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In the two preceding parts of this series of papers, we introduced and studied a recur-

sion scheme for constructing joint eigenfunctions JN(a+, a−, b; x, y) of the Hamiltonians

arising in the integrable N-particle systems of hyperbolic relativistic Calogero–Moser

type. We focused on the 1st steps of the scheme in Part I and on the cases N = 2 and

N = 3 in Part II. In this paper, we determine the dominant asymptotics of a similarity-

transformed function EN(b; x, y) for yj − yj+1 → ∞, j = 1, . . . , N − 1 and thereby confirm

the long-standing conjecture that the particles in the hyperbolic relativistic Calogero–

Moser system exhibit soliton scattering. This result generalizes a main result in Part II

to all particle numbers N > 3.

1 Introduction

This paper is the 3rd part in a series of papers dedicated to the explicit diagonalization

and Hilbert space transform theory for the integrable N-particle systems of hyperbolic

relativistic Calogero–Moser type. The classical version of these systems was introduced

in [13], whereas a quantization prescription preserving integrability was obtained in
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2 M. Hallnäs and S. Ruijsenaars

[10]. It is given by the commuting analytic difference operators (henceforth A�Os)

Sk(x) =
∑

I⊂{1,...,N}
|I|=k

∏
m∈I
n/∈I

f−(xm − xn)
∏
l∈I

exp(−ih̄β∂xl
)
∏
m∈I
n/∈I

f+(xm − xn), k = 1, . . . , N, (1)

where

f±(z) = (
sinh(μ(z ± iβg)/2)/ sinh(μz/2)

)1/2 (2)

and β = 1/mc, with m the particle rest mass and c the speed of light. In the non-

relativistic limit c → ∞, these operators give rise to quantum integrals of the ordinary

nonrelativistic hyperbolic Calogero–Moser systems, see for example the survey [11].

We reparametrize the two length scales in the Hamiltonians (1) as

a+ = 2π/μ (imaginary period / interaction length) (3)

a− = h̄/mc (shift step size / Compton wave length) (4)

and replace the coupling parameter g with the parameter

b = βg. (5)

Interchanging a+ and a−, we obtain new Hamiltonians that commute with the given

ones, since the shift operators in the former alter the arguments of the coefficients in

the latter by a period and vice versa. The resulting 2N commuting Hamiltonians are

given by

Hk,δ(b; x) =
∑

I⊂{1,...,N}
|I|=k

∏
m∈I
n/∈I

fδ,−(xm − xn)
∏
l∈I

exp(−ia−δ∂xl
)
∏
m∈I
n/∈I

fδ,+(xm − xn), (6)

where k = 1, . . . , N, δ = +, − and

fδ,±(z) =
(

sδ(z ± ib)

sδ(z)

)1/2

. (7)

Here we have used the functions

sδ(z) = sinh(πz/aδ), cδ(z) = cosh(πz/aδ), eδ(z) = exp(πz/aδ), δ = +, −, (8)
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Factorized Asymptotics 3

which will appear frequently throughout the paper.

From now on, we take a+, a− ∈ (0, ∞), use further parameters

α ≡ 2π/a+a−, a ≡ (a+ + a−)/2, (9)

as ≡ min(a+, a−), al ≡ max(a+, a−), (10)

and work with b-values in the strip

Sa ≡ {b ∈ C | Re b ∈ (0, 2a)}. (11)

In addition, we make extensive use of the generalized Harish–Chandra c-function

c(b; z) ≡ G(z + ia − ib)

G(z + ia)
= c(b; −z − 2ia + ib) (12)

and its multivariate version

CN(b; x) ≡
∏

1≤j<k≤N

c(b; xj − xk), N ≥ 2. (13)

Here G(z) ≡ G(a+, a−; z) denotes the hyperbolic gamma function, whose salient features

are reviewed in the 1st two parts of this series of papers. In particular, in (12) and

frequently below, we use the reflection equation G(−z) = 1/G(z). (To unburden notation,

we usually suppress the dependence on the parameters a+, a−; also, the dependence on

N and b is often omitted when ambiguities are unlikely to arise.)

In many instances, it is convenient to use one of two further incarnations of the

Hamiltonians Hk,δ, obtained by similarity transformation with either a weight function

or a scattering function. More specifically, letting

w(z) = 1/c(z)c(−z), W(x) = 1/C(x)C(−x), (14)

u(z) = −c(z)/c(−z), U(x) = (−)N(N−1)/2C(x)/C(−x), (15)

they read

Ak,δ(x) ≡ W(x)−1/2Hk,δ(x)W(x)1/2, (16)

Ak,δ(x) ≡ U(x)−1/2Hk,δ(x)U(x)1/2 = C(x)−1Ak,δ(x)C(x), (17)

where k = 1, . . . , N, and δ = +, −. Using the difference equations G(z + iaδ/2)/G(z −
iaδ/2) = 2c−δ(z) satisfied by the hyperbolic gamma function, it is a straightforward
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4 M. Hallnäs and S. Ruijsenaars

exercise to deduce their explicit expressions

Ak,δ(x) =
∑

I⊂{1,...,N}
|I|=k

∏
m∈I
n/∈I

sδ(xm − xn − ib)

sδ(xm − xn)

∏
l∈I

exp(−ia−δ∂xl
) (18)

and

Ak,δ(x) =
∑

I⊂{1,...,N}
|I|=k

∏
m∈I,n/∈I

m>n

sδ(xm − xn − ib)

sδ(xm − xn)

sδ(xm − xn + ib − ia−δ)

sδ(xm − xn − ia−δ)

∏
l∈I

exp(−ia−δ∂xl
). (19)

In particular, it follows that these similarity-transformed A�Os preserve the space

of meromorphic functions. Moreover, if x ∈ R
N and (a+, a−, b) ∈ (0, ∞)3 with b <

2a, the weight function W(x) is positive and the “S-matrix” U(x) has modulus one.

Consequently, the A�Os Ak,δ and Ak,δ are then formally self-adjoint, when viewed as

operators on the Hilbert spaces L2(RN , W(x)dx) and L2(RN , dx), resp.

In Part I [4] of this series of papers, we took the 1st steps in developing a recur-

sion scheme for constructing joint eigenfunctions JN(a+, a−, b; x, y) of the commuting

A�Os Ak,δ. More specifically, we presented the formal features of the scheme, explicitly

demonstrated its arbitrary-N viability for the “free” cases and established holomorphy

domains and uniform decay bounds that were sufficient to render the scheme rigorous.

Motivated by results on the “free” cases as well as the N = 2 case, which can be gleaned

from [12], we also detailed several conjectured features of the joint eigenfunctions JN .

In Part II [5], we proved a number of these conjectures in the cases N = 2 and

N = 3. Indeed, we established global meromorphy, a number of invariance properties

and a duality relation, and undertook a detailed study of asymptotic behavior. The

purpose of this 3rd part is to generalize the results on asymptotics to all particle

numbers N > 3. We shall make use of previous results in this series of papers without

further ado, referring back to sections and equations in [4] and [5] by using the prefix I

and II, respectively.

To a large extent, we can follow our approach in the N = 3 case, but the technical

difficulties we encounter are considerably more involved. Important auxiliary results

have been isolated in Lemma 2.3 and Theorem A.1. The latter theorem allows us to avoid

the use of the bound II (2.73) on E2 that we used for the N = 3 case, cf. the proof of II

Theorem 3.7. This amounts to one of several simplifications of our N = 3 results in II

Section 3. We could not obtain a counterpart of the bound II (2.73) for EN with N > 2,

but fortunately Theorem A.1 obviates this snag as well.
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Factorized Asymptotics 5

In order to describe the results and organization of this paper in more detail, we

recall that the construction of JN from JN−1 in I Section 6 produced the representation

JN(b; x, y) = exp(iαyN(x1 + · · · + xN))

(N − 1)!

∫
RN−1

dz IN(b; x, y, z), b ∈ Sa, x, y ∈ R
N , (20)

where the integrand is given by

IN(b; x, y, z) ≡ WN−1(b; z)S�
N(b; x, z)JN−1(b; z, (y1 − yN , . . . , yN−1 − yN)), (21)

with kernel function (cf. I (A.6))

S�
N(b; x, z) ≡

N∏
j=1

N−1∏
k=1

G(zk − xj − ib/2)

G(zk − xj + ib/2)

=
N∏

j=1

N−1∏
k=1

c(b; zk − xj − ia + ib/2).

(22)

When taking the 1st steps in developing the recursive scheme that led to the represen-

tation (20), we were inspired by earlier work on related integrable quantum many-body

systems. To the best of our knowledge, the 1st indication that such a scheme could be

possible can be found in work by Gutzwiller [2], who used it to connect eigenfunctions

for the periodic and nonperiodic nonrelativistic Toda systems. Among more recent

works, we drew particular inspiration from a number of papers by authors from the

group of Gerasimov, Kharchev, Lebedev, Oblezin, and Semenov–Tian–Shansky, which can

be traced from what we believe is their most recent paper [1] on the subject. References

to further related works can be found in the introductions to I and II.

Defining

XN ≡ 1

N

N∑
j=1

xj, YN ≡ 1

N

N∑
j=1

yj, x(N)

j ≡ xj − XN , y(N)

j ≡ yj − YN , j = 1, . . . , N, (23)

a straightforward induction argument revealed another important representation that

we have occasion to invoke below, namely,

JN(x, y) = exp(NiαXNYN)Jr
N(x, y), (24)

Jr
N(x, y) ≡ 1

(N − 1)!

∫
RN−1

dz WN−1(z)S�
N(x(N), z)JN−1(z, (y1 − yN , . . . , yN−1 − yN)), (25)
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6 M. Hallnäs and S. Ruijsenaars

cf. I (6.27)–(6.28). Note that the function Jr
N(x, y) depends only on the differences xj −xj+1

and yj − yj+1, j = 1, . . . , N − 1.

By performing simultaneous contour shifts in the former representation (20), we

showed in I Theorem 6.1 that for fixed y ∈ R
N the function JN(b; x, y) is holomorphic in

DN ≡
{
(b, x) ∈ Sa × C

N | max
1≤j<k≤N

|Im (xj − xk)| < 2a − Re b
}
. (26)

Moreover, after restricting attention to a subdomain of DN for the dependence on (b, x),

we could allow y ∈ C
N such that |Im (yj − yk)| < Re b, 1 ≤ j < k ≤ N. Specifically,

introducing the restricted domain

Dr
N ≡

{
(b, x) ∈ Sa × C

N | |Im x(N)

j | < a − Re b/2, j = 1, . . . , N
}

⊂ DN , (27)

we used the latter representation (24) to prove that JN(b; x, y) is holomorphic in (b, x, y)

on the domain

DN ≡
{
(b, x, y) ∈ Dr

N × C
N | max

1≤j<k≤N
|Im (yj − yk)| < Re b

}
, (28)

cf. I Theorem 6.4.

In Section 2, we study the asymptotic behavior of the function

EN(b; x, y) ≡
(

φ(b)G(ib − ia)√
a+a−

)N(N−1)/2 JN(b; x, y)

CN(b; x)CN(2a − b; y)
, (29)

where

φ(b) ≡ exp(iαb(b − 2a)/4) = φ(2a − b). (30)

Note that EN is a joint eigenfunction of the A�Os Ak,δ, cf. (17) and I Theorem 6.2. Since

the c-function is not even, EN lacks some of the invariance properties of JN . However,

the multipliers in (29) are meromorphic functions whose features are known in great

detail. Hence, the analyticity properties of EN follow from those of JN . Moreover, EN is

particularly well suited for Hilbert space purposes.

As the principal result of Section 2 and of this paper, we prove in Theorem 2.4

that EN has the “unitary asymptotics”

EN(b; x, y) ∼ Eas
N (b; x, y) ≡

∑
σ∈SN

∏
j<k

σ−1(j)>σ−1(k)

(−u(b; xk − xj)) · exp

⎛
⎝iα

N∑
j=1

xσ(j)yj

⎞
⎠ , (31)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnaa193/5896695 by guest on 15 Septem

ber 2020



Factorized Asymptotics 7

for yj − yj+1 → ∞, j = 1, . . . , N − 1. Here the scattering function u is given by

u(b; z) ≡ − c(b; z)

c(b; −z)
= −

∏
δ=+,−

G(z + δi(a − b))

G(z + δia)
. (32)

It clearly satisfies

u(b; z)u(b; −z) = 1, (33)

and we also have

|u(b; z)| = 1, b, z ∈ R, (34)

due to the reflection equation I (A.6) and the conjugation relation I (A.9). Moreover, we

obtain a uniform bound on EN(x, y) for suitably restricted (x, y) ∈ C
N ×R

N , which plays

a crucial role in the inductive step N − 1 → N.

The asymptotic behavior (31) confirms a long-standing conjecture. In physical

parlance, it says that the particles in the relativistic Calogero–Moser systems of

hyperbolic type exhibit soliton scattering (conservation of momenta and factorization

of the S-matrix), cf. I Section 7. For a survey of the AN−1 type Calogero–Moser systems

and their relation to soliton PDEs, we refer to [11]. In particular, the sine-Gordon soliton

scattering corresponds to choosing b equal to a+/2 or a−/2 in (32). See also the recent

paper [6] for more information on this “sine-Gordon” perspective.

To be precise, we establish the factorized asymptotics of EN(x, y) in the

“spectral” variables y, whereas the eigenvalue equations that follow from I Theorem

6.2 are with respect to the “geometric” variables x. In the N = 2 and N = 3 cases, we

proved in II Lemma 2.5 and II Lemma 3.5, respectively, the duality property

EN(b; x, y) = EN(2a − b; y, x), (35)

which immediately implies that EN(x, y) has the same factorized asymptotics in the

“geometric” variables x. (Note that the scattering function u(b; z) is invariant under b →
2a−b, cf. (32).) We certainly expect this duality property to hold true also for N > 3, but

it remains a challenging open problem to supply a proof.

Within the context of harmonic analysis, factorized asymptotics was first

established by Harish–Chandra for the spherical functions associated with certain

symmetric spaces. Viewed from the AN−1 perspective of this paper, the Harish–Chandra

work pertains to the nonrelativistic Calogero–Moser systems for a few special coupling

constants (see [3] for a comprehensive account of the general Harish–Chandra results, as
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8 M. Hallnäs and S. Ruijsenaars

well as related ones, and [9] for their relevance to Calogero–Moser systems). Factorized

asymptotics for the hyperbolic case with arbitrary positive coupling was first proved

by Opdam [8], working within the arbitrary root system context developed by him and

Heckman, a summary of which can be found in [7]. A crucial aspect of the asymptotic

analysis in these references is the existence and exploitation of series expansions. By

contrast, no such expansions are known for the eigenfunctions at issue in this paper. As

in our previous work, a key point is rather to use their recursive structure.

2 Asymptotic Behavior

Using II Theorems 3.7–3.8 as the starting point for an induction argument, we proceed

to determine the asymptotics of the function EN(b; x, y) (29) for mN(y) → ∞, where

mN(y) ≡ min
1≤j<k≤N

(yj − yk), y ∈ R
N . (36)

More specifically, Theorems 2.4– 2.5 below are a consequence of the former for N = 3,

and our induction assumption is that they hold true if we replace N by N − 1. In the

present general-N setting, however, we restrict attention to Re b varying over a sub-

interval of (0, 2a), namely (0, al]. Thus, we introduce the strip

Sl ≡ {b ∈ C | Re b ∈ (0, al]}. (37)

We start with some auxiliary results about JN(b; x, y).

Proposition 2.1. For fixed y ∈ R
N , the function JN(b; x, y) is holomorphic in

Dl
N ≡

{
(b, x) ∈ Sl × C

N | max
1≤j<k≤N

|Im (xj − xk)| < as

}
. (38)

Furthermore, for all (b, x, y) ∈ DN (28) and η ∈ C, we have symmetry properties

JN(x, y) = JN(−x, −y), (39)

JN(x, y) = exp(−iαη(y1 + · · · + yN))JN((x1 + η, . . . , xN + η), y)

= exp(−iαη(x1 + · · · + xN))JN(x, (y1 + η, . . . , yN + η)),
(40)

JN(σx, y) = JN(x, y), σ ∈ SN . (41)
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Factorized Asymptotics 9

Proof. The 1st assertion is an easy consequence of the readily verified inclusion

Dl
N ⊂ DN , (42)

cf. (26).

Letting x, y ∈ R
N to begin with, the permutation invariance (41) is immediate

from the defining representation (20). To establish the invariance properties (39)–(40),

we assume inductively that they hold true for N ≥ 3. (In the case N = 3, this is the

content of II Proposition 3.1.) From (14), (21)–(22), and (39) with N → N − 1 and the

reflection equation I (A.6) for G(z), we infer

IN(−x, −y, −z) = IN(x, y, z). (43)

Changing variable z → −z in the representation (20), the invariance property (39) is

a direct consequence of (43). Requiring in addition η ∈ R, we deduce (40) from the

alternative representation given by (24)–(25). Since (39)–(41) are preserved under analytic

continuation, the proof is complete. �

This proposition has the following corollary.

Corollary 2.2. Letting y ∈ R
N , the function EN(b; x, y) is meromorphic in Dl

N and

holomorphic in

Dl
N,β ≡

{
(b, x) ∈ Dl

N | Im (xj − xk) < β, 1 ≤ j < k ≤ N
}
, (44)

where

β ≡ min(Re b, as). (45)

Moreover, for all (b, x, y) ∈ DN (28) and η ∈ C, it satisfies

EN(−x, −y) = EN(x, y)
∏

1≤j<k≤N

u(xj − xk)u(yj − yk), (46)

EN(x, y) = exp(−iαη(y1 + · · · + yN))EN((x1 + η, . . . , xN + η), y)

= exp(−iαη(x1 + · · · + xN))EN(x, (y1 + η, . . . , yN + η)),
(47)

EN(σx, y) = EN(x, y)
∏
j<k

σ−1(j)>σ−1(k)

(−u(xj − xk)), σ ∈ SN , (48)
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10 M. Hallnäs and S. Ruijsenaars

where (σx)j ≡ xσ(j).

Proof. The zeros of CN(b; x) are located at

xj − xk = −2ia − ima+ − ina−, ib + ima+ + ina−, 1 ≤ j < k ≤ N, m, n ∈ N, (49)

so the poles of 1/CN(b; x) do not belong to Dl
N,β . Hence, the 1st assertion is clear from

the relation (29) between JN and EN .

Keeping in mind (13) and (32), the symmetry features are readily inferred from

(29) and Proposition 2.1. �

Recalling from I (2.11) the kernel function

K�
N(b; x, z) ≡ [CN(b; x)CN−1(b; −z)]−1S�

N(b; x, z), (50)

it is easily seen that (21)–(20) and (29) yield the representation

EN(b; x, y) = 1

(N − 1)!

(
φ(b)G(ib − ia)√

a+a−

)N−1

× exp(iαyN(x1 + · · · + xN))∏N−1
n=1 c(2a − b; yn − yN)

∫
RN−1

dz IN(b; x, y, z), b ∈ Sa, x, y ∈ R
N , (51)

with integrand

IN(b; x, y, z) ≡ K�
N(b; x, z)EN−1(b; z, (y1 − yN , . . . , yN−1 − yN)). (52)

Following our treatment of the N = 2 and N = 3 cases in II, we determine the

dominant asymptotics of EN by shifting the zk-contours R in (51) up past the poles of IN

located at

zk = xj + ia − ib/2, k = 1, . . . , N − 1, j = 1, . . . , N. (53)

Using (29) and (12)–(13), we find that the G-zero G(ia) = 0 (cf. I (A.12)) ensures that EN

vanishes whenever xj = xk, 1 ≤ j < k ≤ N. Hence, no generality is lost by assuming

xj �= xk, 1 ≤ j < k ≤ N, (54)

so that the poles (53) are simple.
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Factorized Asymptotics 11

In order to keep track of the residues that appear, it will be important to shift

the N − 1 contours one at a time. Doing so, we must ensure that we retain sufficient

decay of IN on the contour tails and that we do not meet any of its x-independent poles.

To control the tail decay, we first use the c-definition (12) and the G-asymptotics

specified in I (A.14)–(A.16) to infer

|φ(b)∓1 exp(±αbz/2)c(b; z) − 1| ≤ C1(ρ, b, Im z) exp(−αρ|Re z|), Re z → ±∞, (55)

where the decay rate ρ can be chosen in [as/2, as) and where C1 is continuous on

[as/2, as) × Sa × R.

Next, by the induction assumption, we may invoke Theorem 2.5 with N → N − 1.

Requiring at first Im (zj −zk) ∈ (−as, 0], 1 ≤ j < k ≤ N−1, we can use the resulting bound

on EN−1, together with (22) and (55), to deduce that the integrand IN decays exponentially

for |Re zk| → ∞. Indeed, we have N −1 factors of the form c(zk · · · ) in the numerator and

N − 2 factors of the form c(zk · · · ) or c(−zk · · · ) in the denominator, cf. (22) and (13) with

N → N − 1.

Now from (55) and the u-definition (32) we readily obtain

|u(b; z)φ(b)∓2 + 1| ≤ C2(ρ, b, Im z) exp(−αρ|Re z|), Re z → ±∞, (56)

with C2 continuous on [as/2, as) × Sa ×R. Furthermore, using (52), (50), and (48), we find

IN(x, y, τz) = IN(x, y, z), τ ∈ SN−1. (57)

Combining this with (56), we conclude that IN has the same decay for Im (zj−zk) ∈ [0, as),

1 ≤ j < k ≤ N − 1.

The upshot of this analysis is that the shift of a single contour causes no

problems at the tail ends, as long as the contours are separated by a distance less than

as. Moreover, since we require b ∈ Sl, the x-independent poles of IN are not met for

|Im (zj − zk)| < β, 1 ≤ j < k ≤ N − 1, cf. Corollary 2.2.

Finally, for a given vector t ≡ (t1, . . . , tM) ∈ C
M , M > 1, we use the notation

t(ν1, . . . , νL), 1 ≤ νj �= νk ≤ M, 1 ≤ j < k ≤ L, (58)
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12 M. Hallnäs and S. Ruijsenaars

to denote the vector in C
M−L obtained by omitting the entries tν1

, . . . , tνL
in t. Introducing

the additional notation

z>L ≡ z(1, . . . , L) = (zL+1, . . . , zN−1), L = 1, . . . , N − 2, (59)

and the functions

MN(b; y) ≡ φ(b)N−1∏N−1
n=1 c(2a − b; yn − yN)

ρN(b; y), (60)

ρN(b; y) ≡ exp

(
−α(a − b/2)

N−1∑
n=1

(yn − yN)

)
, (61)

we are now ready to implement the contour shift procedure.

Lemma 2.3. Letting (r, b) ∈ (0, as)×Sl and x, y ∈ R
N with the x-restriction (54) in effect,

we have

EN(x, y)

MN(y)
exp(−iαyN(x1 + · · · + xN))

= 1

ρN(y)

[
1

(N − 1)!

(
G(ib − ia)√

a+a−

)N−1 ∫
(Cb+ir)N−1

dz IN(x, y, z)

+
N−2∑
L=1

1

(N − 1 − L)!

(
G(ib − ia)√

a+a−

)N−1−L ∑
1≤ν1<···<νL≤N

Uν1,...,νL
(x)

×
∫

(Cb+ir)N−1−L
dz>L ÎN;ν1,...,νL

(x, y, z>L)

]

+
N∑

ν=1

CN(x(ν), xν)

CN(x)
EN−1(x(ν), (y1 − yN , . . . , yN−1 − yN)). (62)

Here, IN(x, y, z) is given by (52), we have set

ÎN;ν1,...,νL
(b; x, y, z>L) ≡ K�

N−L(b; x(ν1, . . . , νL), z>L)

× EN−1(b; (xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), (y1 − yN , . . . , yN−1 − yN)), (63)

Uν1,...,νL
(b; x) ≡

L∏
�=1

∏
j<ν�

j �=ν1,...,ν�−1

(−u(b; xν�
− xj)), (64)
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Factorized Asymptotics 13

and Cb denotes the contour

Cb ≡ R + i(a − Re b/2). (65)

Proof. To start with, we write the left-hand side of (62) as

1

(N − 1)!

1

ρN(y)
GN−1

∫
RN−1

dzK�
N(x, z)EN−1(z, ŷ), (66)

cf. (51)–(52) and (60). Here we have introduced

ŷ ≡ (y1 − yN , . . . , yN−1 − yN), G ≡ G(ib − ia)√
a+a−

. (67)

We find it convenient to work at first with JN−1(z, ŷ), since it is SN−1-invariant in z.

Therefore, we use (29) with N → N − 1 to get (cf. (50) and (14))

1

(N − 1)!

1

ρN(b; y)
GN−1(

φ(b)G
)(N−1)(N−2)/2 1

CN(b; x)

LN(x, y)

CN−1(2a − b; ŷ)
, (68)

with

LN(b; x, y) ≡
∫
RN−1

dz WN−1(b; z)S�
N(b; x, z)JN−1(b; z, ŷ). (69)

Letting

0 < ε < β/2, (70)

(with β defined by (45)), we move the N − 1 contours R simultaneously to Cb − iε without

meeting poles. Shifting the z1-contour to Cb + iε, we pick up residues at the poles (53)

with k = 1. These poles arise from the factor

c(z1 − xj − ia + ib/2) = G(z1 − xj − ib/2)G(xj − z1 − ib/2) (71)

in S�
N(x, z) (22), and the assumption (54) ensures that they are simple. Recalling the G-

residue I (A.13), we have

lim
z1→xj+ia−ib/2

(z1 − xj − ia + ib/2)G(xj − z1 − ib/2) = lim
z→−ia

(−z − ia)G(z) =
√

a+a−
2π i

, (72)

so that

2π i Res c(z1 − xj − ia + ib/2)|z1=xj+ia−ib/2 =
√

a+a−
G(ib − ia)

= G−1. (73)
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14 M. Hallnäs and S. Ruijsenaars

Thus, we infer that LN is given by

LN(x, y) =
∫

Cb+iε
dz1

∫
(Cb−iε)N−2

dz>1 WN−1(z)S�
N(x, z)JN−1(z, ŷ)

+ G−1
∫

(Cb−iε)N−2
dz>1

N∑
ν1=1

Rν1
(x, z>1)JN−1((xν1

+ ia − ib/2, z>1), ŷ), (74)

with remainder residue

Rν1
(x, z>1) =

N−1∏
m,n=2
m�=n

1

c(zm − zn)
·

N−1∏
n=2

1

c(xν1
− zn + ia − ib/2)c(zn − xν1

− ia + ib/2)

×
N∏

j=1

N−1∏
k=2

c(zk − xj − ia + ib/2) ·
N∏

j=1
j �=ν1

c(xν1
− xj)

= WN−2(z>1)

N∏
j=1
j �=ν1

N−1∏
k=2

c(zk − xj − ia + ib/2)

×

∏N
j=1
j �=ν1

c(xν1
− xj)

∏N−1
k=2 c(xν1

− zk + ia − ib/2)

= WN−2(z>1)S�
N−1(x(ν1), z>1)

∏N
j=1
j �=ν1

c(xν1
− xj)

∏N−1
k=2 c(xν1

− zk + ia − ib/2)
. (75)

We note that the ε-choice (70) guarantees that the factors 1/c(xν1
−zk + ia− ib/2)

are analytic in zk for |Im zk − (a − Re b/2)| ≤ ε. Hence, moving the z2-contours in (74) up

by 2ε, we only encounter the poles (53) with k = 2. In the residues spawned by the 1st

integral we replace z1 by z2 and use the SN−1-invariance of JN−1(z, ŷ) in z to obtain

∫
(Cb+iε)2

dz1 dz2

∫
(Cb−iε)N−3

dz>2 WN−1(z)S�
N(x, z)JN−1(z, ŷ)

+ G−1
∫

Cb+iε
dz2

∫
(Cb−iε)N−3

dz>2

N∑
ν1=1

Rν1
(x, z>1)JN−1((xν1

+ ia − ib/2, z>1), ŷ). (76)
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Factorized Asymptotics 15

From the 2nd integral in (74), we get a copy of the second integral in (76) plus a residue

term

G−2
∫

(Cb−iε)N−3
dz>2

N∑
ν1,ν2=1
ν1 �=ν2

Rν1,ν2
(x, z>2)JN−1((xν1

+ ia − ib/2, xν2
+ ia − ib/2, z>2), ŷ), (77)

which is readily determined by adapting the computations in (75):

Rν1,ν2
(x, z>2) = WN−3(z>2)S�

N−2(x(ν1, ν2), z>2)

2∏
�=1

∏N
j=1

j �=ν1,ν2

c(xν�
− xj)

∏N−1
k=3 c(xν�

− zk + ia − ib/2)
. (78)

The upshot is that LN(x, y) can be written

LN(x, y) =
∫

(Cb+iε)2
dz1 dz2

∫
(Cb−iε)N−3

dz>2 WN−1(z)S�
N(x, z)JN−1(z, ŷ)

+ 2G−1
∫

Cb+iε
dz2

∫
(Cb−iε)N−3

dz>2

N∑
ν1=1

Rν1
(x, z>1)JN−1((xν1

+ ia − ib/2, z>1), ŷ)

+ G−2
∫

(Cb−iε)N−3
dz>2

N∑
ν1,ν2=1
ν1 �=ν2

Rν1,ν2
(x, z>2)JN−1((xν1

+ ia − ib/2, xν2
+ ia − ib/2, z>2), ŷ),

(79)

with Rν1
and Rν1,ν2

given by (75) and (78), respectively.

More generally, introducing the integration domains

VM
L ≡ (Cb + iε)M−L × (Cb − iε)N−1−M , 1 ≤ M ≤ N − 1, 0 ≤ L ≤ M, (80)

we claim that LN(x, y) can be written

LN(x, y) =
∫

VM
0

dz WN−1(z)S�
N(x, z)JN−1(z, ŷ)

+
M∑

L=1

G−L
(

M

L

)∫
VM

L

dz>L

N∑
ν1,...,νL=1

νj �=νk

Rν1,...,νL
(x, z>L)

× JN−1((xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), ŷ), (81)
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16 M. Hallnäs and S. Ruijsenaars

for any M = 1, . . . , N − 1. Here we have introduced

Rν1,...,νL
(x, z>L) ≡ WN−1−L(z>L)S�

N−L(x(ν1, . . . , νL), z>L)

×
L∏

�=1

∏N
j=1

j �=ν1,...,νL

c(xν�
− xj)

∏N−1
k=L+1 c(xν�

− zk + ia − ib/2)
, L = 1, . . . , N − 2, L ≤ M, (82)

whereas for L = M = N − 1 the integral should be omitted and we have

Rν1,...,νN−1
(x) ≡

N−1∏
�=1

c(xν�
− xνN

), {ν1, . . . , νN} = {1, . . . , N}. (83)

By (74)–(75) and (78)–(79), we know already that the claim holds true for M = 1, 2.

Assuming (81) for 1 ≤ M ≤ N − 2, we now prove its validity for M → M + 1.

To this end, we move the zM+1-contours up by 2ε, meeting the simple poles

zM+1 = xν1
+ ia − ib/2, ν1 = 1, . . . , N, (84)

in the 1st integral, and the simple poles

zM+1 = xνL+1
+ ia − ib/2, νL+1 = 1, . . . , N, νL+1 �= ν1, . . . , νL, (85)

in the remaining integrals. Using SN−1-invariance of JN−1(z, ŷ) in z, it is readily seen

that the 1st integral yields, upon taking z(M + 1) → z>1 in the residue integral,

∫
VM+1

0

dz WN−1(z)S�
N(x, z)JN−1(z, ŷ)

+G−1
∫

VM+1
1

dz>1

N∑
ν1=1

Rν1
(x, z>1)JN−1((xν1

+ ia − ib/2, z>1), ŷ). (86)
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Factorized Asymptotics 17

Similarly, the L-summand with L = 1, . . . , M yields, after taking z>L(M + 1) → z>L+1 in

the residue integral,

G−L
(

M

L

) ∫
VM+1

L

dz>L

N∑
ν1,...,νL=1

νj �=νk

Rν1,...,νL
(x, z>L)

× JN−1((xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), ŷ)

+ G−L−1
(

M

L

)∫
VM+1

L+1

dz>L+1

N∑
ν1,...,νL+1=1

νj �=νk

Rν1,...,νL+1
(x, z>L+1)

× JN−1((xν1
+ ia − ib/2, . . . , xνL+1

+ ia − ib/2, z>L+1), ŷ). (87)

Summing the terms (87) over L = 1, . . . , M and adding the resulting expression to (86),

we arrive at the right-hand side of (81) with M → M + 1 by invoking Pascal’s rule

(
M

L

)
+

(
M

L − 1

)
=

(
M + 1

L

)
. (88)

Hence, our claim is proved.

Next, we specialize (81) to M = N − 1 and shift all contours up to Cb + ir without

encountering further poles. Using symmetry under permutations of xν1
, . . . , xνL

, we thus

obtain

LN(x, y) =
∫

(Cb+ir)N−1
dz WN−1(z)S�

N(x, z)JN−1(z, ŷ)

+ (N − 1)!
N−2∑
L=1

G−L 1

(N − 1 − L)!

∫
(Cb+ir)N−1−L

dz>L

∑
1≤ν1<···<νL≤N

Rν1,...,νL
(x, z>L)

× JN−1((xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), ŷ)

+ (N − 1)!G1−N
∑

1≤ν1<···<νN−1≤N

Rν1,...,νN−1
(x)

× JN−1((xν1
+ ia − ib/2, . . . , xνN−1

+ ia − ib/2), ŷ). (89)
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18 M. Hallnäs and S. Ruijsenaars

In order to establish the representation (62), we now reformulate (89) in terms of

EN−1. From (29) and (13), we infer

JN−1((xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), ŷ)

= (φ(b)G)−(N−1)(N−2)/2EN−1((xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), ŷ)

× CN−1(2a − b; ŷ)CL(xν1
, . . . , xνL

)CN−1−L(z>L)

×
L∏

�=1

N−1∏
k=L+1

c(xν�
− zk + ia − ib/2). (90)

Combining (82) with (14) and (50), we deduce

Rν1,...,νL
(x, z>L)

= K�
N−L(x(ν1, . . . , νL), z>L)

CN−L(x(ν1, . . . , νL))

CN−1−L(z>L)

L∏
�=1

∏N
j=1

j �=ν1,...,νL

c(xν�
− xj)

∏N−1
k=L+1 c(xν�

− zk + ia − ib/2)
. (91)

It follows that

Rν1,...,νL
(x, z>L)JN−1((xν1

+ ia − ib/2, . . . , xνL
+ ia − ib/2, z>L), ŷ)/CN−1(2a − b; ŷ)

= (φ(b)G)−(N−1)(N−2)/2EN−1((xν1
+ ia − ib/2, . . . , xνL

+ ia − ib/2, z>L), ŷ)

× K�
N−L(x(ν1, . . . , νL), z>L)CL(xν1

, . . . , xνL
)CN−L(x(ν1, . . . , νL))

×
L∏

�=1

N∏
j=1

j �=ν1,...,νL

c(xν�
− xj). (92)

Since ν1 < · · · < νL in (89), we can write

CN(x) = CL(xν1
, . . . , xνL

)CN−L(x(ν1, . . . , νL))

×
L∏

�=1

⎛
⎜⎜⎝ ∏

j<ν�

j �=ν1,...,ν�−1

c(xj − xν�
)

∏
j>ν�

j �=ν�+1,...,νL

c(xν�
− xj)

⎞
⎟⎟⎠ .

(93)

Multiplying (89) by the prefactors in (68) and using (92)–(93), (32), and (47), we arrive at

the right-hand side of (62). �
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Factorized Asymptotics 19

We proceed to analyze the asymptotic behavior of EN(x, y) for mN(y) → ∞ using

the representation (62). To this end, we need several bounds on the c- and u-functions,

which we derive from the asymptotic estimates (55) and (56).

First, combining (55) with holomorphy of c(b; z) for (b, Im z) ∈ Sa × (0, as), we

obtain a majorization

|c(b; p + ir)| ≤ c(r, b) exp(−γ |p|), (r, b, p) ∈ (0, as) × Sa × R, (94)

where we have set

γ ≡ αRe b/2 = πRe b

a+a−
(95)

and where c(r, b) is continuous on (0, as) × Sa. Likewise, recalling G(ia) = 0, we get

|1/c(b; z)| ≤ C(b)| sinh(γ z)|, (b, z) ∈ Sa × R, (96)

with C(b) continuous on Sa. Finally, letting b ∈ Sa, we note that 1/c(b; z) is holomorphic

for Im z ∈ (−2a, Re b). Combining this with (55), we conclude

|1/c(b; z)| ≤ c(b) exp(γ |Re z|), (b, Im z) ∈ Sa × [−as, 0], (97)

with c(b) continuous on Sa.

Turning to the u-function (32), we let b ∈ Sa. Then u(b; z) is holomorphic in the

strip Im z ∈ (− min(Re b, 2a − Re b), as). Combining this with (56), we readily infer

|u(b; −z)| ≤ c(b, Im z), (b, Im z) ∈ Sa × (−as, 0], (98)

where c(b, Im z) is continuous on Sa × (−as, 0].

With these preliminaries out of the way, we return to the function EN(x, y).

Recalling the symmetry relation φ(2a − b) = φ(b) (cf. (30)) and combining this with

(55) and (96), we find

|MN(b; y)− 1| ≤ c(b, ρ) exp(−αρmN(y)), (b, y, ρ) ∈ Sa ×R
N × [as/2, as), mN(y) ≥ 0, (99)

where c(b, ρ) is continuous on Sa × [as/2, as). Moreover, by the induction assumption, we

may invoke Theorem 2.5 after substituting N → N − 1. Combining the resulting bound

on EN−1 with the c-function estimates just assembled, it is readily verified that both

ρN(y)−1IN(x, y, z) and ρN(y)−1ÎN;ν1,...,νL
(x, y, z>L), L = 1, . . . , N − 2, decay exponentially as
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20 M. Hallnäs and S. Ruijsenaars

mN(y) → ∞. This suggests that the dominant asymptotics of EN(x, y) arises from the

last sum in (62).

To show that this is indeed the case, we first observe that the function Eas
N−1(z, w)

(31) can be rewritten

Eas
N−1(z, w) =

∑
τ∈SN−1

CN−1(zτ )

CN−1(z)
exp(iαzτ · w). (100)

Next, taking N → N − 1 in Theorem 2.4, we deduce from the induction assumption and

(100) that we have

exp(iαyN(x1 + · · · + xN))EN−1(x(ν), (y1 − yN , . . . , yN−1 − yN))

=
∑

σ∈SN
σ(N)=ν

CN−1(xσ(1), . . . , xσ(N−1))

CN−1(x(ν))
exp(iαxσ · y) + Rν(x, y), (101)

where the remainder satisfies a bound

|Rν(b; x, y)| ≤ C(r, b)PN−1(γ |x(ν)1|, . . . , γ |x(ν)N−1|) exp(−αrdN−1(y1, . . . , yN−1)), (102)

which holds for all (b, x, y) ∈ Sl × R
N × R

N with dN−1(y1, . . . , yN−1) ≥ 0. Here C(r, b) is

continuous on [as/2, as) × Sl and PN−1 is a polynomial of degree ≤ (N − 1)(N − 2)/2 with

positive and constant coefficients. Now, for any σ ∈ SN such that σ(N) = ν, we have an

identity

CN(x(ν), xν)CN−1(xσ(1), . . . , xσ(N−1))

CN−1(x(ν))
=

N∏
j=1
j �=ν

c(xj − xσ(N)) ·
∏

1≤j<k≤N−1

c(xσ(j) − xσ(k))

= CN(xσ ). (103)

Thus, we obtain, using (100) with N − 1 → N,

exp(iαyN(x1 + · · · + xN))

N∑
ν=1

CN(x(ν), xν)

CN(x)
EN−1(x(ν), (y1 − yN , . . . , yN−1 − yN))

=
∑

σ∈SN

CN(xσ )

CN(x)
exp(iαxσ · y) + R(x, y) = Eas

N (x, y) + R(x, y), (104)
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Factorized Asymptotics 21

with remainder

R(x, y) ≡
N∑

ν=1

CN(x(ν), xν)

CN(x)
Rν(x, y). (105)

We note that an exponential decay bound for R is readily inferred from the bound

(102) for Rν . Indeed, after multiplying |Rν | by |CN(x(ν), xν)/CN(x)| and summing over

ν = 1, . . . , N, we need only invoke the u-bound (98).

In the following theorem, our starting point is (62), rewritten as

(EN − Eas
N )(x, y) = (MN(y) − 1)Eas

N (x, y) + MN(y)R(x, y)

+ exp(iαyN(x1 + · · · + xN))
MN(y)

ρN(y)

[
1

(N − 1)!

(
G(ib − ia)√

a+a−

)N−1 ∫
(Cb+ir)N−1

dz IN(x, y, z)

+
N−2∑
L=1

1

(N − 1 − L)!

(
G(ib − ia)√

a+a−

)N−1−L ∑
1≤ν1<···<νL≤N

Uν1,...,νL
(x)

×
∫

(Cb+ir)N−1−L
dz>L ÎN;ν1,...,νL

(x, y, z>L)

]
, (106)

where we have used (104). In view of our considerations above, we need only majorize

the expression in square brackets on the right-hand side to infer exponential decay of

the left-hand side with rate αr as mN(y) → ∞. As an immediate corollary, we obtain the

“unitary asymptotics” (31) of EN .

Theorem 2.4. Letting (r, b) ∈ [as/2, as) × Sl, we have

|(EN − Eas
N )(b; x, y)| < C(r, b)PN(γ |x1|, . . . , γ |xN |) exp(−αrmN(y)), (107)

for all x, y ∈ R
N with mN(y) > 0, where C is continuous on [as/2, as) × Sl and PN is a

polynomial of degree ≤ N(N − 1)/2 with positive and constant coefficients.
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22 M. Hallnäs and S. Ruijsenaars

Proof. In view of (98) (with Im z = 0), it suffices to establish the bounds

∣∣∣∣
∫

(Cb+ir)N−1
dz IN(x, y, z)

∣∣∣∣ ≤ C0(r, b)|ρN(y)|PN,0(γ |x1|, . . . , γ |xN |) exp(−αrmN(y)), (108)

∣∣∣∣
∫

(Cb+ir)N−1−L
dz>L ÎN;ν1,...,νL

(x, y, z>L)

∣∣∣∣
≤ CL(r, b)|ρN(y)|PN,L(γ |x1|, . . . , γ |xN |) exp(−αrmN(y)), L = 1, . . . , N − 2, (109)

for all x, y ∈ R
N with mN(y) > 0. Here the functions C0, CL are continuous on [as/2, as)×Sl

and PN,0, PN,L are polynomials of degree ≤ N(N − 1)/2 − L with positive and constant

coefficients.

Taking zk → zk + i(a − b/2 + r), we infer from the identity (47) with N → N − 1

that

∫
(Cb+ir)N−1

dz IN(x, y, z) = ρN(y) exp

(
−αr

N−1∑
m=1

(ym − yN)

)
CN(x)−1

×
∫
RN−1

dz
EN−1(z, (y1 − yN , . . . , yN−1 − yN))

CN−1(−z)

N∏
j=1

N−1∏
k=1

c(zk + ir − xj). (110)

Now by the induction assumption, Theorem 2.5 holds true when N is replaced by N − 1.

Combining the resulting bound on EN−1 with (94) and (96), we deduce

∣∣∣∣
∫

(Cb+ir)N−1
dz IN(x, y, z)

∣∣∣∣ ≤ C0(r, b)|ρN(y)| exp

(
−αr

N−1∑
m=1

(ym − yN)

)

×
∫
RN−1

dz PN−1(γ |z1|, . . . , γ |zN−1|) exp(FN−1(γ x, γ z)),

(111)

where FN−1 is given by (A2) and PN−1 is a polynomial of degree ≤ (N − 1)(N − 2)/2

with positive and constant coefficients. The bound (108) is now a direct consequence of

Theorem A.1.
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Factorized Asymptotics 23

We proceed to prove (109). Taking zk → zk + i(a − b/2 + r), L < k ≤ N − 1, and

using once more (47), we obtain

∫
(Cb+ir)N−1−L

dz>L ÎN;ν1,...,νL
(x, y, z>L) = ρN(y)CN−L(x(ν1, . . . , νL))−1

×
∫
RN−1−L

dz>L EN−1((xν1
, . . . , xνL

, zL+1 + ir, . . . , zN−1 + ir), (y1 − yN , . . . , yN−1 − yN))

× 1

CN−1−L(−z>L)

N∏
j=1

j �=ν1,...,νL

N−1∏
k=L+1

c(zk + ir − xj). (112)

By Theorem 2.5 with N → N − 1 and (94)–(96), it follows that

∣∣∣∣
∫

(Cb+ir)N−1−L
dz>L ÎN;ν1,...,νL

(x, y, z>L)

∣∣∣∣ ≤ CL(r, b)|ρN(y)| exp

(
−αr

N−1∑
m=L+1

(ym − yN)

)

×
∫
RN−1−L

dz>L PN−1(γ |xν1
|, . . . , γ |xνL

|, γ |zL+1|, . . . , γ |zN−1|)

× exp
(
FN−1−L(γ x(ν1, . . . , νL), γ z>L)

)
. (113)

Since PN−1 is a polynomial of degree ≤ (N − 1)(N − 2)/2 with positive, constant

coefficients, we have

PN−1(γ |xν1
|, . . . , γ |xνL

|, γ |zL+1|, . . . , γ |zN−1|)
=

∑
k∈NL

|k|≤(N−1)(N−2)/2

γ |k||xν1
|k1 · · · |xνL

|kLPk
N−1,L(γ |zL+1|, . . . , γ |zN−1|), (114)

for some polynomials Pk
N−1,L of degree ≤ (N − 1)(N − 2)/2 − |k| with positive, constant

coefficients, where |k| ≡ k1 + · · · + kL. Substituting this expansion in (113), we can use

Theorem A.1 to bound each term separately. Indeed, from (A1)–(A3), we get

∫
RN−1−L

dz>L Pk
N−1,L(γ |zL+1|, . . . , γ |zN−1|) exp

(
FN−1−L(γ x(ν1, . . . , νL), γ z>L)

)
< Pk

N,L((γ |xj|)j �=ν1,...,νL
), (115)
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24 M. Hallnäs and S. Ruijsenaars

for some polynomials Pk
N,L of degree

deg Pk
N,L ≤ (N − 1)(N − 2)/2 − |k| + N − 1 − L = N(N − 1)/2 − |k| − L, (116)

with positive, constant coefficients. The bounds (113) and (115) clearly imply the desired

majorization (109). �

We proceed to obtain a bound on EN(x, y) for x, y ∈ C
N × R

N satisfying

vj − vk ∈ (−as, 0], 1 ≤ j < k ≤ N, mN(y) > 0, v = Im x. (117)

Like in the N = 2 and N = 3 cases treated in II, we take as a starting point the

representation for EN given by (62).

We first derive the desired bound for the last sum in (62). To begin with, from

(99) we easily get

|MN(b; y) exp(iαyN(x1+· · ·+xN))| < c(b) exp

⎛
⎝−α

N∑
j=1

yjvj

⎞
⎠ exp

(
α

N−1∑
k=1

(yk − yN)vk

)
, (118)

for all (b, x, y) ∈ Sa × C
N × R

N , with c(b) continuous on Sa. Using next Theorem 2.5 with

N → N − 1, we get an estimate

|EN−1(x(ν), (y1 − yN , . . . , yN−1 − yN))| < C(δ, b)PN−1(γ |Re x(ν)1|, . . . , γ |Re x(ν)N−1|)

× exp

(
−α

N−1∑
k=1

(yk − yN)Im x(ν)k

)
, (119)

where PN−1 is a polynomial of degree ≤ (N − 1)(N − 2)/2 with positive and constant

coefficients. Now when we take the product �ν of the functions on the left-hand sides

of (118) and (119), we can use the majorization

exp

(
α

N−1∑
k=1

(yk − yN)vk

)
exp

(
−α

N−1∑
k=1

(yk − yN)Im x(ν)k

)

= exp

(
α

N−1∑
k=ν

(yk − yN)(vk − vk+1)

)
≤ 1, mN(y) > 0, vk − vk+1 ≤ 0, k = 1, . . . , N − 1,

(120)
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to conclude that the product of �ν and the pertinent u-function product satisfies a

bound of the type occurring in (121), cf. (62) and (98). (Indeed, from (32) and the G-pole

locations I (A.11), we infer regularity of u(b; xk − xj) for −as < vj − vk < min(Re b, 2a −
Re b).)

Theorem 2.5. Letting (δ, b) ∈ (0, as] × Sl, we have

|EN(b; x, y)| < C(δ, b)PN(γ |Re x1|, . . . , γ |Re xN |) exp

⎛
⎝−α

N∑
j=1

yjvj

⎞
⎠ , (121)

for all (x, y) ∈ C
N × R

N satisfying

vj − vk ∈ [−as + δ, 0], 1 ≤ j < k ≤ N, mN(y) > 0, v = Im x, (122)

where C(δ, b) is a continuous function on (0, as] × Sl and PN is a polynomial of degree

≤ N(N − 1)/2 with positive and constant coefficients.

Proof. Since we have already shown that the last sum in (62) satisfies a bound of this

type, the assertion will follow once we prove that the integrals on the right-hand side

of (62) are bounded by

C(δ, b)|ρN(b; y)|PN(γ |Re x1|, . . . , γ |Re xN |) exp

(
−α

N−1∑
k=1

(yk − yN)vk

)
, (123)

for all (x, y) ∈ C
N ×R

N satisfying (122). Indeed, by the induction assumption, (121) holds

true with N replaced by N − 1, and when combined with the c-bound (97), it becomes

clear that we can find a polynomial PN of the required form such that the remaining

sum is majorized by (123) without the factor |ρN(b; y)|.
Due to the identity (47), we may and shall restrict attention to

0 ≤ v1 ≤ · · · ≤ vN ≤ as − δ. (124)

Requiring at first x ∈ R
N , we repeat the steps leading to the (N − 1)-fold integral (110).

Allowing next vj �= 0, we require

δ′ ≤ r − vj ≤ as − δ′, δ′ ∈ (0, as/2], j = 1, . . . , N, (125)
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26 M. Hallnäs and S. Ruijsenaars

so that we stay clear of the poles of the c-functions for zk + ir − xj = 0, as. Choosing

r = as − δ/2, δ′ = δ/2, (126)

we can allow any x ∈ C
N satisfying (124). Invoking (121) with N → N − 1 and the bounds

(94)–(96), we thus infer

∣∣∣∣
∫

(Cb+ir)N−1
dz IN(x, y, z)

∣∣∣∣ ≤ c2(δ, b)|ρN(y)| exp

(
−αr

N−1∑
k=1

(yk − yN)

)

×
∫
RN−1

dz PN−1(γ |z1|, . . . , γ |zN−1|) exp
(
FN−1((γ Re x1, . . . , γ Re xN), γ z)

)
, (127)

where c2 is continuous on (0, as]×Sl. Using Theorem A.1 to bound the remaining integral,

we arrive at the desired majorization.

We turn now to the (N − 1 − L)-fold integral (112). Assuming (125)–(126), we can

again allow any x ∈ C
N satisfying (124). Indeed, we stay clear of the pertinent poles of

the c-functions and can use (121) with N → N − 1 and δ → δ/2 to bound the EN−1-factor.

Using also the bounds (94) and (97), we obtain

∣∣∣∣
∫

(Cb+ir)N−1−L
dz>L ÎN;ν1,...,νL

(x, y, z>L)

∣∣∣∣ < c3(δ, b)|ρN(y)|

× exp

⎛
⎝−α

L∑
j=1

(yj − yN)vνj
− αr

N−1∑
k=L+1

(yk − yN)

⎞
⎠

×
∫
RN−1−L

dz>L PN−1(γ |Re xν1
|, . . . , γ |Re xνL

|, γ |zL+1|, . . . , γ |zN−1|)

× exp
(
FN−1−L(γ Re x(ν1, . . . , νL), γ z>L)

)
, (128)

with c3 continuous on (0, as] × Sl. Now we have

vνj
≥ vj, j = 1, . . . , L, r > vj, j = 1, . . . , N, mN(y) > 0, (129)

whence we infer

exp

⎛
⎝−α

L∑
j=1

(yj − yN)vνj
− αr

N−1∑
k=L+1

(yk − yN)

⎞
⎠ < exp

(
−α

N−1∑
k=1

(yk − yN)vk

)
. (130)
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Also, substituting the expansion (114) with xνj
→ Re xνj

in (128), each term is readily

bounded using Theorem A.1. Hence, the majorization (123) results. �

A Polynomial Bounds

In Section 2, we use the following theorem to bound remainder terms when studying the

asymptotic behavior of the functions EN , cf. Theorems 2.4– 2.5.

Theorem A.1. Let z1, . . . , zL, u1, . . . , uL+1 ∈ R, and let PL,M(|z1|, . . . , |zL|) be a

polynomial of degree M with positive coefficients. Setting

IP ,L(u1, . . . , uL+1) ≡
∫
RL

dzPL,M(|z1|, . . . , |zL|) exp(FL(u, z)), (A.1)

where

FL(u, z) ≡
∑

1≤m<n≤L+1

|um − un| +
∑

1≤m<n≤L

|zm − zn| −
L+1∑
j=1

L∑
k=1

|uj − zk|, (A.2)

we have a bound

IP ,L(u1, . . . , uL+1) < QL,M(|u1|, . . . , |uL+1|), (A.3)

where QL,M is a polynomial of degree ≤ M + L with positive coefficients.

Proof. We prove this by induction on L. For L = 1, we have

IP ,1(u1, u2) =
∫
R

dzP1,M(|z|) exp(|u1 − u2| − |u1 − z| − |u2 − z|). (A.4)

We have symmetry under swapping u1 and u2, so we may take u2 ≤ u1. We write the

integral as the sum of three integrals over (−∞, u2), [u2, u1], and (u1, ∞), denoted by I−,

Iμ and I+, resp. Then we have

I+ =
∫ ∞

u1

dzP1,M(|z|) exp(u1 − u2 − (z − u1) − (z − u2)) =
∫ ∞

0
dzP1,M(|z + u1|)e−2z. (A.5)

Now we need only use |z + u1| ≤ z + |u1| to see that I+ is bounded by a polynomial of

degree M in |u1| with positive coefficients.

Likewise, since

I− =
∫ u2

−∞
dzP1,M(|z|) exp(u1 − u2 − (u1 − z) − (u2 − z)) =

∫ 0

−∞
dzP1,M(|z + u2|)e2z, (A.6)

we infer that I− is bounded by a polynomial of degree M in |u2| with positive

coefficients.

Finally, we have for the middle integral

Iμ =
∫ u1

u2

dzP1,M(|z|) exp(u1 − u2 − (u1 − z) − (z − u2)) =
∫ u1

u2

dzP1,M(|z|), (A.7)
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28 M. Hallnäs and S. Ruijsenaars

and since we have ∫ u1

u2

dz |z|k ≤ 1

k + 1

(
|u1|k+1 + |u2|k+1

)
, k ∈ N, (A.8)

we see that Iμ is bounded by a polynomial of degree M + 1 in |u1|, |u2|, with positive

coefficients. Thus, the assertion holds true for L = 1.

Next, we inductively assume the assertion has been proved up to L − 1, L > 1.

First, we claim that the function FL(u, z) (A.2) satisfies

FL(u, z) ≤ 0, ∀(u, z) ∈ R
L+1 × R

L. (A.9)

Clearly, F has permutation symmetry in u1, . . . , uL+1 and in z1, . . . , zL. Therefore, we need

only prove (A.9) under the assumptions zL ≤ zL−1 ≤ · · · ≤ z1 and

uL+1 ≤ uL ≤ · · · ≤ u1. (A10)

Then we have

FL(u, z) ≤
∑

1≤m<n≤L+1

(um −un)+
∑

1≤m<n≤L

(zm −zn)−
L+1∑
j=1

⎛
⎝∑

j≤k

(uj − zk) +
∑
j>k

(zk − uj)

⎞
⎠ = 0,

(A.11)

and so (A.9) follows.

We are now prepared to prove the bound (A.3). By permutation invariance of

IP ,L(u), we need only show its validity under the assumption (A.10). We write each zk-

integral as the sum of three integrals over (−∞, uL+1), [uL+1, u1], and (u1, ∞), denoted by

I−, Iμ and I+, resp. We denote by ẑk the vector in R
L−1 arising by omitting the coordinate

zk from z ∈ R
L. Then we have

IP ,L(u) =
(

N∏
k=1

(
I− + Iμ + I+)

dzk

)
P exp(FL)

<

L∑
k=1

(
I− dzk

∫
RL−1

dẑk + I+ dzk

∫
RL−1

dẑk
)
P exp(FL) +

L∏
k=1

Iμ dzk P exp(FL). (A.12)

Next, using the bound (A.9), we note that the integral over [uL+1, u1]L is bounded

by a sum of terms of the form

c
L∏

k=1

Iμ dzk |zk|nk , c > 0,
L∑

k=1

nk ≤ M. (A.13)

In turn, such a term is bounded by

cn

L∏
k=1

(|u1|nk+1 + |uL+1|nk+1)
, cn > 0. (A.14)
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Hence, the integral over [uL+1, u1]L is majorized by a polynomial in |u1|, |uL+1| of degree

≤ M + L with positive coefficients.

We proceed to study the zk-integral I+. We have u1 < zk, so we may write FL as

L+1∑
j=2

(u1 − uj) +
∑
l �=k

|zk − zl| −
L+1∑
j=1

(zk − uj) −
∑
l �=k

|u1 − zl| + F+
L−1((u2, . . . , uL+1), ẑk). (A.15)

Taking zk → zk + u1 in the integral, we then get

eF+
L−1

∫ ∞

0
dzk P(|z1|, . . . , |zk+u1|, . . . , |zL|) exp

⎛
⎝−(L + 1)zk +

∑
l �=k

(|zk + u1 − zl| − |u1 − zl|)
⎞
⎠ .

(A.16)

Majorizing the exponential by exp(−2zk), we can bound each monomial term as a

polynomial in |u1| of degree ≤ M. The induction assumption now applies to the

remaining ẑk-integrals over R
L−1, yielding polynomials of the announced form.

The L integrals I− dzk can be estimated in a similar way, first writing FL as

L∑
j=1

(uj − uL+1) +
∑
l �=k

|zk − zl| −
L+1∑
j=1

(uj − zk) −
∑
l �=k

|uL+1 − zl| + F−
L−1((u1, . . . , uL), ẑk), (A17)

and then taking zk → zk + uL+1. �
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