibers from four mice for
WT, n = 28 fiber from four mice for G2435R-RYR1 HET, and n = 30 fibers from three mice for G2435R-RYR1 HOM in at least five independent experiments). Sig-
nificant interactions between variables were assessed using a two-way mixed ANOVA before differences at each time point were analyzed using a one-way
ANOVA. Significant post hoc comparisons to WT are annotated using asterisks *p < 0.05, **, p < 0.01, ***p < 0.001. B, comparison of area under curve from
CellROX Green assay between G2435R-RYR1 HET, HOM, and WT fibers. C, D, and E, Western blot analyses showing Citrate Synthase, NOX2, and SOD1 protein
bands in mice gastrocnemius muscle, respectively, with the bar charts representing band densitometry intensities normalized to GAPDH signals and averaged
WT signals (n = 3 mice for each genotype). Data represent mean =+ S.E. These data were analyzed using a one-way ANOVA, and significant post hoc compari-

sons between genotypes are annotated with asterisks *p < 0.05, **p < 0.01, ***p < 0.001.

0.017, Fig. 3E). Interestingly, despite the difference in the slopes
of the increase in CellROX Green intensity, neither NOX2 nor
SOD1 protein expression in G2435R-RYR1 HET muscle was
significantly different from WT (NOX2 WT versus HET p =
0.08, SOD1 WT versus HET p = 0.25).

Discussion

Transcriptome profiles between WT and RYR1 knock-in
mice revealed differential gene expression at rest. Gene expres-
sion profiles between WT and G2435R-RYR1 HET mice show
great similarity, whereas G2435R-RYR1 HOM and T4826I-
RYR1 HET comparisons featured several hundred differentially
expressed genes when compared with WT. This disparity dem-
onstrates that RYR1 mutations can impact skeletal muscle gene
expression in a variant-specific manner.

Pathway and gene ontology analysis found that a large pro-
portion of down-regulated genes in G2435R-RYR1 HOM and
T48261-RYR1 HET knock-in muscles were localized in mito-
chondria, many of which were responsible for regulating fatty
acid metabolism. Free fatty acids (FFA) are an important source
of energy in muscle. They are metabolized by first undergoing
B-oxidation to generate acetyl-CoA, which is a substrate for the
Krebs cycle in the mitochondrial matrix (19). Impaired fatty
acid oxidation and transport results in the accumulation of FFA
in skeletal muscle, which causes lipotoxicity and is associated

15230 J Biol. Chem. (2020) 295(45) 15226-15235

with insulin resistance, oxidative stress, and mitochondrial dys-
function (19-21). This appears to be a mutant RYR1-related
phenotype because several of the genes related to this process
(acyl-CoA dehydrogenase medium chain (Acadm), 2,4-
dienoyl-CoA reductase 1 (Decrl), and electron transfer flavo-
protein subunit « (Etfa)) were shared between the WT versus
G2435R-RYR1 HOM and WT versus T48261-RYR1 HET com-
parisons. Furthermore, it was previously speculated that there
is reduced fatty acid oxidation in the R163C-RYR1 knock-in
mouse model because there is reduced expression of enzymes
that regulate this process in R163C mitochondria (9, 22).

The human orthologues of differentially expressed genes
found in G2435R-RYR1 HOM (Acadm, acyl-CoA dehydrogen-
ase very long chain (Acadvl), hydroxyacyl-CoA dehydrogenase
trifunctional multienzyme complex subunit o (Hadha), Hadhb,
carnitine palmitoyltransferase 2 (Cpt2), Etfa, and electron
transfer flavoprotein dehydrogenase (Etfdh)) and T48261-RYR1
HET mouse muscle (Acadm and Etfa) are associated with fatty
acid oxidation disorders (23). Connections between FFA and
MH pathology were first described in MH susceptible pigs after
significantly higher levels of FFA and phospholipase activity
were found in mitochondria (24-26). Several years later, ele-
vated FFA production in MH-susceptible human muscle was
linked to increased sensitivity to halothane (27-29). It was
hypothesized that FFA and lipid peroxidation contributed to
calcium dysregulation by inducing calcium release from the SR,
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with potential to modulate the MH phenotype (6, 24, 25, 30).
The results seen in our RNAseq analysis suggest that this line of
research warrants further investigation. Although biliverdin re-
ductase B (Blvrb) was the only transcript up-regulated in all
three RYR1 knock-ins tested, it does not participate in any of
the enriched pathways and gene ontology terms identified and
is therefore unlikely to represent a common mechanistic link
across the genotypes studied. Blvrb encodes a protein associ-
ated with heme metabolism and redox regulation (31, 32) and
its up-regulation is consistent with a response to increased oxi-
dative stress in all genotypes.

Other areas of interest regarding specific genes include the
down-regulation of NADH:ubiquinone oxidoreductase core
subunit S1 (Ndufs1) and Ndufs2 (encoding complex I), succi-
nate dehydrogenase complex flavoprotein subunit A (Sdha)
(encoding complex II), and ubiquinol-cytochrome C reductase
core protein 2 (Ugcrc2) (encoding complex III), which were
found to be differentially expressed in the WT versus G2435R-
RYR1 HOM comparison. Reduced gene expression of mito-
chondrial complexes suggests multicomplex impairment of the
electron transport chain because of an imbalance in turnover.
Investigation into mitochondrial function using high resolution
respirometry showed significant functional differences in
G2435R-RYR1 HOM and T4826I-RYR1 HET genotypes. The
results from two different markers for mitochondrial content
were not consistent in our study, because citrate synthase pro-
tein expression showed no differences between genotype
whereas the CIVax) output suggested evidence of lower mi-
tochondrial content in G2435R-RYR1 HOM muscle (33). How-
ever, we did not see this change in G2435R-RYR1 HET and
T48261-RYR1 HET muscles despite evidence in previous stud-
ies that the latter had lower mitochondrial content (10).

The LEAK FCR provide an indication of ETS uncoupling,
reflecting the proportion of ETS capacity related to nonphos-
phorylating respiration (proton leakage). Comparison of LEAK
FCR shows that mitochondria from both G2435R-RYR1 HET
and HOM genotypes have normal ETS coupling efficiency
compared with WT, whereas T4826I-RYR1 HET' have a lower
LEAK FCR indicating higher ETS coupling efficiency. This was
surprising because MH-susceptible muscle is often associated
with mitochondrial uncoupling at rest (9, 34, 35). The elevated
Clioxpros) FCR observed in G2435R-RYR1 HOM mice sug-
gests that they are more reliant on complex I function because
it takes up a higher proportion of the ETS capacity. This is
thought to be due to an increase in electron flow through com-
plex I, which may be an adaptation to compensate for lower mi-
tochondrial content and to maintain the energy demands of the
muscle.

Compared with both G2435R-RYR1 genotypes, the electron
flow through complex I in phosphorylating states was lower in
T48261-RYR1 HETs. WT versus T48261-RYR1 HET compari-
sons were not significantly different, and this may have been
because of compensation by the increased ETS coupling effi-
ciency observed. In a previous study of T4826I-RYR1 mito-
chondrial function in myotubes using Seahorse® technology, a
reduction in basal respiration and ETS capacity was reported,
but this was not observed in our findings (10). These contrast-
ing results between studies is perhaps due to methodological
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differences and our use of adult muscle fibers as opposed to cul-
tured myotubes. To assess the proportion of electron flow con-
tributing to ATP production, we analyzed maximum OXPHOS
capacity corrected for leak respiration (netOXPHOS), and
results indicate a higher ATP production rate in G2435R-RYR1
HOMs (Fig. S1)

Consistent with studies of other MH-susceptible RYR1
knock-in mice, we have shown that both HET and HOM
G2435R-RYR1 muscle have elevated levels of oxidative stress
(8,9, 12, 36). Two major oxidative stress proteins, NOX2 and
SOD1, were quantified, and their differences in expression sug-
gest that there is an elevated baseline level of superoxide ions in
the G2435R-RYR1 muscles that is the result of both increased
superoxide production and a reduced ability to metabolize it.
In addition, the increased FCR in complex I of the G2435R-
RYR1 HOM mice may lead to increased superoxide production
because it is one of the main sources of superoxide in the mito-
chondria (37, 38). Superoxide will likely damage cells and
impair function, which may explain the deficient and swollen
mitochondria described in other RYR1 knock-in MH mouse
models (5, 8). Our study also shows that G2435R-RYR1 HOM
and HET mice have a significant and gene-dose dependent eleva-
tion of CellROX Green—detected ROS production in response to
H,0,-induced oxidative stress compared with WT mice. The
increase in ROS level has been attributed to an elevation in super-
oxide and/or hydroxyl radicals, because CellROX Green is found
to be reactive to both species but not to H,O, (39-41). A decrease
in antioxidant capacity in combination with an increase in ROS
production could be responsible for the higher levels of oxidative
stress in G2435R-RYR1 mice (37, 42).

The lack of differences seen in gene expression and mito-
chondrial function between WT and G2435R-RYR1 HET mice
highlights the complexity of the MH phenotype. Individuals
with the equivalent ¢.7300G>A human MH variant are gener-
ally associated with weaker clinical phenotypes, and our obser-
vations with G2435R-RYR1 HET mice reflect this (4). The met-
abolic phenotype in MH is complicated, but most of the
evidence suggests bioenergetic impairment in susceptible indi-
viduals. Here we have demonstrated evidence of mitochondrial
dysfunction and increased oxidative stress in the G2435R-
RYR1 knock-in mouse model. These outcomes have likely been
perpetuated by elevated [Ca®" ], and possible deficiencies in
fatty acid metabolism, both of which are heavily involved in
regulating muscle bioenergetics. Given its complex nature,
future research exploring fatty acid metabolism and glycolysis
would be ideal for a more comprehensive view of how RYR1
mutations affect metabolism in skeletal muscle.

Experimental procedures
Animals

Animals were housed in pathogen-free conditions with free
access to food, water, and 12-h light-and-dark cycles. All
experiments were undertaken with United Kingdom Home
Office approval. For transcriptomics, 8-week-old male mice
were used, and a mixture of male and female mice between 8-
14- weeks old were used for functional studies.
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Preparation of samples for RNA-Seq

WT mice for sequencing were created within the G2435R-
RYRI1 colony by breeding HET mice together. A total of 12
mice of four genotypes, WT, G2435R-RYR1 HET, G2435R-
RYR1 HOM, and T4826I-RYR1 HET knock-ins (age 8 weeks,
n = 3 for each genotype), were killed by cervical dislocation.
Hind limbs were removed and kept in oxygenated Krebs ringer
solution for 30 min at 37°C before soleus muscles were dis-
sected and transferred into RNAlater (Invitrogen) at —80°C
until further processing.

The stored soleus muscles were homogenized in 1 ml of TRI-
zol©, and RNA was extracted using a chloroform/isopropanol
extraction method, followed by an RNA clean-up step using the
RNAeasy microkit (Qiagen) with on-column DNase treatment,
according to manufacturer’s instructions. The Agilent 4200
Tapestation was then used to assess RNA integrity. RNA sam-
ples with integrity scores of RINe > 7.0 were considered ac-
ceptable for sequencing.

Truseq® stranded mRNA library preparation

Poly(A)-selected mRNA libraries were created from the iso-
lated RNA by the Next Generation Sequencing Facility at St.
James’s Hospital, Leeds. RNA samples were first quantified
using the Qubit™ RNA BR Assay Kit (Invitrogen) before being
used to create libraries using the Truseq Stranded mRNA
library preparation kit (Illumina), according to manufacturer’s
guidelines. All cDNA libraries were quality-checked using the
Agilent D1000 screentape and quantified using the Quant-
iT™ PicoGreen® dsDNA assay.

lllumina HiSeq® next-generation sequencing

Twelve mRNA-enriched libraries were indexed and com-
piled into a single pool at equimolar concentrations. This
library pool was then distributed across two HiSeq 3000 150-bp
paired-end lanes, achieving an average of 25 million reads per
sample. A forward and reverse FASTQ file was generated for
each sample on each lane.

Differential gene expression analysis

Raw sequencing data (FASTQ files) were initially processed
using the Medical Advanced Research Computer, a high-per-
formance computer cluster at the University of Leeds. The
FASTQ files for each technical replicate across HiSeq lanes
were combined and trimmed using Cutadapt to remove adapt-
ers and bad-quality base calls (<10) (43). Quality assessment
before and after trimming was performed using FastQC (RRID:
SCR_014583) (44). All samples were aligned using the STAR
aligner and quantified using featureCounts (45, 46). Processed
sequencing data were then imported into RStudio and analyzed
using the DESeq2 package for differential gene expression
(47, 48).

Pathway and gene ontology

Lists of differentially expressed genes, generated from
DESeq2, were functionally characterized to identify enriched
pathway terms. This was achieved using the online enrichment

15232 J Biol. Chem. (2020) 295(45) 15226-15235

analysis tool Enrichr (49, 50). Gene lists were compared with
176 pathway terms in the “WikiPathways_2019_Mouse” gene-
set library with a gene coverage of 4558 genes.

Further enrichment analysis of gene ontology terms used the
following gene-set libraries: “GO_Biological_Process_2018"
(5103 terms, 14,433 gene coverage), “GO_Molecular_Func-
tion_2018” (1151 terms, 11,459 gene coverage), and “GO_Cel-
lular_Component_2018” (446 terms, 8655 gene coverage).

Muscle sample preparation for respirometry

WT (n = 16) and RYR1 knock-in mice (G2435R-RYR1 HET,
n = 16; G2435R-RYR1 HOM, 7 = 16; and T48261-RYR1 HET, n
= 12; age 8—12 weeks) were killed by cervical dislocation, and
soleus muscles were rapidly dissected from their hind limbs
and placed into 1 ml of ice-cold biopsy preservation buffer,
BIOPS (2.77 mm CalEGTA, 7.23 mMm KEGTA, 577 mMm
Na,ATP, 6.56 mm MgCl,-6H20, 20 mM taurine, 15 mm Nayph-
osphocreatine, 20 mm imidazole, 0.5 mMm DTT, and 50 mm MES
hydrate, pH 7.1, adjusted with 5 N KOH at 0 °C) immediately af-
ter collection for storage and transport. Muscle fiber bundles
containing ~4-5 fibers each were mechanically separated from
the intact muscles using sharp forceps. These fiber bundles
then underwent chemical permeabilization in ice-cold BIOPS
containing saponin (50 ug-ml™') for 30 min before being
washed with 1 ml of respiration medium, Mir05 (0.5 mMm
EGTA, 3 mm MgCl,-6H,0, 60 mm lactobionic acid, 20 mm tau-
rine, 10 mm KH,PO,, and 20 mMm HEPES adjusted to pH 7.1
with KOH at 37°C, 110 mm D-sucrose, and 1 g/liter essentially
fatty acid free BSA) to remove residual saponin. The sample
was then blot-dried for 5 s, weighed, and loaded into a respi-
rometer chamber (1-2 mg in each chamber) containing 2 ml of
Mir05. The time between biopsy collection and assay was 90—
120 min (35, 51).

High-resolution respirometry

Oxygen consumption over time was measured using Oro-
boros respiratory analyzers (Oroboros Instruments, Innsbruk,
Austria) at 2-s intervals with polarographic oxygen sensors and
expressed as mass-specific oxygen flux (pmol/s*mg). The ana-
lyzer was calibrated daily in air-saturated solution before exper-
imentation. Assays were initiated by injecting oxygen into each
chamber to raise the oxygen concentration to >400 nmol/ml
before starting a substrate-uncoupler-inhibitor titration (SUIT)
protocol. Re-oxygenation of the chambers was performed to
maintain oxygen concentration between 200—500 nmol/ml to
prevent limitation due to oxygen diffusion (51). Each assay was
performed at 37 °C, with chamber stirrers set at 750 rpm.

SUIT protocol

Reagents and inhibitors were sequentially added into the
reaction chambers in the order displayed (Table 3). The com-
position of each respiratory state (in bold) are as follows: LEAK
(B, G, M, and P), CI(OXPHOS) (LEAK + ADP), CI+CII(OXPH05)
(LEAK + ADP + CC + S), CI+ClIgrs) (LEAK + ADP + CC
+ S + carbonyl cyanide p-trifluoromethoxyphenylhydrazone
(FCCP)), ClIgrs) (LEAK + ADP + CC + S + FCCP + R), and
ROX (LEAK + ADP + CC + S + FCCP + R + AA). The ROX
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Table 3

Chemical substrates and inhibitors used to activate different respira-
tory states within the SUIT protocol

SUIT protocol substrates and inhibitors

Substrates Final concentration in chamber
Blebbistatin (B) 5 uMm
Glutamate (G) 10 mm
Malate (M) 0.5 mMm
Pyruvate (P) 5mMm
ADP 2.5 mMm
Cytochrome C (CC) 10 pm
Succinate (S) 10 mMm
FCCP 0.5 um additions until max output
Rotenone (R) 1um
Antimycin A (AA) 2.5 um

state represented residual oxygen consumption outside of mi-
tochondrial function and is therefore subtracted from the other
states to obtain final readings (35, 51, 52).

CIVimax)

Measurement of mass-specific complex IV oxygen flux was
used as an alternative proxy marker for estimations of mito-
chondrial content. Ascorbate (2 mm) and N,N,N’,N’-tetra-
methyl-p-phenylenediamine (0.5 mm) were applied to each
sample at the end of the standard SUIT protocol (33). The mea-
surement of CIV(yax is taken at the peak of the corresponding
trace, and the residual chemical background is finally removed
from this value by applying sodium azide (10 mm) to the
sample.

Adult single fiber preparation

Single fibers were isolated from flexor digitorum brevis
(FDB) muscles using collagenase digestion (53). FDB muscles
were incubated at 37 °C, 5% CO, in culture medium containing
0.2% (w/v) collagenase type I (Abnova) and 0.4% BSA (Sigma-
Aldrich) for 2.5 h. Following incubation, the fibers were sepa-
rated by gentle trituration in 3 ml of collagenase-free culture
DMEM (Gibco) containing 100 units/ml of penicillin and 100
pg/ml of streptomycin (Gibco) and 10% heat-inactivated FBS
(Gibco). The fibers were then allowed 30 min to settle on 96-
well plates coated with Cultrex basement membrane matrix
(Trevigen).

CellROX green ROS assay

CellROX Green dye 5 um (Thermo Fisher Scientific) dis-
solved in mammalian Ringer solution (133 mm NaCl, 5 mm
KCl, 1 mm MgSO,, 10 mm HEPES, 5.5 mm glucose, and 2 mm
CaCl,) was applied to the dissociated fibers for 30 min at 37 °C,
5% CO,. The fibers were washed twice with Ringer solution
and then transferred to the stage of a Nikon TE2000 inverted
microscope. HyO, 1 mm dissolved in Ringer solution was per-
fused onto the fibers at ~100 ul/s for 30 s. CellROX Green was
illuminated at 485 nm with the X-Cite 120 metal halide light
source (EXFO, Ontario, Canada) and fluorescence emission
was measured at 520 nm using a 10X, 0.3—numerical aperture
objective. The data were collected with an intensified 10-bit
digital intensified charge-coupled device at 1 fps (Stanford Pho-
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tonics) from 3-6 individual fibers and analyzed using Piper
image analysis software (Stanford Photonics).

Western blot analyses

Mouse gastrocnemius muscle proteins were extracted using
radioimmune precipitation assay buffer lysis buffer containing
25 mM Tris, pH 7.6, 150 mMm NaCl, 1% Nonidet P-40, 0.1% SDS
(Thermo Fisher Scientific) containing 1X Halt Protease mix-
ture (Thermo Fisher Scientific) at 1:10 w/v ratio and homoge-
nized using a T10 basic Ultra Turrax (IKA, Oxford, UK) at
30,000 rpm for 1 min. The samples were then centrifuged at
11,337 X gin a microcentrifuge for 5 min and the supernatants
were collected. Protein concentrations were quantified using a
bicinchoninic acid assay (Thermo Fisher Scientific). Equal
quantities of total protein (20 ug) were loaded on a 15% dena-
turing polyacrylamide gel or a 4—20% Precast Mini-PROTEAN
TGX polyacrylamide gel (Bio-Rad Laboratories) for electro-
phoresis. Following electroblotting, the membranes were incu-
bated with SOD1 (ab13498, 1:250; Abcam), NOX2 (ab129068,
1:500; Abcam), citrate synthase (ab96600, 1:500; Abcam), and
primary antibodies. As a control, GAPDH antibody (ab9485,
1:2000; Abcam) was used. HRP conjugated goat anti-rabbit IgG
secondary antibody was then applied (ab6721, 1:2000; Abcam).
The protein bands were detected using a SuperSignal West
Pico Plus ECL detection system (Thermo Fisher Scientific).

Data handling and statistical analysis

Gene expression data were analyzed with the DESeq2 pack-
age, which performs significance testing using a Wald test. This
generates lists of differentially expressed genes with p values
adjusted for multiple testing using the Benjamini-Hochberg
adjustment (47, 54). Pathway and gene ontology analysis of
gene lists was done using Enrichr, which calculates enrichment
scores using statistics based on the Fisher’s exact test (49, 50).

Respirometry data are presented as oxygen flux/muscle mass
(pmol/s*mg) or are normalized as flux control ratios, which
excludes the confounding effects of both mitochondrial quality
and quantity. Oxygen flux readings were exported from special-
ized software DatLab5 (Oroboros Instruments) into Microsoft
Excel before analysis using Statistical Product and Service Solu-
tions (SPSS) statistics analysis software (version 25.0). Respir-
ometry data were not normally distributed when assessed by
the Shapiro Wilk test (p < 0.05) and were subsequently ana-
lyzed using a Kruskal-Wallis H test with a post hoc Dunn’s test
for pairwise comparisons. Data were summarized as box plots
using GraphPad Prism 8.

CellROX Green ROS assay data are presented as mean fluo-
rescence changes from baseline, normalized to WT fluores-
cence (F;—Fp). A two-way mixed ANOVA was used to investi-
gate interaction effects between time and genotype on ROS
production using SPSS statistics analysis software (version
25.0). One-way ANOVAs were used to compare the ROS dif-
ferences between genotypes at each time point, and pairwise
comparisons were made using Tukey post hoc tests. Area under
the curve calculations between WT, G2435R-RYR1 HET, and
HOM mice were also compared using a one-way ANOVA with
Tukey post hoc tests.
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Western blotting band densities were obtained using Image]
software, and expression levels of the protein(s) of interest were
normalized to the intensity of the GAPDH signal in the same
lane. The normalized band densities for citrate synthase,
SOD1, and NOX2 were compared between WT, G2435R-
RYR1 HET, and HOM mice using a one-way ANOVA with
Tukey post hoc tests using SPSS statistics analysis software
(version 25.0).
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