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Abstract

Using subnational data, we document that the climatic suitability for malaria fal-

ciparum transmission constitutes a first-nature characteristic that influences today’s

spatial distribution of urbanization and socioeconomic development in Sub-Saharan

Africa. Both, levels of urbanization and development are lower in regions that exhibit

a high malaria transmission potential. Evidence further indicates that the settlement

behavior of the European colonizers plays an important role in explaining why ur-

ban areas are concentrated in low risk areas. Throughout, we rely on an exclusively

climate-based measure of malaria falciparum transmission intensity that is indepen-

dent of local prevalence rates for identification. Robustness of estimates to inclusion

of climatic suitability indices for further tropical diseases, null results in placebo tests

and reproduction of findings outside of Africa support the validity of our identifica-

tion strategy.
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1 Introduction

Plasmodium falciparum malaria has for millennia posed a risk to health in Sub-Saharan

Africa (Loy et al., 2017).1 In this study, we assess to what extent differences in the

local climatic potential for Plasmodium falciparum malaria have generated within-country

disparities in urbanization and economic development. To identify effects, we construct a

measure of the local climatic malaria transmission potential that is specifically tailored to

the Plasmodium falciparum parasite and is exogenous with respect to local socioeconomic

conditions. This measure is based on a biological model that describes mosquito and

parasite development as non-monotonic functions of air temperature. Parametrization

exclusively relies on experimental data obtained from laboratory studies (Mordecai et al.,

2013). The resulting measure captures the local, time-invariant climatic suitability for

malaria falciparum transmission. It is best be interpreted as a locational fundamental akin

to other geographical features.2 This first nature characteristic not only influences current-

day outcomes via direct effects on contemporaneous health, but also through its health-

related effects in the past that influenced long-term determinants of economic development.

The latter may include culture, institutions or locational choices of where to establish

settlements. When interpreting results, it is important to keep in mind that they represent

reduced-form effects, i.e., the net effect of all channels through which the malaria intensity

measure affects outcomes.3

To our knowledge, we are the first to use an exogenous measure for malaria transmission

suitability to analyze its effect on current-day urbanization and development. Studies that

investigate related questions typically employ malaria-intensity indices that are (partly)

based on observed prevalence. These measures are unsuited for the purposes of our analysis

due to potential endogeneity. For illustration, take an uninhabited (and undeveloped)

area. In this region the malaria prevalence is zero, even when the climatic potential for

malaria transmission is very high. However, the area may be deserted precisely owing

to the potentially detrimental effect of malaria. Conversely, a higher level of economic

development implies that more resources are available to control malaria, thus reducing

the number of infections. Due to the existence of these types of reverse causality, the

1In this paper, we will use the terms ‘malaria’ and ‘Plasmodium falciparum malaria’ interchangeably.
In both instances we refer to the latter type of malaria.

2Note that the climatic malaria potential represents a locational fundamental only as long as the malaria
parasite and its host (the mosquito) are present. Absent either component, the measure does not represent
a negative local characteristic. See Sections 2 and 4.2 as well as Appendix B for more details.

3This also implies that we cannot use the malaria environment as an instrument for contemporaneous
malaria prevalence. The existence of a multitude of channels violates the exclusion restriction.
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use of a prevalence-based malaria measure would (likely) bias our estimates. Similarly, the

widely used global malaria stability index developed in Kiszewski et al. (2004) is potentially

endogenous as it depends on the actual distribution of vectors and the observed human

biting rates of mosquitos. Both these aspects can be influenced by human economic activity

(see e.g., Killeen et al. (2001), Seyoum et al. (2002), Guerra et al. (2006), Ngwa (2006),

Vittor et al. (2006), Smith and Ruktanonchai (2010), or Mutuku et al. (2011)).

In addition to introducing an exogenous climatic measure for Plasmodium falciparum

malaria transmission intensity, our paper makes two main contributions to the economic

literature. First, we systematically document that the malaria environment constitutes

a determinant of today’s spatial distribution of urbanization and economic activity in

Sub-Saharan Africa. To this end, we divide Sub-Saharan Africa into 5,841 grid cells of

0.5×0.5 degree. For each cell we determine the local degree of malaria suitability and

then assess its effect on urbanization and economic activity using a cross-sectional OLS

regression approach. Throughout, we control for temperature, a variety of additional

exogenous physical characteristics as well as country fixed effects. Consequently, we iden-

tify effects of the malaria environment by exploiting the residual within-country variation

between the non-monotonic, malaria-falciparum-specific function of air temperature and

generic—malaria-unrelated—temperature effects. The resulting estimates show that the

local climatic malaria potential strongly deters urbanization. Urban population decreases

by 0.117 standard deviations when moving from a region characterized by an average

malaria transmission suitability to an area in which the malaria potential is one-standard

deviation higher. This translates into a reduction of 31,678 individuals. The deterrent

effect on economic activity, proxied by night-time light intensity, is similar in magnitude.

As a second contribution, we show that the local malaria potential also influences the

spatial distribution of socioeconomic development. For this part of the analysis, we draw

on nationally representative cross-sectional survey data collected in the Demographic and

Health Surveys (DHS) Program. Our sample covers 28 countries and encompasses 522,538

individuals aged 15–49 who reside in 287,858 distinct households. Using this data, we

document that persons living in areas with a high climatic malaria transmission suitability

accumulate less human capital (measured by educational attainment), are less likely to

be employed in the more productive non-agricultural sectors, and accumulate less wealth.

Again, the implied magnitude of the point estimates is economically meaningful. Household

wealth, for example, decreases by 16 percent (evaluated at the sample mean) when the

malaria potential increases by one standard deviation.
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Taken together, our results document that the climatic malaria transmission potential con-

stitutes a locational fundamental that deters socioeconomic development and urbanization.

In the final step of our analysis, we investigate the relevance of one potential channel that

links the malaria environment to urbanization: the locational choices of the European col-

onizers. Specifically, we show that European economic centers were less likely to emerge in

high malaria risk regions. Many of these centers have since evolved into large cities. This,

in turn, helps explain why today’s spatial distribution of urbanization is influenced by the

local malaria environment.

The key identifying assumption underlying our analysis is that malaria suitability index

specifically captures the climatic malaria transmission potential rather than some generic

effect of temperature. We support the validity of this assumption by exploiting the fact

that the penetration of the Plasmodium falciparum parasite in Latin America varied over

time and space (Webb (2008, p. 73, p. 85 ff.)). We show that variation in the malaria

transmission potential does not predict urbanization or development in regions where the

parasite was absent. In areas with a stable presence of the parasite, on the other hand,

the malaria environment constitutes a locational fundamental that strongly deters these

two outcomes. Further evidence for the malaria-specificity of our results is provided by the

fact that our estimates remain stable when we control for temperature suitability indices

developed for alternative tropical diseases, including Yellow and Dengue fever as well as

Animal Trypanosomiasis. To document the stability of our estimates more generally, we

conduct a battery of robustness checks. These include extending the set of control variables,

employing alternative measures for urbanization, modifying the malaria suitability index,

and using different standard error clustering approaches.

Our paper is related to different strands of literatures. An influential body of work looks

at the relationship between the malaria environment and current-day economic develop-

ment. Several cross-country studies document negative correlations (e.g., Gallup et al.

(1999), Acemoglu et al. (2001) or Gallup and Sachs (2001)). A number of papers that

use sub-national data to identify determinants of economic development also takes into

account measures of malaria exposure (e.g., Henderson et al. (2012), Michalopoulos and

Papaioannou (2013), Michalopoulos and Papaioannou (2014), Alsan (2015), Henderson et

al. (2018)). While the majority of these studies find a negative relationship between malaria

and current-day development outcomes, the point estimates are potentially biased due to

the use of prevalence-based malaria intensity indices. Furthermore, no study specifically

focuses on assessing the effect of the malaria environment on the spatial distribution of
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development. Rather, the malaria index is treated as a control variable and its impact is

not discussed in detail.

Linked to our investigation are further papers that analyze the effects of the malaria envi-

ronment on development in Sub-Saharan Africa during the pre-colonial period (Depetris-

Chauvin and Weil, 2018; Easterly and Levine, 2016). For this earlier period, the studies

do not find any negative effects. This implies that the negative relationship only emerged

during the 20th century, i.e., the colonial and post-colonial era. We provide additional

empirical support for this view and suggest the malaria-influenced settlement pattern of

the European colonizers as a possible explanation for the emergence of the negative effect.

In this regard, our results also connect to the discussion about the effects of European

colonial activity on current-day economic development (e.g., Acemoglu et al. (2001); Put-

terman and Weil (2010); Easterly and Levine (2016); Ali et al. (2018)) as well as the papers

that document a strong degree of persistence in the spatial distribution of urbanization

(e.g., Redding et al. (2010); Michaels and Rauch (2018); Jedwab et al. (2017); Jedwab and

Moradi (2016)).

By identifying the malaria environment as an important locational fundamental, our study

also speaks to the literature that analyzes the effect of geography on urbanization (e.g.,

Davis and Weinstein (2002); Rappaport and Sachs (2003); Bosker et al. (2007); Rosen-

thal and Strange (2008); Saiz (2010); Miguel and Roland (2011); Motamed et al. (2014);

Henderson et al. (2017, 2018)) or economic development (e.g., Acemoglu et al. (2003);

Rappaport and Sachs (2003); Acemoglu et al. (2005); Dell (2010); Dell et al. (2012); Nunn

and Puga (2012); Alsan (2015); Flückiger and Ludwig (2017)).

Finally, this paper connects to the large body of research that analyzes the effects of

malaria on individual-level outcomes (e.g., Bleakley (2010); Cutler et al. (2010); Lucas

(2010, 2013)). These studies generally investigate the effects of malaria eradication cam-

paigns on proximate determinants of development, contemporaneous health in particular.

Our estimates, on the other hand, capture variation in socioeconomic outcomes that are

caused by differences in the local, climatically determined, potential for malaria trans-

mission. Apart from exerting a direct effect on contemporaneous health this locational

characteristic can affect economic well-being via its influence on the evolution of more

fundamental determinants of development, such as local institutions or culture. Crucially,

malaria-induced differences in these deep fundamentals persist even if malaria is eradicated.

The remainder of the paper is structured as follows: In the next section, we introduce our

measure of climatic malaria transmission suitability in detail and outline the methodol-
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ogy employed in the empirical analysis. In Section 3, we present the data along with a

descriptive analysis thereof. The regression results are discussed in Section 4, after which

potential channels are investigated. We conclude with Section 6.

2 Empirical Strategy

In this section, we first discuss the inherent endogeneity between the spatial distribution of

human population and malaria prevalence in more detail. We then outline our strategy to

circumvent this issue and describe the regression methodology employed in the empirical

analysis.

Endogeneity between the Spatial Distribution of Human Population and Malaria Prevalence

In order for Plasmodium falciparum malaria to be prevalent in a region, three necessary

conditions have to be met: (1) temperature conditions must allow for vector and parasite

development, (2) human population density must be sufficiently high, and (3) both, the

falciparum parasite and a vector, i.e., a mosquito, capable of transmitting the parasite

must be present. The last two conditions are, in contrast to the first one, endogenous with

respect to the spatial distribution of human population. Condition (2) implies, inter alia,

that malaria prevalence is zero in uninhabited regions. Similarly, the spatial distribution

of vectors (condition (3)) is endogenous with respect to past and present human activity

and population densities. Local agricultural practices or housing conditions, for example,

influence which vector establishes itself as the dominant one (e.g., Amerasinghe et al.

(1991), Tuno et al. (2005), McNeill (2010, p.65ff)). Furthermore, human interventions,

such as eradication campaigns, can influence the regional diffusion of vector or parasite.

The existence of such two-way relationships imply that identification of malaria-related

effects is not possible by relying on measures that incorporate any components that are

based on, or influenced by, observed malaria prevalence, vector distribution or human

population densities.

Climate-Based Malaria Transmission Suitability Model

Our measure of local malaria transmission is based on the Basic Reproductive Number

(R0), i.e., the number of malaria cases that arise from one case introduced into a popu-

lation of susceptible hosts. This epidemiological metric is commonly used to capture the
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malaria transmission risk. We base our measure on the R0 metric developed by Mordecai

et al. (2013), who model local transmission intensity as a multitude of air-temperature-

sensitive functions that reflect vector and parasite development. Two important charac-

teristics motivate the use of the Mordecai et al. (2013) model: First, parametrization and

functional forms of the individual components of the metric are based solely on experi-

mental data from laboratory studies that analyze the temperature-dependent parasite and

vector development. The results of these studies are—unlike values derived from field

studies—independent of local differences in human population densities and human activ-

ity (Mordecai et al., 2013, p. 25). Second, the Mordecai et al. (2013) model incorporates

all aspects of vector and parasite development as functions of air temperature. Alternative

metrics typically only model a limited number factors that influence R0 as temperature-

dependent functions (e.g., Weiss et al. (2014)).4

Formally, our malaria transmission intensity model consists of three multiplicative compo-

nents, each representing non-linear functions of air temperature.5 The metric of our model

is given by:

R0(T ) =

(

M(T ) e−µ(T )E(T )

µ(T )

)1/2

, (1)

where T represents air temperature, M(T ) the mosquito density, µ(T ) the mosquito mortal-

ity rate, and E(T ) the extrinsic incubation period of the Plasmodium falciparum parasite

in the mosquito. The fact that M(T ), i.e. the mosquito density, is itself a function of

temperature-dependent vector development implies that the measure is fully characterized

by the thermal physiology of the vector and the parasite (Mordecai et al., 2013, p. 25).

The key difference between the original Mordecai et al. (2013) model and our modified ver-

sion presented in Eq.(1), is that the original measure incorporates additional components

which are potentially endogenous with respect to local socioeconomic conditions (e.g., via

processes of co-evolution). Specifically, these are the human biting rate of the anophe-

les, the proportion of the bites of infective mosquitoes that infect susceptible humans as

well as the proportion of bites of susceptible mosquitoes on infectious humans that in-

fect mosquitoes. To avoid any endogeneity issues, we do not model these components as

temperature-dependent functions.

Panel (a) of Figure 1 depicts the relationship between air temperature and the malaria

4There is a large number of models that derive R0 based on a mix of laboratory and field studies (e.g.,
Martens et al. (1995); Ermert et al. (2011); Lunde et al. (2013a)).

5The functions are either quadratic functions or left-skewed unimodal functions of air temperature.
The functions and their parameter values are reported in Table 2 in Mordecai et al. (2013).
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transmission intensity metric, R0(T ). The optimal temperature for malaria transmission

is around 25◦C. At temperatures below 17◦C and above 34◦C, the climatic potential for

malaria transmission is zero.

(a) (b)
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Figure 1: Panel (a) represents R0 as a function of air temperature. Panel (b) depicts Geographical
distribution of the MSM (z-score) in Sub-Saharan Africa. The darker the shading, the higher the climatic
suitability for Plasmodium falciparum malaria transmission.

We construct a time-invariant measure of the local malaria potential by computing the

mean of the monthly malaria transmission potential, R0, defined in Eq.(1), over the time

period 1901–1925.6 Formally, our time-invariant malaria transmission suitability measure

(MSM) can be expressed as:

MSM =
1

300

Y=1925
∑

y=1901

M=12
∑

m=1

R0(Tm,y). (2)

The MSM is computed as the sum of the individual monthly malaria transmission intensity

values (R0(Tm,y)) in month m of year y over the time span 1901–1925. This value is then

divided by the number of months in the 25-year time period, i.e., 300. The geographical

distribution the resulting malaria transmission suitability measure is depicted in Panel

6We focus on a period during which urbanization had not reached any significant levels in Sub-Saharan
Africa in order to avoid possible endogeneity issues related to the possibility that the extent of urbanization
influences temperatures (e.g., Arnfield (2003)). However, as shown in Tables C.5–C.6, our result are robust
to changing the time interval used to compute the MSM.
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(b) of Figure 1. The highest malaria risk is observed for Central Africa. Further clearly

discernible are elevated and therefore cooler areas where malaria transmission suitability

is considerably lower compared to neighboring regions.

Regression Methodology

We conduct our empirical analysis at two levels of aggregation: The grid cell level and the

individual level. Below, we illustrate our empirical approach at the grid cell level. The

methodology translates directly to the individual level.

The following OLS regression equation is used to analyze the effect of malaria suitability

on urbanization and economic activity:

yg,c = θMSMg,c + β′
Xg,c + τc + εg,c. (3)

Current-day urbanization (or economic activity) in grid cell g located in country c is repre-

sented by yg,c. Our measure for the grid-cell-level climatic malaria suitability is symbolized

by MSMg,c. Vector Xg,c contains exogenous geographical and climatic variables that are

commonly associated with urbanization and economic development. In our baseline speci-

fication this set of controls encompasses temperature, precipitation, relative humidity, their

squared values, the respective first order interaction terms as well as longitude, (absolute)

latitude and a tropics dummy. These variables account for the fact that climatic conditions

can directly influence urbanization and economic development. Consequently, the identify-

ing variation of the malaria suitability index is given by the difference between the vector

and parasite development functions of temperature constituting the MSM measure and

the climate variables, particularly temperature and temperature squared. This variation

is generated to some part by the kinks in the R0-function (Figure 1, panel (A)) but also

by averaging subannual variation in the non-linear suitability metric (R0) over time, as

described in Eq.(2).

In all regressions we account for country-specific fixed effects (τc). These allow for the

possibility that the ability to cope with a given level of climatic malaria suitability varies

with country-specific characteristics, such as the level of development or quality of na-

tional institutions.7 Throughout, we standardize variables (i.e. build z-scores) to facilitate

7Our results remain unchanged if we additionally include ethnicity dummies in our regression setup.
Based on the map of Murdock (1959), each grid cell is assigned the ethnicity with the largest overlapping
territory. This assignment procedure produces 632 ethnicity dummies. Regression outputs are available
upon request.
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comparison of point estimates and cluster standard errors at 2×2 degree grid cells.

3 Data and Descriptive Analysis

Data

For our analysis at the grid-cell level, we divide mainland Sub-Saharan Africa into 5,841

grids cells of 0.5×0.5 degrees and focus on two outcome variables: urban population num-

bers and economic activity. The former are taken from Jedwab and Moradi (2016), who

provide population estimates for localities with more than 10,000 inhabitants covering the

period 1890–2010.8 In our main analysis, we use the population estimates for the year

2010, the latest year available. Our proxy for local economic activity, is based on night-

time luminosity data provided by the Defense Meteorological Satellite Program-Optical

Line Scanner (DMSP-OLS) sensor (see Henderson et al. (2012)). In keeping with the

population data, we construct our dependent variable for the year 2010 and add up the

light-intensity indices of the individual 1×1 km pixels that fall into a given 0.5×0.5 degree

grid cell.

For each grid cell, we compute the time-invariant malaria suitability measure, as well as

mean temperature, mean precipitation, and mean relative humidity by taking the respective

average over the period 1901–1925 in analogy to Eq.(2). The monthly climate data are

provided by the Climatic Research Unit of the University of East Anglia (CRU TS version

3.22). Additionally, we determine the caloric suitability index (Galor and Özak, 2015,

2016), mean elevation (NOAA, 2009) and distance to the coastline for each cell. We further

generate an indicator variable that takes the value one if a cell is intersected by a waterway,

and, zero otherwise. This information is extracted from www.naturalearthdata.com.

Using the shapefiles available from www.gadm.org we identify which country each cell

belongs to.9,

8Jedwab and Moradi (2016)’s dataset is based on information reported in Africapolis I: West Africa
and Africapolis II: Central & Eastern Africa. Africapolis, in turn, uses a wide array of sources—including
population censuses (reports and gazetteers), administrative counts, demographic surveys and electoral
counts—to create a consistent database for African cities in 33 countries. Using the same type of sources,
Jedwab and Moradi (2016) expand the data to an additional six countries. In some instances, population
numbers are linearly interpolated within decades to harmonize population estimates across data sources
and years (see Web Appendix page A.4 and Table 12 Jedwab and Moradi (2016) for more detail). As
a result, information is available for the whole of Sub-Saharan Africa except Lesotho, South Africa and
Swaziland.

9When a grid cell overlaps multiple countries, it is assigned to the country that occupies the largest
share of the cell.
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In the individual-level analysis, we draw on data from the Demographic and Health Surveys

(DHS) Program. For our purposes, nationally representative data (men and women aged

15–49) are available for 28 Sub-Saharan African countries. When multiple survey waves

exist, we use the most recent one.10 The waves span the period 2006–2016. As dependent

variables, we use educational attainment, a household wealth index, non-agricultural occu-

pation, as well as a dummy variable indicating whether a household is located in an urban

area.11,12 Details regarding the construction of these variables are presented in Table A.1.

To link the survey data to the malaria environment and other location-specific characteris-

tics we use geocoded information on the households’ residence provided by the DHS. Our

final dataset encompasses 522,538 individuals from 287,858 households.

Descriptive Analysis13

To verify that the spatial variation in the MSM indeed captures the potential for malaria

transmission, we employ regression model (3) and document that the MSM influences

various grid-cell level prevalence measures. In Table 1 of column (1) we regress average

estimated Plasmodium falciparum malaria prevalence over the period 2000–2010 (taken

from Bhatt et al. (2015)) on the MSM. The dependent variable in column (2) is observed

malaria prevalence derived from the DHS.14 In addition to current-day prevalence, we look

at the frequency of sickle haemoglobin alleles in the general population in column (3).15

This genetic mutation offers protection against malaria, but is associated with otherwise

considerably lower life expectancy (Hedrick, 2011). Due to the existence of this trade-off,

the frequency of the mutation in populations today is representative of malaria transmission

intensity in the past (Depetris-Chauvin and Weil, 2018). As displayed in Table 1, the

10Table A.2 provides a table containing details regarding the countries and survey waves included in our
analysis.

11The DHS wealth index is a principal component index based on ownership dummies for a fixed set of
durable goods.

12An important caveat pertains to the definition of urban residence in the DHS data. Urban residence
is coded according to the classifications of the National Statistical Offices. In some cases levels of non-
agricultural employment form part of the administrative definition of urban areas. This can lead to an
mechanical correlation between urban residence and non-agricultural employment in the DHS data (see
International Labour Organization, 2015). This should be taken into account when interpreting the results
presented in Table 3.

13Summary statistics of the key variables are provided in Tables A.4–A.5.
14We only include grid cells for which survey information on malaria prevalence is available. The sample

size is consequently reduced. We obtain very similar results if we run the regression at the individual level,
with an indicator for being infected with Plasmodium falciparum malaria at the time of interview as the
dependent variable.

15Data produced by Piel et al. (2013) and available at the grid cell level for the whole of Africa.
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MSM exerts a positive and highly significant effect on all measures of prevalence. This

documents that our climatic suitability measure successfully captures the local malaria

falciparum transmission risk, both in the past and present.

Table 1: Malaria Suitability Measure and Prevalence

Prevalence (SD) Prevalence (SD) Sickle Cell (SD)
Bhatt et al. (2015) DHS Piel et al. (2013)

(1) (2) (3)

MSM (SD) 0.090*** 0.214*** 0.085**
(0.030) (0.056) (0.042)

Climate controls Yes Yes Yes
Country fixed effects Yes Yes Yes
Observations 5,841 1,676 5,841
R-squared 0.899 0.532 0.825

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. All regressions control for land surface area of the grid cells. Climate controls include temperature, precipitation
and relative humidity, the squared terms of these variables and their first-order interactions as well as longitude, (absolute)
latitude and a Tropics dummy. ‘Prevalence (SD) Bhatt et al. (2015)’ represents the average grid-cell level Plasmodium
falciparum infection prevalence over the period 2000–2010, as provided by Bhatt et al. (2015). ‘Prevalence (SD) DHS’ is
computed as the (sample-weighted) average Plasmodium falciparum prevalence of the population residing within a given
grid cell reported in the AIS, DHS and MIS surveys that include a Malaria Rapid Diagnostic Test Results module (see Table
A.3). ‘Sickle Cell (SD)’ is the predicted frequency of sickle haemoglobin alleles in the general population taken from Piel et
al. (2013).

4 Malaria Suitability, Urbanization and Development

In this section, we first document that the climatic malaria environment influences the

spatial distribution of urbanization as well as socioeconomic development in Sub-Saharan

Africa. We then discuss the validity of our identification strategy and robustness of results.

4.1 Main Results

Malaria Suitability, Urbanization and Economic Activity at the Grid-Cell Level

We start by regressing urban population on our malaria suitability index, a basic set of

climate controls as well as country-fixed effects in Panel I of Table 2. The result, presented

in column (1), documents that the malaria environment exerts a statistically highly sig-

nificant deterrent effect: A one-standard deviation increase in the MSM reduces grid-cell

urbanization by 0.135 standard deviations. In column (2), we augment the regression setup

to include the Tsetse fly suitability index. As shown in Alsan (2015), economic develop-

ment in regions characterized by a hostile Tsetse environment was lower in the pre-colonial
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Table 2: Intensive Margin: Malaria Suitability and Current-Day Grid-Cell-Level Urban Population

Current Day Urban Population

(1) (2) (3)

Panel I: overall (total urban population)

MSM (SD) -0.135*** -0.127** -0.117**
(0.051) (0.051) (0.051)

Observations 5,370 5,370 5,370
R-squared 0.051 0.051 0.054

Panel II: extensive margin (urban population yes/no)

MSM (SD) -0.163*** -0.150*** -0.126***
(0.043) (0.046) (0.046)

Observations 5,370 5,370 5,370
R-squared 0.216 0.217 0.231

Panel III: intensive margin (total urban population conditional on any urban population)

MSM (SD) -0.168** -0.162** -0.156**
(0.078) (0.072) (0.074)

Observations 1,429 1,429 1,429
R-squared 0.074 0.074 0.075

Country fixed effects Yes Yes Yes
Climate controls Yes Yes Yes
TseTse control No Yes Yes
Geography controls No No Yes

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.

era, with negative effects persisting up to the present day. A natural concern is that our

malaria suitability measure partially captures these Tsetse effects. Reassuringly, however,

our point estimate remains very similar compared to column (1). This is also the case

when we control for additional geographical factors, such as distance to coastline, elevation

or local caloric suitability in column (3). The implied economic magnitude of the point

estimates is substantial. The coefficient of –0.117 in column (3), for example, translates

into a reduction in urban population of 31,748 individuals. The effect of the MSM is also

sizeable compared to other exogenous geographic variables. For instance, it is almost twice

as large as the (standardized) effect of distance to coastline.

In columns (4)–(6) of Panel I, we exchange urban population with night-time light intensity
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as the dependent variable and re-run regressions analogous to the ones presented in columns

(1)–(3). The effect of the MSM on economic activity is again negative and statistically

highly significant. Night-time light intensity decreases by 0.188 standard deviations when

moving from a given area to region with a one-standard deviation higher malaria suitability

(column (6)).

A natural question is whether the results presented so far a driven by a particular margin

of urbanization. Panels II and III of Table 2 show that this is not the case. Along both

the extensive and intensive margin, we consistently find a statistically significant negative

effect of malaria suitability.16 That is, greater malaria suitability reduces (i) the probability

that cities (lights) emerge and (ii) the size of cities (intensity of lights), given that cities

(lights) exist.

As mentioned previously, it is important to keep in mind that our estimates capture

reduced-form effects of the malaria environment. They represent the net effect of all chan-

nels through which the natural locational fundamental influences urbanization and eco-

nomic activity. This includes direct health-related channels, such as increased mortality,

potential reductions in labor productivity or lower human capital accumulation (Bleakley,

2010; Cutler et al., 2010). Additionally, the climatic malaria potential can also influence

today’s local population densities and economic development through its effect in the past.

Continued, climate-induced, adverse health conditions can influence long-term determi-

nants of growth, such as local institutions or social and cultural norms (e.g., Acemoglu et

al. (2001)). Furthermore, initial malaria-influenced decisions on where to establish urban

centers can have persistent effects on the spatial pattern of urbanization and economic

development because of path dependence (c.f. Redding et al. (2010); Michaels and Rauch

(2018); Jedwab et al. (2017); Jedwab and Moradi (2016)). While it is not possible to clearly

disentangle individual mechanisms within the framework of our analysis, we explore the

last channel in more detail in Section 5. Specifically, we investigate the importance of Eu-

ropean colonizers in explaining the malaria-influenced spatial distribution of urbanization

and economic activity today. First, however, we assess the effect of the climatic malaria

environment on socioeconomic development.

16Note that the distinctions between extensive and intensive margin is somewhat arbitrary given the
definition of urbanization (cut-off at 10,000 for the urban population data) and the detection threshold of
satellites (night-time light data).
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Malaria Suitability and Socioeconomic Development at the Individual Level

In analogy to the grid-cell level analysis, we employ the cross-sectional OLS regression

model of Eq.(3). The observations are weighted using the sample weights available from

the DHS. For brevity, we only report estimates obtained from regressions that include the

full set of control variables (i.e., climate, TseTse, geography and country fixed effects) as

well as controls for sex and age. The standard errors are clustered at the 0.5×0.5 degree

grid cell level.

We start by investigating the effect of the local climatic malaria potential on educational

attainment, a proxy for human capital accumulation. As documented in Table 3, columns

(1)–(2), the probability of completing secondary and tertiary education declines as the

malaria potential increases.17 Evaluated at their respective sample means, the point esti-

mates imply that a one-standard deviation increase in the MSM reduces the probability of

completing secondary education by 16 percent and the likelihood of obtaining a tertiary

degree by 61 percent.18

Table 3: Malaria Suitability and Individual and Household Level Socioeconomic Development

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) -0.121*** -0.145*** -0.332*** -0.243*** -0.399***
(0.039) (0.041) (0.079) (0.054) (0.092)

Individual-level controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Observations 522,538 522,538 287,858 340,901 287,858
R-squared 0.224 0.042 0.140 0.178 0.141

Note: Standard errors are clustered at the 0.5×0.5 degree grid cell level and are reported in parentheses. All regressions

control for sex and age. Climate controls include temperature, precipitation and relative humidity as well as the squared

terms of these variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015).

Geography controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy

and caloric suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more

information.

Column (3) looks at the effect of the MSM on a general measure of economic well-being:

household wealth. When moving from a given region to an area that exhibits a one-

standard deviation higher malaria transmission potential, the wealth index decreases by

0.33 standard deviations. This negative effect is consistent with the findings presented

17All results remain very similar if we restrict our analysis to individuals aged 25 and older.
18The sample means are 37 percent and 5 percent respectively.
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in columns (1)–(2) as well as column (4). The latter shows that the probability of being

employed in the non-agricultural sector is lower in regions with a high malaria potential.19

Furthermore, we find that the probability of a household residing in an urban area is lower,

the higher the malaria suitability is (column (5)). This last result reproduces the findings

of the grid-cell level analysis: The malaria environment is an important determinant of the

spatial distribution of urbanization.

Taken together, the findings presented above show that the local climatic potential for

malaria transmission deters urbanization and economic development. A natural question is

to what extent these differences would dissipate if malaria falciparum were to be eradicated.

Empirically analyzing this question within our framework is not possible.

4.2 Threats to Identification and Robustness

The main identifying assumption in Eq.(3) is that, conditional on covariates, the MSM is

unrelated to the error term and affects urbanization and individual-level outcomes only

through variation in the local malaria potential. There are several potential issues pertain-

ing to this assumption. These are discussed below.

Specificity and omitted variables

The primary threat to the validity of our analysis is that the MSM does not specifically

capture the malaria risk but some other, unobserved, factor. One specific worry is that

other tropical diseases that thrive under similar temperature conditions confound our find-

ings. To investigate if this is a source of bias, we model temperature suitability for Yellow

and Dengue Fever transmission following Hamlet et al. (2018) and Mordecai et al. (2017),

respectively. Parametrization and functional forms of these metrics are, in analogy to the

MSM, based solely on experimental data from laboratory studies.20 As shown in Tables

4 and 5, the MSM point estimates in the grid-cell and individual-level regressions remain

stable when we include these two additional disease suitability indices.21

While these results strongly suggest that our results are not biased due to correlation with

19Information regarding occupation (column (4)) is restricted to persons employed. The sample size is
consequently reduced.

20That is, we keep components of the original metrics that are potentially endogenous to urbanization
or development fixed (see Section 2) and compute the time-invariant version of these suitability measures
according to Eq.(2).

21For brevity, we only present the results with total urban population (night-time lights) as dependent
variable. Results are very similar when we alternatively look at the extensive or intensive margin.
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Table 4: Controlling for Yellow and Dengue Temperature Suitability: Malaria Suitability and
Current-Day Grid-Cell-Level Urban Population

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.135*** -0.122** -0.123** -0.148*** -0.155*** -0.208***
(0.051) (0.056) (0.058) (-0.055) (0.059) (0.062)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Dengue Fever control No Yes Yes No Yes Yes
Yellow Fever control No Yes Yes No Yes Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.051 0.052 0.054 0.155 0.157 0.174

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability. The Dengue
and Yellow Fever suitability indices are taken from Mordecai et al. (2017) and Hamlet et al. (2018), respectively.

Table 5: Controlling for Yellow and Dengue Temperature Suitability: Malaria Suitability and
Individual-Level Socioeconomic Development

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) -0.121*** -0.142*** -0.319*** -0.238*** -0.377***
(0.039) (0.042) (0.081) (0.055) (0.096)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Dengue Fever control Yes Yes Yes Yes Yes
Yellow Fever control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Observations 522,538 522,538 287,858 340,901 287,858
R-squared 0.224 0.042 0.142 0.178 0.143

Note: Standard errors are clustered at the 0.5×0.5 degree grid cell level and are reported in parentheses. All regressions

control for sex and age. Climate controls include temperature, precipitation and relative humidity as well as the squared

terms of these variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015).

The Dengue and Yellow Fever suitability indices are taken from Mordecai et al. (2017) and Hamlet et al. (2018), respectively.

Geography controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy

and caloric suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more

information.

alternative disease environments, it is still possible that the MSM captures some other cli-

matic aspect(s) of the tropics. To substantiate our claim that this is not the case, we exploit
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the fact that—in contrast to Sub-Saharan Africa—the geographical diffusion of malaria fal-

ciparum was not pervasive in Latin America.22 The Plasmodium falciparum parasite was

only introduced in the 16th century with the start of the slave trade. Importantly, in-

tensive and stable transmission of malaria falciparum was only seen in regions that saw

a large influx of infectious and immune humans, i.e., African slaves (Webb, 2008, p. 79),

despite vectors being present and being climatic conditions in majority of Latin America.

The limited spread was mainly due to the fact that the Anopheles vectors native to the

Americas are not as efficient in transmitting malaria as the African vectors, particularly

the Anopheles gambiae (McNeill (2010, p. 55) and Carter and Mendis (2002)). Appendix

B provides more detailed background information on the history of malaria falicparum in

Latin America.

The slave-density-dependent prevalence of malaria falciparum in Latin America allows us

to run both, a falsification and a validation test. In regions with low slave density—and

consequently low falciparum transmission probability—the MSM should have no impact on

urbanization and development if it specifically captures the malaria transmission potential.

On the other hand, in regions that relied heavily on slave labor, we expect to find negative

effects of the MSM, similar to the ones documented for the African continent. To test

our falsification and validation hypotheses, we use data from www.slavevoyages.org to

compute and assign the density of African slaves (expressed as slaves per square kilometer)

to all countries mainland Latin America (see Table B.1).

To analyze the effect of MSM and its interplay with slave density on urbanization and

economic development, we construct a grid-cell level dataset for mainland Latin America

at a spatial resolution of 0.5×0.5 degrees in analogy to our main analysis.23 The control

variables included in our regression setup are identical to the ones employed in the main

analysis.24 Since the Jedwab and Moradi (2016) data only cover Sub-Saharan Africa,

we alternatively use the urban population data from citypopulation.de.25 We augment

22Today, the vast majority of the Americas is free of malaria falciparum. In areas where Plasmodium
falciparum has not been eradicated, endemicity is lower than 5 percent (Gething et al., 2011). The low
transmission intensity is, apart from the relatively inefficient local Anopheles vectors, the result of large
scale eradication campaigns that have been implemented since the 1950s (e.g., Bleakley (2010) or Jeffery
(1976)).

23We restrict our analysis to mainland America due to the fact the Caribbean islands possess a small
surface area.

24The exception is that we do not include a Tsetse suitability index due to the fact that the Tsetse fly
was never present in the Americas.

25We obtain very similar results if we construct grid-cell urban population numbers from Center for
International Earth Science Information Network - CIESIN - Columbia University and International Food

18



regression model (3) to include an interaction term between MSM and slave density. Based

on the previous discussion, we expect the MSM to exert an effect only in combination with

slave density.26

Table 6: Malaria Suitability and Current-Day Grid-Cell-Level Urban Population in the Americas

Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4)

MSM (SD) 0.061 0.030 0.160 0.087
(0.080) (0.073) (0.113) (0.103)

MSM (SD) × slave density -0.762*** -1.756***
(0.357) (0.511)

MSM (SD) × high slave density -0.414** -0.931***
(0.192) (0.269)

Country fixed effects Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes
Observations 6,245 6,245 6,245 6,245
R-squared 0.033 0.034 0.252 0.252

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as well
as longitude, (absolute) latitude and a Tropics dummy. Geography controls include distance to coast, elevation, waterway
indicator, and caloric suitability. Brinkhoff (2015) provides census-based city-level population data for all of Latin America.
The years for which population data is available vary across countries. We use the most recent census year available, which
lies between 1970 and 2014.

In Table 6 we regress urban population (column (1)) and nighttime lights (column (3)) on

malaria suitability. As conjectured, the uninteracted baseline effect of MSM is statistically

non-significant in all regressions. This documents that absent the falciparum parasite, the

climatic malaria suitability does not represent a negative local characteristic that deters

urbanization. The positive sign of the uninteracted MSM coefficient suggests that, if any-

thing, climatic malaria suitability is conducive to urbanization and economic activity in the

absence of a reservoir of infectious hosts. The results supports the view that our measure

specifically captures the local malaria potential and not simply some generic aspects of the

tropics.

In contrast to the baseline effect, the interaction term between the MSM and slave den-

Policy Research Institute - IFPRI and The World Bank and Centro Internacional de Agricultura Tropical
- CIAT (2011).

26Because we account for country fixed effects, direct (uninteracted) effects of slave density are absorbed
by these dummies.
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sity is negative and statistically significantly different from zero. This shows that with

increased slave density, the climatic malaria transmission suitability becomes a negative

locational fundamental that deters urbanization and economic activity. That is, combined

with the presence of the Plasmodium falciparum parasite, climatic malaria suitability is

an important determinant of the geographical distribution of urbanization even outside

Africa. This finding provides external validation of the results presented in the main part.

In columns (2) and (4), we take a slightly different approach to analyzing the differential

impact of MSM. Therein, we divide Latin America into two groups: Regions with a high

density of slaves and areas with a low density of slaves.27 We then replace the interaction

term between MSM and (continuous) slave density with an interaction term between MSM

and a simple indicator for high slave density. This indicator takes the value one if the cell is

located within a country the belongs to the high slave density group and zero otherwise.28

The pattern of results presented in column (2) and (4) is qualitatively equivalent to columns

(1) and (3). The baseline effect of MSM is again statistically non-significant, while the

interaction term is negative and statistically significant. The size of the effects for the high

slave density group of countries are similar, albeit somewhat larger, compared to the point

estimates obtained in the African setup. Nighttime light intensity, for example, decreases

by 0.8 standard deviations as a result of a one-standard deviation increase in MSM.29 For

Africa, the corresponding coefficient estimate is –0.188.

In analogy to the grid cell analysis, we re-run the individual-level regressions for Latin

America. However, DHS data are only available for Colombia and Bolivia.30 Both these

countries are part of the low slave density group, i.e., the placebo test group. For this

set of countries, we therefore expect that local malaria suitability has no negative effect

on the proxies for individual-level development. Panel I of Table 7 illustrates that this

is the case. The MSM coefficients are small and statistically non-significant. This again

suggests that in the absence of the falciparum parasite, climatic malaria suitability is not

negatively—and if anything positively—associated with today’s level of development.

For Brazil, by far the largest country in the high slave density group, DHS data are not

27As high-slave density countries classified are Brazil and the Guyanas.
28The use of a simple indicator rather than a continuous measure is motivated by two factors. First, the

use of an indicator facilitates the comparison of coefficient sizes (Africa versus Latin America). Second, a
dichotomous classification mitigates concerns related to the possibility that slave numbers are measured
inaccurately.

29I.e., 0.087-0.931.
30For our analysis we use the most recent surveys (Bolivia: Phase V in 2008; Colombia: Phase VI in

2010).
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Table 7: Malaria Suitability and Individual-Level Socioeconomic Development in Latin America

Panel I: Bolivia and Colombia

Dependent Secondary Tertiary Wealth Modern Sector Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) 0.032 0.036 0.152 -0.016 -0.010
(0.060) (0.049) (0.156) (0.060) (0.152)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Obs 72,294 72,294 49,206 72,294 49,206
R-squared 0.143 0.023 0.179 0.155 0.127

Panel I: Brazil

Dependent Secondary Tertiary Log Urban
Variable: Education Education Income (HH) Residence

(SD) (SD) (Log) (SD)
(1) (2) (3) (4)

MSM (SD) -0.138*** -0.117*** -0.261*** -0.142**
((0.050) (0.043) (0.077) (0.070)

Individual-level controls Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes
Obs. 10,770,512 10,770,512 10,770,512 10,770,512
R-squared 0.029 0.031 0.166 0.096

Note: All regressions control for sex and age. Climate controls include temperature, precipitation and relative humidity as
well as the squared terms of these variables and their first-order interactions. Geography controls include distance to coast,
elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy and caloric suitability.
Panel I: Dependent variables are constructed from DHS data (women questionnaire). Standard errors are clustered at the
DHS cluster level and are reported in parentheses.
Panel II: Dependent variables are constructed from the Censo Demográfico (2010). Note: Standard errors are clustered at
the 0.5×0.5 degree grid cell level and are reported in parentheses.

available. We alternatively draw on data from the 2010 Brazilian census (Censo Demográ-

fico).31 The Brazilian data include information on the level of education, residential status

(rural-urban) and annual income at the household level.

Panel II of Table 7 depicts the regression results for Brazil. Malaria suitability exerts a

statistically significantly negative effect on all outcomes.32 This result provides further

31The census is conducted by the Instituto Brasileiro de Geografia e Estatística (IBGE) and includes
information on 72,294 individuals from 6,2 million randomly drawn households across Brazil. We thank
Data Zoom (Department of Economics at PUC-Rio) for providing the codes for accessing the IBGE
microdata.

32A potential concern is that regions characterized by a high degree of malaria transmission suitability
were also areas of (disproportionately) intense plantation slavery and large slave populations. In this case,
our estimates could be picking up the presence of slave-descended populations rather than the malaria-
related effects. To mitigate this concern, we augment our regression setup in two ways. First, we control
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external validation of our measure. As in Sub-Saharan Africa, the sustained presence

of Plasmodium falciparum implies that the climatic malaria potential represents (repre-

sented) a negative locational fundamental that shapes the spatial distribution of regional

development.

Taken together, the results presented in this section provide strong evidence that our mea-

sure specifically captures the climatic potential for malaria transmission.33 To further

assuage concerns related to omitted variables biasing our results, we demonstrate that the

estimates remain stable when we extend the set of controls to include all natural character-

istics employed in Henderson et al. (2018)’s study which investigates determinants of the

spatial distribution of economic activity worldwide (Tables C.1–C.2).34 We additionally

employ the procedure developed in Oster (2019) to more formally evaluate the robustness

of our estimates to omitted variable bias. The results reported in Table C.3 show that for

the grid-cell-level analysis, the influence of unobservables would need to be 1.5 to 5.1 times

more important than all included observable variables to entirely attribute our results to

the omission of unobserved factors. The relative influence of unobservables would have to

be even greater to suppress the MSM effect in the individual-level analysis (Table C.4).

Additional robusteness tests

In additional robustness tests, we show that our results are not dependent on the time

span used to construct our malaria suitability measure. Using monthly data over the pe-

riod 1901—2010 leaves the estimates almost unchanged (Tables C.5–C.6). Coefficients,

presented in Tables C.7–C.8, also remain similar if we use satellite-derived monthly tem-

perature data between 2000–2010 from NASA EOSDIS (2015). This alleviates concerns

related our results could be biased due to the spatial and temporal interpolation of the

CRU climate data.35 The use of a alternative standard error clustering approaches (Tables

for the municipality’s share of total population that is either black or mulatto (our proxy for African
descendance). Second, we directly control for the respondents’ ancestry by including separate indicator
variables for the race (as reported in the census and categorized into 5 groups). In both cases, the MSM
point estimates remain virtually unchanged. Results are available upon request.

33A potential concern related to the analysis of Latin America is that temperatures in the high and low
slave density regions are structurally different. In Appendix B.1 we show that this is not an issue.

34Specifically, we add controls for the length of growing period, land suitability for agriculture, rugged-
ness, a set of 14 biome indicators as well as separate dummy variables indicating whether a navigable
river or lake lies within 25 kilometres of the grid cell centroids. In contrast to our setup, Henderson et al.
(2018) further control for Kiszewski et al. (2004)’s malaria index. Our MSM point estimate remains stable
irrespective of whether we include this index or not.

35The degree of spatial and temporal interpolation within Sub-Saharan Africa is likely to be high (relative
to other regions) given the relative sparsity of weather stations (cf. Harris et al. (2014)).
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C.9 and C.10) or the weighting procedures in the individual-level analysis (Table C.11)

does not also change our findings. Furthermore, we show that our results are not driven

by outliers. Applying the inverse hyperbolic sine transformation to our outcome variables

or winsorizing them at the 5% level produces very similar results, both in terms of mag-

nitude and statistical significance (Tables C.12–C.13).36 This is also the case when we use

alternative population data (Table C.14).

A further robustness-related worry is that the negative effect of the MSM is the result of

cherry-picking functional forms or parameter values. Tables C.15–C.16 show that this is

not the case. We obtain qualitatively equivalent results if we replace the adult mortality

rate (as modelled in Mordecai et al. (2013)) with mortality models—some of which incorpo-

rate relative humidity in addition to temperature—from other exclusively laboratory-based

studies.37 We also obtain similar estimates if we use the (stand-alone) temperature-sensitive

malaria suitability model proposed by Weiss et al. (2014).38

As a final specification check, we investigate whether our estimates are driven by a specific

part of the MSM distribution. To this end, we employ the semiparametric regression

approach developed by Robinson (1988). The results, represented graphically in Figure C.1,

give no indication that any important nonlinear influence is neglected. The relationship

between the outcome variables and the MSM are approximately linear and monotonically

decreasing.

5 Malaria Suitability, Colonial Activity and Urbanization

In the last step of the analysis, we try to shed some light on the mechanisms underlying

the malaria environment’s influence on the spatial distribution of urbanization. Thereby,

we focus on the locational choices of the European colonizers.

For Sub-Saharan Africa, the Scramble for Africa is seen as the critical juncture in the

(modern) urbanization process (Stren and Halfani (2001), Freund (2007, p.65), Coquery-

36The inverse hyperbolic sine transformation approximates the natural logarithm and is—contrary to
the logarithm—well defined around zero (Burbidge et al., 1988; Card and DellaVigna, Forthcoming).
We obtain very similar results if we log-transform the variables after adding 1 or 0.01 to avoid losing
observations with zeros (cf. Shenoy, 2018; Michalopoulos and Papaioannou, 2014). Results are available
upon request.

37From Lunde et al. (2013b)—who compare different mortality models—we choose the two models that
are (a) only based on laboratory studies, and (b) perform well in validation exercises.

38Compared to the Mordecai et al. (2013) model, the drawback of this suitability index is that not all
aspects that influence R0 are modelled as being temperature dependent (Weiss et al., 2014, p.6).
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Vidrovitch (2005, p.4), Christopher and Tarver (1994), O’Connor (1983, p.32 )). The

colonizers established economic and administrative centers in which they built new infras-

tructure, such as power stations or new transport systems, and successively integrated the

cities into the world market (Stren and Halfani (2001), Simon (1989), Coquery-Vidrovitch

(2005, p. 328ff), Ady (1965, p. 11)). A crucial innovation was further the establishment of

a system of market-based capitalism, characterized by wage labor and capital accumula-

tion. This created a strong incentive for rural to urban migration (Rakodi (1997), Arthur

(1991), Simon (1989)). As a consequence, many locations of intensive colonial economic

activity have since evolved into major urban areas. Recent studies empirically validate

these qualitative accounts and document that the location of European economic activ-

ity during the colonial period is an important determinant of today’s spatial urbanization

pattern (Huillery, 2009; Jedwab and Moradi, 2016).

Given the strong link between location of European colonial economic activity and location

of cities today, a natural hypothesis is that the malaria environment influences the spa-

tial urbanization pattern via a settlement-deterrent effect on the non-immune European

colonizers (e.g., Webb (2014, p.25ff), Curtin (1985), Acemoglu et al. (2001)). To investi-

gate the plausibility of this hypothesis, we first show that the local potential for malaria

transmission influenced the location of European economic activity during the colonial era.

We then assess, to what extent this effect can explain today’s malaria-influenced spatial

distribution of urbanization and how the effect varies over time. These last steps of our

study are all carried out at the grid cell level.

Malaria Suitability and Location of European Colonial Centers

To investigate whether the local malaria transmission suitability deterred economic activity

during the colonial era, we draw on the Oxford Regional Economic Atlas Africa (Ady,

1965).39 This Atlas contains information on the locations of industries, electrical power

production, mining activity, airports and train stations in the year 1956.40 each of which

we take as indicative of European economic activity (Ady, 1965, p. 11, 16),41 We create a

dummy variable that takes the value one if we find any of the formerly listed proxies for

European activity in a grid cell, and zero otherwise. A cell is subsequently referred to as

39This data source is also used in Henderson et al. (2017) and Moradi (2005).
40For airports, information with respect to their location were gathered for the year 1953.
41It is important to note that the Atlas does not contain an exhaustive list of European settlements.

Rather, it contains the subset of these locations that were characterized by substantial economic activity.
These are also the centers which are more likely to have evolved into large urban areas.
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‘European center’ whenever this dummy variable takes the value one. We further generate

separate indicator variables for each of the individual sub-categories, i.e., the existence of

industries, electrical power production, mining activity, airports or railway stations in the

colonial era.

Table 8 column (1), documents that the local degree of malaria transmission suitability is

statistically significantly negatively associated with the probability that a cell was home to

a European center. Evaluated at the sample mean of 0.1, a one-standard deviation increase

in the MSM reduces the likelihood of observing any colonial activity by 41 percent. We

also find a negative effect when separately analyzing the relationship between the malaria

potential and the likelihood that the Europeans built up industries or produced electrical

power (columns (2)–(3)). On the other hand, there is no association between malaria

suitability and the presence of mining centers. This indicates that the site of mining

activity was determined by the (immobile) location of depletable minerals, which, in turn,

is independent of local malaria transmission suitability. The fact that many of these mining

centers developed into large urban areas implies that the constraint imposed by the malaria

environment was not binding in these cases. The expected profit from resource extraction

outweighed the malaria burden. Although of sizeable magnitude, the point estimate of

Table 8: Malaria Suitability and Colonial Presence

Dependent Variable: Any
Industries

Electrical
Mining

Railway
Airport

Presence Power Station

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.041*** -0.027** -0.029*** -0.004 -0.012 -0.013**
(0.015) (0.011) (0.009) (0.007) (0.010) (0.006)

Climate controls Yes Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes Yes
Obs. 5,841 5,841 5,841 5,841 5,841 5,841
Mean LHS variable 0.101 0.038 0.040 0.028 0.038 0.031
Relative urban populationa 12.710 17.503 13.790 6.253 11.328 12.284
R-squared 0.107 0.086 0.079 0.053 0.052 0.027

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells reported in parentheses.

All regressions control for the land surface area of the grid cells. Climate controls include temperature, precipitation and

relative humidity, the squared terms of these variables and their first-order interactions as well as longitude, (absolute)

latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan (2015). Geography controls

include distance to coast, elevation, waterway indicator, and caloric suitability.
a ‘Relative urban population’ reflects the urban population of the cells in with European activity relative to urban population

in cells without activity.
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MSM on the location of train stations—often lying on a line connecting resource extraction

sites to ports—is statistically non-significant. On the other hand, airports in 1953, which we

interpret as a more general proxy for the existence of European activity, are considerably

less likely to be located in areas characterized by a high malaria transmission potential

(column (6)).

Accounting for Colonial Economic Activity

Table 9 presents a mediation analysis. In column (1) we first re-run the grid-cell level

regression of Table 2 Panel I, column (3), i.e., the specification in which we regress urban-

ization on the full set of controls. We then include the dummy variables that capture the

existence of the different types of colonial centers into the set of control variables in column

(2). The locational dummies absorb 38 percent of variation in the MSM.42 In columns (3)

and (4) we conduct the same exercise using night-time light intensity as outcome. Here,

the MSM coefficient drops by 34 percent when we control for the presence of European

activity. While these results cannot be interpreted as causal evidence, they suggest that

the settlement pattern of the European colonizers (partly) explains why today’s spatial

distribution of urbanization is influenced by the local climatic malaria potential.43 In the

final step of this paper, we use panel data to provide further evidence consistent with this

argument.

The Effect of the Malaria Environment on Urbanization over Time

Derived from census-based population counts, Jedwab and Moradi (2016) provide urban

population estimates for the years 1890, 1900 and then from 1960 to 2010 at ten-year

intervals.44 We use this panel dataset—aggregated at the grid-cell×census-year level—to

investigate if our (time-invariant) malaria suitability measure exerts different effects on ur-

ban population over time. To this end, we interact the MSM with time-period fixed effects.

42The point estimates of the dummy variables that capture the existence of the different types of colonial
centers are presented in Table D.1.

43To provide further evidence for the plausibility of this channel, we employ the presence of any Protes-
tant or Catholic mission in 1924 (Roome, 1924) as an alternative proxy for European presence. The results
in Table D.2 show that a high malaria transmission potential strongly deterred the establishment of mis-
sions. When additionally adding the presence of missions to the set of controls in Table 9, the size of the
MSM coefficient is only marginally reduced. Running a horse race between the MSM and the presence of
missions alone, the latter absorbs between 12 and 17 percent of the malaria effect.

44When censuses were conducted in different years, Jedwab and Moradi (2016) linearly interpolate or
extrapolated the data across the years used in the analysis (see page A.5 in the Web Appendix of Jedwab
and Moradi (2016)).
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Table 9: Mediation: Malaria Suitability and Current-Day Grid-Cell-Level Urban Population

Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4)

MSM (SD) -0.117** -0.072* -0.188*** -0.124***
(0.051) (0.040) (0.061) (0.044)

Country fixed effects Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes
EU colonial activity controls No Yes No Yes
Observations 5,370 5,370 5,841 5,841
R-squared 0.054 0.251 0.173 0.326

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for land surface area of the grid cells. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.

In the subsequent analysis, we take 1890 as the base year. The time-period interacted co-

efficients of the MSM thus capture the differential effect of the malaria environment on

urban population in a given period relative to the base year. The inclusion of grid cell

fixed effects and time period dummies implies that time-invariant cell-specific differences

as well as general time-specific changes are washed out. To account for the possibility

that time-invariant characteristics may exhibit different effects in different time periods,

we allow the full set of controls (i.e., climate, TseTse, and geography variables) to vary

over time by interacting them with time-period fixed effects.45 Figure 2 graphically depicts

the point estimates along with the 90 percent confidence intervals. The figure illustrates

that the effect of the climatic malaria environment has, relative to the base year 1890,

increased over time, both in terms of size and statistical power. An immediate question is

whether these increasing effects added to an existing baseline effect or whether there was

no association between malaria suitability in the base year. We check this by running a

45Formally, the regression setup can be represented as:

yg,c,t =

2010
∑

p=1900

ψpMSMg,c × Ipt +

2010
∑

p=1900

C
′
g,c I

p
t φp + γg + τt + εc,i,t. (4)

The dependent variable yg,c,t is urban population of grid cell g, located in country c, in year t (standardized
across the whole sample). Grid-cell-level fixed effects are represented by γg, time-period fixed effects by
τt, and the idiosyncratic error term by εg,c,t. The coefficients ψp capture the additional effect of MSM in
a given year relative to the base year 1890. The effects of the (time-interacted) climate and geography
control variables are captured in vector φp. The standard errors are clustered at the grid-cell level.
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Figure 2: Figure depicts estimates of the time-period interacted effects of MSM relative to base year 1890
using the Jedwab and Moradi (2016).

cross-sectional regression akin to Eq.(3) using urban population data for the base year 1890

as the dependent variable. The point estimate is small and not statistically significant at

conventional confidence levels (see Table D.3). This null result corroborates recent findings

of Depetris-Chauvin and Weil (2018), who show that population densities and other mea-

sures of development were not influenced by the local malaria burden in the pre-colonial era.

The finding that the malaria environment only started exerting a negative effect after the

Scramble for Africa supports the view that the European colonizers played an important

role in explaining why high malaria risk areas are less urbanized today. By influencing the

location of colonial economic activity, the malaria environment also (partly) determined

where modern urban areas emerged. As migration into these cities and internal population

growth continues to rise, the effects of the malaria environment are compounded over time.

It is important to note, however, that cities did exist in Africa prior to the arrival of the

European colonizers. What our findings suggest is that the colonizer chose to establish eco-

nomic activity in locations—either existing cities or newly established settlements—that

were located in areas with a relatively low malaria transmission suitability.

6 Conclusion

In this study, we first derive an exogenous measure for the local climatic malaria trans-

mission suitability. We then show that this locational fundamental influences the spatial

distribution of urbanization and socioeconomic development in Sub-Saharan Africa. When
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interpreting these results it is important to keep in mind that they represent reduced-form

effects, i.e., the net effect of all channels through which the malaria intensity measure affects

outcomes. These may include direct health-related channels, such as increased mortality,

potential reductions in labor productivity or lower human capital accumulation. Addition-

ally, the climatic malaria potential can also influence today’s local population densities

and economic development through its effect on deeper fundamentals, such as institutions,

culture or initial settlement choices. Crucially, malaria-induced disparities in these latter

aspects—for the relevance of which we provide evidence—persist even if malaria is eradi-

cated. Thus, while eradication of malaria will undoubtedly improve the living standards

of people living in high transmission areas, (socio)-economic malaria-suitability-induced

disparities across regions will likely persist.
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Appendices

A Data and Descriptive Statistics

Table A.1: DHS variable construction

Variable Name DHS variable(s) Construction Explanation

Secondary Education v106 v106>1
Tertiary Education v106 v106=3
Wealth Index v190 Taken directly from DHS Details on construction

of index can be found
here: http://bit.do/

DHSwealthindex.
Modern Sector Occupation v717 v717 /∈ 4,5 Following occupations are

not classified as belong-
ing to the modern (in-
dustry and service) sec-
tor: (4) Agricultural -
self employed; (5) Agricul-
tural - employee. Agri-
cultural categories also in-
clude fishermen, foresters
and hunters. For all in-
dividuals without employ-
ment, the value is missing

Urban Residency v102 v102=1

Table A.2: DHS data used to construct dataset employed in main part (Table 3)

Country Phase Year Country Phase Year

Angola 5 2011 Malawi 6 2015-2016
Benin 6 2011-12 Mali 6 2012-2013
Burkina Faso 6 2010 Mozambique 6 2011
Burundi 6 2010 Namibia 6 2013
Congo Democratic Republic 6 2013-14 Nigeria 6 2013
Cote d’Ivoire 6 2011-12 Rwanda 7 2014
Cameroon 6 2011 Senegal 6 2010-2011
Ethiopia 6 2011 Sierra Leone 6 2013
Gabon 6 2012 Swaziland 5 2006-2007
Ghana 7 2014 Tanzania 6 2010
Guinea 6 2012 Togo 6 2013
Kenya 7 2014 Uganda 6 2011
Lesotho 7 2014 Zambia 6 2013-2014
Liberia 6 2013 Zimbabwe 6 2010-2011
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Table A.3: Data used to construct dataset employed in descriptive part (Table 1). AIS, DHS or
MIS with Malaria Rapid Diagnostic Test Results.

Country Phase Year Country Phase Year

Angola MIS6 2011 Malawi MIS 7 2014
Benin DHS6 2011-12 Mali DHS 6 2012-2013
Burkina Faso MIS 7 2014 Mozambique DHS 6 2011
Burundi DHS 6 2010 Nigeria MIS 6 2010
Congo Democratic Republic DHS 6 2013-14 Rwanda DHS 7 2014
Cote d’Ivoire DHS 6 2011-12 Senegal DHS 6 2010-2011
Ghana DHS 7 2014 Tanzania AIS 6 2011-2012
Guinea DHS 6 2012 Togo DHS 6 2013
Kenya MIS 7 2015 Uganda DHS 6 2011
Liberia MIS 6 2011

Table A.4: Descriptive Statistics Grid-Cell Level: Key Variables

Variable Mean Std. Dev. Min. Max. Raw mean
a

Obs.

Urban Population and Nighttime light Intensity

Jedwab and Moradi (2016) 0 1 -0.140 36.950 37,865 5,370
DMSP 0 1 -0.208 29.998 1,172 5,841

Malaria Suitability Measure

MSM (SD) 0 1 -2.660 1.245 221.189 5,841

Notes: a ‘Raw mean’ refers to the mean of the untransformed, i.e., non-standardized, outcome and malaria suitability index
variables.

Table A.5: Descriptive Statistics Individual Level: Key Variables

Variable Mean Std. Dev. Min. Max. Raw mean
a

Obs.

Outcome Variables

Secondary Education 0 1 -0.767 1.305 0.370 522,538
Tertiary Education 0 1 -.0237 4.219 0.053 522,538
HH Wealth Index 0 1 -1.387 1.416 2.980 287,858
Modern Sector Occupation 0 1 -1.059 0.944 0.529 340,901
HH Urban Residence 0 1 -0.732 1.367 0.349 522,538

Malaria Suitability Measure

MSM (SD) 0 1 -2.324 1.295 208.513 522,538

Notes: a ‘Raw mean’ refers to the mean of the untransformed, i.e., non-standardized, outcome and malaria suitability index
variables.

38



B Background

Plasmodium Falciparum Malaria in the Americas

The Americas were first populated by humans via the Bering Strait land bridge, i.e.,

a relatively cold region, about 16,500 years ago (Goebel et al., 2008). The Plasmodium

falciparum parasite, which had evolved in Africa over thousands of years and whose survival

is critically dependent on a sufficiently high air temperature, did not reach the Americas in

the pre-Columbian era due to the climatic barrier along the original population route (Webb

(2014, p.66 ff), Carter and Mendis (2002)). Even though the Plasmodium falciparum

parasite was absent, the climatic suitability for its transmission is very high in large parts of

the continent. Furthermore, several Anopheles species capable of transmitting the parasite,

such as the Anopheles darlingi, were already endemic in pre-Columbian America (Marinotti

et al., 2013). Consequently, the central factor preventing the spread of malaria falciparum

was the absence of the parasite itself.

This changed with the start of the slave trade in the 16th century when the Plasmodium

falciparum parasite was introduced directly from Africa (Webb (2008, p. 73), Carter and

Mendis (2002)). In contrast to Africa, however, the geographical diffusion of malaria

falciparum was not pervasive. The limited spread was mainly due to the fact that the

Anopheles vectors native to the Americas are not as efficient in transmitting malaria as

the African vectors, particularly the Anopheles gambiae (McNeill (2010, p. 55) and Carter

and Mendis (2002)). As a consequence, only regions that saw a large influx of infectious

and immune humans, i.e., African slaves, experienced an intensive and stable transmission

of malaria falciparum (Webb, 2008, p. 79).46 A large concentration of African slaves was

characteristic of the (sugar) plantation economy introduced by the European colonizers.

The system relied heavily on slave labor, resulting in a continued inflow of African slaves

into the sugar cane producing areas. This influx started in the mid-16th century and

ended with the abolition of slavery around 1850 (Webb (2008, p. 73, p. 77), McNeill (2010,

p. 23 ff), Curtin (1968)). Areas which were dominated by sugar plantations became highly

malarious, which lead to a dramatic increase in mortality among European colonizers

46African slaves were not only less susceptible to malaria infection, but also much more likely to carry
the Plasmodium falciparum parasite (e.g., Molina-Cruz and Barillas-Mury (2014)). This created a (locally
confined) stable transmission environment despite the presence of relatively inefficient vectors. Stable
transmission requires a reservoir of immune hosts, especially when vector efficiency is low. Otherwise,
infected individuals die before the ineffective vector is able to infect further individuals.
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(Webb, 2008, p. 73, p. 77).47 This, in turn, led to an even greater dependence on African

slaves (Curtin (1968), Webb (2008, p.77)).

Latin American regions that experienced a large influx of African slaves and, consequently,

a high malaria falciparum burden were Brazil and the Guianas (Webb (2008, p. 73, p. 85 ff.),

McNeill (2010, p. 23), Mann (2011, p. 111,p. 303, p. 366), Curtin (1968)). In the rest of

mainland Latin America—referred to as mainland Spanish Americas—mining constituted

the most important economic sector.48 Compared to sugar economies, the mining sector

relied predominantly on Amerindian labor (Borucki et al., 2015). As a consequence, the

less virulent Plasmodium vivax was the dominant malaria parasite in mainland Spanish

Americas. This type of malaria exerted a considerably lower burden on the health of the

non-immune population (Webb, 2008, p. 81).

Today, the vast majority of the Americas is free of malaria falciparum. In areas where Plas-

modium falciparum has not been eradicated, endemicity is lower than 5 percent (Gething et

al., 2011). The low transmission intensity is, apart from the relatively inefficient Anopheles

vectors, the result of large scale eradication campaigns that have been implemented since

the 1950s (e.g., Bleakley (2010) or Jeffery (1976)).

Once the Plasmodium falciparum parasite had been introduced to the Americas, the inten-

sity of transmission was, as in Africa, influenced by the local climatic suitability for parasite

and vector development. However, as outlined above, only regions that experienced a large

influx of African slaves saw a stable transmission of malaria. Historical accounts indicate

that areas that fulfilled these prerequisites are Brazil and the Guianas. To provide further

evidence, we draw on data from www.slavevoyages.org and compute the absolute num-

ber as well as the density of African slaves (expressed as slaves per square kilometer) for

different regions of mainland Latin America. The results are depicted in Table B.1. As

can be seen, the overwhelming majority of slaves shipped to mainland Latin America were

destined for Brazil. In terms of density, Brazil is second only to Dutch Guiana. British

Guinea had a slave density comparable to Brazil, as did French Guiana. On the other

hand, the density in mainland Spanish Americas was substantially lower. In total, this

47Other characteristics associated with the sugar plantation economy—such as forest clearing—
additionally facilitated the spread of malaria. The fact that the falciparum parasite out-competed the
vivax parasite in areas where the Africans outnumbered the Europeans further increased the death toll
amongst Europeans (Webb, 2008, p.77).

48Mainland Spanish Americas encompasses all of mainland Latin America, except Brazil and the
Guineas. Compared to mainland Spanish America, the Spanish island colonies, Cuba and Puerto Rico,
experienced large inflows of African slaves, due to their specialization in sugar production (see e.g.,
www.slavevoyages.org).
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vast region received about 0.5 million African slaves.49 The differences in slave density

(slaves per square kilometer) depicted in Table B.1 are also reflected in population shares.

Around the year 1800, black population accounted for approximately 4% of total popu-

lation in mainland Spanish Americas (Sánchez-Albornoz, 1984), while it had surpassed

40% in Brazil (Marcílio, 1984). These patterns persist until today. For example, African

descendants account for 10.6% of the total population in Colombia (which was part of

mainland Spanish Americas, DANE (2005)). In Brazil, on the other hand, this share lay

at 51.3% in 2010 (Censo Demográfico, 2010).

Table B.1: African Slaves Shipped to Latin America

Region Slaves Area (km2)
Slave Density

(Slaves per km2)

(a) Dutch Guiana 294,653 163,821 1.798
(b) Brazil 4,864,374 8,514,215 0.571
(c) French Guiana 30,599 83,534 0.366
(d) British Guiana 72,685 214,970 0.338
(e) Mainland Spanish Americas 267,499 11,342,424 0.042

Note: Number of disembarked slaves retrieved from www.slavevoyages.org. Mainland Spanish Americas encompasses all

of mainland Latin America except Brazil and the Guianas.

B.1 Temperature densities

A potential concern related to the analysis of Latin America is that temperatures in the

high and low slave density regions are structurally different; particularity that the null

results are due to a lack of variation in temperature in low-density countries. Figure B.1

shows that average temperatures are in lower in low-slave-density countries. However, the

standard deviation is considerably higher in the former group of countries. To show that

our results are not driven by the lower end of the temperature distribution, we restrict

our analysis to grid cells in which the malaria transmission potential is greater than zero.

The results remain qualitatively unchanged: the MSM exerts a negative effect in high-slave

density areas while there is no influence in low-slave density regions.

49Borucki et al. (2015, p. 458)’s description illustrates the low density of African slaves in mainland
Latin America: "[...] The dispersal of captives [slaves] over an immense geographic area, and the fact
that their arrival occurred over a much longer time span than in any other major polity in the Americas,
may have inhibited the emergence of both large and permanent regions of black demographic and cultural
dominance during the three centuries of Spanish colonialism."

41



Figure B.1: Temperature densities across regions
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C Robustness

Robustness: adding Henderson et al. (2018) controls

Table C.1: Adding Henderson et al. (2018) controls: Malaria Suitability and Current-Day Grid-
Cell-Level Urban Population

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.135*** -0.127** -0.124** -0.148*** -0.173*** -0.162***
(0.051) (0.051) (0.050) (0.055) (0.059) (0.048)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.051 0.051 0.082 0.155 0.156 0.200

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability .

Table C.2: Adding Henderson et al. (2018) controls: Malaria Suitability and Individual-Level
Socioeconomic Development

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) -0.059* -0.098*** -0.175*** -0.157*** -0.205***
(0.033) (0.028) (0.060) (0.046) (0.066)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Observations 522,538 522,538 287,858 340,901 287,858
R-squared 0.228 0.044 0.162 0.190 0.170

Note: Standard errors are clustered at the 0.5×0.5 degree grid cell level and are reported in parentheses. All regressions

control for sex and age. Climate controls include temperature, precipitation and relative humidity as well as the squared

terms of these variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015).

Geography controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy

and caloric suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more

information.
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Oster (2019) procedure to gauge influence of omitted variables

Table C.3: Oster (2019) Approach to Gauge Influence of Omitted Variables at Grid-Cell Level

Data Source of different δ R2 R2 R2

max

urbanization measures baseline controls full set of controls

Jedwab and Moradi (2016) 1.529 0.026 0.054 0.070

DMSP 3.609 0.097 0.173 0.225

Notes: The parameter δ represents how strong the influence of unobservables relative to observables would have to be in
order to suppress the MSM effect. R2 baseline controls captures the explanatory power obtained from the regressions that
control for the set of climate variables. R2 full set of controls reflects the explanatory power obtained from the regressions
that control for the climate, TseTse, geography and country fixed effects. Following the recommendation of Oster (2019), we
assume that the maximum achievable R-squared exceeds the R-squared obtained when including all observable covariates
by 30%.

Table C.4: Oster (2019) Approach to Gauge Influence of Omitted Variables at Individual-Level

Dependent variable: δ R2 R2 R2

max

baseline controls full set of controls

Secondary Education (SD) -2.458 0.185 0.224 0.292

Tertiary Education (SD) 4.286 0.039 0.042 0.055

Wealth Index (SD) 3.916 0.151 0.141 0.183

Modern Sector Occupation (SD) 38.371 0.182 0.178 0.232

Urban Residence (SD) -3.381 0.154 0.141 0.184

Notes: The parameter δ represents how strong the influence of unobservables relative to observables would have to be in
order to suppress the MSM effect. R2 baseline controls captures the explanatory power obtained from the regressions that
control for the set of climate variables. R2 full set of controls reflects the explanatory power obtained from the regressions
that control for the climate, TseTse, geography and country fixed effects. Following the recommendation of Oster (2019), we
assume that the maximum achievable R-squared exceeds the R-squared obtained when including all observable covariates by
30%. A negative value of δ indicates that the inclusion of the full set of control variables increases the MSM point estimate
compared to the regression that only accounts for the climate variables.
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Robustness: time span climate variables (1901–2010)

Table C.5: Time Span Climate Variables Construction 1901–2010: Malaria Suitability and
Current-Day Grid-Cell-Level Urban Population

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.133*** -0.126** -0.120** -0.137*** -0.163*** -0.187***
(0.050) (0.050) (0.051) (0.051) (0.057) (0.059)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.051 0.052 0.054 0.152 0.154 0.171

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.

Table C.6: Time Span Climate Variables Construction 1901–2010: Malaria Suitability and
Individual-Level Socioeconomic Development

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) -0.131*** -0.148*** -0.341*** -0.247*** -0.408***
(0.039) (0.041) (0.079) (0.053) (0.092)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Obs. 522,538 522,538 287,858 340,901 287,858
R-squared 0.225 0.042 0.140 0.178 0.142

Note: Standard errors are clustered at the DHS cluster level and are reported in parentheses. All regressions control for sex

and age. Climate controls include temperature, precipitation and relative humidity as well as the squared terms of these

variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015). Geography

controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy and caloric

suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more information.
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Robustness: satellite-derived temperature data

Table C.7: Satellite-derived temperature data: Malaria Suitability and Current-Day Grid-Cell-
Level Urban Population

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.125*** -0.128*** -0.144*** -0.155** -0.174*** -0.198***
(0.034) (0.033) (0.037) (0.061) (0.061) (0.074)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.048 0.048 0.053 0.150 0.155 0.169

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.

Table C.8: Satellite-derived temperature data: Malaria Suitability and Individual-Level Socioe-
conomic Development

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) -0.102*** -0.106*** -0.172*** -0.120** -0.231***
(0.022) (0.021) (0.064) (0.048) (0.074)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Obs. 522,538 522,538 287,858 340,901 287,858
R-squared 0.226 0.043 0.142 0.177 0.143

Note: Standard errors are clustered at the DHS cluster level and are reported in parentheses. All regressions control for sex

and age. Climate controls include temperature, precipitation and relative humidity as well as the squared terms of these

variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015). Geography

controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy and caloric

suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more information.
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Robustness: alternative clustering approaches

Table C.9: Conley (1999) Standard Errors: Malaria Suitability and Current-Day Grid-Cell-Level
Urban Population

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.135*** -0.127** -0.117** -0.148*** -0.173*** -0.188***
[0.051] [0.051] [0.052] [0.051] [0.055] [0.057]

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.051 0.051 0.054 0.155 0.156 0.173

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors computed using the approach of Conley (1999) reported in
brackets (cut-off 2 degrees). Each coefficient reported in the table represents the point estimate for MSM (SD) obtained
from running a separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate
controls include temperature, precipitation and relative humidity, the squared terms of these variables and their first-order
interactions as well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed
in Alsan (2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.

Table C.10: Alternative Standard Errors: Malaria Suitability and Individual-Level Socioeconomic
Development

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

MSM (SD) -0.121*** -0.145*** -0.332*** -0.243*** -0.399***
(0.016) (0.018) (0.027) (0.024) (0.034)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Observations 522,538 522,538 287,858 340,901 287,858
R-squared 0.224 0.042 0.140 0.178 0.141

Note: Standard errors are clustered at DHS cluster level and are reported in parentheses. All regressions control for sex

and age. Climate controls include temperature, precipitation and relative humidity as well as the squared terms of these

variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015). Geography

controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy and caloric

suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more information.
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Robustness: alternative weighting DHS data

Table C.11: Varying weights: Malaria Suitability and Individual-Level Socioeconomic Develop-
ment

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

Panel A: No weights

MSM (SD) -0.086*** -0.103*** -0.164*** -0.211*** -0.259***
(0.031) (0.030) (0.043) (0.062) (0.062)

Panel B: Equal weighting

MSM (SD) -0.148*** -0.154*** -0.291*** -0.405*** -0.430***
(0.034) (0.033) (0.057) (0.075) (0.082)

Panel B: Population-size weighted

MSM (SD) -0.080* -0.110** -0.283*** -0.338*** -0.395***
(0.046) (0.047) (0.065) (0.091) (0.107)

Individual-level controls Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Observations 522,538 522,538 287,858 340,901 287,858

Note: Standard errors are clustered at the 0.5×0.5 degree grid cell level and are reported in parentheses. All regressions

control for sex and age. Climate controls include temperature, precipitation and relative humidity as well as the squared

terms of these variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015).

Geography controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy

and caloric suitability. Dependent variables are constructed from DHS data.
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Robustness: reducing influence of outliers

Table C.12: Inverse hyperbolic sine transformation: Malaria Suitability and Current-Day Grid-
Cell-Level Urban Population

Log Day Urban Population Log Night-time Lights

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.873*** -0.795*** -0.666*** -0.824*** -0.949*** -0.801***
(0.222) (0.236) (0.238) (0.165) (0.186) (0.186)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.229 0.230 0.244 0.376 0.378 0.396

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability. LHS variables
are transformed using the inverse hyperbolic sine function.

Table C.13: Winsorizing LHS at the 5% level: Malaria Suitability and Current-Day Grid-Cell-
Level Urban Population

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.159*** -0.140*** -0.117** -0.200*** -0.245*** -0.246***
(0.045) (0.047) (0.048) (0.059) (0.064) (0.061)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.213 0.214 0.224 0.349 0.353 0.376

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.
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Robustness: alternative population data

Table C.14: Alternative Population Data: Malaria Suitability and Current-Day Grid-Cell-Level
Urban Population

Current Day Urban Population (SD) Current Day Urban Population (SD)
citypopulation.de CIESIN (2005)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.135*** -0.127** -0.117** -0.148*** -0.173*** -0.188***
(0.051) (0.051) (0.051) (0.055) (0.059) (0.061)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control No Yes Yes No Yes Yes
Geography controls No No Yes No No Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.051 0.051 0.054 0.155 0.156 0.173

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability. Brinkhoff
(2015) provides census-based city-level population data. With the exception of Somalia, data are provided for all Sub-
Saharan African countries. The years for which population data is available vary across countries. We use the most recent
census year available, which lies between 1970 and 2014. CIESIN (2005) provides gridded estimates of the total population
for the year 2000 at a spatial resolution of 1×1km. To obtain estimates for urban population, we overlay the population
grid with an urban extent grid which is also provided by (CIESIN). Only population counts of the 1×1 km grid cells that
lie within the urban extents are taken into account in the aggregation to the 0.5×0.5 degree grid-cell level.
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Robustness: alternative malaria suitability measures
Table C.15: Robustness MSM: Malaria Suitability and Current-Day Grid-Cell-Level Urban Pop-
ulation

Current Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3) (4) (5) (6)

MSM (SD) -0.121** -0.096* -0.103* -0.186*** -0.134** -0.108**
(0.060) (0.051) (0.056) (0.070) (0.055) (0.044)

Country fixed effects Yes Yes Yes Yes Yes Yes
Climate controls Yes Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes Yes
Observations 5,370 5,370 5,370 5,841 5,841 5,841
R-squared 0.053 0.053 0.054 0.172 0.172 0.172
Modification MSM Martens3 Bayoh-Parham Weiss Martens3 Bayoh-Parham Weiss

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the land surface area of the grid cell. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan (2015).
Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability. In columns (1) and (4),
the original vector mortality model is replaced by the ‘Martens 3’ model, in columns (2) and (5) by the ‘Bayoh-Parham’
model (Lunde et al., 2013). In columns (3) and (6), MSM is replaced by the temperature suitability model developed in
Weiss et al. (2014).

Table C.16: Robustness MSM: Malaria Suitability and Individual-Level Socioeconomic Develop-
ment

Dependent Secondary Tertiary HH Wealth Non-Agricultural HH Urban
Variable: Education (SD) Education (SD) Index (SD) Occupation (SD) Residence (SD)

(1) (2) (3) (4) (5)

Panel A: Martens 3

MSM (SD) -0.131*** -0.158*** -0.352*** -0.248*** -0.432***
(0.044) (0.044) (0.089) (0.060) (0.102)

Panel B: Bayoh-Parham

MSM (SD) -0.149*** -0.182*** -0.435*** -0.378*** -0.550***
(0.050) (0.049) (0.101) (0.069) (0.114)

Panel C: Weiss et al. (2014)

MSM (SD) -0.042*** -0.046*** -0.145*** -0.138*** -0.187***
(0.016) (0.014) (0.035) (0.028) (0.040)

Climate controls Yes Yes Yes Yes Yes
TseTse control Yes Yes Yes Yes Yes
Geography controls Yes Yes Yes Yes Yes
Country fixed effects Yes Yes Yes Yes Yes
Obs. 522,538 522,538 287,858 340,901 287,858

Note: Standard errors are clustered at the 0.5×0.5 degree grid cell level and are reported in parentheses. All regressions
control for sex and age. Climate controls include temperature, precipitation and relative humidity as well as the squared
terms of these variables and their first-order interactions. TseTse is the TseTse suitability index developed in Alsan (2015).
Geography controls include distance to coast, elevation, waterway indicator, (absolute) latitude, longitude, a Tropics dummy
and caloric suitability. Dependent variables are constructed from DHS data. See Section 3 and Table A.1 for more
information.
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Semiparametric regression approachRobinson (1988)

Figure C.1: Estimates are produced employing the semiparametric regression approach of Robinson
(1988) with a second degree Epanechnikov kernel. The parametric part of the regression model includes
the full set of climate, TseTse, Geography controls as well as country fixed effects (see Section 3). The
shaded areas represent the 95 percent confidence bands.
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D Supporting Evidence

Table D.1: Malaria Suitability: Controlling for Colonial Economic Activity (Covariates)

Current Day Urban Population (SD) Nighttime Lights (SD)

(1) (2)

MSM (SD) -0.072* -0.124***
(0.040) (0.044)

Industries 1.462*** 1.480***
(0.285) (0.263)

Electrical 0.729*** 0.487***
Power (0.241) (0.138)

Mining -0.148 0.291
(0.278) (0.258)

Railway 0.771*** 0.428***
Station (0.262) (0.124)

Airport 0.613*** 0.270**
(0.228) (0.121)

Country fixed effects Yes Yes
Climate controls Yes Yes
TseTse control Yes Yes
Geography controls Yes Yes
Observations 5,370 5,370
Obs. 5,370 5,841
R-squared 0.251 0.326

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the landmass encompassed by the individual grid cells.
Climate controls include temperature, precipitation and relative humidity, the squared terms of these variables and their
first-order interactions as well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability
index developed in Alsan (2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric
suitability.
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Table D.2: Malaria Suitability: Controlling for Presence of Missions

Mission Current-Day Urban Population (SD) Night-time Lights (SD)

(1) (2) (3)

MSM -0.032** -0.066* -0.119***
(0.016) (0.039) (0.044)

Climate controls Yes Yes Yes
TseTse control Yes Yes Yes
Geography controls Yes Yes Yes
Country fixed effects Yes Yes Yes
Missions and EU colonial activity control No Yes No
R-squared 0.203 0.254 0.329

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for the landmass encompassed by the individual grid cells.
Climate controls include temperature, precipitation and relative humidity, the squared terms of these variables and their
first-order interactions as well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability
index developed in Alsan (2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric
suitability. ‘Mission’ represents an indicator variable that takes the value of one if a Protestant or Catholic mission is located
in a given grid cell in the year 1924. Data is taken from Roome (1924)

Table D.3: Malaria Suitability and Pre-1900 Urbanization

Urban Population 1890 (SD)
(1)

MSM (SD) -0.043
(0.050)

Climate controls Yes
TseTse control Yes
Geography controls Yes
Country fixed effects Yes
Obs 5,370
R-squared 0.019

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors are clustered at 2×2 degree grid cells and reported in
parentheses. Each coefficient reported in the table represents the point estimate for MSM (SD) obtained from running a
separate version of regression Eq.(3). All regressions control for land surface area of the grid cells. Climate controls include
temperature, precipitation and relative humidity, the squared terms of these variables and their first-order interactions as
well as longitude, (absolute) latitude and a Tropics dummy. TseTse is the TseTse suitability index developed in Alsan
(2015). Geography controls include distance to coast, elevation, waterway indicator, and caloric suitability.
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