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ABSTRACT: This article highlights some of the recent advances in the area of optimising chemical synthesis. We 

explore how continuous flow chemistry, coupled with automation and optimisation techniques, can constitute a 

powerful tool that enables searches in larger chemical spaces and can assist delivering better methods faster. The 

combination of methods like Design of Experiment and local and global optimisation algorithms, such as SIMPLEX 

and Bayesian approaches, can further enhance the information gathered while optimising a method. Coupling 

these methods with intelligent, cloud based, automated platforms, enables a holistic approach to optimising 
chemical synthesis that combines chemistry, engineering and informatics.  

 

INTRODUCTION 

Synthetic organic chemistry underpins many scientific areas and what is possible has evolved far beyond the 

wildest dreams of previous generations of researchers in recent years. However, in order to continue this expansion 

in scope, it is fundamental that it embraces new technologies in a truly multi-disciplinary way. We believe 

continuous flow automated optimisation platforms are a vital tool in this regard and have far reaching implications 
to the field moving forward. 

The discovery of new reactivities and development of new synthetic methods drives a large portion of research in 

chemistry. As these advances often happen in narrow chemical spaces it is paramount that new technologies are 

employed to assist chemists in exploring new frontiers and make it is possible to conduct method optimisation in 

the best, safest and faster manner possible. 

In this paper we share some highlights and perspectives into automated optimisation in continuous flow platforms, 

often referred to as self-optimising systems. 

 

CONTINUOUS FLOW CHEMISTRY AND AUTOMATION 

In the last two decades continuous flow chemistry, as applied to chemical synthesis, has established itself as an 

enabling tool, gathering attention from both academia and industry. Its developments have been covered in many 

reviews,(1–10) but it is relevant to highlight some of its benefits and challenges. 

Generally, precise control over system parameters, combined with increased heat and mass transfer, has allowed 

many developments that would be otherwise challenging.(5, 9) For instance, the generation and reactivity of 

organometallic reagents has been extensively explored with great success, mostly due to better mixing and 

temperature control.(11) The same is valid for reactive/unstable intermediates, that can be generated and quickly 

consumed, often avoiding side-reactions and decomposition. In respect to both examples, the dynamic aspect of 

continuous flow means the formed product can be moved away from fresh reagent, in many cases improving 

selectivity/yield of the desired product.(12) 

A considerable bottleneck for the uptake of continuous systems is the necessity to acquire, often at high cost, 

equipment like pumps, valves, reactors and back-pressure regulators. However, since most modern electronics 

are equipped with communication ports and protocols, this also creates an opportunity to explore the potentials of 

automation. Despite the additional equipment cost the reduction of human resource from labour intensive and 

repetitive tasks, as noted by Professor Steve Ley in a previous editorial, will likely lead to an overall reduction in 

costly experimental time and free synthetic chemists, increasing the time to focus on data analysis, challenging 

chemistries and creative work.(13) 



The development of open source coding languages like Python and R, and software like MATLAB® and LabView®
, 

that provide a graphical interface, greatly expand the accessibility to programming. The increased availability of 

online training in these areas means that not only flow chemistry, but all scientific disciplines will benefit from the 

next generation of students/researchers who will be more familiar with programming and automation tools.  

In the era of cloud computing, Internet of Things and Industry 4.0, it is an additional advantage that equipment can 

be controlled remotely. Laboratory services that incorporate remote access/control are available in biology, but in 

chemistry there are very few reports, mostly from academia.(14–19) Remote access laboratories can not only be 

envisioned as a service or a tool used to improve the running of experiments, but they have the potential to become 

instrumental for establishing and strengthening collaborations. In the current virus pandemic, all those features 

become of special importance, with social distancing rules and working remotely becoming part of the norm. In 

addition to remote access for visualising and controlling equipment, webcams and smart electronic laboratory 
notebooks (ELN), that can save experimental metadata, are tools whose presence is certain to enhance this area. 

 

SELF-OPTIMISATION 

Automated continuous flow refers to a set of experiments or actions that can be ran autonomously by the equipment 

and the results analysed later by the operator. If that is coupled with the latest inline/online analytical tools, then 

the amount of information generated in a given time is greatly improved. Many have explored this type of system, 

but one example that deserves special mention is Pfizer’s platform, that is capable of running >1500 experiments 

per day.(20) Some chemists might wish to screen a set of conditions which generates such a large number of 

experiments, but it is far more common that a chemist would want to perform a small set of experiments, then 
suggest a new set based on his/her analysis. 

In this sense, the next step forward is to transfer this process to the computer, enabling iterative experiments to be 

designed and performed based on the data that the system acquires. This automated closed loop optimisation is 

often referred to as a self-optimisation system (Figure 1). 

 

 

 

 

Figure 1. Diagram for a self-optimising system. 

The application of self-optimisation platforms to chemical systems has led to approximately 30-40 reports, which 

points to the fact that despite this being an old concept,(21) it has only been adopted to any meaningful extent in 

recent years.(22) There is a predominance of academic groups in these reports, which highlights that this is a 

‘technology in development’. It is also noteworthy that most reports have focused on continuous variables (such as 

concentration, temperature and residence time) and the majority used local optimisers to generate sets of 

conditions (e.g. SIMPLEX).(23) 

Consequently, there are few studies that include discrete variables, such as solvent or different reagents, and this 

is a key development, as most chemical methods can benefit from both continuous and discrete variables being 



optimised.(22, 24, 25) Also, only a few studies have applied multi-objective optimisations.(23, 26–29) This 

approach is very appealing as it can give a balance between 2 diverging objectives. For example, exploring 

increasing reactor productivity and decreasing environmental impact; or increasing selectivity and decreasing 

catalyst loading. 

Recent reports by Dr. K. Gilmore (multistep radial synthesis) and Prof. K. Jensen (robotic platform for flow 

synthesis) both demonstrate that such platforms will have increasingly modularity and be reconfigurable in 

nature.(30, 31) These approaches allow much greater flexibility, combining many of the benefits of both batch and 
flow chemistry with a single platform to accommodate different reaction requirements and multistage reactions. 

 

OPTIMISATION OF CHEMICAL REACTIONS 

Alongside optimisation using algorithms, as outlined above, there are other methods that can be used to optimise 

a given reaction. It is not within the scope of this paper to describe and analyse the merits of the many techniques 

available, but the main argument to be made is that more informed approaches are in development and will gain 

attention, but also combined, hybrid techniques shall be developed to increase the optimisation tools available. 

This will allow for faster method development as well as better understanding of the methods in question. 

One variable at a time (OVAT) has been the default method by which chemists have optimised new reactions, 

while simpler to execute, the chances of being away from the absolute optimum are very high and increase with 

the number of parameters.(32) While rarely featured in undergraduate courses, design of experiments (DoE) and 

kinetic modelling are the more established alternatives to OVAT, especially in the industry, were there is a necessity 

for the development of robust processes.(32, 33) Applications of both DoE methods (e.g. MBDoE and feedback 

DoE) and kinetic modelling/parameter estimation continue to be developed and tools and training have and will 

become more accessible.(34–36) 

When optimising a given reaction, minimising the number of experiments to reduce the amount of potentially limited 

starting materials used and waste generated is always a key consideration, and therefore, it is our view that 

combined approaches will gain popularity. Our group has recently published a paper in which a hybridised 

optimisation was performed, combining process optimisation with surface mapping, to an automated photochemical 

continuous flow reactor.(37) The algorithm starts the optimisation using SNOBFIT (Stable Noisy Optimization by 

Branch and Fit) to find the optimum and then moves to a screening stage, where it uses a surrogate Gaussian 

Process to map the area around this optimum. The final stage executes a DoE using a central composite face 

centred (CCF) design with the optimum as the centre point, to further refine the response surface model around 

the optimum previously defined (Figure 2). Understanding the shape of the response surface around the optimum 

is highly desired in a chemical process context as it informs the operator of the extent to which changes in process 
conditions can affect the quality of the product. 

 

 



Figure 2. Simplified flow diagram for the hybridised optimisation algorithm. 

 

OVERVIEW 

It is apparent that the modern chemist requires a renewed set of skills that stretch beyond traditional training. For 

example, obtaining and honing the broad set of skills necessary to build and implement an automated optimisation 

platform, requires expertise in; flow chemistry, in/online analytics, automation and programming. Clearly, this 

represents a huge educational challenge. But the pronounced increase in interest and information available 

suggests that we are likely to see many great advances in this area in the coming years. 

With so many tools available, the ability to select the correct approach to solve a given challenge also requires 

significant training. When choosing distinct approaches for a chemical optimisation, the best option can often be 

determined by the chemist/process requirements. For example, if speed and material consumption are the highest 

priorities, then a local optimisation algorithm (e.g. SIMPLEX) might be the best choice. In other instances, where 

knowledge of how specific parameter influence the system is desired, then a full DoE study will be more 

appropriate. These tools need to become readily available, so the chemists and engineers can make use of them 

to accelerate discovery and development. Using machine learning and artificial intelligence it is now possible that 

smart, artificial systems can make these decisions themselves and continue to improve the process as every result 

informs the decision-making process iteratively. 

Although this text is mainly focused on continuous flow, all the optimisation tools and integration can be 

implemented in batch with appropriate robotic equipment. Despite that and despite the major advances in batch 

high throughput experimentation (HTE), to the best of our knowledge, there is no application of self-optimisation in 

batch chemistry. We believe it is something that will be explored soon due to the versatility of working in batch, e.g. 

for solid systems such as those with insoluble starting materials and products, where flow chemistry approaches 
are difficult to envisage. 

The development and application of novel optimisation algorithms also represent a big growth area in the near 

future. For example, Bayesian algorithms have shown great potential optimising problems with unknown response 

surfaces, but there are opportunities to further tune these algorithms for bespoke chemical applications, which can 

reduce experimental workload and more rapidly optimise synthetic processes. 

Our research group is currently investigating many of the mentioned technologies in an EPSRC funded project 

called Cognitive Chemical Manufacturing, where we and our partners aim to combine process development tools 

through a cloud-based platform.(38) That platform can control different automated continuous flow systems, in 

different sites, and uses data-rich technologies to accelerate the transfer from laboratory to production scale (Figure 

3). This approach should also help overcome the requirement of owning expensive equipment and further enable 

the ability to parallelise chemical optimisations in an analogous fashion to the transformative effect that multi-core 

processors had to computing technologies. 

 



Figure 3. Conceptual diagram for the Cognitive Chemical Manufacturing project. 

 

SUMMARY 

Together with analytical techniques, continuous flow chemistry, high throughput experimentation, automation, self-
optimisation platforms have come a long way from initial developments to today’s state-of-the-art. 

We believe that, as many different areas had to be developed to facilitate the use of automated continuous flow 

platforms for chemistry, many of the technologies cited here will be developed, and the holistic implementation of 

them, into more flexible hybrid platforms in a “lab of the future” approach to chemical synthesis that combines 

chemistry, engineering and informatics, will greatly improve discovery and process development. 
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