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Abstract

Forward and backward processes associated with the Low-to-High (L-H) transition in mag-

netically confined fusion plasmas are investigated by using a time-dependent Probability Density

Function (PDF) approach and information length diagnostics. Our model is based on the extension

of the deterministic prey-predator-type model (Kim and Diamond, Phys. Rev. Lett. 91, 185006,

2003) to a stochastic model by including two independent, short-correlated Gaussian noises. The

‘forward’ process consists of ramping up the input power linearly in time so that zonal flows

self-regulate with turbulence after their initial growth from turbulence. The ‘backward’ process

ramps the power down again, by starting at time t = t∗ when the input power is switched to

Q(t) = Q(2t∗ − t) for t > t∗, linearly decreasing with time until t = 2t∗. Using three choices

for Q(t), with differing ramping rates, the time-dependent PDFs are calculated by numerically

solving the appropriate Fokker-Planck equation, and several statistical measures including the in-

formation length for the forward and backward processes are investigated. The information length

Lx(t) and Lv(t) for turbulence and zonal flows, respectively, are path-dependent dimensionless

numbers, representing the total number of statistically different states that turbulence and zonal

flows evolve through in time t. In particular, PDFs are shown to be strongly non-Gaussian with

convoluted structures and multiple peaks, intermittency in zonal flows playing a key role in tur-

bulence regulation. The stark difference between the forward and backward processes is captured

by time-dependent PDFs of turbulence and zonal flows and corresponding information length di-

agnostics. The latter are shown to give us a useful insight in understanding the correlation and

self-regulation, and transitions to the self-regulatory dithering phase.
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I. INTRODUCTION

The need for a proper statistical theory for understanding fusion plasmas has grown signif-

icantly over the last few decades, with experiments and simulations revealing ample evidence

for strong, non-Gaussian fluctuations, anomalous transport, or intermittency [1–6]. The lat-

ter question the validity of the mean-field-type theory based on small, Gaussian fluctuations,

the concepts of transport coefficients, or the utility of the different moments/cumulants

(mean value, variance, skewness, kurtosis, etc.) while highlighting the importance of the

calculation of an entire probability density function (PDF) [7, 8]. In particular, rare but

large-amplitude events can mediate large transport and contribute to the tails of PDFs

whose effects are not easily captured by a few low-order moments. Although PDF tails were

successfully predicted by using non-perturbative methods such as instantons (the extreme of

a path-integral) in different types of fusion plasma turbulence (Hasegawa-Mima, ion temper-

ature gradient, edge turbulence, etc.) [9–12], these studies tend to focus on stationary PDFs.

For plasma turbulence out of equilibrium, the prediction of an entire, time-dependent PDF

is in order. We have initiated a time-dependent PDF approach in various non-equilibrium

processes [13–24]. The main purpose of this paper is to demonstrate the importance of such

a time-dependent PDF approach and intermittency in understanding the Low-to-High (L-H)

transition and the backward H-L transition in fusion plasmas.

The L-H transition constitutes one of the most interesting examples of self-organization,

in which plasmas organize themselves into an ordered, high-confinement (H) mode from the

low-confinement (L) mode at a critical power threshold [25–46], accompanied by the reg-

ulation between structures (zonal flows, mean flows) and turbulence [47–49]. Given their

critical implications for future burning plasmas and commercial power plants as well as the

success of the ITER project [28, 35] where the H-mode is a basic scenario, the L-H transi-

tion and zonal flows have been of primary interest from the perspectives of theory, computer

simulations, and experiments. Much attention has been paid to the issues surrounding the

causality relation and correlation among different players, triggering mechanisms, hysteresis,

the threshold power scaling, and the effects of density, diverter/magnetic geometry and neu-

trals [35], most of which still remain controversial. Statistical methods like Fourier/wavelet

analysis, bicoherence, phase relation, turbulence-flow energy transfer, fluxes, turbulent co-

efficients, and moments (mean value, variance, etc.) have often been adopted to study these
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issues.

Recently, we have extended the deterministic version of the prey-predator model of the L-

H transition to a stochastic model [29] by incorporating the overall (incoherent) effect of the

unresolved scales [24], which are not included for the deterministic model, and investigated

the time-dependent PDFs. We note that there have been experimental observations of mini-

avalanches and the power flow from the core has fast transients, stochastic noise being clearly

part of the physics. In this stochastic model, while turbulence is mainly determined by the

input power, it is also weakly driven by a small stochastic noise. As a result, for a fixed

turbulence energy required for the L-H transition, the contribution from this stochastic

noise to turbulence slightly lowers the required power threshold. Furthermore, we have

shown that time-dependent PDFs offer a new insight into the L-H transition that is simply

inaccessible otherwise [24]. In particular, we demonstrated strongly non-Gaussian PDFs

and the interesting possibility that intermittency – thought to be important for enhancing

transport (e.g. by blobs, streamers, etc.) – can also play a key role in the regulation of

turbulence by zonal flows in the L-H transition.

Here, we extend this work to elucidate the effects of different input power ramp rates

(heating power) and stochasticity on hysteresis. Specifically, we ramp up an input power

linearly in time so that zonal flows self-regulate with turbulence (undergoing the dithering

phase) after their initial growth from turbulence, which we call the forward process. Before

the completion of the L-H transition, we start decreasing the input power again to induce

the transition back to the L-mode, which we call the backward process. The faster the

ramping rate, the further from a stationary state the system is; we therefore investigate

the consequences of different ramping rates. We compute the time-dependent PDFs in the

entire forward and backward sequence, and calculate different statistical measures including

the information length (see §II, §IV-V), entropy, and Fisher information [50] (see §IV-V).
Here, entropy measures uncertainty, disorder, or the lack of information, while the Fisher

information is a concept opposite to the entropy, measuring the amount of information or

order associated with a PDF (see §III for more details).

Our principal results include that i) the mean-field-type theory is invalid, with the limited

utility of mean value, variance, stationary PDFs; ii) the L-H transition can involve a strongly

non-Gaussian PDF and intermittency; iii) faster ramping yields more deviation from Gaus-

sian PDFs and less duration of the dithering phase; iv) enhanced right tails for rare large
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zonal flows can play a crucial role in turbulence regulation; v) the stark difference between

the forward and backward processes is captured by time-dependent PDFs of turbulence and

zonal flows; vi) the larger the stochasticity, the more asymmetry there is between forward

and backward processes. Furthermore, we show that the information geometric tool (infor-

mation length) provides us with a useful index to understand correlation and self-regulation,

as well as forecasting the transitions to the dithering phase.

The remainder of this paper is organized as follow. §II introduces the information length

and key expressions. §III presents our stochastic model by extending [29], and §IV summa-

rizes the definitions of various statistical measures that are analyzed. Results are presented

in §V for different choices of input power and for the forward and backward processes.

Discussion and conclusions are found in §VI. Appendices A and B contain some detailed

derivations of the key properties of the information length, while Appendix C provides the

derivation for our main Fokker-Planck equation (12) from the Langevin equations (9)-(10)

and the statistical properties of the noise terms (11).

II. INFORMATION LENGTH AND INFORMATION PHASE PORTRAIT

A key characteristic of non-equilibrium processes is a PDF which changes with time. For

simplicity, we consider the case of one stochastic variable x which has a time-dependent

PDF p(x, t). In the following, we use the concept of relative entropy which is different

from entropy. Specifically, relative entropy is a way of comparing two PDFs such that its

value is zero for two identical PDFs while becoming larger as the difference between the

PDFs increases. For a PDF which continuously changes with time, the main interest is the

comparison of two (temporally) adjacent PDFs along the evolution path, say, p(x, t) and

p(x, t+δt) in the limit δt → 0. We thus calculate an (infinitesimal) relative entropy between

p(x, t) and p(x, t + δt) in the limit δt → 0. Summing the square-root of the infinitesimal

relative entropy (τ(t)−1) along the path, we define the (dimensionless) information length

L(t) [14–17, 19–21] (see also Appendix A)

L(t) =
∫ t

0

dt1
τ(t1)

=

∫ t

0

dt1

√

∫

dx
1

p(x, t1)

[

∂p(x, t1)

∂t1

]2

, (1)

where

1

τ(t)2
=

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

≡ E(t). (2)
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The unit of τ in Eq. (2) is time, since the unit of p(x, t) is x−1; τ(t) is referred to as a

dynamical time unit at time t for information change, representing the characteristic time

scale of a PDF. Since τ(t) depends on time in general, L(t) in Eq. (1) is obtained by

measuring the clock time in (instantaneous time) unit τ(t); L(t) quantifies the total number

of statistically different states that a variable x passes through between time 0 and t as p(x, t)

evolves from its initial PDF p(x, 0). L is dimensionless, and we can check that Eqs. (1)-(2)

are invariant under a time-independent change of variable (see Appendix B) unlike other

entropy-based statistical measures (e.g. entropy, relative entropy, Jensen divergences, etc.).

Note that Eq. (1) is different from the statistical distance invoked by Wooters [51] which

represents the shortest distance between two given PDFs, where t is a parameter that labels

a path between these two PDFs.

In principle, L(t) depends on the parameters in the initial PDF p(x, 0) and in the model.

However, when all the parameters are fixed, L(t) is a function of time only, representing the

cumulative change to the PDF along the path, starting from a given initial PDF p(x, 0) at

t = 0. For instance, L(t = 0) compares p(x, 0) and p(x, 0), and is thus always zero since

there is no difference between two (initially) identical PDFs. L(t) increases with time unless

p(x, t) approaches a stationary state where there is no temporal change in p(x, t). Also, if

L(t = T ) = 0, the system is stationary with no change in the PDF for all time t = [0, T ].

However, p(x, 0) = p(x, T ) does not mean L(t = T ) = 0 since the PDF at some intermediate

time t ∈ (0, T ) can be different from p(x, 0) = p(x, T ). The larger L(T ), the more change in

the PDF along the path t = (0, T ).

By using this path-dependence and by varying one parameter in the initial condition or

model, we can study how L(t) depends on this parameter at a fixed time. For instance, we

can map out an attractor structure in a relaxation problem by measuring L∞ = L(t → ∞)

against the mean position x0 of the initial PDF since L(t) approaches a finite value [14, 15]

in this limit t → ∞ due to the relaxation of an initial PDF into a stationary PDF around

x = 0 [13, 14, 16, 18, 22]. Some of the interesting findings include that the relation between

L∞ and x0 is linear for a linear Ornstein-Uhlenbeck (O-U) process regardless of its initial

width and the strength of stochastic noise, illustrating that L∞ captures the linear geometry

of a linear process [14, 18]. However, for a nonlinear relaxation problem, L∞ against x0 is

not linear but a power-law, the power-law index depending on the width of an initial PDF

and the strength of a stochastic noise [14, 18]. In both cases, L∞ increases monotonically
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with x0. In contrast, for a chaotic system, L∞ abruptly changes with x0, revealing the

sensitive dependence of L∞ on the initial condition (like the Lyapunov exponent) [13, 14].

The path-dependence of L(t) was also utilized to understand hysteresis involved in phase

transitions such as Ginzburg-Landau model [19], and will be studied further in this paper.

In general, for a system with m variables xi (i = 1, 2, ..m), we extend Eq. (2) to

Lxi
(t) =

∫ t

0

dt1
τxi

(t1)
, (3)

1

[τxi
(t)]2

=

∫

dxi

1

p(xi, t)

[

∂p(xi, t)

∂t

]2

≡ Exi
, (4)

where p(xi, t) =
∫

Πj 6=i(dxj) p(x1, x2, ..., xm) is a marginal PDF of xi. Eqs. (3)-(4) are

again invariant under time-independent changes of variables xi (see Appendix B). As a

dimensionless number, Lxi
(t) gives a useful proxy for the evolution of xi in its statistical

state in time, permitting us to compare the dynamics of different xi, which have different

units as well as quantifying the correlation among them. In particular, τxi
and Lxi

depend

on the path of xi, and the correlation or causality between xi and xj (i 6= j ∈ [1,m]) can

be inferred by comparing τxi
and τxj

. Furthermore, the 2-D plane of τ−1
xi

against τ−1
xj

– an

information phase portrait – is useful for capturing self-regulation between xi and xj.

III. MODEL

We take advantage of the property of self-organising systems that statistical properties

tend to be robust across different models in the absence of constraints (e.g. conserved quanti-

ties/ideal invariants) that depend on the dimensionality of the system. For instance, a similar

PDF of a self-organized shear flow was shown in low-order, 0- and 1-dimensional models and

in 2-D fluid model [47], see also [20]. A low-dimensional deterministic, prey-predator model

of the L-H transition [29] and its extension [30–34] have proven to be valuable in gaining the

key insight into results from numerical simulations of more complicated models and exper-

iments [28, 37, 44]. Furthermore, given the challenges in calculating time-dependent PDFs

from plasma turbulence in regards to computational efforts and data analysis, it is valuable

to consider a low-dimensional model to facilitate the calculation of an exact time-dependent

PDF. Thus, we investigate a stochastic extension of [29] in the following.
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A. Previous deterministic model [29]

For completeness, we briefly explain the prey-predator model [29] which is governed by

∂ǫ

∂t
= Nǫ− a1ǫ

2 − a2V
2ǫ− a3V

2
ZF ǫ, (5)

∂VZF

∂t
= b1ǫ

VZF

1 + b2V 2
− b3VZF , (6)

∂N

∂t
= −c1ǫN − c2N +Q. (7)

Here, ǫ, VZF and N represent turbulence amplitude, zonal flow and density gradient, re-

spectively; ai, bi and ci are non-negative constants; Q is an external heating (input power);

V = dN2 is the mean flow with d > 0. In Eq. (5), the right side represents the linear growth

of turbulence by the density gradient and turbulence damping due to turbulence nonlinear

interaction, mean flow and zonal flow, respectively. The right side of Eq. (6) represents the

zonal flow growth from turbulence, subject to the mean flow damping (1+ b2V
2), and linear

(collisional) damping. The right side of Eq. (7) represents the damping of the density gradi-

ent due to turbulence and neo-classical/collisional effects, and the density gradient growth

due to an external heating Q. In [34], the periodic perturbation in Q was shown to help

the L-H transition. Eqs. (5)-(7) support the L-H transition either with or without going

through limit-cycle oscillations (I-phase) depending on parameter values and Q, dithering

appearing for a slow ramping of Q(t). We note that in this model [29], the H-mode is a

quiescent H-mode where both zonal flow and turbulence are zero. As in [24, 52], we employ

the following approximation of Eq. (7) as

N =
Q

c1ǫ+ c2
. (8)

Note that different approximations of Eq. (8) were also used, e.g. such as N = Q/c2 in [32]

or the neglect of the mean flow in [53] to elucidate intermittency and bistability of zonal

flows and geodesic acoustic modes, respectively. See §V for the discussion about Q(t).

B. Stochastic model

The deterministic model in Eqs. (5)-(8) is a mean-field model where the overall (incoher-

ent) contribution from unresolved scales is ignored, as noted in Section I. We incorporate

such contribution by adding the two independent δ-correlated Gaussian stochastic noises ξ
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and η in Eqs. (5) and (6) respectively [54] and consider the following stochastic equivalents

of Eqs. (5)-(6):

dx

dt
= f + ξ, f =

1

2

[

N − a1x
2 − a2V

2 − a3v
2
]

x, (9)

dv

dt
= g + η, g =

b1x
2v

1 + b2V 2
− b3v, (10)

where x = ±√
ǫ, v = VZF , and N is given by Eq. (8) (with ǫ = x2). The noise terms satisfy

〈ξ(t)ξ(t′)〉 = 2Dxδ(t− t′), 〈η(t)η(t′)〉 = 2Dvδ(t− t′),

〈ξ(t)η(t′)〉 = 0, 〈ξ〉 = 〈η〉 = 0. (11)

Here, the angular brackets denote averages over ξ and η. Dx and Dv are the amplitudes of

the stochastic noise ξ and η, affecting x and v respectively. It is worth noting that we work

with x instead of ǫ in order to implement the boundary conditions that a PDF vanishes

as x → ±∞ and v → ±∞, and avoid having numerical boundaries at ǫ = 0 (see §III.C).
In our stochastic model, turbulence is excited not only by the instability but also by the

weak stochastic noise ξ (small Dx) as can be seen in Eq. (9). Thus, the instability/weak

stochasticity causes turbulence, driving the zonal flows and the transition to the dithering.

C. Fokker-Planck equation

In order to obtain exact PDFs and to avoid handling noisy data, we solve the following

Fokker-Planck equation [54] for a joint PDF p = p(x, v, t) corresponding to Eqs. (10)-(11)

(see Appendix C, [54, 55])

∂p

∂t
= − ∂

∂x

[

f(x, v)p
]

− ∂

∂v

[

g(x, v)p
]

+Dx

∂2p

∂x2
+Dv

∂2p

∂v2
, (12)

instead of performing stochastic simulations of Eqs. (10)-(11) (e.g. [47]). As noted above,

using x instead of ǫ enables us to use natural boundary conditions x ∈ (−∞,∞) and

v ∈ (−∞,∞), and p(x, v, t) → 0 as x, v → ±∞. The numerical solution of (12) involves

second-order finite-differencing, with grid spacings as small as 10−3 in both x and v. The

time-stepping is second-order Runge-Kutta, with time-steps as small as 2 ·10−5. In principle

solutions could be investigated that are asymmetric in either x or v, but here we only

consider symmetric solutions satisfying p(x, v, t) = p(x,−v, t) = p(−x, v, t). This allows

the computational domain to be restricted to a single quadrant of the (x, v) plane and
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appropriate symmetry conditions imposed, with a fourfold savings in computer time. Taking

a box size with xmax = vmax = 2 is sufficiently large to be a good approximation to x, v → ∞;

that is, the total probability
∫∫

p dx dv remains conserved within 10−4 or better for all runs

presented here.

IV. STATISTICAL MEASURES

Before presenting the results in §V, we summarize different statistical measures here.

A. Information length diagnostics

For our model, we have the two variables x1 = x and x2 = v. Thus, from p(x, v, t) we

calculate the marginal PDFs p(x, t) and p(v, t) as

p(x, t) =

∫

dv p(x, v, t), p(v, t) =

∫

dx p(x, v, t). (13)

From Eqs. (3)-(4), we then have

Ex =
1

[τx(t)]2
=

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

, (14)

Ev =
1

[τv(t)]2
=

∫

dv
1

p(v, t)

[

∂p(v, t)

∂t

]2

, (15)

Lx(t) =

∫ t

0

dt1
τx(t1)

, Lv(t) =

∫ t

0

dt1
τv(t1)

. (16)

We note that since Eqs. (3)-(4) and (14)-(16) are invariant under the independent change of

variables, as noted previously (see also Appendix B), τx calculated from p(x, t) is guaranteed

to be the same as τǫ calculated from p(ǫ, t) (where we recall ǫ and x are related by ǫ = x2).

We also define L, E and τ from the joint PDF p(x, v, t) directly as

L(t) =
∫ t

0

dt1
τ(t1)

, (17)

E =
1

[τ(t)]2
=

∫

dxdv
1

p(x, v, t)

[

∂p(x, v, t)

∂t

]2

, (18)

where the quantity without the subscript x or v denotes those calculated from the joint

PDFs directly. For the two independent variables x and v with p(x, v, t) = p(x, t)p(v, t),

Lx + Lv = L.
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B. Entropy

As noted in §I, entropy measures disorder or the lack of information [50]. We define

entropy Sx, Sv and S from the marginal PDFs p(x, t) and p(v, t) and the joint PDF p(x, v, t)

as follows

Sx = −
∫

dx p(x, t) ln (p(x, t)), (19)

Sv = −
∫

dv p(v, t) ln (p(v, t)), (20)

S = −
∫

dxdv p(x, v, t) ln (p(x, v, t)). (21)

Unlike the information length diagnostics, entropy changes under the coordinate transfor-

mation (e.g. under ǫ → x), while being independent of a linear translation (e.g. x → x +

const). The latter property, in particular, makes entropy less useful when quantifying the

movement of a PDF as happens in the L-H transition. Note that Sx+Sv −S ≥ 0 represents

the mutual entropy, the equality S = Sx + Sv holding when p(x, v, t) = p(x, t)p(v, t).

C. Fisher information

The Fisher information deals with a PDF and is a way of measuring the amount of

information or order associated with a PDF [50] as noted in §I. Qualitatively, the narrower

(broader) a PDF, the larger (smaller) the Fisher information and the smaller (larger) the

entropy. We calculate Fisher information [50] Fxx and Fvv from the marginal PDFs p(x, t)

and p(v, t)

Fxx = 4

∫

dx q(x, t)

[

∂q(x, t)

∂x

]2

, (22)

Fvv = 4

∫

dv q(v, t)

[

∂q(v, t)

∂v

]2

, (23)

(24)

where q(x, t) =
√

p(x, t) and q(v, t) =
√

p(v, t). Note that Eqs. (22)-(23) are given in

terms of q – the square-root of a PDF – instead of a PDF itself to avoid the (superficial

appearance of) singularity in the denominator. Like entropy, Fisher information changes

under the coordinate transformation (e.g. under ǫ → x) while being independent of the

linear translation (e.g. x → x + const), and is therefore again less useful to understand

time-dependent PDFs.
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D. Cross-correlation

The cross-correlation Cxy between fluctuating x and v, their normalised version cxy and

standard deviations σx and σv of x and v are defined as

Cxv = 〈(x− 〈x〉)(v − 〈v〉)〉 =
∫ ∞

0

dx

∫ ∞

0

dv (x− 〈x〉)(v − 〈v〉) p(x, v, t), (25)

cxv =
Cxy

σxσv

, (26)

σ2
x = 〈(x− 〈x〉)2〉 =

∫ ∞

0

dx

∫ ∞

0

dv (x− 〈x〉)2 p(x, v, t), (27)

σ2
v = 〈(v − 〈v〉)2〉 =

∫ ∞

0

dx

∫ ∞

0

dv (v − 〈v〉)2 p(x, v, t), (28)

where 〈x〉 =
∫

dxdv xp(x, v, t) and 〈v〉 =
∫

dxdv vp(x, v, t). Note that the average 〈·〉 refers
to the mean value over the first quadrant x, v > 0 only, that is, 〈f〉 ≡

∫∞

0

∫∞

0
f p dx dv.

V. RESULTS

Our key interest in this paper is not on the exploration of all possible cases but on

demonstrating the consequences of different forms of Q(t) (fast vs slow ramping) on time-

dependent PDFs and information geometry in the forward and backward transitions and

resulting hysteresis. Here, hysteresis refers to a lag between the input and output in our

system upon the reversal of time direction (forward vs backward processes). To this end,

we increase Q(t) linearly at a certain rate to induce the transition to dithering up to time

t = t∗, and then decrease Q(t) to simulate the back transition to the L-mode. Q(t) is

chosen to be symmetric around t∗ so that for t > t∗, Q(t) = Q(2t∗ − t); the forward and

backward processes refer to the phase where Q(t) increases and decreases, respectively. The

different evolution in the forward and backward processes despite the symmetry in Q(t) =

Q(2t∗ − t) is called hysteresis in this paper. There has been the experimental observation

of hysteresis between the forward (L-mode to dithering) and the backward (dithering to

L-mode) processes reported in [44].

We note that our Q(t) is not chosen to represent an input power ramping in other exper-

iments, but to demonstrate how our method works in general and inform us of their effects

on time evolution and statistical properties of the transitions. For instance, our method

works for the cases of different heating scenarios (e.g. [44–46]). In particular, while the
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characteristic time scale for coupled auxiliary power to flow from the core to edge is on the

order of the global energy confinement time, the local power balance in the edge that is rel-

evant to the evolution of limit cycles can be governed by intermittent turbulence dynamics

and avalanches that occur on turbulence time scales t ∼ a/cs ≤ 100µs. Here, a is the minor

plasma radius and cs is the local ion sound speed. These nonlinear events occur predomi-

nantly in the edge due to the high saturated levels of edge turbulence. Also, plasmas can

be strongly driven out of equilibrium, e.g. due to a strong (overpowered) beam pulse and

then backing off the power [44], with hysteresis between forward and backward processes. A

reduction of the limit cycle frequency has been experimentally observed with higher input

power. These experimental observations are reproduced in our model as discussed below.

Furthermore, given a time-dependent problem, we do not concern ourselves with bifur-

cation analysis [30], which would have only a limited validity for a time-dependent Q(t).

Specifically, we consider the following three different cases

• Set 1: Q = 0.03t+ 0.1, ramping back down at t = t∗ = 40;

• Set 2: Q = 0.05t, ramping back down at t = t∗ = 20;

• Set 3: Q = 0.1t, ramping back down at t = t∗ = 12.

We note that for Set 1, we choose Q(t = 0) = 0.1 instead of Q(t = 0) = 0 so that the system

evolves to the dithering phase quicker. That is, Q(t = 0) = 0 would just have lengthened

the duration of the L-mode without much effect on the subsequent evolution, the system

spending a lot of time in the L-mode. In comparison, for the faster ramping for Sets 2-3, the

system enters the dithering phase quicker without costing much extra computational efforts.

We use the same parameter values a1 = 0.2, a2 = a3 = 0.7, b1 = 1.5, b2 = b3 = 1, c1 = 1,

c2 = 0.5, and d = 1 as in [29]. For the results presented here, we use an initial condition

p(x, v, 0) ∝ exp[−((|x| − 0.5)2 − v2)/5 · 10−3]; other initial conditions with small values of

x and v yielded similar results. For the noise terms Dx and Dv, we considered different

combinations of Dx = [1, 2, 4, 8, 16, 32] · 10−4 and Dv = [1, 2] × 10−4. Since results did not

change much for different Dv, in the following, we present results for Dx = [1, 4, 16] · 10−4

and Dv = 10−4 only. In [24], we investigated the forward process up to time t = 50 by using

Q = 0.03t+ 0.1 (the same as Set 1 here) which covers the transition to the dithering phase

and then the approach to the H-mode. Here we take Set 1 only up to t = t∗ = 40 before
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ramping Q(t) back down again, thereby switching back to the L-mode. If Q becomes too

large before the ramping down is started, the system does not revert to the L-mode, but

instead continues evolving toward the H-mode (x, v → 0). Sets 2 and 3, where Q is increased

more quickly, are then also ramped down sooner, so that all three sets have broadly similar

Qmax values. We are then interested in comparing the forward and backward processes under

different ramping speeds, and exploring the different statistical measures. It is important to

note that for the time duration of forward and backward processes in this paper, turbulence

regulation is mainly by zonal flows, which will be our focus in this paper.

A. Set 1: Q = 0.03t+ 0.1 and t∗ = 40

1. Mean, standard deviation, cross-correlation and phase portrait

Fig. 1 shows the average quantities 〈x〉, 〈v〉 (column 1), the standard deviations σx =
√

〈(x− 〈x〉)2〉 and σv =
√

〈(v − 〈v〉)2〉 (column 2), the (normalized) cross-correlation 〈(x−
〈x〉)(v − 〈v〉)〉/(σxσv) (column 3), and the phase-portrait 〈x〉 against 〈v〉 (column 4). We

note that the average 〈·〉 refers to the mean value over the first quadrant x, v > 0 only, that

is, 〈f〉 ≡
∫ 2

0

∫ 2

0
f p dx dv since the computational domain is x, v = [0, 2]. To distinguish the

forward and backward processes, we use blue and red colors to mark the forward (t = [0, 40])

and backward (t = [40, 80]) processes, respectively, in the time histories (for turbulence x)

and in the phase portrait. Note that the same black line is used for zonal flows v in the time

history. If the backward process had undergone the same evolution as the forward process,

the behavior for t = [40, 80] would be a mirror image of the behavior for t = [0, 40]. This is

clearly not the case, indicating that the forward and backward processes are substantially

different from one another.

In column 1, the rapid growth of 〈v〉 from 〈x〉 is seen up to t ≈ 11 for all Dx, followed

by the dithering I-phase where 〈x〉 and 〈v〉 oscillate around each other. The smaller Dx,

the more prominent these oscillations are. Note that if the ramping-up had been continued

for t > t∗, the dithering phase would have ended when 〈x〉 and 〈v〉 both start collapsing

back towards zero, which is the H-mode. As noted above though, if the system is allowed

to evolve all the way to that point, then ramping Q down again does not cause the system

to revert to the L-mode, but instead remains in the H-mode. If instead Q is ramped down
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FIG. 1: From top to bottom, the three rows (1,2,3) show results for Set 1 at Dx = 10−4,

4 · 10−4 and 16 · 10−4. Column 1 (a1,a2,a3) shows 〈x〉 and 〈v〉 as functions of time, with 〈x〉
in blue/red (with the switch in color at the switch time t∗ = 40) and 〈v〉 in black. Column

2 (b1,b2,b3) shows the associated standard deviations σx and σv, with the same

color-coding. Column 3 (c1,c2,c3) shows the cross-correlation

cxv = 〈(x− 〈x〉)(v − 〈v〉)〉/(σxσv). Column 4 (d1,d2,d3) shows the phase portrait in the

(〈x〉, 〈v〉) plane, with blue again corresponding to Q(t) increasing and red to Q(t)

decreasing.

before the transition to the H-mode is complete, then the ramp-down during t = [40, 80]

induces the transition to the L-mode as 〈x〉 and 〈v〉 evolve towards 〈x〉 ∼ 0.5 and 〈v〉 ∼ 0,

albeit via non-monotonic fluctuations.

Specifically, for Dx = 10−4, 〈x〉 undergoes some weak oscillations with an overall decrease

before increasing again, while 〈v〉 exhibits mostly oscillatory behavior up to t ∼ 60 before

collapsing rapidly. The backward evolution for t = [40, 80] is clearly not the mirror image of

the forward evolution t = [0, 40], showing the disparity between the forward and backward

transitions (e.g. 〈x〉(t = 80) 6= 〈x〉(t = 0), 〈v〉(t = 80) 6= 〈v〉(t = 0)). In fact, the evolution

of 〈v〉 for the entire t = [0, 80] seems reminiscent of the L-H transition despite the power

ramping down for t = [40, 80] with the extended region of the dithering. This is probably
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because of the inertia of x and v which requires a sufficient time to respond to the change

introduced by a time-varying input power.

A stochasticity Dx introduces irreversibility. Thus, the larger Dx is, the larger the dis-

parity between forward and backward processes. Specifically, as Dx increases to Dx =

[4, 16] × 10−4, the backward evolution of 〈x〉 and 〈v〉 becomes more different from their

forward evolution, with their fast decay around t ∼ 40. Note that Dx was shown to help

entering the H-mode at earlier time, and thus at smaller power Q (= 0.03t + 0.1) in [24].

That is, a larger stochastic noise helps the L-H transition by reducing the required power

threshold. We note that 〈x〉 increases during the backward process as the system approaches

the L-mode where turbulence has a finite amplitude.

The standard deviation σx and σv in column 2 in Fig. 1 shows the large increase in σx

and σv at the beginning of the dithering phase around t ∼ 20, and an even larger increase

around t ∼ 50, t ∼ 42 and t ∼ 38 for Dx = [1, 4, 16] × 10−4, respectively. The larger Dx

is, the earlier the second peak of σx and σv appears. Another prominent feature is that

σx and σv tend to take larger values in the backward process than in the forward process.

Also, the values of σx and σv can exceed those of 〈x〉 and 〈v〉 in the backward process,

implying strongly out-of-equilibrium dynamics. Furthermore, σx tends to be larger than σv

in the backward process, naively suggesting broader PDFs of x. However, in the case of

a multiple-peak PDF, the meaning of PDF width is unclear, and a careful examination of

the form of the actual PDFs is needed to understand the evolution. In fact, as shown later,

these behaviors are due to the formation of multi-peak PDFs in the dithering phase and

their persistent evolution in the backward process.

Fig. 1 column 3 shows that the self-regulation in the dithering phase in the forward

process is reflected by the negative sign of the cross-correlation σxv starting around t ≈ 15,

when fluctuating x and v alternate in sign. In comparison, the sign of σxv is always positive

in the backward process. It is thus tempting to conclude the absence of self-regulation in

the backward process. However, as noted above, the literal interpretation of the sign of

cross-correlation requires some caution for broad, non-Gaussian PDFs (especially ones with

multiple peaks). This is because the mean values for multiple peak PDFs do not represent

the mostly likely values. Consequently, fluctuations which measures the deviation from the

mean values can also be misleading and thus cross-phase can be misleading for multi-peak

PDFs (see below).
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The phase-portrait 〈v〉 against 〈x〉 in Fig. 1 column 4 shows the asymmetry between the

forward (in blue) and backward (in red) processes. In particular, the forward process starting

with 〈x〉 = 0.5 and 〈v〉 = 0 undergoes the increases in 〈x〉 and 〈v〉 before showing the circular
trajectory during the dithering; the backward process shows very different evolution, with

almost no overlap with the forward process trajectory, and ends at 〈x〉(t = 80) 6= 〈x〉(t = 0)

and 〈v〉(t = 80) 6= 〈v〉(t = 0). The disparity between the forward and backward processes

increases as Dx increases.

2. Information length diagnostics
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FIG. 2: The various information length diagnostics associated with the results in Fig. 1.

Column 1 (a1,a2,a3) shows E (black), Ex (red), and Ev (blue) as functions of time. Column

2 (b1,b2,b3) shows L (black), Lx (red), and Ev (blue); note how these quantities are reset

to zero at the start of the Q-decreasing phase. Column 3 (c1,c2,c3) shows the phase

portrait in the (Ex, Ev) plane, with blue corresponding to Q(t) increasing and red to Q(t)

decreasing.
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The information diagnostics calculated from the time-dependent PDFs are shown in

Fig. 2. As in Fig. 1, the three rows are for the different values of Dx, increasing from

the top to bottom as Dx = [1, 4, 16] × 10−4. Column 1 shows E (black), Ex (red), and Ev
(blue) as functions of time. We observe that E calculated from the joint PDF p(x, v, t) is

always larger than Ex and Ev calculated from the marginal PDFs p(x, t) and p(v, t). This is

because the averaging over x or v reduces the information content in the marginal PDFs.

(E − (Ex + Ev) has a rather complicated time evolution, with a larger fluctuation in the

forward process than in the backward process.) For the same reason, the values of E , Ex and

Ev decrease as Dx increases from the top to the bottom row.

In the first column in Fig. 2, the appearance of the maxima in Ex (red) and Ev (blue)

forecast the transition to the dithering phase earlier (better) than corresponding mean values

in Fig. 1; the maximum in Ex occurs at earlier times (e.g. t ≈ 10.5 for Dx = 10−4, t ≈ 9.5

for Dx = 16 · 10−4) than 〈x〉 (at t ≈ 13.5). This is followed by a series of oscillations during

dithering when Ex compete and oscillate around each other, alternating in which is larger.

The crossing between Ex (red) and Ev (blue) signifies the matching of the time scales of

p(x, t) and p(v, t) (τx = τv). τx = τv can be viewed as a resonance in the statistical state and

signifies a strong correlation between x and v. The crossing between Ex and Ev extends up

to around t ∼ 60 for Dx = 10−4, suggesting that the self-regulation between zonal flows and

turbulence continues in the backward process for a while although such behavior is difficult

to infer from the phase portraits in Fig. 1.

Time matching is clearly seen in the information phase portrait of τv against τx in column

3 where Ex and Ev oscillate around a straight line Ex = Ev (τx = τv) not only in the forward

process (in blue) but also in the backward process (in red). The oscillation of Ex and Ev
around Ex = Ev represents the competition between x and v, with the larger of Ex and Ev
dominating the competition. As Dx increases, the number of crossings between the two

decreases.

For the information length shown in column 2, we reset its value to zero at the start

of the backward process so that we can compare the total cumulative information change

in the forward and backward processes. L (black) calculated from the joint PDF p(x, v, t)

is always larger than Lx (red), and Lv (blue) since E > Ex, Ev. L resembles the behavior

of the greater of Lx and Lv. Compared with E (Ex and Ev), L (Lx and Lv) shows much

smoother time evolution, with the tendency of a slower increase during dithering. In fact,
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for Dx = 10−4 (top row), Lx ∼ Lv during the dithering can be seen at t ∼ (40, 65) while

the slope of Lx is similar to Lv at t ∼ (20, 40). That is, the self-regulation between x and v

synchronizes and reduces the rate at which the information length of x and v increases.

3. Entropy and Fisher information
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FIG. 3: Entropy and Fisher information associated with the results in Figs. 1 and 2.

Column 1 (a1,a2,a3) shows the entropies S (black), Sx (red), and Sv (blue) as functions of

time. Column 2 (b1,b2,b3) shows the Fisher information Fxx associated with the marginal

PDF p(x, t) in red, and the Fisher information Fvv associated with the marginal PDF

p(v, t) in blue. As in Figs. 1 and 2, the three rows (1,2,3) correspond to Dx = 10−4, 4 · 10−4

and 16 · 10−4.

As noted in §IV, entropy and Fisher information do not detect the movement of a PDF.

As a result, entropy or Fisher information is less informative compared with the information

length diagnostics discussed above. To demonstrate this, the results corresponding to Figs. 1

and 2 are shown in Fig. 3. Specifically, column 1 in Fig. 3 shows the evolution of the entropies

S (black), Sx (red), and Sv (blue). We note first that S from the joint PDF p(x, v, t) is always

smaller than Sx and Sv calculated from the marginal PDFs. This is because the averaging
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needed for calculating marginal PDFs increases uncertainty and thus entropy. The local

maxima of S, Sx and Sv appear to coincide with those of σx and σv in Fig. 1, although the

ordering between Sx and Sv does not follow that between σx and σv. What is clear though

is that the ordering between Sx and Sv is opposite to that between Fisher information

Fxx (in red) and Fvv (blue) shown in column 2. This is because the Fisher information

increases when the uncertainty decreases (e.g. when a PDF becomes narrow) while entropy

decreases. Also, comparing with Fig. 2, we notice that the dithering appears only in the

forward process and that the effect of different Dx is much less noticeable in Fig. 3. That

is, the information length diagnostics are more sensitive in capturing the dynamics of the

system (e.g. self-regulation/dithering, the effect of different parameters).

4. Joint PDFs
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FIG. 4: Contour plots of the Dx = 10−4 joint PDFs p(x, v, t) at the times labelled in each

panel, x on the horizontal axis, and v on the vertical axis. The top row corresponds to the

Q-increasing phase, and the bottom row to the Q-decreasing phase. Contour intervals are

on a logarithmic scale, with the smallest value at 10−3, then 10−2.5, 10−2, etc.

Fig. 4 shows the snapshot of joint PDFs p(x, v, t) in the (x, v) plane, taken at times

t = 10, 20, 30, ....80 for Dx = 10−4. While the peak of the PDF (in red) tends to follow

the evolution of 〈x〉 and 〈v〉 in Fig. 1, the joint PDF actually exhibits a quite complicated

20



evolution with convoluted structures. First of all, it is immediately clear that the PDF is

(strongly) non-Gaussian and develops multiple peaks during its evolution. Note that since

our results are shown only for x, v ≥ 0, PDFs actually have multiple (more than two) peaks

in x, v = (−∞,∞). Specifically, around t = 40, the second peak appears around x = v = 0;

up to t = 60, the original peak remains mainly in the same position while the second peak

around x = 0 gradually becomes stronger. At t = 70, the original peak appears to move

towards v = 0 in the v direction while it looks as if the two peaks got separated in the x

direction due to the development of a deep valley between them. The final PDF at t = 80

is seen to be stretched in x.

This complicated evolution of the PDF involving its overall movement and the change in

the number of PDF peaks highlight the significant limitations in using conventional methods

such as just mean value, standard deviation, entropy, etc. to understand dynamical changes

in general. In this regards, it is useful to recall again that for a PDF with more than one

peak, mean value does not give us the mostly likely value, and similarly standard deviation

does not give the PDF width, and their interpretation therefore requires caution. We note

also that in our previous work [24], the final collapse to x, v → 0 did not proceed by a simple

motion of the peak toward the origin; instead, a secondary peak developing at the origin

overtakes the original peak which remains largely in the same position.

5. Marginal PDFs

The marginal PDFs p(x, t) and p(v, t), including the case that corresponds to Fig. 4

(Dx = 10−4), are shown in Figs. 5 and 6, respectively; the three different values of Dx =

[1, 4, 16] × 10−4 are denoted by the black, blue and red curves in each panel. Prominent

features are strongly non-Gaussian, asymmetric PDFs, multiple peaks being observed at

t = 20 in both figures. For instance, the formation of a peak around the origin is seen for

Dx = 16×10−4 (red) at t = 30 already, while this happens later at t = 40 forDx = 10−4. This

is consistent with the previous results [24] where the stochasticity promotes the transition.

Of interest is that p(v, t) develops a more pronounced right tail around its main peak around

v ∼ 0.5, even with the appearance of a local maximum around v ∼ 1.2 at t = 20. This

means that rare, strong zonal flows v associated with this stretched right tail v > 0.5 play a

key role in regulating turbulence at the initial stage of the dithering. Also, the right tail of
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FIG. 5: The black curves in each panel show the marginal PDFs p(x, t) for Dx = 10−4,

corresponding to the joint PDFs shown in Fig. 4. The blue curves show equivalent results

at Dx = 4 · 10−4, and red at Dx = 16 · 10−4.

p(v, t) is more pronounced than that of p(x, t), highlighting the importance of intermittent

zonal flows. That is, intermittency, which is often thought to cause anomalous transport, can

actually reduce transport due to the enhanced population of a strong zonal flows (reflected

in the right tail of p(v, t)).

B. Set 2: Q = 0.05t and t∗ = 20

We now consider the case of a faster ramping as Q = 0.05t compared with Set 1 above.

Because of a shorter time for the system to adjust to the change in Q, the system is driven

further from equilibrium, as experimentally observed in [44]. Specifically, this results in the

reduction in the dithering phase as well as in the difference across results for different Dx,

as shown below. (As noted above, higher ramp rates slowing the cycle was shown in [44].)

Figs. 7-12 are equivalent to Figs. 1-6 with the only difference in Q = 0.05t and t∗ = 20

instead of Q = 0.03t+ 0.1 and t∗ = 40. Qualitatively, quite similar behaviors are observed,

and thus, the following focuses on pointing out the main differences between Figs. 7-12 and

Figs. 1-6.

22



0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=10

v

p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=20

v
p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=30

v

p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=40

v

p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=50

v

p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=60

v

p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=70

v
p
(v

)

0 0.5 1 1.5

10
−4

10
−2

10
0

10
2

t=80

v

p
(v

)

FIG. 6: As in Fig. 5, but now showing the marginal PDFs p(v, t) rather than p(x, t). The

black curves is for Dx = 10−4, again corresponding to the joint PDFs in Fig. 4; blue

denotes Dx = 4 · 10−4 and red Dx = 16 · 10−4.

1. Mean, standard deviation, cross-correlation and phase portrait

In comparison with Fig. 1, the dithering phase is more clearly seen in the backward

process in Fig. 7. Also, the effect of different Dx seems much less pronounced, with quite

similar evolutions in the different rows (Dx = [1, 4, 16] × 10−4); the standard deviation

(column 2) exhibits less difference between the forward and backward processes.

2. Information length diagnostics

In Fig. 8, we again observe that the oscillations between Ex and Ev are more pronounced

than those between 〈x〉 and 〈v〉 in Fig. 7. The rapid power ramp-down leads to the overall

reduction in the values of the information length diagnostics in comparison with Fig. 2 as a

result of being strongly driven out of equilibrium. Of note is that Lx (red) tends to be larger

than Lv (blue) in the forward process, while the opposite holds in the backward process (see

Fig. 2). This can imply that the forward process is mainly driven by turbulence x while

the backward process by zonal flow v. Although the time-histories of 〈x〉 and 〈v〉 in Fig. 7

appear quite similar for different Dx, the information length L, Lx and Lv in Fig. 8 show
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FIG. 7: From top to bottom, the three rows (1,2,3) show results for Set 2 at Dx = 10−4,

4 · 10−4 and 16 · 10−4. Column 1 (a1,a2,a3) shows 〈x〉 and 〈v〉 as functions of time, with 〈x〉
in blue/red (with the switch in color at t∗ = 20) and 〈v〉 in black. Column 2 (b1,b2,b3)

shows the associated standard deviations σx and σv, with the same color-coding. Column 3

(c1,c2,c3) shows the cross-correlation 〈(x− 〈x〉)(v − 〈v〉)〉/(σxσv). Column 4 (d1,d2,d3)

shows the phase portrait in the (〈x〉, 〈v〉) plane, with blue again corresponding to Q(t)

increasing and red to Q(t) decreasing.

clear differences, for instance, their overall values decreasing for a larger Dx.

3. Entropy and Fisher information

In comparison with Fig. 3, the forward and backward processes in Fig. 9 are more sym-

metric around t = t∗ = 20. In particular, the two local maxima in entropies appear much

closer with each other near t∗ = 20 in Fig. 9. Also, the difference across different rows is

less pronounced than in Fig. 3.
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FIG. 8: The various information length diagnostics associated with the results in Fig. 7.

Column 1 (a1,a2,a3) shows E (black), Ex (red), and Ev (blue) as functions of time. Column

2 (b1,b2,b3) shows L (black), Lx (red), and Ev (blue); note how these quantities are reset

to zero at the start of the Q-decreasing phase. Column 3 (c1,c2,c3) shows the phase

portrait in the (Ex, Ev) plane, with blue corresponding to Q(t) increasing and red to Q(t)

decreasing.

4. Joint PDFs

Fig. 10 uses the same color coding as that in Fig. 4. Thus, in comparison with Fig. 4,

we can conclude that p(x, v, t) in Fig. 10 contains more convoluted structures in space and

is less localized. In particular, a curly structure that appears at t = 15 persists through the

backward process without showing the breakup into the two peaks. This extended structure

manifests higher uncertainty in predicting x and v values and can explain the overall smaller

values in Fig. 8 in comparison with Fig. 2.
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FIG. 9: Entropy and Fisher information diagnostics associated with the results in Figs. 7

and 8. Column 1 (a1,a2,a3) shows the entropies S (black), Sx (red), and Sv (blue) as

functions of time. Column 2 (b1,b2,b3) shows the Fisher information Fxx associated with

the marginal PDF p(x, t) in red, and the Fisher information Fvv associated with the

marginal PDF p(v, t) in blue. As in Figs. 7 and 8, the three rows (1,2,3) correspond to

Dx = 10−4, 4 · 10−4 and 16 · 10−4.

5. Marginal PDFs

The marginal PDFs p(x, t) in Fig. 11 and p(v, t) in Fig. 12 show in more detail the

extended structures of the PDFs noted above. In particular, at t = 15, Dx = 10−4 (black)

shows the three local maxima of p(x, t) at x 6= 0 in Fig. 11, implying the total six peaks of

p(x, t) in the entire x = [−2, 2] range. On the other hand, at t = 15, Dx = 10−4 (black)

shows an almost flat top p(v, t) in Fig. 12.

C. Q = 0.1t and t = t∗ = 12.

When we increase the ramping rate further to Q = 0.1t, we observe that the tendency

of less difference between the forward and backward processes (noted in §V.B) persists. As
examples, here we show only the three Figs. 13, 14 and 15 that correspond to Figs. 7, 8 and
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FIG. 10: Contour plots of the Dx = 10−4 joint PDFs p(x, v, t) at the times labelled in each

panel, x on the horizontal axis, and v on the vertical axis. The top row corresponds to the

Q-increasing phase, and the bottom row to the Q-decreasing phase. Contour intervals are

on a logarithmic scale, with the smallest value at 10−3, then 10−2.5, 10−2, etc.
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FIG. 11: The black curves in each panel show the marginal PDFs p(x, t) corresponding to

the joint PDFs shown in Fig. 10, which are again at Dx = 10−4. The blue curves show

equivalent results at Dx = 4 · 10−4, and red at Dx = 16 · 10−4.
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FIG. 12: As in Fig. 11, but now showing the marginal PDFs p(v, t) rather than p(x, t).

The black curves again correspond to the joint PDFs in Fig. 10, then blue denotes

Dx = 4 · 10−4 and red Dx = 16 · 10−4.

10, respectively.

It is interesting to observe also that there is virtually no difference across different rows

(Dx = [1, 4, 16] × 10−4) in Fig. 13. That is, there is reduced sensitivity to noise at higher

power ramp rate. As noted above, this curtailing of the limit cycle at high power/ramp rate

is similar to what was found experimentally at high power input, where only one half of one

cycle is executed (see Fig. 2(e) in [44]). In comparison, the information length diagnostics in

Fig. 14 show the reduction in their values as Dx increases. Finally, Fig. 15 shows beautifully

convoluted structures in the joint PDF p(x, v, t).

VI. DISCUSSIONS AND CONCLUSIONS

We have investigated the stochastic, prey-predator L-H transition model by calculating

time-dependent PDFs in the forward and backward processes where the input power in-

creases and decreases, respectively. From the time-dependent PDFs, we calculated various

statistical measures including the information length Lx(t) and Lv(t) for turbulence and

zonal flows. Our principal results include that i) the mean-field-type theory is invalid with
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FIG. 13: From top to bottom, the three rows (1,2,3) show results for Set 3 at Dx = 10−4,

4 · 10−4 and 16 · 10−4. Column 1 (a1,a2,a3) shows 〈x〉 and 〈v〉 as functions of time, with 〈x〉
in blue/red (with the switch in color at the transition time t = 40) and 〈v〉 in black.

Column 2 (b1,b2,b3) shows the associated standard deviations σx and σv, with the same

color-coding. Column 3 (c1,c2,c3) shows the cross-correlation 〈(x− 〈x〉)(v − 〈v〉)〉/(σxσv).

Column 4 (d1,d2,d3) shows the phase portrait in the (〈x〉, 〈v〉) plane, with blue again

corresponding to Q(t) increasing and red to Q(t) decreasing.

the limited utility of mean value, variance, stationary PDFs; ii) the L-H transition can in-

volve a strongly non-Gaussian PDF and intermittency; iii) the faster the ramping is, the

greater the deviation from Gaussian PDFs and less duration of the dithering; iv) enhanced

right tails for rare, large zonal flows can play a crucial role in turbulence regulation; v) the

stark difference between the forward and backward processes is captured by time-dependent

PDFs of turbulence and zonal flows; vi) the larger the stochasticity, the more asymmetry

there is between forward and backward processes. Furthermore, the information geometric

tool (information length) was shown to be a useful index to understand correlation and

self-regulation, the transitions as well as forecasting the transitions.

While ensembles with a given statistical property (as used in this paper) facilitate anal-

ysis, it always raises the question how relevant those ensembles are to a real system (which
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FIG. 14: The various information length diagnostics associated with the results in Fig. 1.

Column 1 (a1,a2,a3) shows E (black), Ex (red), and Ev (blue) as functions of time. Column

2 (b1,b2,b3) shows L (black), Lx (red), and Ev (blue); note how these quantities are reset

to zero at the start of the Q-decreasing phase. Column 3 shows the phase portrait in the

(Ex, Ev) plane, with blue corresponding to Q(t) increasing and red to Q(t) decreasing.

does not have multiple copies for ensembles). Based on ergodicity, time or spatial samplings

are often used for ensembles assuming that there are many similar copies of the system at

different times or spatial locations. This thus requires high-resolution data from numerical

simulations or future experiments for good statistics. For instance, we can utilise different

(temporal and/or spatial) samplings of data from high-resolution numerical simulations of

fluid models or gyrokinetic models (which are computationally very expensive) for statistics.

Even if high spatial resolution data might be difficult to obtain, time-dependent PDFs can

still be calculated by sampling the data in the time-series of different variables (fluctuating

density, electric field, etc.) from high temporal resolution data by using moving-time win-

dows (e.g. see [21]). High-resolution temporal data would be necessary to ensure that there

are a sufficient number of samples within the sliding windows to represent ensembles for a
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FIG. 15: Contour plots of the Dx = 10−4 joint PDFs p(x, v, t) at the times labelled in each

panel, x on the horizontal axis, and v on the vertical axis. The top row corresponds to the

Q-increasing phase, and the bottom row to the Q-decreasing phase. Contour intervals are

on a logarithmic scale, with the smallest value at 10−3, then 10−2.5, 10−2, etc.

non-stationary process. Ensembles are often used to analyse non-stationary time-series for

forecasting, etc., e.g. [58–60].

The latter method was in fact used in our recent work of the analysis of the Hasegawa-

Wakatani turbulence [21] where the information diagnostics were shown to be a novel

methodology of assessing the effects of coherent structures and turbulent dynamics in plas-

mas. In particular, a sudden change in the system, like intermittent transport by a coherent

structure, increases E to a large value. Also, correlation/decorrelation of the flux between

different spatial positions due to coherent structure was captured by similar/disparate time

evolution of information length L and E . (We note that the strong correlation between the

two interacting species in [22] was captured by the same evolution of L and E .) Similar

analysis can be performed to interpret simulation results of the L-H transition models by

using data at different spatial points for different variables to infer the correlation between

different spatial points (e.g. plasma edge, core, etc.) as well as elucidating the effects of

zonal and mean flows. High-resolution data in time and space will be highly desirable from

experiments.

Since our methodology is much more sensitive to dynamical changes such as entering the

31



dithering phase than other traditional methods (mean values, variance), we may be able

to identify undesirable plasmas events (large ELMs, major disruption, etc.) [56, 57] well

before other methods can. This will then give more time to control or avoid the occurrence

of such events. We note that the importance of a sufficient warning time to control major

disruption was highlighted in [57].

In summary, the sensitivity of our information length diagnostics is welcome in addressing

the main challenge in fusion research in regards to the prediction and control of anomalous

transport or undesirable large plasmas events [56, 57], facilitating the control of such events.

Finally, our future work will include extension to the 3D Fokker-Planck equation by treating

N dynamically, different power rampings, more general stochastic forcings, extension to the

fluid model to analyse the temporal-spatial dynamics in other L-H and H-L transition models

or ELMs, experimental data, and the prediction of plasma eruption and mitigation. In the

abstract mathematical sense, it will be of interest to understand the information budget [23]

in space as well as its time-evolution.
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Appendix A: Relation between L and relative entropy

We show that τ(t) and L(t) in Eqs. (2)-(6) are related to the relative entropy (Kullback–

Leibler divergence) [15, 16] by considering two nearby PDFs p1 = p(x, t1) and p2 = p(x, t2)

at times t = t1 and t2. We consider the limit of a very small δt = t2 − t1 and Taylor expand

D[p1, p2] =
∫

dx p2 ln (p2/p1) by using

∂

∂t1
D[p1, p2] = −

∫

dx p2
∂t1p1
p1

, (A1)

∂2

∂t21
D[p1, p2] =

∫

dx p2

{

(∂t1p1)
2

p21
− ∂2

t1
p1

p1

}

, (A2)

∂

∂t2
D[p1, p2] =

∫

dx

{

∂t2p2 + ∂t2p2
[

ln p2 − ln p1
]

}

, (A3)

∂2

∂t22
D[p1, p2] =

∫

dx

{

∂2
t2
p2 +

(∂t2p2)
2

p2
+ ∂2

t2
p2
[

ln p2 − ln p1
]

}

. (A4)

In the limit t2 → t1 = t (p2 → p1 = p), Eqs. (A1)–(A4) give us

lim
t2→t1

∂

∂t1
D[p1, p2] = lim

t2→t1

∂

∂t2
D[p1, p2] =

∫

dx∂tp = 0,

lim
t2→t1

∂2

∂t21
D[p1, p2] = lim

t2→t1

∂2

∂t22
D[p1, p2] =

∫

dx
(∂tp)

2

p
=

1

τ 2
. (A5)

Up to O((dt)2) (dt = t2 − t1), Eq. (A5) and D(p1, p1) = 0 lead to

D[p1, p2] =
1

2

[
∫

dx
(∂tp(x, t))

2

p(x, t)

]

(dt)2, (A6)

and thus the infinitesimal distance dl(t1) between t1 and t1 + dt as

dl(t1) =
√

D[p1, p2] =
1√
2

√

∫

dx
(∂t1p(x, t1))

2

p(x, t1)
dt. (A7)

By summing dt(ti) for i = 0, 1, 2, ..., n− 1 (where n = t/dt) in the limit dt → 0, we have

lim
dt→0

n−1
∑

i=0

dl(idt) = lim
dt→0

n−1
∑

i=0

√

D[p(x, idt), p(x, (i+ 1)t)] dt ∝
∫ t

0

dt1

√

∫

dx
(∂t1p(x, t1))

2

p(x, t1)
= L(t),

(A8)

where L(t) is the information length in Eq. (1). We note that unlike a path-dependent L,
the relative entropy D[p(x, 0), p(x, t)] depends only on PDFs at time 0 and t for a finite t

and thus does not tell us about intermediate states between initial and final states.
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Appendix B: Invariance of Eqs. (1)-(2) and (3)-(4)

To show the invariance of Eq. (1)-(2) under a change of variables, let us consider y = F (x).

Then, we have

p(y, t) = p(x, t)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= p(x, t)
1

|F ′(x)| , (B1)

where F ′(x) = dF (x)
dx

. Since F ′(x) is independent of time t, we have ∂tp(y, t) =

[∂tp(x, t)]
1

|F ′(x)|
. Using this and dy = dx|F ′(x)|, we have

∫

dy
1

p(y, t)

[

∂p(y, t)

∂t

]2

=

∫

dx
1

p(x, t)

[

∂p(x, t)

∂t

]2

. (B2)

Thus, we obtain the identical τ(t) from p(x, t) and p(y, t).

Similarly, for Eqs. (3)-(4), by considering the independent changes of variables as y =

F (x) and z = F (v) that are independent of time t, we can show that τy = τx and τz = τv.

Appendix C: Derivation of the Fokker-Planck Equations in Eq. (12)

In order to derive the Fokker-Planck equation (12) from the Langevin equation (9)-(11),

it is useful to introduce a generating function Z (see also [54, 55])

Z = ei(λx(t)+γv(t)). (C1)

Then, by definition of ‘average’, the average of Z is related to the PDF, p(x, v, t), as

〈Z〉 =
∫

dxdv Z p(x, v, t) =

∫

dxdv ei(λx(t)+γv(t)) p(x, v, t). (C2)

Thus, we see that 〈Z〉 is the Fourier transform of p(x, v, t). The inverse Fourier transform

of 〈Z〉 then gives p(x, v, t):

p(x, v, t) =

(

1

2π

)2 ∫

dλdγ e−i(λx+γv) 〈Z〉. (C3)

We note that Eq. (C3) can be written as

p(x, v, t) =

〈

(

1

2π

)2 ∫

dλdγ e−i[λ(x−x(t))+γ(v−v(t))]

〉

= 〈δ(x(t)− x)δ(v(t)− v)〉 , (C4)

which is another form of p(x, v, t). To obtain the equation for p(x, v, t), we first derive the

equation for 〈Z〉 and then take the inverse Fourier transform as summarized in the following.
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We differentiate Z with respect to time t and use Eqs. (9)-(10) to obtain

∂tZ = i[λ∂txZ + γ∂tvZ] = i[λ(f + ξ(t)) + γ(g + η(t))]Z. (C5)

The formal solution to Eq. (C5) is

Z(t) =

∫ t

0

dt1 i[λ(f(t1) + ξ(t1)) + γ(g(t1) + η(t1))]Z(t1). (C6)

The average of Eq. (C5) gives

∂t〈Z〉 = i [λ〈fZ〉+ γ〈gZ〉] + iλ〈ξ(t)Z(t)〉+ iγ〈η(t)Z(t)〉. (C7)

To find 〈ξ(t)Z(t)〉, we use Eq. (C6) as follows:

〈ξ(t)Z(t)〉 = i〈ξ(t)
∫ t

0

dt1 [λ(f(t1) + ξ(t1)) + γ(g(t1) + η(t1))]Z(t1)〉

= iλ2Dx〈Z(t)〉. (C8)

Here we used the independence of ξ(t) and Z(t1) for t1 < t, 〈ξ(t)Z(t1)〉 = 〈ξ(t)〉〈Z(t1)〉 = 0,

Eq. (11),
∫ t

0
dt1 δ(t− t1) = 1/2, 〈ξ〉 = 〈η〉 = 0 and 〈ξ(t)η(t′)〉 = 0. Note that 〈ξ(t)Z(t1)〉 =

〈ξ(t)〉〈Z(t1)〉 = 0 for t1 < t is an exact result since the stochastic noise changes very rapidly

due to its short correlation time, and thus its value at any future time t evolves independently

of the previous value of Z(t1) at the earlier time t1. Similarly, we can show that

〈η(t)Z(t)〉 = iγ2Dv〈Z(t)〉. (C9)

By substituting Eqs. (C8)-(C9) into Eq. (C7) we obtain

∂t〈Z〉 = i [λ〈fZ〉+ γ〈gZ〉]− [λ2Dx + γ2Dv]〈Z(t)〉. (C10)

The inverse Fourier transform of Eq. (C10) then gives us

∂

∂t
p(x, v, t) = − ∂

∂x

[

fp(x, v, t)
]

− ∂

∂v

[

gp(x, v, t)
]

+

[

Dx

∂2

∂x2
+Dv

∂2

∂v2

]

p(x, v, t). (C11)

which is Eq. (12) in the text.

Alternative ways of deriving Eq. (12) are also given by [54, 55, 61]. Note further that the

Fokker-Planck Eq. (12) corresponding to the Langevin Eqs. (9)-(11) agrees with the gen-

eral expression for the Fokker-Planck equation (4.94)-(4.95) corresponding to the Langevin

equation (3.110)-(3.113) for the multi-variables in [54], which has also been used extensively

in the literature (e.g. Eqs. (14)-(15) in the recent paper [62]).
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