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Intersection Platooning for Distributed Conflict Resolution of an AGV

Fleet

Edward Derek Lambert1 and Richard Romano2 and David Watling3

Abstract— A proposal to use a series of connected intersection
managers to achieve distributed conflict resolution for a fleet of
AGV is examined based on the completeness and optimality of
the optimization used to select the speeds. Quadratic constraints
resulting from a simplified control model are shown to be non-
convex by finding local minima on a small example problem.
Local minima reduce throughput for cross traffic and cause
collisions for AGVs in the same lane. An alternative constraints
formulations is developed which results in a linear program
to addresses this problem on a small example with simplified
dynamics.

I. INTRODUCTION

Coordinated conflict-free motion of a number of mobile

robots in order to complete a material transfer task is

important in the operation of fleets of AGV (Autonomous

Guided Vehicles) used in flexible manufacturing and au-

tomated warehouses [1] and [2]. A crucial sub-problem is

conflict resolution between multiple AGVs, without control

of task assignment or scheduling.

Intersection control, based on platooning, is a concept

developed for the operation of anticipated CARVs (Con-

nected and Autonomous Road Vehicles). A recent review

of approaches for intersection and merging coordination is

given in [3]. Centralized optimization approaches improve on

early ideas like First-Come-First-Served spatial reservation

from [4] by minimizing fuel consumption, but the rapid

increase in state space with larger numbers of vehicles will

need to be addressed before large scale adoption. The com-

munication channel connecting every vehicle with the central

controller introduces a single point of failure, the reliability

effect of which is difficult to evaluate in existing simulations.

Moreover there are few CARVs available making a practical

experiment unfeasible in most cases. Attempting to address

these limitations are decentralized methods such as fuzzy-

logic, virtual vehicle platooning and invariant set approaches.

Notably the conditions for solutions to exist which minimize

energy consumption are given in [5].

It is shown, in [6], that platooning provides superior

throughput to the earlier reservation based systems, and that

if a solution exists it is optimal, but not that a solution
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exists on all roadmaps. More importantly a set of conditions

which must hold for a solution to exist, is not given. The

consensus algorithm in [7] also shows improved throughput

in concert with a scheduling approach, but does not prove

convergence. An example of a resolution complete algorithm

based on spatial reservation is [8]. Neither per-intersection

optimal platooning nor per-vehicle consensus have been

proven complete. The lack of guarantees is an important

limitation of platooning methods for collision avoidance. The

research gap identified is the lack of investigation into the

range of motion conflict situations that can be resolved with

platooning methods.

II. METHOD

Platooning with speed choice by a centralized controller

was implemented with a vehicle to intersection messaging

scheme. The full site is divided into zones, each one contain-

ing a single intersection. Each AGV in the fleet has a copy

of the roadmap which is static. The fleet controller interfaces

with the warehouse management system to get the next

material transfer job, consisting of a pick location and a drop

location. All jobs are assumed to be of unit size and each

AGV has a capacity of one unit. With these assumptions,

a straightforward policy is to assign the next job to the

AGV nearest to the pick location - first-come-first-served

scheduling. When an AGV receives a new job, it finds the

shortest path through the roadmap using the Floyd-Warshall

algorithm [9]. Next it must send its planned path to the

intersection controller for the zone it currently occupies. The

intersection controller stores the plan and current position of

every AGV approaching the conflict point of the intersection.

Every time it receives a new plan it must recalculate the

approach speed for every approaching AGV to minimize

total travel time without collision. This will happen every

time an AGV enters the zone from somewhere else, or an

AGV within the zone is assigned a new job.

The intersection controller was implemented based on [6].

The surrounding lanes are first discretized into segments. The

intersection shown in Figure 1 is divided into six segments,

each of length 10 meters. The critical segments are the two

that cross in the center. There are two routes defined, one

starting on the left and traveling to the right and the other

starting at the bottom and traveling up. One AGV takes route

1 and the other takes route 2. If they both travel at maximum

speed they will collide in the center.

The dynamic model for each AGV assumes they are

able to exactly follow the path, and attempt to reach the



target speed for each segment subject to a limited rate of

acceleration of a m/s2.
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Fig. 1. Messages exchanged by participants approaching intersection.

The ApproachPlan message sent by the AGV contains a

sequence of segments which it intends to traverse, along with

its current distance along the first one. The flow of messages

is shown in Figure 1. The SpeedList sent by the intersection

controller contains the optimal speed for every segment in the

plan. The speeds can be found with the nonlinear program

in Equation 5.

A. Intersection Controller Objective

The objective is to minimize JT the total travel time for

all vehicles. It is convenient for exposition to optimize over

the inverse of speed of each segment φk = 1/vk. Vehicle i
submits a plan containing mi segments before the conflict

and ni segments in conflict. The control model is based on

the average speed of each approaching AGV over each seg-

ment. This is to simplify the description of the intersection

controller, and assist analysis. More sophisticated motion

models could take the place of Equation 6 and Equation

8 to create a similar type of problem with a convex travel

time objective and non-convex constraints. The parameters

for one vehicle can be collected in the vector φi as shown

in Equation 1

φi = [φ1, ..., φ(mi+ni)]
T (1)

The parameters for p vehicles each traversing (mi + ni)
segments are assembled into a vector as in Equation 2

φ = [φT
1
, ...,φT

p ]
T (2)

Similarly, the length of each segment in plan i can be

arranged into a vector

di = [d1, ..., d(mi+ni)]
T (3)

and collected for p vehicles into a vector as in Equation 4.

d = [dT
1
, ...,dT

p ]
T (4)

This leads to the minimum travel time objective in Equation

5.
min
φ

JT = dTφ

subject to

φmax > φ > φmin

φTHi,jφ > 0 ∀i, j ∈ [1, p] with j > i

(5)

The condition j > i in Equation 5 indicates that the

number of constraints varies with the number of vehicles p
as

p(p−1)
2 . This corresponds to one constraint between each

pair of approaching AGVs.

B. Intersection Controller Timing Constraints

By definition, each intersection has a single conflict zone,

the union of all segments which intersect there. This makes it

possible to express the constraint that vehicles do not collide

in terms of time. Vehicle i arrives at the first conflicted

segment ωmin
i and departs from the last at ωmax

i . The

following three subsections set out three alternative ways

of expressing the collision avoidance constraints which have

been evaluated. The arrival time is given by Equation 6.

Considering average speeds, the departure time ωmax
i is also

linear, this is given by Equation 8.

ωmin
i =

mi
∑

k=1

di[k]φi[k] = eTφi (6)

where

e[k] =

{

di[k] ∀k < mi

0 otherwise
(7)

and mi is the number of segments on the path of vehicle i
before arrival at the conflicted segment.

ωmax
i = ωmin

i +

ni
∑

i=1

di[k]φi[k] = fTφi (8)

where

f [k] =

{

di[k] ∀k < mi + ni

0 otherwise
(9)

and ni is the number of segments on the path of vehicle

i which are conflicted. Note that Equations 6 and 8 only

depend on the φi of vehicle i.
The timing constriant between each pair of vehicles can

be expressed with a modulus operator as in Equation10.

|αi − αj | > βi + βj (10)

Here

αi = ωmax
i + ωmin

i (11)

represents the midpoint of the time vehicle i occupies the

conflicted segment and

βi = ωmax
i − ωmin

i (12)

represents the range of the time either side of the midpoint,

both scaled by a factor of two.

In matrix form

αi = fTφi + eTφi = 1
T
i Aφi (13)



with A = diag(f + e)

βi = fTφi − eTφi = 1
T
i Bφi (14)

with B = diag(f − e)

The resulting linear program (with parameters ∈ R) has

p − 1 constraints as each AGV is only constrained by the

preceeding one.

1) Quadratic Constraints: Another way to treat the mod-

ulus operator in Equation 10, without forcing any particular

arrival order is to square both sides as to give the expression

in Equation 15.

α2
i − α2

j − 2αiαj − (β2
i + β2

j + 2βiβj) > 0 (15)

Collecting terms by subscript gives

(α2
i − β2

i )− (α2
j + β2

j )− 2(αiαj + βiβj) > 0 (16)

The matrix Λij captures the constraints between a pair

of vehicles and always contains four sub-matrices as shown

in in Equation 17. It is compatible with φi,j = [φT
i ,φ

T
j ]

T ,

containing only the relevant speeds for vehicles i and j.

Λij =

[

Λ
ii
ij Λ

ij
ij

Λ
ji
ij Λ

jj
ij

]

(17)

Expanding

[

φT
i ,φ

T
j

]

[

Λ
ii
ij Λ

ij
ij

Λ
ji
ij Λ

jj
ij

]

[

φi

φj

]

= φT
i Λ

ii
ijφi + φT

j Λ
jj
ijφj + φT

i Λ
ij
ijφj + φT

j Λ
ji
ijφi (18)

makes it possible to compare terms with the scalar expression

in Equation 16. This leads to the following expressions for

the submatrices in Λ in terms of αi = 1TAiφi and βi =
1TBiφi

Λ
ii
ij = (Ai −Bi)1i1

T
i (Ai −Bi) (19)

Λ
jj
ij = −(Aj +Bj)1j1

T
j (AJ +Bj) (20)

Λ
ij
ij +Λ

ijT
ij = −2(Aj +Bj)1j1

T
i (Ai +Bi) (21)

For more than two vehicles this can be arranged into a

block diagonal matrix Hij which is compatible with the

input parameters, but still only represents the constraints

between a pair.

Expressed in this way it is clear the constraints are

quadratic and it is trivial to differentiate twice to find

the Hessian is the stack of constraint matrices [Hij , . . .].
The objective is certainly convex as it is linear but the

constraints may not be. If the Hessian of the constraints is

positive semi-definite then they are convex and interior point

methods will either find the global optimum or prove that

there is no feasible solution [10]. The Hessian depends on

the parameters of the roadmap, the number of approaching

vehicles and their distance from the conflict.

2) Linear FIFO Constraints: If the order in which the

AGV cross the conflict zone is fixed to be First-In-First-

Out, the timing constraint is linear. The parameters for each

AGVmust first be sorted in order of distance from the conflict

zone. Then there is one constraint between each adjacent

pair so p − 1 constraints total for p vehicles. These can be

expressed in the form Aubφ ≤ bub as in Equation 22. This

is correct for two AGVs arranged in distance order, each

traversing one approach and one conflict segment.

[

−d1 0 d3 d4
...

]









φ1

φ2

φ3

φ4









≤

[

0
...

]

(22)

III. RESULTS

The simulated setup is shown in Figure 2, with two AGVs

approaching the crossroads one from each source node. Each

vehicle is stationary at the start of its respective lane at t=0.

Both vehicles request speed guidance for three segments,

taking them directly across the intersection. First the Hessian

is examined, then the results of a 10 second simulation of

vehicles with limited acceleration are reported.

1

2
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5 6
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4

Source
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Fig. 2. Intersection layout with two conflicting routes.

The Hessian Hij was evaluated for the simple crossroads

shown in Figure 2 with two approaching AGVs. In this case,

only H01 is included and this is identical to pairwise Λ01 ∈
R(4×4) given by Equation 17 as there are only two vehicles

in total. This has eigenvalues e1 = [0, 2000,−400, 0], so the

convexity of the constraints is not proven. The linear objec-

tive is convex by definition but cannot be strictly convex, as

strict convexity precludes linear regions. Convexity permits

multiple minima but ensures that every local minimum is a

global minimum.

Using the ‘trust-constr’ solver in scipy.optimize and pro-

viding the derived Jacobian and Hessian of both cost and

constraints, the execution time to find the optimal speeds

was 0.22 seconds. The minimum was found to be JT = 5s

with parameters φ1 = [0.20000006, 0.10000002] and φ2 =
[0.10000001, 0.10000001]. This is close to the true value of



φ1 = [0.2, 0.1] and φ2 = [0.1, 0.1] and more precision can

be achieved by tuning the value of ′gtol′. Smaller tolerance

values get closer to the true min. A value of ′gtol′ = 1e−14
was used, leading to constraint error of 2.4707×10−06. There

is another equally valid minimum with JT = 5s which is not

found with the initial guess in which all parameters were set

to φmin.

If the scenario is modified so the second vehicle starts

1m closer to the intersection, both minima are no longer

equally costly. Now the global minimum where the vehicle

at the start slows down to 5.26m/s to allow the closer vehicle

to pass in front of it leads to JT = 4.8s. The alternative

order where the AGV 9m away slows to 4.5m/s leads to

JT = 5.22s. The Hessian was evaluated and the eigenvalues

found to be e2 = [0, 1848,−400, 0]. They do not all have the

same sign, so the convexity of the constraints is not proven.

The ’trust-constr’ solver, provided with analytical Jacobian

and Hessian converged to either minimum depending on the

initial guess. As a result the speed choice for larger numbers

of vehicles could be sub-optimal if no steps are taken to

explore the cost surface such as trying multiple initial guesses

for each problem.

Another test involved vehicles approaching in the same

lane. Only one AGV may occupy the conflict zone at a

time according to the constraints so each additional AGV

should slow down enough for the preceding one to have

left the conflict zone by the time it arrives. At the global

minimum for the two vehicle example, traffic from con-

flicting directions should be interleaved on a FIFO basis.

However, the sub-optimal local minima lead to a more

serious problem here because vehicles in a queue will collide

if those further back are given higher speeds. A workaround

based on ’car-following’ behavior might be implemented at

an individual vehicle level, based on the distance to the

vehicle in front. However individual behavior contradicting

the speed instructions from the intersection manager may

lead to collisions with conflicting traffic.

The linear program described in Section II-B.2 has fewer

constraints and is a convex problem. It was solved with

’linprog’ solver in scipy.optimize for the same scenario.

This was much faster and guaranteed to find the minimum

(with FIFO arrival) or return an error because the problem

is infeasible. These are attractive properties for a real time

controller. No cases were found where the FIFO minimum

was worse than the local minimum found with flexible

ordering, but these are expected to exist.

Simulating vehicles with a limited constant rate of accel-

eration of 1m/s2 with these target speeds led to a collision

at t = 5.3s. This is because the approach lane length of

d = 10m is too short for either vehicle to reach their target

of 5m/s and 10m/s respectively. As they have the same

acceleration rate, their speed profile is identical and they

collide 0.69m away from the center of the intersection. They

were assumed to have a radius of 0.5m. If the acceleration

rate is increased to 5m/s2 there is no collision. The minimum

acceleration rate for successful avoidance was found to be

2m/s.

IV. CONCLUSIONS

The existence of sub-optimal local minima in the solution

to Equation 5 is an important limitation if intersection

management alone is to be used to solve motion coordination

across a site. The intention was to create car-following

behavior by applying the same rules to traffic in the same

lane. At the global minimum for the two vehicle example this

is possible because the order of approach will be preserved.

At one of the local minima the order of arrival may change,

indicating in lane overtaking which may not be possible.

Applying a supervisory system which affected the speeds

could lead to collision with cross traffic.

This suggests the constraints should be modified to enforce

the order of arrival. For AGVs in the same lane, the order

of arrival is a hidden constraint which leads to infeasible

solutions. If the constraints with FIFO ordering are used

for cross traffic as well, the problem is a linear program,

which is convenient to solve. The downside is the loss of

ordering flexibility in the solution. Therefore, the restatement

as a mixed integer linear program could be beneficial. An

integer solver could explicitly evaluate all the possible arrival

orders and return the global optimum. Depending on the

exact formulation and the number of AGV per intersection at

any one time, this could be a feasible solution for a real-time

intersection controller.
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