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A novel method for comparing passenger car fleets and1

identifying high-chance gross emitting vehicles using2

kerbside remote sensing data3

Christopher E. Rushtona,∗, James E. Tatea, Simon P. Shepherda
4

aInstitute for Transport Studies, University of Leeds, 34-40 University Rd, Leeds, LS25

9JT6

Abstract7

. The quantification and comparison of NOX emission from in-situ car fleets,8

and identification of the highest emitters is an ongoing challenge. This chal-9

lenge will become more important as new and increasingly complex emis-10

sions removal systems penetrate the market. We combine real-world data11

with new-to-the-field statistical methods to describe fleet-scale emissions be-12

haviours and identify candidate gross-emitter vehicles.13

. 19605 passenger cars were observed using a Remote Sensing Device across14

Aberdeen in 2015. Of these, 736 were Euro 6 Passenger Cars. The distri-15

bution of observed pollutant per unit of fuel burnt ratios for most fuel type16

and Euro standards followed an asymmetrical shape best characterised by17

the Gumbel distribution. The Gumbel distribution approach was not able18

to fully replicate the distribution of measurements of petrol or Euro 6 diesel19

cars due to the presence of a subset of high-emitting outliers, ranging from20

the 13th percentile for Euro 3 petrol to the 2nd percentile for Euro 6 petrol,21

with Euro 6 diesel having a 5th percentile outlier value. No outlier fraction22

was observed for pre-Euro 6 diesels.23
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. The off-model fractions resembled Gumbel distributed data and in some

cases could be modelled as a separate distribution with the fleet behaving as

a superposition of them. It is shown that VSP was not directly linked to this

behaviour and it is hypothesised that it is caused by the emissions control

systems operating sub-optimally. The reasons for sub-optimal operation are

beyond the scope of this paper but may be linked to air-fuel mixture sen-

sors, cold-start running and deterioration of the catalytic converter. Larger

data-sets with more Euro 6 passenger cars are required to fully test this. Ap-

plication of this methodology to larger data sets from more widely deployed

remote sensing devices will allow observers to identify potentially problematic

vehicles for further investigation into their emission control systems.

Keywords: NOx, Vehicle Emissions, Remote Sensing, Real Driving24

Emissions, Clean Air Zone25

1. Introduction26

1.1. Background and Motivation27

. The oxides of nitrogen (typically nitric oxide and nitrogen dioxide, col-28

lectively referred to as NOx) have long been known as a major contributor29

to poor health, with negative outcomes being a result of exposure in most30

medical domains (EEA, 2017; COMEAP, 2015; Zhang and Batterman, 2013;31

IARC, 2013; WHO, 2013; Kampa and Castanas, 2008; WHO, 2006). The32

most significant contributor of NOx to urban environments are mobile oil33

powered sources, internal combustion driven vehicles (O’Driscoll et al., 2018;34

Vojt́ı̌sek-Lom et al., 2018; Colvile et al., 2001). Attempts have been made35

to limit the exposure of people to NOX by stipulating ambient air pollution36
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concentration limit values and vehicle emission standards in the European37

Union and elsewhere. The current ambient concentration values for NOX38

are 40µgm−3 annual average and not to exceed 200µgm−3 hourly average39

concentration 18 times per year and are stipulated in the EU First Daughter40

Directive (99/30/EC). The annual limit for hourly exceedance was reached41

by January in 2018 at Brixton Road in London and Putney High Street broke42

the exceedance more than 1200 times in 2016 (Guardian, 2018, 2016).43

. Vehicle emission standards have been introduced in various stages since44

1992, with the Euro 3 legislation in year 2000 first specifying a maximum45

NOX emission rate for cars. Significant reductions of NOX have not been46

seen in either the concentration in local air (Holman et al., 2015; Ellison47

et al., 2013; Boogaard et al., 2012) or the real driving emissions performance48

of vehicles prior to the Euro 6 legislation despite these interventions (Tate,49

2016, 2013a,b; Chen and Borken-Kleefeld, 2014; Carslaw and Rhys-Tyler,50

2013). Chassis dynamometer measurements made under strictly controlled51

laboratory conditions have not been representative of the NOX emissions52

of in-situ vehicles. Real-world factors including engine management settings,53

vehicle age, payload, ambient and operating temperature, tyre pressure, road54

gradient (Wyatt et al., 2014) and a range of other uncontrolled variables are55

also considered to influence on-road emissions (Rushton et al., 2018; Rushton,56

2016)57

. Euro 6 is a new set of type approval legislation introduced in 2014 for pas-58

senger cars. Euro 6 introduces stricter limit values on NOX emission com-59

pared to Euro 5 and below. A more stringent testing procedure, designed to60
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represent real driving, is to be introduced for later iterations of the legisla-61

tion. Euro 6 legislation sets the NOX emission rate at 0.08gkm−1, half the62

Euro 5 limit value. Euro 6b report real driving emissions with no limit values63

and Euro 6c introduces a new drive cycle in the World Harmonised Light Ve-64

hicle Test Procedure (WLTP) (Demuynck et al., 2012; Sileghem et al., 2014).65

Real driving emissions (RDE) rates are reported alongside a conformity fac-66

tor (CF) with the onset of Euro 6d-temp in 2018 (Mock, 2017). The aim of67

the more stringent test procedure is to make cycle beating, as observed in the68

Volkswagen Group emissions scandal, more difficult to achieve. Some initial69

tests on a small number of vehicles using Portable Emissions Measurement70

Systems (PEMS) have been performed with results suggesting significantly71

differing successes between different vehicles (O’Driscoll et al., 2016; Heijne72

et al., 2016; Weiss et al., 2012, 2011). The impact this regulation will have73

on real-world tailpipe NOX emissions is not well understood.74

. RDE NOx testing using PEMS equipment was first approved for use on75

heavy-duty vehicles in 2009 (EC 595/2009) and made mandatory for pre-sales76

type approval in 2011 (EC 582/2011). RDE testing of heavy-duty vehicles77

has been introduced (EC, 2015a,b) and to tighten the rules on in-fleet light-78

duty vehicles (EC, 2017). These moves have been formalised in regulation EC79

2016/427. The specification of the light-duty RDE test procedure requires80

between 90 and 120 minutes of driving to be completed. Of this, between 29%81

and 44% of the distance must be urban (6% to 30% stationary) and 23% to82

43% of the distance must be both motorway and extra-urban. Average speeds83

of 15kmh−1 to 40kmh−1 are required in the urban driving section, 60kmh−1
84

to 90kmh−1 in the extra-urban section and greater than 90kmh−1 in the85
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motorway section, with at least 5 minutes having an average speed greater86

than 100kmh−1. Boundary conditions for the RDE test are dynamically set87

based on average speed per section to ensure that the driving style is neither88

too aggressive nor too passive (Commission Regulation (EU) 2016/646). The89

relative positive acceleration (RPA = 1
d

∑n

i=1
ai×vi
3.6

for a > 0 and RPA = 090

for a ≤ 0) (De Haan and Keller, 2004) must exceed the lower boundary91

condition. The 95th percentile of the product of speed and acceleration (v×a)92

over the drive cycle must not exceed the upper boundary. The maximum93

altitude change is limited to 1200m per 100km, an average gradient of just94

over 1%. The vehicle mass (M) must satisfy the boundary condition M ≤95

M90% where M90% is 90% of the vehicles maximum mass. (Mock, 2017).96

Vehicles have to meet a Not To Exceed (NTE) limit defined as the product97

of the Conformity Factor (CF ) and the type approval limit. The CF value98

is to be determined in EC 2016/427 but is stated as CF = 2.1 from 4 years99

after the introduction of Euro 6 type approval limits, defined in EC 715/2007,100

(Euro 6d-temp) decreasing to CF = 1.0 plus a margin of error in the PEMS101

device (Euro 6d) of 0.5 in Mock (2017) report and regulation EC 2016/646.102

. The inclusion of RDE in the type approval process represents a step change103

in thinking and process for reducing the emissions from new diesel-powered104

vehicles. The RDE test may solve many of the issues arising from high NOX105

and primary NO2 emissions in urban environments from passenger cars (De-106

graeuwe et al., 2016). Real-world monitoring of in-situ fleet vehicles and107

a robust methodology for comparing both individual vehicles and classes of108

vehicles is required to validate the benefit of the new legislation. Kerbside re-109

mote sensing devices allow for indirect and unobtrusive inspection of vehicles110
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subject to real duty cycles and driven by real drivers in a naturalistic way,111

with minimal disruption to infrastructure. Short-term surveys (Section 2.1)112

have laid the ground work for scientific enquiry, however the knowledge con-113

tained within these data is yet to be fully discovered. The analysis techniques114

presented and demonstrated in this paper intend to extend the knowledge115

and understanding that can be gleaned from remote sensing measurements.116

2. Materials and Methodology117

2.1. Data Collection118

. Remote Sensing Devices (RSDs) have been used in studies across the UK,119

Europe and world-wide to assess the emissions of in-situ vehicles for a number120

of years. These studies have shown that there has been little to no change121

in NOX emissions from Euro 3 to Euro 5 diesel powered PCs, light com-122

mercial and heavy commercial vehicles, despite the incrementally increasing123

strictness of type approval limit values (Rushton et al., 2018; Carslaw and124

Rhys-Tyler, 2013; Tate, 2013a,b; Carslaw et al., 2011b,a; Bishop et al., 2003,125

2001; Bishop and Stedman, 1996, 1990).126

. The RSD was initially developed in 1989 as part of the United States clean127

air programme (EPA, 1999) to measure Carbon Monoxide (CO) (Bishop128

et al., 1989) and has been developed further to include Hydrocarbons (HC)129

(Popp et al., 1999) and NO with prototype Fuel Efficiency Automobile Test130

(FEAT) devices able to record Ammonia (NH3) and NO2 (Burgard et al.,131

2006). Measurements of the abundance of these species are made by infra-red132

(IR) and ultraviolet (UV) photometry at frequencies where the species are133

known to have absorption lines (Bishop et al., 1996). The RSD instrument134
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consists of an open-path non-dispersive IR and dispersive UV light sources135

tuned to frequencies that interact withNO and CO2 molecules in the exhaust136

plume to report a ratio between NO and CO2. To take a measurement the137

source and detector module (SDM) directs a multi-frequency beam of light138

across a single lane of traffic which is reflected back using a corner cube139

mirror. The SDM calculates the difference in intensity between the sent (I0)140

and the received (I) beam. The difference in intensity varies in accordance141

with the Beer-Lambert law (Lambert, 1760), (I = I0 × e−τν ) where τν is the142

optical depth of the material at frequency ν. The instrument returns the ratio143

of emissions between CO2 and NO. The instrument is constantly operating144

and the pollution background level, subtracted from the observed tailpipe145

emission, is calculated using the last measurements before the beam is broken.146

The remaining difference is appointed to the vehicle. Measurement of NO147

and NO2 is especially problematic as there are other species with strong148

absorption lines at similar frequencies to those used to measureNO2 and have149

a high potential for interference. The most noticeable source of interference in150

NO2 measurements is water (H2O). Water vapour in the plume, a byproduct151

of combustion, and also present in the atmosphere, can cause interference.152

The high spectral resolution of the RSD4600 and RSD5000 instruments allow153

the impact of interference to be minimised (Jimenez-Palacios, 1998).154

. The RSD was deployed for ten days across five sites in the summer of 2015.155

It was deployed for two days per site and the sites were distributed around156

central Aberdeen (Tate, 2016). Aberdeen is a port city in East Scotland with157

a modern economy including research and development into technology and158

agriculture, and oil due to its proximity to the North Sea. The sites used159
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Figure 1: Location of RSD sites in Aberdeen

for data collection are identified geographically in Figure 1. The observation160

sites were pre-selected to represent a range of arterial, circulatory and city161

centre streets, whilst also meeting practical accessibility constraints such as162

obstruction of the roads and footpaths. The RSD was deployed from 08:00163

to 18:00 where possible to capture the AM, PM, and inter peak periods,164

and to maximise the sample size of vehicles observed. The number of PC165

observations per vehicle category are presented in Table 1.166

. The RSD was set up in a standard on-road configuration as described in167

the user manual provided with the equipment (ESP, 2005). An in-depth168

description of the setup including survey site photographs can be found in169

Rushton (2016) and Tate (2016). The locations of the sites in Aberdeen170

are identified in Figure 1. The camera could be placed facing the front or171
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Figure 2: Generalised remote sensing installation schematic with camera facing the front

of the vehicle

rear of the vehicle. Figure 2 shows the instrumentation in front facing in172

the configuration. Front facing cameras result in better capture of HCVs173

and passenger car licenses but often miss bus license plates. A rear facing174

camera has a high capture rate for urban busses, but low for both rigid and175

articulated HCVs that commonly have exhaust outlets after the driver cabin176

which trigger the camera. Passenger car capture rate is broadly consistent177

across the two configurations. Typically the decision of front or rear facing178

camera orientation is dictated by safety and accessibility rather than any179

traffic derived considerations however if possible the location of the camera180

can be changed to better capture the most prominent vehicles. A speed181

and acceleration module (SAM) consisting of three light beams was used182

9



to capture the vehicle dynamics. The SAM was placed between 3 and 5183

metres before the SDM to ensure that the vehicle dynamics were represen-184

tative of the emissions being observed. The operation of all the devices was185

controlled automatically by the RSD. The captured license plate data was186

converted to vehicle-specific metadata using a lookup service provided by187

CarWeb (http://www.carweb.co.uk).188

. The RSD was calibrated twice daily, or whenever significant changes were189

observed in ambient weather conditions (Rushton, 2016), using an internal190

reference gas cell. Measurements were also audited every hour using blended191

calibration gas with known concentrations of pollutants broadly representa-192

tive of what would be expected in the plume of a petrol-powered vehicle.193

The calibration gas measurements are compared to the known bottle gas194

concentrations and lock out further measurements if the instrument does not195

remain within an acceptable tolerance range (ESP, 2005).196

2.2. Identifying Extreme Measurements197

. A series of events with rare but high value events can be characterised198

by extreme value distributions. Various forms of extreme value distribution199

have been applied to many real world scenarios where the distribution of200

the events’ magnitude does not follow a normal distribution. The use of the201

extreme value distribution extends from finance (Poon et al., 2004; Bensalah202

et al., 2000) to hydrological data (Martins et al., 2000). There are three dif-203

ferent types of extreme value distribution. These are called Weibull, Frechet204

and Gumbel (Fréchet, 1928; Rosin, 1933; Gumbel, 1941, 1935). It has been205

previously hypothesised that a small number of vehicles contribute an ex-206
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cess amount of pollution to the overall inventory (Bishop et al., 2016; Zhang207

et al., 1994). This behaviour is compatible with the behaviours of extreme208

value distribution functions. This behaviour can be seen in the observed data209

histograms presented in Figures 3 and 4.210

. A suitable distribution function is required to analytically describe popula-211

tion behaviour. A good distribution function for describing vehicle emissions212

must fit the data well and be parameterised in terms that are easily un-213

derstandable in a real-world context. The Gumbel distribution meets these214

criteria and was chosen for use in this study. The Gumbel function is pa-215

rameterised by the modal (or highest observation frequency in this context)216

value and a shape parameter that is related to the spread of the data. It217

is possible to compare both the peak emissions and the spread of the data218

of different population subsets in an analytical way using these parameters.219

The Gumbel probability density function P (x) is defined, where z = x−a
b
,220

and a and b are the modal value and the shape parameter respectively, in221

Equation 1. No assumptions or first principles were used a priori to derive a222

Gumbel or other distribution function therefore it is, at this point, suitable223

to pick something convenient for analysis. There are other distributions that224

match the general shape of the observations such as the gamma distribution225

however their parameters are less intuitive and the distribution itself is less226

convenient.227

P (x) =
1

b
e−(z+e−z) (1)
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3. Results228

3.1. Gumbel Distribution Fits229

. Each Euro class and fuel type pair were fitted to normal and Gumbel dis-230

tributions with probability density functions (PDFs) and the theoretical /231

empirical Quantile relationships were calculated and plotted onto Q-Q Plots232

(Wilk and Gnanadesikan, 1968). A Q-Q plot demonstrates the relationship233

between the expected and observed values in a distribution. A well modelled234

distribution will correlate strongly along the 1:1 line. The distribution fit pa-235

rameters were estimated using the Maximum Likelihood Estimation (MLE)236

method from the fitdistrplus package in R (Wilks, 1938; Delignette-Muller237

and Dutang, 2015; R Core Team, 2015). The PDF and Q-Q plot types238

show the difference between the Gumbel and Normal distributions, and the239

observed data.240
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Figure 3: Probability density and quantile-quantile plots for the diesel passenger fleet in the UK. Normal distribution is light

grey and solid, Gumbel distribution is dark grey and dashed.
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Figure 4: Probability density and quantile-quantile plots for the petrol passenger fleet in the UK. Normal distribution is light

grey and solid, Gumbel distribution is dark grey and dashed.
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. Figure 3 and Figure 4 show the fits for the fleets of diesel and petrol pow-241

ered passenger cars respectively. For the diesel powered vehicles the Gum-242

bel distribution fits the data more consistently than the normal distribution243

showing reasonable agreement across the whole range of percentiles. The244

normal distribution underestimates both the number of highest emitters and245

lowest emitters in the population and fails to correctly identify the most fre-246

quent value for emissions, suggesting that it is unsuitable for describing the247

characteristics of vehicle emissions from these vehicle fleet subsets.248

. The population of observed emissions ratios for petrol powered vehicles249

mostly fit the Gumbel distribution. There is a small subset of the popu-250

lation that deviate from the Gumbel distribution. It is hypothesised that251

this deviation from the distribution function is caused by unusual behaviour252

by a small subset of the population. This hypothesis was tested by cutting253

successively larger percentiles from the top of the distribution function and254

re-fitting the data to the distribution function.255

. The higher quantiles side of the distribution begins to depart from the 1:1256

line most noticeable in the petrol powered fleets but also in the Euro 6 diesel257

fleets. It is hypothesised that the majority of the fleet follow the Gumbel258

distribution and a small percentage of vehicles that do not. The fraction of259

vehicles that do not follow the Gumbel distribution are termed ’off-model’260

and may be interpreted as candidate gross-emitting vehicles.261

3.2. Off Model Fraction Calculation262

. A goodness of fit measure is required to determine the quality of the repre-263

sentation of the data by the model. The maximal value of this parameter can264
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be used to determine the best model parameters post-hoc. The goodness of265

the fit between the data and the distribution function is determined by calcu-266

lating the R2 value of the relationship between the empirical and theoretical267

quantiles. Cuts at each integer percentiles starting at 99 were performed to268

test the hypothesis that the majority of the vehicle population conformed to269

the Gumbel distribution. The R2 values calculated for these data sets are270

shown in Table 1. The highest percentile, maximal R2 value was chosen as271

the best model for that fleet subset. This percentile, Poff , was reported as272

the off-model fraction (Table 2). The process was iterated a second time with273

the off-model fraction to determine the parameters that define the off-model274

fraction. The variation in R2 statistic for each cut is shown in Figure 5. The275

line for R2 = 0.98 is shown as a red dash for comparative purposes. The276

agreement with the model with well chosen cuts is graphically demonstrated277

in Figure 6 as the Q-Q line best matches the 1:1 line and agrees with the278

result generated using the maximising R2 value approach.279

. The real-world applicability of the fit parameters is important when com-280

parison between fleet subsets is to be performed. A model that is represen-281

tative of reality is important because non-realistic parameters lead to unfair282

comparisons and wrong conclusions. The normal distribution does not repre-283

sent the distribution of the observations, suggesting that it is not appropriate284

for use in this context. The mean and standard deviation are not appropri-285

ate parameters for describing the fleet. The Gumbel distribution provides286

much better agreement with the data and its parameters can be used for287

comparisons and combined with a well chosen data cut agree with the data288

at R2 > 0.97 in all cases. The approach outlined in this section creates three289

16



Figure 5: Variation in R
2 for increasing data cuts for the petrol and diesel vehicles. Euro

class is indicated by colour and shape with R
2 = 0.98 indicated by the dashed red line.
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Figure 6: Variation in Gumbel distribution function with changing location and scale

parameters for the UK Euro 6 diesel fleet

empirically derived parameters can be used to compare fleet subsets: the290

two Gumbel parameters and the off-model percentile. These parameters are291

based on large samples of real vehicles and are more representative of the292

population and allow for a meaningful and numerical comparison to be made293

between subsets. This method of analysis allows for a better understanding294

of the change in emission ratios as they relate to euro class and fuel type. It295

is possible to demonstrate that there has been a small improvement in the296
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emissions ratios of the petrol fleet from Euro 3 to Euro 6 and that there is297

evidence of a step-change in emission ratios of the diesel fleet from Euro 3 to298

5 and to Euro 6 and to assess the magnitude of these changes. This method299

can be also applied to vehicles of a specific make, manufacturer, engine ca-300

pacity or chassis platform given a population sample size of less than 200301

vehicle observations (Chen et al., 2019).302
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Location Fuel Euro n Off Model Percentile Fit R2 Location (NO : CO2 × 104) Scale

UK Petrol 3 1701 87 0.975 7.8 8.3

4 3732 96 0.990 6.7 7.2

5 4382 98 0.993 6.5 7.3

6 374 98 0.986 5.5 5.5

Diesel 3 632 100 0.967 32.0 23.0

4 2452 100 0.974 24.4 19.8

5 5522 100 0.972 29.0 22.8

6* 362 95 0.991 11.2 8.3

Table 1: Summary results table showing the off-model percentage and Gumbel distribution fit parameters for Aberdeen fleet

subsections post-cut. The R
2 parameter is the modelled fit between the predicted and the empirical quantiles for each point.

*The Euro 6 designations included are those on the road during the data collection and are likely to be Euro 6a.
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. The best fit parameters for each of the fleet subsets chosen is presented in303

Table 1. In all but one case, Euro 3 diesel, cutting the data correctly results304

in an R2 parameter greater than 0.97. This result suggests that the majority305

of the vehicles observed in each class can be parameterised by a Gumbel306

distribution fitted to appropriately cut data. The implication of this is that307

vehicle fleets with greater levels of NOX control exhibit two-type behaviour308

and that the fleet is comprised of two or more component parts. For the309

purpose of this paper they can be thought of as normal and grossly emitting310

vehicles relative to their category.311

3.3. Vehicle Specific Power Bias Analysis312

. There is a known association between Vehicle Specific Power (Jimenez-313

Palacios, 1998) and high NOX emission (Carslaw et al., 2013) and it would314

be reasonable to expect the gross emitter events to be linked to the highest315

VSP events. Each fleet subsection (Euro 3-6 petrol and Euro 6 diesel) were316

split along two dimensions, VSP and emission ratios to link the VSP of a317

given event to its emissions characteristics. The two VSP derived subsets318

are referred to as an under-cut and an over-cut population based on their319

VSP percentile, PV SP . The cut point is defined as the off-model fraction320

percentile derived from the emissions calculation, PV SP = Poff . The under-321

cut subset is the vehicles where PV SP < Poff and the over-cut subset is where322

PV SP ≥ Poff . For example the 98th percentile of emissions was considered323

the on-model fraction for Euro 5 petrol vehicles and the top 2nd percentile of324

VSP measurements was considered the over-cut. A high VSP observation is325

linked to a high emissions measurement if an event is included in the over-326

cut and off-model sets. A high emissions measurement unrelated to a high327
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VSP observation would be under-cut and off-model. For example an emission328

measurement in the top 2nd percentile attached to a VSP measurement in329

the bottom 50th percentile would be off-model and under-cut however if its330

VSP measurement was in the top 2nd percentile it would be off-model and331

over-cut.332

. This methodology was applied to all vehicles with off-model components.333

The results of this analysis are shown in Figures 7 and 8. If VSP was the334

dominant factor for causing off-model behaviour clustering would be expected335

in the upper and lower panels. No such clustering is observed and the over-336

cut VSP follow the trends of the under-cut VSP vehicles. The over-cut,337

off-model vehicle is the highest in population NOX emitter in only one case338

from the current limited sample of six. There is no evidence of strong sys-339

tematic bias towards high VSP vehicles and off-model behaviour observed340

in any of these samples. This analysis suggests that whilst the VSP of a341

vehicle is a contributing factor to its emissions (Carslaw et al., 2013), it is342

not a systematic dominant factor when considering which vehicles are gross343

emitter candidates. Gross-emitter candidates appear to be more related to344

the mechanics of the vehicle, engine, and after treatment systems. In turn345

this suggests that the solution to the problem of gross-emitter vehicles will346

be predominantly mechanical rather than behavioural.347

3.4. Paramterising Observed Gross Emitter Candidates348

. The existence of off-model vehicles presents a problem for modelling the349

fleet as the modeller cannot simply fit the Gumbel distribution to the data350

and move on to the next step. The modeller must now understand the nature351
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Figure 7: Q-Q plot showing on and off model vehicles split by Euro and fuel, and, under

and over cut for VSP. On and off model vehicles are green and red circles respectively

of off-model vehicles or risk not accounting for some of the most important352

contributors to total emissions. Physically these vehicles might be thought of353

as having sub-optimal emission control systems due to their higher NO:CO2354

emissions ratios. There are multiple reasons for why a vehicle’s emissions355

control systems would not perform optimally. Cold-starts, ambient temper-356

atures or defeat devices may all contribute by some degree to the off-model357

fraction of newer fleets. Catalyst poisoning, sintering or physical damage358

may all contribute in varying degrees to reduction in catalyst efficiency in359

older fleets. Kadijk et al. (2018) presents some evidence that failed air-360

fuel mixture (λ) sensors may be responsible for high emissions from petrol361

vehicles. Those vehicles exhibiting off-model behaviour were grouped into362

separate subclasses of their euro and fuel class of vehicles, parameterised in-363
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Figure 8: Q-Q plot showing on and off model vehicles split by Euro and fuel, and, under

and over cut for VSP. On and off model vehicles are green and red circles respectively
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dependently, and their contribution was added to the on-model component364

of the fleet.365

. There is some logic to the increased off-model percentile of petrol vehicles366

however the following assertion is presented with the caveat that determining367

the underlying cause of a vehicle’s emission characteristics is beyond the scope368

of this paper. The 2% of observed off-model vehicles in Euro 5 and Euro 6369

petrol vehicles may be caused by cold starts because it is unlikely that the370

vehicles in this fleet subset contains many failed three-way catalysts or λ-371

sensors. As these components age and fail there is an increased fraction of372

vehicles falling into the off-model subset and this is observed by an increased373

off-model percentile. Regarding the diesel vehicles it is likely that all vehicles374

are high emitters and the only variation is in the Euro 6 subset.375

. The off-model fractions of the Euro 3 and Euro 4 passenger car petrol fleet376

subsets were chosen for initial parameterisation because they had the largest377

sample sizes of 222 and 150 respectively. Euro 6 diesel is included despite378

the small sample size of 19 as they are the most relevant vehicle class to this379

analysis and the observed distribution was assessed to be qualitatively similar380

to a Gumbel distribution. The Euro 5 and 6 petrol vehicle subsets with381

identified off-model contributions did not contain enough off-model vehicles382

to fit distribution functions to with any degree of confidence.383

. The functions for the on and off model components were plotted and nor-384

malised then overlaid on the data. The off-model fraction is small for both the385

Euro 4 petrol and Euro 6 diesel fleets so an additional and exaggerated off-386

model component has been added to the data. The exaggerated component387
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Figure 9: Decomposition of the fleet subsets into their off-model (red) and on-model

(green) fractions and overlaid on the observed data (grey histogram). An indicative and

exaggerated off-model component has been added, without, that shows the magnitude of

the Gumbel function if the fleet was 50% off-model.
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Type Sample Location Shape

Euro 3 Petrol 150 80.9 38.7

Euro 4 Petrol 222 78.2 31.1

Euro 6 Diesel 19 70.5 13.1

Table 2: Off-model Gumbel distribution parameters for petrol powered Euro 3 and Euro

4 UK fleet subsections

was calculated based on the assumption that 50% of the vehicles in the fleet388

were off-model and is for illustrative purposes only. These distributions are389

shown in Figure 9. Two-sample KS tests were performed on the function and390

the data to determine the similarity between the model predictions and the391

data. The p statistics for the Euro 3 petrol vehicles were p = 1.69×10−3 and392

for the Euro 4 petrol vehicles were p < 2.2× 10−16. The p-values generated393

suggests that there is good agreement between the predicted distribution of394

both the normally emitting vehicles and the gross-emitters, suggesting that395

this methodological approach can provide useful insight to distribution of396

emission ratios in these fleets. The number of vehicles in the Euro 6 diesel397

category was not large enough to generate a reliable p-value however the398

qualitatively successful application of this methodology suggests that given399

a bigger data set this feature could be replicated in a more robust statistical400

manner.401
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4. Conclusion and Discussion402

4.1. Conclusions403

. The method developed in this paper provide a framework for comparing404

vehicle fleet subsets from remote sensing data. This approach has been used405

to demonstrate the magnitude of impact that a legislative change has had on406

the emissions ratios of nitric oxide. Further application of this methodology407

will allow for almost immediate appraisal of new legislation Euro 6c+ vehicles408

as they enter the fleet when new data becomes available. This methodology409

can also be used to investigate other subsets such as vehicle make and model.410

. The results presented in this paper suggest that the the vast majority (87%411

to 100%) of NOX remotely sensed emission ratios for vehicles in any given412

euro or fuel subset can be described using a well-fitted Gumbel distribution413

function. In fleet subsets where significant work has ben done to reduce414

NOX emissions a small number of gross-emitter candidate vehicles can be415

observed in their deviation from this model. For the normally behaving416

vehicles the fitted parameters from the Gumbel distribution function can be417

used to compare and contrast fleet emission rates in a more precise way.418

This new methodology allowed the level of Euro 6 emissions to be tested419

and compared to other Euro and fuel-type fleet subsets for the first time420

ignoring high emitters. It can now be shown that a new Euro 6 diesel vehicle421

is likely to emit slightly more NO:CO2 than a Euro 3 petrol powered vehicle422

when passing through a remote sensing device. This is approximately half423

the emission of a Euro 5 or 4 diesel vehicle. Given that a Euro 3 petrol424

powered vehicle is not an ultra-low emission zone (ULEZ) compliant vehicle425
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there should be some concern that the introduction of ULEZ into city centres426

may not lead to a significant reduction in ambient NOX concentration. No427

significant change was observed between Euro 3, 4 or 5 diesel cars as might428

be expected with step-changes in the legislation.429

4.2. Discussion430

Remote sensing studies have previously demonstrated their value in ob-431

serving the differences between in-situ vehicles, and laboratory and PEMS432

based testing environments. The results and methodologies demonstrated433

in this paper build on this work, showing that an appropriate function to434

parameterise this data is a Gumbel distribution. The use of the Gumbel dis-435

tribution to describe the observation improves the investigative capacity that436

RSD observations can generate. Some simple cases of application have been437

demonstrated and results have been presented and it has been confirmed438

that the difference between Euro 3, 4 and 5 diesel passenger car emission439

rates is minimal. This methodology allows for more naturalistic and gran-440

ular descriptions of the fleets to be produced which both account for the441

natural variation in emissions between similar vehicles and those vehicles442

with abnormally high emission rates.443

. The new method using the Gumbel distribution can be used to make strong444

assessments about the differences between fleet subsets at any level of granu-445

larity. This paper investigated the variation between different Euro class and446

fuel types. The difference between cities or sub-regions within cities and tem-447

poral differences may also be assessed. The variation between make, marque,448

year of first introduction, level of WLTP or RDE compliance if not stated449
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explicitly, engine size or other parameters can be analysed/ in the same way450

given a large enough data-set. Chen et al. (2019) indicates that this number451

may be less than 200 vehicles per subset, well within the capability of an452

RSD campaign.453

. The characterisation of the on-model and off-model fleets mean that an454

observer can now assess the likelihood that a vehicle is operating in a sub-455

optimal way. With appropriate underlying infrastructure the vehicles that456

are performing within the expected window can be identified using a real-457

time, big-data approach that compares each vehicle observed to every other458

vehicle. Vehicles suspected as having SCR emulators (OEM defeat devices459

or customer fitted) may be identifiable. This may provide a useful tool for460

compliance monitoring in the future.461

. Improving the statistical framework around individual vehicle emissions462

and how they are positioned within the fleet presents a further use case463

related to clean air zone enforcement. It may be desirable in the course464

of enacting and enforcing future clean air zones to penalise drivers of ex-465

cessively highly emitting vehicles on a case by case basis. One-off individual466

measurements may struggle to identify the worst emitters and may be further467

confounded by idiosyncrasy in vehicle emission control systems and driver be-468

haviour. Repeated measurements of the same vehicle may be able to identify469

those vehicles that are consistently emitting higher than the rest of the fleet.470

Repeated measurements of the same vehicle become more likely if remote471

sensing devices are more widely deployed in the future. Targeted schemes to472

remove the most highly emitting vehicles would become more realistic. This473
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methodology, coupled with the correct infrastructure, could provide a use-474

ful tool for identification of candidate gross-emitter vehicles. These vehicles475

could then be flagged as a gross emitter candidate, potentially triggering a476

more thorough emissions test at next routine inspection. This type of fleet477

surveillance and targeted intervention, when coordinated with more targeted478

RDE testing by type approval, could give authorities some of the tools they479

need to reduce the number of high emitting new diesel cars on the road480

whilst minimising the disruption to those vehicles that are performing at a481

level consistent with the requirements of the legislation.482

5. Future Work483

. Further important use cases of this methodology include assessing the effec-484

tiveness of emissions reduction systems on Euro 6c, 6d-temp and 6d vehicles485

as they enter the fleet. Each of these legislative changes are changes to the486

test procedure with Euro 6d-temp and Euro 6d requiring real driving emis-487

sions tests to be within a conformity factor of legislation (CFd−temp = 2.1 and488

CFd = 1.5) and this is expected to result in real-world reduction in tailpipe489

emission. Using the methods developed in this paper a more representa-490

tive and useful comparison could be made between these new type approval491

classes, each other, and those currently on the road. These comparisons could492

be completed reasonably quickly after the vehicles are introduced to the fleet493

as a sample size of the order 100 will give statistics that are comparable to494

the current Euro 6 fleet.495

. Different manufacturers and platforms solve the NOX emissions problems496

in different ways. Whilst the sample sizes presented in this paper are too497
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small to assert with any confidence that a particular manufacturer, make,498

model or platform is performing better or worse than another, as the num-499

ber of observations increase, the data can be cut into smaller, more specific,500

subsections allowing for more targeted investigation to be performed. Ex-501

tended and longitudinal remote sensing studies, ideally with a time period502

greater than one year, will provide the number of measurements required503

to assess these differences or similarities in a statistically robust way, pro-504

viding useful information to local authorities, vehicle manufacturers and the505

car-buying public about the emissions of their choice of vehicle. Addition-506

ally the longitudinal study approach will allow identification of any temporal507

and seasonal changes to vehicle emission rates. Of special interest is the im-508

pact of ambient temperature on emissions due to changes in cold starts and509

cold running as the wording of the Euro class legislation allows for emissions510

control systems to be switched off if ambient temperatures are not within a511

specified operational window. The interdependence of multiple factors could512

be analysed in some depth given a large enough sample size.513

. Light commercial vehicles are an untested segment of the fleet and an im-514

portant avenue for future investigation. Understanding the impact of light515

commercial vehicles is critical to assessing the impact and effectiveness of516

ULEZ introduction. At the time of data collection there were no Euro 6517

diesel LCVs observed in the UK so no analysis could be performed. At the518

time of writing the penetration of Euro 6 light commercial vehicles will have519

increased to the point where general surveys are likely to contain enough520

vehicles to perform useful statistical tests for comparison. Data has been521

collected for Euro VI HCVs however given the difference in legislation sur-522
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rounding these engines and the complexities relating to engine specification523

and after-treatment systems further work is required both to understand,524

assess and implement this methodology for these vehicles.525
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