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Abstract

We study the parameterized complexity of the Bounded-Degree Vertex Deletion 
problem (BDD), where the aim is to find a maximum induced subgraph whose max-
imum degree is below a given degree bound. Our focus lies on parameters that meas-
ure the structural properties of the input instance. We first show that the problem is 
W[1]-hard parameterized by a wide range of fairly restrictive structural parameters 
such as the feedback vertex set number, pathwidth, treedepth, and even the size of a 
minimum vertex deletion set into graphs of pathwidth and treedepth at most three. 
We thereby resolve an open question stated in Betzler, Bredereck, Niedermeier and 
Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback 
vertex set number. On the positive side, we obtain fixed-parameter algorithms for 
the problem with respect to the decompositional parameter treecut width and a novel 
problem-specific parameter called the core fracture number.
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1 Introduction

This paper studies the BOUNDED-DEGREE VERTEX DELETION problem (BDD): given an 
undirected graph G, a degree bound d, and a limit � , determine whether it is possible 
to delete at most � vertices from G in order to obtain a graph of maximum degree 
at most d. Aside from being a natural generalization of the classical VERTEX COVER 
problem, BDD has found applications in areas such as computational biology [19] 
and is the dual problem of the so-called s-Plex Detection problem in social network 
analysis [3, 38, 39, 44]. Finally, related problems on directed as well as undirected 
graphs which model problems in voting theory and social network analysis have also 
been studied in the literature [5, 7].

It is not surprising that the complexity of BDD and several of its variants has 
been studied extensively by the theory community in the past years [4, 6, 9, 10, 13, 
34, 42, 44]. Since the problem is NP-complete in general, it is natural to ask under 
which conditions does the problem become tractable. In this direction, the parame-

terized complexity paradigm [12, 15, 41] allows a more refined analysis of the prob-
lem’s complexity than classical complexity. In the parameterized setting, we asso-
ciate each instance with a numerical parameter k and are most often interested in 
the existence of a fixed-parameter algorithm, i.e., an algorithm solving the problem 
in time f (k) ⋅ |V(G)|O(1) for some computable function f. Parameterized problems 
admitting such an algorithm belong to the class FPT; on the other hand, parameter-
ized problems that are hard for the complexity class W[1] or W[2] do not admit 
fixed-parameter algorithms (under standard complexity assumptions).

In general, there exist two notable approaches for selecting parameters: a param-
eter may either originate from the formulation of the problem itself (often called 
natural parameters), or rather from the structure of the input graph (so-called struc-

tural parameters, most prominently represented by the decomposition-based param-
eter treewidth �� ). The parameterized complexity of BDD has already been studied 
extensively through the lens of natural parameters (especially d and � ). In particular, 
BDD is known to be FPT when parameterized by d + � [19, 39, 42], W[2]-hard 
when parameterized only by � [19], and NP-complete when parameterized only by 
d (as witnessed by the case of d = 0 , i.e., VERTEX COVER). The complexity of BDD is 
also fairly well understood when considering combinations of natural and structural 
parameters: it is FPT when parameterized by �� + d due to Courcelle’s Theorem 
[11] and has been shown to be FPT when parameterized by �� + � [6].

Given the above, it is fairly surprising that the problem has remained fairly unex-
plored when viewed through the lens of structural parameters only, i.e., in the case 
where we impose no restrictions on the problem formulation itself but only on the 
structure of the graph. BDD was shown W[1]-hard when parameterized by tree-
width [6], complementing the previous O(n��+1) algorithm of Dessmark et al. [13]. 
The only structural parameter which is known to make the problem fixed-parameter 
tractable is the feedback edge set number, i.e., the minimum number of edges whose 
deletion results in a forest [6].

Contribution The goal of this paper is to provide new insight into the complex-
ity of BDD parameterized by the structure of the input graph. Our first main result 
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shows that BDD is �[1]-hard parameterized by the feedback vertex set number, i.e., 
the minimum number of vertices whose deletion results in a forest. This resolves 
an open question in [6]. Interestingly, our result is significantly stronger since we 
show that hardness even applies in the case that the remaining parts, after delet-
ing the feedback vertex set, are trees of height three. This rules out fixed-parameter 
algorithms w.r.t. most of the remaining “classical” decomposition-based structural 
parameters such as pathwidth and treedepth [40] as well as w.r.t. the vertex deletion 

distance [23, 40] to bounded pathwidth, treedepth, and treewidth. On the way to our 
hardness result we show hardness for several multidimensional variants of the clas-
sical subset sum problem parameterized by the number of dimensions, which we 
believe are interesting on their own.

In light of the above, it is natural to ask whether there exist natural decomposi-
tion-based parameters for which BDD is fixed-parameter tractable. Our main algo-
rithmic result answers this question affirmatively: we obtain a fixed-parameter algo-
rithm utilizing the recently introduced structural parameter called treecut width. The 
importance of treecut width is that it plays a similar role with respect to the funda-
mental graph operation of immersion as the graph parameter treewidth plays with 
respect to the minor operation [32, 37, 45]. Up to now, only a handful of problems 
are known to be FPT when parameterized by treecut width but W[1]-hard when 
parameterized by treewidth [24]; recent work on treecut width also included new 
algorithmic lower bounds [27] and experimental evaluations [26]. We note that 
unlike previous algorithms exploiting treecut width, ours does not make use of an 
Integer Linear Programming formulation but instead relies purely on combinatorial 
arguments.

Our second algorithmic result focuses on structural parameters which are not 
based on any particular decomposition of the graph, but instead measure the “ver-
tex-deletion distance” to a certain graph property. Such structural parameters have 
been successfully used in the past for a plethora of other difficult problems [16, 
17, 23, 28, 29, 35]. In this context and taking into account the strong lower bounds 
obtained in Sect. 3, we introduce a structural parameter which is specifically tailored 
to BDD and which we call the core fracture number. Roughly speaking, the core 
fracture number k is the vertex deletion distance to a graph where each connected 
component only contains at most k vertices which exceed the degree bound d. We 
show that computing the core fracture number is FPT which in turn gives rise to a 
fixed-parameter algorithm for BDD; the latter is achieved by identifying and formal-
izing a type-aggregation condition, allowing for an encoding of the problem into an 
Integer Linear Program with a controlled number of integer variables. Since core 
fracture number generalizes vertex cover, this also resolves the question from [6] if 
BDD is FPT parameterized by vertex cover.

Finally, we exclude the existence of a polynomial kernel [12, 15] for BDD param-
eterized by the treecut width and core fracture number, and compare the two param-
eters in Sect. 5.
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2  Preliminaries

2.1  Basic Notation

We use standard terminology for graph theory, see for instance [14]. All graphs 
except for those used to compute the torso-size in Sect. 2.4 are simple; the multi-
graphs used in Sect. 2.4 have loops, and each loop increases the degree of the vertex 
by 2.

Let G be a graph. We denote by V(G) and E(G) its vertex and edge set, 
respectively. For a vertex v ∈ V(G) , let NG(v) = {y ∈ V(G) ∶ vy ∈ E(G)} , 
N

G
[v] = N

G
(v) ∪ {v} , and deg

G
(v) denote its open neighborhood, closed neighbor-

hood, and degree, respectively. For a subset X ⊆ V(G) , the (open) neighborhood 
N

G
(X) of X is defined as 

⋃

x∈X
N(x) ⧵ X . The set N

G
[X] refers to the closed neigh-

borhood of X defined as N
G
(X) ∪ X . We refer to the set N

G
(V(G) ⧵ X) as �

G
(X) ; this 

is the set of vertices in X which have a neighbor in V(G) ⧵ X . We omit the lower 
index G, if G is clear from the context. For a vertex set A, we use G − A to denote 
the graph obtained from G by deleting all vertices in A. We use [i] to denote the set 
{0, 1,… , i} ; note that [i] includes 0. For completeness, we provide a formal defini-
tion of our problem of interest below. 

Bounded-Degree Vertex Deletion (BDD)

Input: An undirected graph G = (V, E) and integers d ≥ 0 and
ℓ ≥ 0.

Question: Is there a subset V ′ ⊆ V with |V ′| ≤ ℓ whose removal
from G yields a graph in which each vertex has degree
at most d?

2.2  Parameterized Complexity

A parameterized problem P is a subset of �∗
× ℕ for some finite alphabet � . Let 

L ⊆ 𝛴∗ be a classical decision problem for a finite alphabet, and let p be a non-
negative integer-valued function defined on �∗ . Then L parameterized by � denotes 
the parameterized problem { (x, �(x)) | x ∈ L } where x ∈ �

∗ . For a problem 
instance (x, k) ∈ �

∗ × ℕ we call x the main part and k the parameter. A parameter-
ized problem P is fixed-parameter tractable (FPT in short) if a given instance (x, k) 
can be solved in time O(f (k) ⋅ p(|x|)) where f is an arbitrary computable function 
of k and p is a polynomial function; we call algorithms running in this time fixed-

parameter algorithms. We refer the reader to [15] for more details on parameterized 
complexity.

Parameterized complexity classes are defined with respect to fpt-reducibility. 
A parameterized problem P is fpt-reducible to Q if in time f (k) ⋅ |x|O(1) , one can 
transform an instance (x, k) of P into an instance (x�, k

�) of Q such that (x, k) ∈ P 
if and only if (x�, k

�) ∈ Q , and k� ≤ g(k) , where f and g are computable functions 
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depending only on k. Owing to the definition, if P fpt-reduces to Q and Q is fixed-
parameter tractable then P is fixed-parameter tractable as well.

Central to parameterized complexity is the following hierarchy of complex-
ity classes, defined by the closure of canonical problems under fpt-reductions: 
��� ⊆ �[1] ⊆ �[2] ⊆ ⋯ ⊆ ��. All inclusions are believed to be strict. In particu-
lar, ��� ≠ �[1] under the Exponential Time Hypothesis [30].

The class �[1] is the analog of �� in parameterized complexity. A major goal 
in parameterized complexity is to distinguish between parameterized problems 
which are in ��� and those which are �[1]-hard, i.e., those to which every prob-
lem in �[1] is fpt-reducible. There are many problems shown to be complete for 
�[1] , or equivalently �[1]-complete, including the MULTICOLORED CLIQUE (MCC) 
problem [15].

Closely related to the search for fixed-parameter algorithms is the search for 
efficient preprocessing techniques. The goal here is to find an equivalent instance 
(the so-called kernel) in polynomial time whose size can be bounded by a func-
tion of the parameter. A kernelization algorithm transforms in polynomial time a 
problem instance (x, k) of a parameterized problem L into an instance (x�, k

�) of L 
such that (i) (x, k) ∈ L iff (x�, k

�) ∈ L , (ii) k� ≤ f (k) , and (iii) the size of x′ can be 
bounded above by g(k), for functions f and g depending only on k. It is easy to 
show that a parameterized problem is in FPT if and only if there is kernelization 
algorithm. A polynomial kernel is a kernel, whose size can be bounded by a poly-
nomial in the parameter.

A polynomial parameter transformation from a parameterized problem P to 
a parameterized problem Q is a parameterized reduction from P to Q that maps 
instances (I, k) of P to instances (I�

, k
�) of Q with the additional property that 

1. (I�
, k

�) can be computed in time that is polynomial in |I| + k , and
2. k

′ is bounded by some polynomial p of k.

Proposition 1 [2, Proposition 1] Let P and Q be two parameterized problems such 

that there is a polynomial parameter transformation from P to Q . Then, if Q has a 

polynomial kernel also P has a polynomial kernel.

In the following we will introduce another tool called cross-compositions, 
introduced by [8], for showing lower bounds for the size of kernels. An equiva-
lence relation R on �∗ is called a polynomial equivalence relation if the follow-
ing two conditions hold: 

1. There is an algorithm that given two strings x, y ∈ �
∗ decides whether x and y 

belong to the same equivalence class in (|x| + |y|)O(1) time.
2. For any finite set S ⊆ 𝛴∗ the equivalence relation R partitions the elements of S 

into at most (max
s∈S

|s|)O(1) classes.
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Let L ⊆ 𝛴∗ be an (unparameterized) problem and let P ⊆ 𝛴∗
× ℕ be a parameter-

ized problem. We say that L AND-cross-composes into P if there is a polyno-
mial equivalence relation R and an algorithm which, given t instances (x1,… , x

t
) 

of L belonging to the same equivalence class of R , computes an instance 
(x, k) ∈ �

∗ × ℕ of P in time polynomial in 
∑t

i=1
�x

i
� such that: 

1. (x, k) ∈ P if and only if x
i
∈ L for every i with 1 ≤ i ≤ t,

2. k is bounded by a polynomial in (maxt

i=1
|x

i
|) + log t.

Proposition 2 [8, Corollary  3.6] If an NP-hard language L AND-cross-composes 

into the parameterized problem P , then P does not admit a polynomial kernel unless 

���� ⊆ ��∕poly.

2.3  Integer Linear Programming

Our algorithms use an Integer Linear Programming (ILP) subroutine. ILP is a well-
known framework for formulating problems and a powerful tool for the development 
of fixed-parameter algorithms for optimization problems.

Definition 1 (p-Variable Integer Linear Programming Optimization) Let 
A ∈ ℤ

q×p, b ∈ ℤ
q×1 and c ∈ ℤ

1×p . The task is to find a vector x ∈ ℤ
p×1 which mini-

mizes the objective function c × x̄ and satisfies all q inequalities given by A and b, 
specifically satisfies A ⋅ x̄ ≥ b . The number of variables p is the parameter (Fig. 1).

Lenstra [36] showed that  p -ILP, together with its optimization variant  p -OPT-

ILP (defined above), are in FPT. His running time was subsequently improved by 
Kannan [31] and Frank and Tardos [21] (see also [20]).

Proposition 3 ([20, 21, 31, 36]) p-OPT-ILP can be solved in time O(p2.5p+o(p)
⋅ L) , 

where L is the number of bits in the input.

Fig. 1  A graph G and a width-3 treecut decomposition of G, including the torso-size (left value) and 
adhesion (right value) of each node
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2.4  Treecut Width

The notion of treecut decompositions was first proposed by Wollan [45], see also 
[37]. A family of subsets X1,… , X

k
 of X is a near-partition of X if they are pairwise 

disjoint and 
⋃k

i=1
X

i
= X , allowing the possibility of X

i
= �.

Definition 2 A treecut decomposition of G is a pair (T , X) which consists of a rooted 
tree T and a near-partition X = {X

t
⊆ V(G) ∶ t ∈ V(T)} of V(G). A set in the family 

X  is called a bag of the treecut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident 
to t on the path to r. Let Tu and T t be the two connected components in T − e(t) 
which contain u and t, respectively. Note that (

⋃

q∈Tu Xq,

⋃

q∈T t Xq) is a near-parti-
tion of V(G), and we use ���(t) to denote the set of edges with one endpoint in each 
part. We define the adhesion of t ( ���

T
(t) or ���(t) in brief) as |���(t)| ; if t is the 

root, we set ���
T
(t) = 0 and ���(t) = �.

The torso of a treecut decomposition (T , X) at a node t, written as H
t
 , is the graph 

obtained from G as follows. If T consists of a single node t, then the torso of (T , X) 
at t is G. Otherwise let T1,… , T

�
 be the connected components of T − t . For each 

i = 1,… ,� , the vertex set Z
i
⊆ V(G) is defined as the set 

⋃

b∈V(Ti)
X

b
 . The torso H

t
 

at t is obtained from G by consolidating each vertex set Z
i
 into a single vertex zi 

(this is also called shrinking in the literature). Here, the operation of consolidating 
a vertex set Z into z is to substitute Z by z in G, and for each edge e between Z and 
v ∈ V(G) ⧵ Z , adding an edge zv in the new graph. We note that this may create par-
allel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v 
of degree at most 2 consists of deleting v, and when the degree is two, adding an 
edge between the neighbors of v. Given a connected graph G and X ⊆ V(G) , let the 
3-center of (G, X) be the unique graph obtained from G by exhaustively suppress-
ing vertices in V(G) ⧵ X of degree at most two. Finally, for a node t of T, we denote 
by H̃

t
 the 3-center of (H

t
, X

t
) , where H

t
 is the torso of (T , X) at t. Let the torso-size 

���(t) denote |H̃
t
|.

Definition 3 The width of a treecut decomposition (T , X) of G is defined as 
max

t∈V(T){���(t), ���(t)} . The treecut width of G, or ���(G) in short, is the mini-
mum width of (T , X) over all treecut decompositions (T , X) of G.

We conclude this subsection with some notation related to treecut decomposi-
tions. Given a tree node t, let T

t
 be the subtree of T rooted at t. Let Y

t
=
⋃

b∈V(Tt)
X

b
 , 

and let G
t
 denote the induced subgraph G[Y

t
] . The depth of a node t in T is the dis-

tance of t from the root r. The vertices of �
t
= �

G
(Y

t
) are called the border at node t.

A node t ≠ r in a rooted treecut decomposition is thin if ���(t) ≤ 2 and bold 
otherwise. For a node t, we let B

t
= { b is a child of t | |N(Y

b
)| ≤ 2 ∧ N(Y

b
) ⊆ X

t
} 
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denote the set of thin children of t whose neighborhood is a subset of X
t
 , and we let 

A
t
= { a is a child of t | a ∉ B

t
} be the set of all other children of t.

While it is not known how to compute optimal treecut decompositions efficiently, 
there exists a fixed-parameter 2-approximation algorithm which fully suffices for our 
purposes.

Theorem 1 ([32]) There exists an algorithm that takes as input an n-vertex graph G 

and integer k, runs in time 2O(k2)
n

2 , and either outputs a treecut decomposition of G 

of width at most 2k or correctly reports that ���(G) > k.

A treecut decomposition (T , X) is nice if it satisfies the following condition for 
every thin node t ∈ V(T) : N(Yt) ∩

⋃

b is a sibling of t Yb = � . The intuition behind nice 
treecut decompositions is that we restrict the neighborhood of thin nodes in a way 
which facilitates dynamic programming.

Lemma 1 ([24]) There exists a cubic-time algorithm which transforms any rooted 

treecut decomposition (T , X) of G into a nice treecut decomposition of the same 

graph, without increasing its width or number of nodes.

The following property of nice treecut decompositions will be crucial for our 
algorithm.

Lemma 2 ([24]) Let t be a node in a nice treecut decomposition of width k. Then 

|A
t
| ≤ 2k + 1.

For completeness and self-containedness, we also provide the proofs of the pre-
vious two lemmata in an appendix. We refer to previous work [24, 32, 37, 45] for 
a more detailed comparison of treecut width to other parameters. Here, we men-
tion only that treecut width lies “between” treewidth and treewidth plus maximum 
degree.

Proposition 4 [24, 37, 45] Let ��(G) denote the treewidth of G and �����(G) 

denote the maximum over ��(G) and the maximum degree of a vertex in G. Then 

��(G) ≤ 2���(G)2 + 3���(G) , and ���(G) ≤ 4�����(G)2.

3  Hardness Results

In this section we show that BDD is W[1]-hard parameterized by a vertex dele-
tion set to trees of height at most three, i.e., a subset D of the vertices of the graph 
such that every component in the graph, after removing D, is a tree of height at 
most three. On the way towards this result, we provide hardness results for several 
interesting versions of the multidimensional subset sum problem (parameterized by 
the number of dimensions) which we believe are interesting in their own right. In 
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particular, we note that the hardness results also hold for the well-known and more 
general multidimensional knapsack problem [22].

Our first auxiliary result shows hardness for the following problem. 

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with
si ∈ N

k for every i with 1 ≤ i ≤ n and a target vector
t ∈ N

k.
Parameter: k

Question: Is there a subset S′ ⊆ S such that
∑

s∈S′ s = t?

Lemma 3 MSS is W[1]-hard even if all integers in the input are given in unary.

Proof We prove the lemma by a parameterized reduction from MULTICOLORED 

CLIQUE, which is well-known to be W[1]-complete [43]. Given an integer k and a 
k-partite graph G with partition V1,… , V

k
 , the MULTICOLORED CLIQUE problem asks 

whether G contains a k-clique. In the following we denote by Ei,j the set of all edges 
in G with one endpoint in V

i
 and the other endpoint in Vj , for every i and j with 

1 ≤ i < j ≤ k . To show the lemma, we will construct an instance I = (k�, S, t) of 

MSS in polynomial time with k� = 2

(

k

2

)

+ k and all integers in I  are bounded by 

a polynomial in |V(G)| such that G has a k-clique if and only if I  has a solution.
For our reduction we will employ so called Sidon sequences of natural numbers. 

A Sidon sequence is a sequence of natural numbers such that the sum of every two 
distinct numbers in the sequence is unique. For our reduction we will need a Sidon 
sequence of |V(G)| natural numbers, i.e., containing one number for each vertex of 
G. Since the numbers in the Sidon sequence will be used as numbers in I  , we need 
to ensure that the largest of these numbers is bounded by a polynomial in |V(G)|. 
Indeed [18] shows that a Sidon sequence containing n elements and whose larg-
est element is at most 2p

2 , where p is the smallest prime number larger or equal to 
n, can be constructed in polynomial time. Together with Bertrand’s postulate [1], 
which states that for every natural number n there is a prime number between n 
and 2n, we obtain that a Sidon sequence containing |V(G)| numbers and whose larg-
est element is at most 8|V(G)|2 can be found in polynomial time. In the following 
we will assume that we are given such a Sidon sequence S and we denote by S(i) 
the i-th element of S for any i with 1 ≤ i ≤ |V(G)| . Moreover, we denote by max(S) 
and max

2
(S) the largest element of S and the maximum sum of any two numbers 

in S , respectively. We will furthermore assume that the vertices of G are identified 
by numbers between 1 and |V(G)| and therefore S(v) is properly defined for every 
v ∈ V(G).



 Algorithmica

1 3

We are now ready to construct the instance I = (k�, S, t) . We set k� = 2

(

k

2

)

+ k 

and t is the vector whose first 
(

k

2

)

 entries are all equal to max
2
(S) + 1 and whose 

remaining 
(

k

2

)

+ k entries are all equal to 1. For every i and j with 1 ≤ i < j ≤ k , 

we will use I(i, j) as a means of enumerating the indices in a sequence of two-ele-
ment tuples; formally, I(i, j) = (

∑l<i

l=1
(k − l)) + (j − 1) . Note that the vector t and its 

indices can then be visualized as follows:

We now proceed to the construction of S, which will contain one element for each 
edge and for each vertex in G. In particular, the set S of item-vectors contains the 
following elements:

– for every i with 1 ≤ i ≤ k and every v ∈ V
i
 , a vector s

v
 such that all entries with 

index in { I(l, r) | 1 ≤ l < r ≤ k ∧ l = i } ∪ { I(l, r) | 1 ≤ l < r ≤ k ∧ r = i } are 
equal to S(v) (informally, this corresponds to all indices where at least one ele-

ment of the tuple (l, r) is equal to i), the 2
(

k

2

)

+ i-th entry is equal to 1, and 

all other entries are equal to 0. The following illustrates s
v
 for the case that 

k = 4 and i = 2 : 

– for every i and j with 1 ≤ i < j ≤ k and every e = {u, v} ∈ E(i, j) , a vector s
e
 

such that the entry I(i,  j) is equal to (max
2
(S) + 1) − (S(u) + S(v)) , the 

(

k

2

)

+ I(i, j)-th entry is equal to 1, and all other entries are equal to 0. The 

following illustrates the vector s
e
 for the case that k = 4 , i = 2 , and j = 3 : 

This completes the construction of I  . It is clear that I  can be constructed in pol-
ynomial time and moreover every integer in I  is at most max

2
(S) + 1 and hence 

polynomially bounded in |V(G)|. Intuitively, the construction relies on the fact 

t = (max
2

(S) + 1,… , max
2

(S) + 1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I(1,2),I(1,3),…,I(k−1,k)

, 1,… , 1
⏟⏟⏟

⎛
⎜
⎜
⎝

k

2

⎞
⎟
⎟
⎠
+I(1,2),…,

⎛
⎜
⎜
⎝

k

2

⎞
⎟
⎟
⎠
+I(k−1,k)

, 1,… , 1
⏟⏟⏟

2

⎛
⎜
⎜
⎝

k

2

⎞
⎟
⎟
⎠
+1,…,2

⎛
⎜
⎜
⎝

k

2

⎞
⎟
⎟
⎠
+k)

)

s
v
= (S(v), 0, 0, S(v), S(v), 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I(1,2),I(1,3),…,I(3,4)

, 0,… , 0
⏟⏟⏟

I(1,2),I(1,3),…,I(3,4)

, 0, 1, 0, 0
⏟⏟⏟

2

⎛
⎜
⎜
⎝

4

2

⎞
⎟
⎟
⎠
+1,…,2

⎛
⎜
⎜
⎝

4

2

⎞
⎟
⎟
⎠
+4)

)

s
e
= (0, 0, 0, max

2
(S) + 1 − (S(u) + S(v)), 0, 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I(1,2),I(1,3),…,I(3,4)

, 0, 0, 0, 1, 0, 0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

I(1,2),…,I(3,4)

, 0,… , 0
⏟⏟⏟

2

⎛
⎜
⎜
⎝

4

2

⎞
⎟
⎟
⎠
+1,…,2

⎛
⎜
⎜
⎝

4

2

⎞
⎟
⎟
⎠
+4)

)
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that since the sum of each pair of vertices is unique, we can uniquely associ-
ate each pair with an edge between these vertices whose value will then be the 
remainder to the global upper-bound of max

2
(S).

It remains to show that G has k-clique if and only if I  has a solution. Towards 
showing the forward direction, let C be a k-clique in G with vertices v1,… , v

k
 such 

that v
i
∈ V

i
 for every i with 1 ≤ i ≤ k . We claim that the subset 

S
� = { s

v
| v ∈ V(C) } ∪ { s

e
| e ∈ E(C) } of S is a solution for I  . Let t′ be the vector 

∑

s∈S�
s . Because C contains exactly one vertex from every V

i
 and exactly one edge 

from every Ei,j , it holds that t
�[l] = t[l] = 1 for every index l with 

(

k

2

)

< l ≤ 2

(

k

2

)

+ k . Moreover, for every i and j with 1 ≤ i < j ≤ k , the vectors 

s
v

i

 , svj
 , and sei,j

 are the only vectors in S′ with a non-zero entry at the I(i, j)-th posi-
tion. Hence t�[I(i, j)] = svi

[I(i, j)] + svj
[I(i, j)] + sei,j

[I(i, j)] , which because 
svi
[I(i, j)] = S(vi) , svj

[I(i, j)] = S(vj) , and sei,j
[I(i, j)] = (max2(S) + 1) − (S(vi) + S(vj)) 

is equal to S(vi) + S(vj) + (max2(S) + 1) − (S(vi) + S(vj)) = max2(S) + 1 = t[I(i, j)] , 
as required.

Towards showing the reverse direction, let S′ be a subset of S such that 
∑

s∈S�
s = t . 

Because the last k entries of t are equal to 1 and for every i with 1 ≤ i ≤ k , it holds 
that the only vectors in S that have a non-zero entry at the i-th last position are the 
vectors in { s

v
| v ∈ V

i
} , it follows that S

′ contains exactly one vector say s
v

i

 in 
{ s

v
| v ∈ V

i
} for every i with 1 ≤ i ≤ k . Using a similar argument for the entries of t 

with indices between 
(

k

2

)

+ 1 and 2
(

k

2

)

 , we obtain that S′ contains exactly one 

vector say ei,j in { se | e ∈ Ei,j } for every i and j with 1 ≤ i < j ≤ k . Consequently, 
S� = {sv1

,… , svk
} ∪ { ei,j | 1 ≤ i < j ≤ k } . We claim that {v1,… , v

k
} forms a 

k-clique in G, i.e., for every i and j with 1 ≤ i < j ≤ k , it holds that ei,j = {vi, vj} . To 
see this consider the I(i, j)-th entry of t� =

∑

s∈S�
s . The only vectors in S′ having a 

non-zero contribution towards t�[I(i, j)] are the vectors s
v

i

 , svj
 , and sei,j

 . Because 
svi
[I(i, j)] = S(vi) , svj

[I(i, j)] = S(vj) , and t�[I(i, j)] = t[I(i, j)] = max2(S) + 1 , we 
obtain that sei,j

[I(i, j)] = (max2(S) + 1) − (S(vi) + S(vj)) . Because S is Sidon 
sequence and thus the sum (S(vi) + S(vj)) is unique, we obtain that ei,j = {vi, vj} , as 
required.   ◻

Observe that because any solution S′ of the constructed instance in the previous 

lemma must be of size exactly k� = 2

(

k

2

)

+ k , it follows that the above proof also 

shows W[1]-hardness of the following problem. 
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Restricted Multidimensional Subset Sum (RMSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with
si ∈ N

k for every i with 1 ≤ i ≤ n, a target vector t ∈ N
k,

and an integer k′.
Parameter: k + k′

Question: Is there a subset S′ ⊆ S with |S′| = k′ such that∑
s∈S′ s = t?

Corollary 1 RMSS is W[1]-hard even if all integers in the input are given in unary.

Using an fpt-reduction from the above problem, we will now show that also the 
following more relaxed version is W[1]-hard. 

Multidimensional Relaxed Subset Sum (MRSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with
si ∈ N

k for every i with 1 ≤ i ≤ n, a target vector t ∈ N
k,

and an integer k′.
Parameter: k + k′

Question: Is there a subset S′ ⊆ S with |S′| ≤ k′ such that∑
s∈S′ s ≥ t?

Lemma 4 MRSS is W[1]-hard even if all integers in the input are given in unary.

Proof We prove the lemma by a parameterized reduction from RMSS, which is 
W[1]-hard even if all integers in the input are given in unary because of Corollary 1. 
Namely, given an instance I = (k, S, t, k�) of RMSS we construct an equivalent 
instance I = (2k, S, t, k�) of MRSS in polynomial time such that all integers in I  are 
bounded by a polynomial of the integers in I .

The set S contains one vector s for every vector s ∈ S with s[i] = s[i] and 
s[k + i] = t[i] − s[i] for every i with 1 ≤ i ≤ k . Finally, the target vector t is defined 
by setting t[i] = t[i] and t[k + i] = (k� − 1) ⋅ t[i] for every i with 1 ≤ i ≤ k . This con-
cludes the construction of I  . Clearly, I  can be constructed in polynomial time and 
the values of all numbers in I  are bounded by a polynomial of the maximum num-
ber in I  . It remains to show that I  has a solution if and only if I  has a solution.

Towards showing the forward direction, let S
′ ⊆ S be a solution for I  , i.e., 

|S�| = k� and 
∑

s∈S�
s = t . We claim that the set S

�
= { s | s ∈ S

� } is a solution for I  . 
Because s[i] = s[i] and t[i] = t[i] for every s ∈ S and i with 1 ≤ i ≤ k , it follows that 
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∑

s∈S
� s[i] = t[i] for every i as above. Moreover, for every i with 1 ≤ i ≤ k , it holds 

that 
∑

s∈S
� s[k + i] = k� ⋅ t[i] −

∑

s∈S
� s[i] = k� ⋅ t[i] − t[i] = (k� − 1)t[i] = t[k + i] , 

showing that S is a solution for I .
Towards showing the reverse direction, let S

′

⊆ S be a solution for I
′ , i.e., 

|S
′

| ≤ k′ and 
∑

s∈S
� s ≥ t . We claim that the set S� = { s | s ∈ S

�
} is a solution for I .

Because S
′

 is a solution for I′ , we obtain for every i with 1 ≤ i ≤ k that: 

(1) 
∑

s∈S
� s[i] ≥ t[i] , which because s[i] = s[i] implies that 

∑

s∈S�
s[i] ≥ t[i],

(2) 
∑

s∈S
� s[k + i] ≥ (k − 1)t[i] , which because s[k + i] = t[i] − s[i] implies that 

�S��t[i] −
∑

s∈S�
s[i] ≥ (k� − 1)t[i] . First, since we can assume that t[i] > 0 and 

therefore also 
∑

s∈S�
s[i] > 0 by (1), observe that |S�| > k� − 1 and in particular 

|S�| = k� . Then by using this, we obtain that k�t[i] −
∑

s∈S�
s[i] ≥ (k� − 1)t[i] which 

implies t[i] ≥
∑

s∈S�
s[i].

It follows from (1) and (2) that 
∑

s∈S�
s[i] = t[i] and hence S′ is a solution for I  of 

size k′ , as required.   ◻

We are now ready to show our main hardness result for BDD using a reduction 
from MRSS.

Theorem 2 BDD is W[1]-hard parameterized by the size of a vertex deletion set into 

trees of height at most 3.

Proof We prove the theorem by a parameterized reduction from MRSS. Namely, 
given an instance I = (k, S, t, k�) of MRSS we construct an equivalent instance 
I
� = (G, d,�) of BDD such that G has a FVS D of size k ⋅ (k� + 1) . The core idea of 

the reduction relies on transforming the decision of whether to select a vector into a 
solution S′ for I  into the decision of whether to resolve a tree gadget in G in one of 
two possible ways.

See Fig. 2, which provides an illustration of the construction. The set D consists 
of (k� + 1) vertices d1

i
,… , d

k
�
+1

i
 for every i with 1 ≤ i ≤ k . Moreover, for every s ∈ S 

we introduce the gadget G(s) defined as follows. G(s) consists of max(s) , where 
max(s) is the value of the largest coordinate of s, stars with centers cs

1
,… , c

s

max(s)
 . 

Fig. 2  Example of the gadget in Theorem 2
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For now we attach one leaf denoted ls
i
 to every such center cs

i
 ; we will later attach 

additional “unnamed” leaves to ensure that every center has exactly d + 1 leaves, 
however, d is to be determined later.

Additionally, G(s) has a root vertex, denoted by rs , that has an edge to every 
center vertex cs

i
 . Finally, we add edges between the leaves ls

1
,… , l

s

max(s)
 and the verti-

ces in D such that for every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k� + 1 , it holds that dj

i
 

has s[i] neighbors among the leaves ls
1
,… , l

s

max(s)
 of G(s). Clearly this is always pos-

sible and can be done in an arbitrary manner.
We set d to be the maximum degree of the part of G constructed so far (note 

that this maximum is reached by one of the vertices in D). We now add d leaves to 
each center cs

i
 ensuring that every such center has exactly d + 1 leaves. Moreover, we 

now ensure that for every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k� + 1 , the vertex dj

i
 has 

degree d + t[i] in G by attaching a appropriate number of leaves to dj

i
 . Finally, we set 

� to be (
∑

s∈S
max(s)) + k� . This completes the construction of I′ . Clearly, I′ can be 

constructed in polynomial time. Moreover, |D| ≤ k ⋅ (k� + 1) and each component of 
G − D is a tree with height at most 3. It remains to show the equivalence between I  
and I′.

Towards showing the forward direction, let S
′ ⊆ S be a solution for I  , i.e., 

|S′| ≤ k′ and 
∑

s∈S�
s ≥ t . We construct a solution V � ⊆ V(G) from S′ as follows. For 

every s ∈ S ⧵ S
� , V ′ contains the center vertices cs

1
,… , c

s

max(s)
 from G(s) and for every 

s ∈ S
� , V ′ contains the root vertex rs and the leaf vertices ls

1
,… , l

s

max(s)
 from G(s). 

Clearly, �V �� =
∑

s∈S
max(s) + �S�� ≤

∑
s∈S

max(s) + k� = � . Moreover, since for 
every s ∈ S , the only vertices in G(s), whose degree exceeds d in G, are the centers 
of the stars, we obtain that the degree of the vertices in G(s) w.r.t. G − V

� is at most 
d. Finally, for every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k′ , the degree of the vertex dj

i
 

in G − V
� is equal to d + t[i] −

∑

s∈S�
s[i] ≤ d , as required.

Before we continue with the proof for the reverse direction, we will prove a cru-
cial property of the gadget G(s) for any s ∈ S .   ◻

Claim 1 If I = (G, d,�) has a solution, then there is a solution V � ⊆ V(G) such that 

for every s ∈ S , it holds that either: 

 (G1) V � ∩ G(s) = {c
s

1
,… , c

s

max(s)
} , or

 (G2) V � ∩ G(s) = {rs, l
s

1
,… , l

s

max(s)
}.

Proof Let V � ⊆ V(G) be a solution for I  and let s ∈ S . It is easy to see that if 
|V � ∩ G(s)| = max(s) then V � ∩ G(s) must be equal to {c

s

1
,… , c

s

max(s)
} . So suppose 

that |V � ∩ G(s)| > max(s) . We claim that then V �� = (V � ⧵ G(s)) ∪ {rs, l
s

1
,… , l

s

max(s)
} 

is also a solution for I  . Clearly, |V ′′| ≤ |V ′| ≤ � and every vertex in G(s) has degree 
at most d in G − V

�� . Finally, since the leaf vertices ls
1
,… , l

s

max(s)
 are the only vertices 

in G(s) with neighbors in D, it holds that the degree of any vertex in D − V
�� in 

G − V
�� is at most equal to its degree in G − V

� and since V ′ is a solution so is V ′′ .  
 ◻
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Towards showing the reverse direction of the claim, let V � ⊆ V(G) be a solution 
for I′ , i.e., |V ′| ≤ � and every vertex in G − V

� has degree at most d. Because of 
Claim  1, we can assume that V ′ satisfies (G1) or (G2) for every s ∈ S . We claim 
that the set S′ ⊆ S containing all s ∈ S such that V ′ satisfies (G2) is a solution for I  . 
Because �V �� ≤ � =

∑
s∈S

max(s) + k� and V ′ contains at least max(s) vertices from 
every gadget G(s) for any s ∈ S , we obtain that |S′| ≤ k′ . It hence only remains to 
show that 

∑

s∈S�
s ≥ t . Because �V �� ≤ � =

∑
s∈S

max(s) + k� and V ′ contains at least 
max(s) vertices from every gadget G(s) for any s ∈ S , it follows that |D ∩ V �| ≤ k� . 
Hence for every i with 1 ≤ i ≤ k , there is a j with 1 ≤ j ≤ k� + 1 such that dj

i
∉ V � . 

Consequently, V ′ must contain at least t[i] neighbors of dj

i
 . Since the only neighbors 

of a vertex dj

i
 (other than leaves, which we can assume are not contained in V ′ ) are 

the leaf vertices of the gadgets G(s), all these neighbors must lie in the gadgets G(s) 
for some s ∈ S

� . Since the number of neighbors of dj

i
 in V � ∩ G(s) for such an s ∈ S

� 
is equal to s[i], we obtain that 

∑

s∈S�
s[i] ≥ t[i] . Because the same argument applies 

to every i with 1 ≤ i ≤ k , we obtain that 
∑

s∈S�
s ≥ t and hence S′ is a solution for I  .  

 ◻

Clearly trees of height at most three are trivially acyclic. Moreover, it is easy to 
verify that such trees have pathwidth [33] and treedepth [40] at most three, which 
implies:

Corollary 2 BDD is W[1]-hard parameterized by any of the following parameters:

– the size of a feedback vertex set,
– the pathwidth and treedepth of the input graph,
– the size of a minimum set of vertices whose deletion results in components of 

pathwidth/treedepth at most three.

4  Solving BDD using Treecut Width

The goal of this section is to provide a fixed-parameter algorithm for BDD param-
eterized by treecut width. The core of the algorithm is a dynamic programming 
procedure which runs on a nice treecut decomposition (T , X) of the input graph G. 
Recall that for t ∈ V(T) , G[Y

t
] = G

t
 denotes the subgraph of G induced on all verti-

ces that appear below t, i.e., in a bag in the subtree rooted at t. Moreover, recall that 
�

t
 denotes the border of G[Y

t
] , i.e., the vertices which have a neighbor outside of 

G[Y
t
].

4.1  Overview

First we define the data table the algorithm is going to dynamically compute for 
individual nodes of the treecut decomposition. For each node t ∈ V(T) , the table 
is going to contain two components, which we will call the universal cost u

t
 and 

the specific cost s
t
 . Informally, the universal cost captures the minimum number of 
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vertices which need to be deleted from Y
t
 to satisfy the degree bound in G

t
 . The 

specific cost captures how many more vertices (than the universal cost) we need to 
delete in order to satisfy the degree bound in G

t
 when we also place restrictions on 

how G
t
 will interact with the rest of the graph. We formalize these notions below.

Let us fix an instance (G, d,�) of BDD and a treecut decomposition (T , X) of G 
of width at most k and rooted at r. A configuration � of a graph H with a desig-
nated vertex-subset Z is a mapping Z ↦ [k] ∪ {del} , i.e., each vertex in Z receives 
a value up to the treecut width or “del”. Intuitively, configurations are going to be 
used to place additional restrictions on the deletion sets we are interested in. We let 
���(H, Z, �) denote the minimum size of a vertex set W ⊆ V(H) such that: 

(A) v ∈ W ∩ Z if and only if �(v) = del , and
(B) for each v ∈ Z ⧵ W  , the degree of v in H − W  is at most d − �(v),
(C) for each v ∈ V(H) ⧵ (Z ∪ W) , the degree of v in H − W  is at most d.

Figure 3 depicts an illustration of ���(H, Z, �) . Informally, bdd captures the size of 
a minimum deletion set which intersects the designated subset precisely in the ver-
tices specified by � , and for the remainder of the designated subset it overshoots the 
degree bound by a buffer specified by � . If ���(H, Z, �) is not defined (which may 
happen, e.g., if d < |Z| ), we formally set ���(H, Z, �) = ∞ . For each node t ∈ V(T) , 
we can now define:

– u
t
= ���(G

t
, �, �) , and

– for each � ∶ �
t
→ [k] ∪ {del} such that each v ∈ �

t
 is mapped to del or to an inte-

ger i ≤ |N(v) ⧵ Y
t
| , we let s�

t
(�) = ���(G

t
, �

t
, �) − u

t
.

We proceed with a few observations. Naturally, the value of u
t
 can be much larger 

than k (as an example, consider a collection of disjoint stars), and this is not 
an issue for our algorithm. Furthermore, for every � it holds that 0 ≤ s

�
t
(�) , since 

u
t
≤ ���(G

t
, �

t
, �) ; notice that u

t
 attains the value of the smallest deletion set for G

t
 , 

while ���(G
t
, �

t
, �) attains the value of a smallest deletion set for G

t
 which satisfies 

certain additional restrictions.
Crucially, the value of s�

t
(�) can be much larger than k, and this represents a sig-

nificant obstacle for our algorithm. The role of the specific cost in the dynamic pro-
gramming procedure is to capture how a node may interact with the solution and 

Fig. 3  Illustration of the set 
���(H, Z, �) . The dotted edges 
are not considered for the degree 
of a node v 



1 3

Algorithmica 

how such interactions affect the size of a deletion set. The algorithm relies heavily 
on having only a bounded number of possible interactions in order to achieve its 
run-time bounds. Luckily, we will prove that any value of s�

t
(�) exceeding k must 

lead to a dead end and can be disregarded. Note that Lemma 5 also showcases how 
s
′

t
 relates to a solution in G, and the introduced notion of �t

S
 defined in the statement 

of the lemma is also useful later on.

Lemma 5 Let S be a minimum-size bounded degree deletion set in G. Let �t

S
 be defined 

over �
t
 as follows: �t

S
(v) = del if v ∈ S , and otherwise �t

S
(v) = |(N(v) ⧵ Y

t
) ⧵ S| . Then 

s�
t
(�t

S
) ≤ |N(Y

t
)| ≤ k.

Proof For brevity, let q = |N(Yt)| . The fact that q ≤ k follows immediately from 
the bound on the adhesion of t, hence we only need to prove that s�

t
(�t

S
) ≤ q . So, 

assume for a contradiction that s�
t
(𝛿t

S
) > q . Let P be a witness for the value of u

t
 , i.e., 

let P be a minimum-cardinality vertex subset of G
t
 such that the maximum degree 

in G
t
− P is at most d. Observe that |P ∪ N(Yt)| = ut + q . Now consider the set 

S
� = (S ⧵ Y

t
) ∪ P ∪ N(Y

t
) . First of all, note that |S′| < |S| , since we obtained S′ from 

S by removing more than ut + q vertices (recall that, by our assumption, s�
t
(𝛿t

S
) > q ) 

and then adding back at most ut + q vertices. Second, we claim that S
′ is also a 

bounded degree deletion set in G. Indeed, consider for a contradiction that G − S
� 

contains a vertex v of degree higher than d. Such a v cannot lie in Y
t
 since P was a 

solution in G
t
 and N(Y

t
) separates G

t
 from the rest of G. On the other hand, v cannot 

lie outside of Y
t
 due to the fact that S itself was a solution in G[V(G) − Y

t
] . So the 

claim holds, and S′ contradicts the optimality of S.   ◻

Thanks to Lemma 5, we can safely focus our attention on those configurations � 
where s�

t
(�) ≤ |N(Y

t
)| . In particular, let s

t
(�) be defined as follows.

Observe that, unlike s′
t
 , the number of distinct possibilities of what a specific cost 

s
t
 may look like is bounded by a function of k. The high-level strategy for the algo-

rithm is now the following: 

1. Compute (u
t
, s

t
) when t is a leaf,

2. Compute (u
t
, s

t
) when t is not a leaf, but the universal and specific costs are known 

for all of its children, and
3. Use the values (u

r
, s

r
) at the root node r ∈ T .

As we will see below, points 1. and 3. are straightforward.

Observation 3 (u
t
, s

t
) can be computed in time at most 2O(k⋅log k) if t is a leaf.

Proof Recall that |X
t
| ≤ k . To compute u

t
 it suffices to exhaustively loop through 

all vertex subsets L ⊆ X
t
 and check whether G

t
− L has degree at most d. Then u

t
 

s
t
(�) =

{
s
�
t
(�) ifs

�
t
(�) ≤ |N(Y

t
)|

∞ otherwise.
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is equal to the minimum size of such a subset. To compute s
t
 , we proceed simi-

larly: for each configuration � such that each v ∈ �
t
 is mapped to del or to an integer 

i ≤ |N(v) ⧵ Y
t
| , we exhaustively loop through all L ⊆ X

t
⧵ 𝜕

t
 in order to determine 

the value of ���(G
t
, �

t
, �) , and we then use that value and u

t
 to determine s

t
(�) .   ◻

Observation 4 (G, d,�) is a YES-instance of BDD if and only if u
r
≤ �.

Given the above, the last remaining obstacle is handling point 2, i.e., the dynamic 
propagation of information from leaves to the root. This is also the by far most chal-
lenging part of the algorithm, and we will deal with it in the next subsection.

4.2  The Dynamic Step

Recalling that u
t
 is an integer and s

t
 a mapping from configurations to integers, we 

summarize the subproblem that corresponds to handling point 2: 

BDD Join

Instance: A BDD instance (G, d, ℓ), a treecut decomposition (T, X ) of G

with width at most k, a node t ∈ V (T ) and the tuples (up, sp) for each
child p of t.
Parameter: k.
Task : Compute (ut, st).

 Our strategy for dealing with BDD JOIN is to apply a 2-step approach. Figure  4 
shows an illustration of the upcoming branching sets for a node t. Recall that A

t
 and 

B
t
 denote the set of all children of t which are bold and thin, respectively. First, we 

exhaustively loop over all options of how a deletion set candidate intersects with 
X

t
 and the borders of nodes in A

t
 , resulting in a set of “templates” which provide 

us with additional information about a potential solution. Here the bound on |A
t
| 

provided in Lemma 2 will be crucial. Second, we use branching and network flows 
to find an optimal way of extending such a template to a solution which deals with 
B

t
 . In this step, we overcome the fact that there may be an unbounded number of 

children p in B
t
 by “aggregating” them into types based on their s

p
 component. 

Fig. 4  The three branching 
sets for a node t ∈ V(T) , first 
branch on �

t
 (green), then on the 

boundaries of the bold nodes 
A

t
 together with the “interior” 

of t (orange) and finally on the 
equivalence classes of B

t
 (gray)
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Lemma 5 along with our definition of specific costs then guarantees that the number 
of aggregated types will depend only on k. Informally, if two nodes p

1
 , p

2
 in B

t
 have 

the same specific cost, then their behavior (“contribution”) to any solution is fully 
interchangeable. In particular, even if p

1
 , p

2
 have different universal costs, both of 

these costs will need to be “paid” by every solution regardless of how the solution 
handles the borders of these nodes. We proceed by formalizing the algorithm for 
BDD JOIN.

Lemma 6 BDD JOIN can be solved in time 2O(k2)
⋅ |B

t
|2 , where |B

t
| is upper-bounded 

by the number of children of t.

Proof For technical reasons, we will show how to compute the value ���(G
t
, �

t
, �) 

for each configuration � ; clearly, this is sufficient to determine (u
t
, s

t
) , as u

t
 is the 

minimum of ���(G
t
, �

t
, �) over all choices of � . For our presentation, let us now 

consider an arbitrary fixed choice of �.
Dealing with Bold Nodes  Let Q = (Yt ∩ (Xt ∪

⋃

p∈At
�p)) ⧵ �t . In other words, Q 

contains vertices in X
t
 as well as the endpoints (in Y

t
 ) of any edge which contributes 

to the adhesion of p ∈ At , but not vertices in �
t
 . The idea underlying the choice of Q 

is that we want it to act as our branching set extending our initial choice of � (which 
already provides us with full information on �

t
 ). See Fig.  5 for an illustration of 

Q. Since |A
t
| ≤ 2k + 1 by Lemma 2 and the adhesion of each node in A

t
 is upper-

bounded by k, we see that |Q| ≤ k + (2k + 1) ⋅ k = 2k2 + 2k . In the first phase of the 
algorithm, we will exhaustively loop through all possible intersections of a deletion 
set with Q. For the following, let us consider one such intersection R ⊆ Q .   ◻

At this point, a fixed choice of R and � together with the records for nodes in 
A

t
 give us sufficient information to determine the size of the intersection between 

(1) any minimum deletion set corresponding to our choice of � and R, and (2) 
Yp for any p ∈ At . Our next order of business is to formally establish this claim. 
For the rest of the proof, we will use the term global solution as shorthand for 
“a minimum-cardinality vertex subset of G such that the maximum degree in 
the graph after its deletion is at most d”. Furthermore, let C

t
= Y

t
⧵ (

⋃

b∈Bt

Y
b
) , 

�
del

= { v | �(v) = del } and �(R, �) = �Xt ∩ (R ∪ �del)� +
∑

p∈At
(up + sp(�

�)) , where 

Fig. 5  Illustration of the set Q. 
The orange parts are exactly the 
sets Q consists of (Color figure 
online)
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�
′ is the configuration of p which corresponds to our choices of R and � . For-

mally, �′ is defined for each p and each w ∈ �
p
 as follows:

– if w ∈ R or �(w) = del then we set ��(w) = del , and otherwise
– if w ∈ �

t
 then we set ��(w) = |N(w) ⧵ (Yp ∪ R ∪ �

del
)| + �(w).

– if w ∉ �
t
 then we set ��(w) = |N(w) ⧵ (Yp ∪ R ∪ �

del
)| , and otherwise

Intuitively, C
t
 refers to the part of Y

t
 that we can deal with thanks to having fixed 

R and � , and �(R, �) denotes the size of a global solution in C
t
 as we prove below.

Claim 2 Let S be a global solution such that S ∩ Q = R and S ∩ �
t
= �

del
 . Then 

|S ∩ C
t
| = �(R, �).

Proof (Claim) Assume for a contradiction that |S ∩ C
t
| < 𝛾(R, 𝛿) . This implies 

that there must exist a child p ∈ At such that |S ∩ Yp| < up + sp(𝛿
�) , where �′ is 

defined as above. However, note that S ∩ Yp satisfies all the conditions stipulated by 
���(Gp, Yp, �

�) , which are:

– v ∈ S ∩ �p if and only if ��(v) = del , and
– for each v ∈ �p ⧵ S , the degree of v in Gp − S is at most d − �

�(v),
– for each v ∈ Yp ⧵ (�p ∪ S) , the degree of v in H − S is at most d.

In particular, this implies that ���(Gp, Yp, �
�) ≤ |S ∩ Yp| ; since we assumed that 

|S ∩ Yp| < up + sp(𝛿
�) = ���(Gp, Yp, 𝛿

�) , we arrive at a contradiction.
On the other hand, assume that |S ∩ C

t
| > 𝛾(R, 𝛿) . Then there must exist a child 

p ∈ At such that |S ∩ Yp| > up + sp(𝛿
�) . By the definition of s

p
 , we know that there 

exists a vertex set W ⊆ Yp of size u
p
+ s

p
(��) which satisfies all the conditions 

imposed on W by ���(Gp, Yp, �
�) . Let us now consider the vertex set S′ obtained 

by replacing its part in Yp with W; formally, let S� = (S ⧵ Yp) ∪ W . By our assump-
tion that |S ∩ Yp| > up + sp(𝛿

�) , it follows that |S′| < |S| . Moreover, we claim that S′ 
is also a bounded degree deletion set in G. Indeed, each vertex v ∉ (Yp ∪ S) has the 
same neighborhood in S as in S′ (Condition  (A)). On the other hand, each vertex 
v ∈ (Yp ⧵ S�) has degree at most d by the properties of W; in particular, if v has no 
neighbors outside of Yp then it suffices to realize that W is a solution in Gp (Condi-
tion (C)), and if v has neighbors outside of Yp then these are accounted for by the 
more restrictive degree bounds placed on vertices in �

p
 (Condition (B)).

Since S′ is a bounded degree deletion set in G that is smaller than S, we have 
reached a contradiction with our assumption that S is a global solution.   ◻

Since �(R, �) can be readily computed for each choice of R and � using the 
information we have for children in A

t
 , it remains to determine how to best extend 

a particular choice of R and � into a deletion set for B
t
 ; in particular, we need to 

determine �S ∩
⋃

b∈Bt

Y
b
� for a global solution S that corresponds to R and � . Note 

that, unlike A
t
 , the cardinality of B

t
 is not bounded by a function of k, but instead 

we have strong restrictions on the neighborhood of each G
b
.
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Dealing with Thin Nodes   Our first goal will be to show that any global solu-
tion only “expends” a total of at most k from all the specific costs of all nodes in 
B

t
.

Claim 3 Let S be a global solution. Then �S ∩
⋃

b∈Bt

Y
b
� ≤ k +

∑
b∈Bt

u
b
.

Proof (of Claim) Assume for a contradiction that �S ∩
⋃

b∈Bt

Y
b
� > k +

∑
b∈Bt

u
b
 . For 

each b ∈ B
t
 , let P

b
 be a solution realizing u

b
 , i.e., let P

b
 be a vertex subset of G

b
 

such that |P
b
| = u

b
 and G

b
− P

b
 has maximum degree at most d. Now consider the 

set obtained from S by replacing its intersection with B
t
 with the union of all the 

sets P
b
 and by adding X

t
 ; formally, let S� = ((S ⧵

⋃

b∈Bt

Y
b
) ∪ X

t
) ∪

⋃

b∈Bt

P
b
 . Since 

S
′ is obtained by removing S ∩

⋃

b∈Bt

Y
b
 (of cardinality greater than k +

∑

b∈B
t

u
b
 ) 

and then adding X
t
∪
⋃

b∈B
t

P
b
 (of cardinality at most k +

∑

b∈B
t

u
b
 ), it follows that 

|S′| < |S| . We claim that S′ is a global solution, contradicting the initial choice of S 
(specifically, its optimality).

To see that S
′ is indeed a global solution, consider an arbitrary vertex 

v ∈ V(G) − S
� . If v lies in some Y

b
 , then v cannot have degree greater than d by 

our choice of P
b
 . Otherwise, v is separated from every Y

b
 by X

t
⊆ S

′ and hence 
N(v) ⧵ S

� ⊆ N(v) ⧵ S . So S′ is indeed a global solution and the claim holds.   ◻

As an immediate consequence of Claim  3, every optimal solution S has the 
property that there are at most k nodes b ∈ B

t
 such that |S ∩ Y

b
| > u

b
 . However, 

since the cardinality of B
t
 is not bounded by a function of k, exhaustively loop-

ing through all possible k-tuples of nodes in B
t
 to “guess” where S exceeds u

b
 

would be too expensive. Instead, we will identify a bounded number of equiva-
lence classes of nodes in B

t
 , and show that nodes in B

t
 are interchangeable as far 

as determining where S exceeds the universal cost.
Let us define the following relation ≡ on B

t
 . Two nodes p, q ∈ Bt satisfy p ≡ q if 

there exists a bijective function � ∶ �
p
→ �

q
 (called the renaming function) such that 

1. ∀v ∈ �p ∶ N(v) ∩ Xt = N(�(v)) ∩ Xt , and
2. ∀� ∈

{

�
p
→ {del, 0, 1, 2}

}

∶ s
p
(�) = s

q
(�(�)) , where �(�) is the mapping obtained 

from � by renaming vertices in �
p
 according to �.

Since � is bijective, ≡ is clearly an equivalence relation. Let ⟨≡⟩ denote the set 
of equivalence classes of ≡ . We claim that �⟨≡⟩� ≤ O(k2) : indeed, since the bor-
ders in B

t
 have size at most 2, there are O(k2) different possibilities of select-

ing neighbors of border vertices in X
t
 , and thanks to Lemma 5 there are at most 

|{del, 0, 1, 2}|2 = 16 many different options for the specific costs. Furthermore, we 
can determine whether p ≡ q in constant time: indeed, there are only constantly 
many renaming functions to consider, and checking each renaming function only 
requires constant time. In turn, this means that we can arrange all elements of B

t
 

into equivalence classes in time at most O(|B
t
|2).

As explained earlier, the goal of ≡ is to partition B
t
 into boundedly-many 

equivalence classes which group nodes that are fully interchangeable as far as 
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their interactions with any global solution are concerned. We will formalize this 
in the next claim. It will be useful to recall the definition of �p

S
 from Lemma 5.

Claim 4 Let S be a global solution and let p, q be two nodes of B
t
 such that p ≡ q 

and �(�
p

S
) ≠ �

q

S
 . Then there exists a global solution S′ satisfying:

– S� ⧵ (Yp ∪ Yq) = S ⧵ (Yp ∪ Yq) , and
– �(�

p

S
) = �

q

S�
 , and

– �(�
p

S�
) = �

q

S
.

Proof (of Claim) Let Wp be a minimum-cardinality bounded degree deletion set for Gp 
satisfying the conditions imposed by ���(Gp, �p, �

p

S�
) , and similarly for Wq on Gq and 

�
q

S′
 ; in other words, Wp is a solution on Gp which has the “same properties” as S ∩ Yq 

(since �(�p

S�
) = �

q

S
 ), and similarly Wq is a solution on Gq which has the “same proper-

ties” as S ∩ Yp (since �(�p

S
) = �

q

S�
 ). Consider the set S� = (S ⧵ (Yq ∪ Yp)) ∪ Wp ∪ Wq . 

The set S
′ satisfies the itemized properties by construction, and so it 

remains to argue that S
′ is a global solution. Since p ≡ q , it follows that 

|Wp ∪ Wq| = up + uq + sp(�
p

S�
) + sq(�

q

S�
) = up + uq + sp(�

p

S
) + sq(�

q

S
) = |S ∩ (Yp ∪ Yq)| ; 

in particular, |S�| = |S|.
Now we only need to argue that S

′ is indeed a bounded degree dele-
tion set of G. It will be useful to recall that N(Yq) = N(Yp) . Observe that 
S ⧵ (Yp ∪ Yq) = S� ⧵ (Yp ∪ Yq) , and so every vertex v ∈ V(G) ⧵ (Yp ∪ Yq ∪ N(Yq)) sat-
isfies N(v) ⧵ S = N(v) ⧵ S

� and so has degree at most d in S′ . Now consider a vertex 
v ∈ N(Yq) ; such a vertex will also have the same degree in G − S as in G − S

� ; since 
the configurations of q and p were swapped, any change of the number of edges 
between v and Yq is precisely compensated by the opposite change of the number of 
edges between v and Yp . Next, let us consider (w.l.o.g. based on symmetry between p 
and q) a vertex v ∈ Yp ⧵ �p : here, v must have degree at most d in G − S

� because Wp 
was a bounded degree deletion set in Gp.

Finally, we consider (w.l.o.g.) v ∈ �p ⧵ S� . The existence of such v means that, 
due to the construction of our configuration �q

S′
 , the vertex �(v) ∈ �

q
 is not in S. 

Since S is a solution, �(v) has degree at most d in G − S , and in particular has degree 
at most d − �

q

S
(�(v)) in Gq − S and has �q

S
(�(v)) neighbors in X

t
 . Moreover, since 

N(v) ∩ X
t
= N(�(v)) ∩ X

t
 it holds that v also has �q

S
(�(v)) neighbors in X

t
⧵ S

′ . And 
since �q

S
(�(v)) = �

p

S�
(v) , v must have at most d − �

q

S
(�(v)) neighbors in Yp ⧵ S′ . All in 

all, the degree of v in G − S
� is at most d.

We have shown that S′ has the same cardinality as S and is also a bounded degree 
deletion set, meaning that S′ is a global solution satisfying the desired properties.  
 ◻

As a consequence of Claim 3 and 4 , when looking for a global solution consist-
ent with our choice of � and R, we may exhaustively branch over: 

1. how many nodes in B
t
 have a specific cost greater than 0 ( k + 1 many options),
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2. which equivalence classes of ≡ are these nodes located in (at most kO(k) many 
options after considering point 4.2),

3. which configuration do these nodes have in a global solution (also at most kO(k) 
many options after considering point 4.2).

Let us consider the procedure for one specific branch as above, denoted � ; formally, 
� is a tuple of the form (i, ([≡]1,… , [≡]

i
), (�1,… , �

i
)) . Let B�

t
 be obtained from B

t
 

after removing i arbitrary choices of nodes from the equivalence classes specified in 
� . Having fixed � , R and � , we can already determine the value of ���(G

t
, �

t
, �) for 

any bounded degree deletion set consistent with � and R. In particular, if such a 
deletion set exists then it must have size 
val(�, R, �) = �(R, �) +

∑

b∈Bt
ub +

∑

j∈[i] s[≡]j (�j) , where s[≡]j is the specific cost of 
an arbitrary node in [≡]j.

All that remains now is to determine whether there in fact exists a bounded 
degree deletion set in G

t
 (a t-solution) consistent with � , R and � . To be precise, a 

t-solution S is a bounded degree deletion set in G
t
 such that: 

1. S ∩ Q = R,
2. v ∈ S ∩ �

t
 if and only if �(v) = del,

3. for each v ∈ �
t
⧵ S , |(N(v) ∩ Y

t
) ⧵ S| ≤ d − �(v) , and

4. for each b ∈ B
t
 such that |S ∩ Y

b
| > u

b
 , there exists a unique j ∈ � such that equiv-

alence class of b is [≡]j , |S ∩ Yb| = ub + sb(�j) , and S ∩ Y
b
 satisfies the conditions 

of �j.

Clearly, if val(�, R, �) = ∞ , then the answer is no. On the other hand, if 
val(�, R, �) ≠ ∞ , then we only need to make sure that the degree bounds are met for 
nodes in X = X

t
⧵ (R ∪ �

del
) . Furthermore, for each vertex x ∈ X , we can straightfor-

wardly determine the maximum number of neighbors it can accommodate from 
nodes in B�

t
 : this is done by subtracting from d the “buffer” required by � , the num-

ber of its neighbors in X, the number of its neighbors in 
⋃

a∈A
t

Y
a
⧵ R , and the num-

ber of its neighbors in 
⋃

b∈B
t
⧵B

�

t

Y
b
 based on the configurations in � . Let us denote 

the maximum number of neighbors x can still accommodate from B�

t
 by c(x), i.e., 

c(x) = d − �(x) − �N(x) ∩ (X ∪ (
⋃

a∈A
t

Y
a
⧵ R) ∪ (

⋃
b∈B

t
⧵B

�

t

Y
b
))�.

Before solving this final problem and moving onward to arguing the correct-
ness of our algorithm, we will need a few final considerations. First of all, it may 
happen that our choice of R and � means that the sought-after t-solution will leave 
some nodes in X

t
 undeleted, and these nodes may prevent the use of a configura-

tion achieving u
b
 for some node b ∈ B

�

t
 . To give a concrete example, consider an 

undeleted vertex x ∈ X
t
 and a node b ∈ B

�

t
 with �

b
= {b

1
} and x ∈ N(b

1
) ; it could 

happen that s
b
(b

1
↦ 0) is the only specific cost that is equal to 0, but the presence of 

x means that s
b
(b

1
↦ 1) would need to be used instead. Naturally, it can be checked 

in time |B
t
| whether each node in B�

t
 can still achieve a specific cost of 0; if not, then 

we discard our choice of � and proceed to the next branch.
Next, for any node b ∈ B

�

t
 such that �

b
= {b

1
} , a t-solution could in principle 

either contain b
1
 or not. If s

b
(b

1
↦ del) ≠ 0 then the sought after t-solution must 



 Algorithmica

1 3

(based on our choice of � ) not intersect b
1
 ; this means that any such node b will 

reduce the value c(N(b
1
) ∩ X

t
) by 1. On the other hand, if s

b
(b

1
↦ del) = 0 , then 

we may assume w.l.o.g. that the t-solution contains b
1
 (as this comes at no addi-

tional “cost”); such nodes b will not reduce the value of c(x) for any x.
Let us now consider a node b ∈ B

�

t
 such that �

b
= {b1, b2} . By the same consid-

erations as above (and always while respecting the condition that the specific cost 
must remain 0):

– if we can add both b
1
 and b

2
 into the t-solution, we can safely do so, and we do 

not change the values of c(x);
– otherwise, if it is only possible to have a t-solution that intersects b

1
 but not b

2
 , 

then we will reduce the value of c(N(b
2
)) by 1;

– otherwise, if it is only possible to have a t-solution that intersects b
2
 but not b

1
 , 

then we will reduce the value of c(N(b
1
)) by 1;

– otherwise, if it is only possible to have a t-solution that intersects neither b
1
 

nor b
2
 , then we need to reduce the values of c(x) accordingly (resulting in a 

total decrease of 2).

The last remaining case is that we can choose between a t-solution that intersects 
b

2
 but not b

1
 and a t-solution that intersects b

1
 but not b

2
 ; in one case, we will 

reduce the value of c(N
1
) by 1, and in the other case we will reduce the value of 

c(N
2
) by 1. Let � be the subset of nodes in B

t
 which have this property. Our final 

task is to determine whether it is possible to delete one of the two border vertices 
in the nodes of � while maintaining non-negative values of c(x). We will encode 
this task into a network flow instance � , which we construct below.

We begin by adding a universal source and a universal sink. Next, we add one 
vertex for each w ∈ � , and one vertex for each x ∈ X . We add an arc from each 
x ∈ X to the sink with the remaining capacity c(x) (after all the updates of c(x) 
carried out above). We add an arc from the universal source to each w ∈ � of 
capacity 1. Finally, we add arcs from each w to its two neighbors in X, each arc of 
capacity 1.

Claim 5 � admits a network flow of size |�| if and only if there exists a t-solution 

consistent with � , R and �.

Proof (of Claim) Consider a t-solution S consistent with � , R and � . Let us consider 
the intersection between S and a node b ∈ B

�

t
 . For all nodes b which do not force 

us to make a choice between deleting one of its border vertices or the other, either 
S behaves “optimally” as per our considerations above, or we can locally replace 
S ∩ Y

b
 by a different t-solution for G

b
 which intersects more vertices from the bor-

der than S. After performing all such local replacements, we are left with a new 
t-solution S′.

Let us now consider a node b ∈ � , and recall that |�
b
| = 2 . Since S is consistent 

with � , it can only intersect at most one vertex from �
b
 ; let us set z ∈ �b ⧵ S . Now, 

let us route the flow in � from b to N(z) ∩ X , and observe that this cannot exceed the 
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capacity bound on the edges from X to the sink because the number of neighbors of 
each x ∈ X to 

⋃

b∈�
Y

b
⧵ S is upper-bounded by c(x).

On the other hand, consider a flow in � of size |�| . From the definition of t-solu-
tions consistent with � , R and � , it follows that we merely need to determine how 
S interacts with B

�

t
 , i.e., its intersection with each �

b
 for b ∈ B

�

t
 . For all nodes in 

B
�

t
⧵ � , we determine the intersection based on our considerations above. For � , we 

use the flow in � of size |�| : for each b ∈ � the flow must go to some x ∈ X , and so 
we select an arbitrary z ∈ N(x) ∩ Yb and set S ∩ �b = �b ⧵ {z} . This guarantees that 
the degree bound is never exceeded by any x ∈ X , while the existence of a bounded 
degree deletion set in G

b
 of size u

b
 that intersects �

b
 in �b ⧵ {z} is guaranteed by the 

fact that b ∈ � .   ◻

Let us now summarize the whole algorithm. We begin by branching over all 
configurations � of G

t
 with the goal of computing ���(G

t
, �

t
, �) for each choice of 

� . Next, we construct the branching set Q and apply a second round of branching 
by exhaustively selecting R ⊆ Q . We then construct the equivalence classes [≡] , 
and apply our third (and final) round of branching by selecting � . In the resulting 
branch, we have full information about how we want our solution to intersect all 
borders except for those in B�

t
 . For the remaining nodes in B�

t
 , we either determine 

this intersection greedily, or apply network flows. If we did not reach a conflict up 
to this point (e.g., by constructing an instance � with a negative capacity of some 
edge, or by having val(�, R, �) = ∞ ), then we are guaranteed the existence of a 
solution consistent with � , R and � and can set ���(G

t
, �

t
, �) = val(�, R, �) ; other-

wise, we set val(�, R, �) = ∞.
We conclude the proof by arguing the running time of the above algorithm. 

The number of choices of � is upper-bounded by O(kk) . Since |Q| ≤ O(k2) , the 
number of choices of R is upper-bounded by 2O(k2) . For our third branching, the 
number of choices of � can be upper-bounded by k ⋅ k

2k = k
O(k) . The network flow 

instance can be constructed in time O(|B
t
|) and can be solved by the Ford-Fulker-

son algorithm in time O(|B
t
|2) . Hence we can upper-bound the total running time 

of the algorithm by 2O(k2)
⋅ |B

t
|2 .   ◻

Theorem 5 BDD can be solved in time n3 + 2
O(k2)

⋅ n
2 , where k and n are the treecut 

width and number of vertices of the input graph, respectively.

Proof We begin by applying Theorem  1 followed by Lemma  1 to obtain a nice 
treecut decomposition (T , X) of width at most 2k. We then use a dynamic program-
ming algorithm to compute the values u

t
 and s

t
 at every node t ∈ V(T) . For leaves, 

this is carried out by Observation  3, while for non-leaves we invoke Lemma  6. 
Finally, once we compute u

r
 for the root r, we can determine the answer to a BDD 

instance using Observation 4.   ◻

Theorem 6 BDD parameterized by treecut width has no polynomial kernel unless 

���� ⊆ ��∕poly.
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Proof We will show that the well-known NP -complete VERTEX COVER problem, i.e., 
given a graph G and an integer k, decide whether G has a vertex cover of size at 
most k, AND-cross-composes into BDD parameterized by treecut width. This then 
shows the theorem due to Proposition 2.

Note that, by employing the polynomial equivalence relation that maps two 
instances (G,  k) and (G�

, k�) of VERTEX COVER to the same equivalence class if 
|V(G)| = |V(G�)| and k = k

� , we can assume that the t instances come with the same 
number of vertices and the same value for k.

Hence, assume that we are given t instances (G1, k),… , (G
t
, k) of VERTEX COVER, 

where n = |V(G
i
)| . Note that simply taking a disjoint union of the t instances and 

then asking for a vertex cover of size kt is not sufficient, since some of the instances 
might have a vertex cover using less than k vertices and could therefore compensate 
for instances whose vertex cover is larger than k.

Hence, before taking the disjoint union, we need to adapt the instances in such a 
way that the original instance has a vertex cover of size at most k if and only if the 
modified instance has a deletion set of size exactly k.

Given the instance (G
i
, k) of VERTEX COVER, we construct an instance (G�

i
, n − k, k) 

of BDD as follows:

– we add k + 1 apex vertices a1,… , a
k+1 to G

i
 and make them adjacent to every 

vertex in G
i
,

– we add n − 2k − 1 leaves to every vertex in G
i
.

The following claim now shows that the constructed instance has the desired 
properties.   ◻

Claim 6 (G
i
, k) has a vertex cover of size at most k if and only if (G�

i
, n − k, k) has no 

deletion set of size at most k − 1 and (G�
i
, n − k, k) has a deletion set D of size exactly 

k such that G′

i
⧵ D has maximum degree n − k.

Proof (of Claim) Towards showing the forward direction let C be a vertex cover of 
size at most k for G

i
 and let A be an arbitrary set of exactly k − |C| vertices in G

i
⧵ C . 

We claim that D = C ∪ A is the required deletion set for G′

i
 , for which it suffices to 

show that every vertex in G′

i
⧵ D has degree at most n − k . This clearly holds for 

the apex vertices a1,… , a
k+1 , since each of these vertices has degree exactly n in G′

i
 

of which exactly k are in D. Moreover, since C is a vertex cover for G
i
 , every other 

vertex in G′

i
 is only adjacent to the n − 2k − 1 leaves and the k + 1 apex vertices and 

hence has degree at most n − k , as required.
Towards showing the reverse direction, let D be a deletion set of size exactly k for 

G
′

i
 . Because |D| ≤ k , there is at least one apex vertex, say a

i
 , that is not in D. Moreo-

ver, since the degree of a
i
 in G′

i
 is exactly k more than the required degree (of n − k ) 

and a
i
 is only adjacent to the (original) vertices in G

i
 , it follows that D ⊆ V(G

i
) . We 

now claim that D is a vertex cover for G
i
 . This is because every vertex in G

i
 has at 

least n − k neighbors in G′

i
⧵ D , i.e., the k + 1 apex vertices plus the n − 2k − 1 leaf 

vertices.   ◻
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We now obtain the required instance (G,  d,  l) of BDD by taking the disjoint 
union of the graphs G

i
 and setting d = n − k and l = tk . Clearly, (G,  d,  l) can be 

constructed in time polynomial in 
∑t

i=1
�x

i
� and moreover it satisfies Property 1 of 

an AND-cross-composition, because of Claim 6. Finally, the instance also satisfies 
Property 2, because the treecut width of G is equal to the maximum treecut width of 
any of the t instances, which in turn is at most n = max

t

i=1
|V(G

i
)| .   ◻

5  Core Fracture Number

In this section we introduce the new structural parameter core fracture number and 
provide a fixed-parameter algorithm for BDD parameterized by this parameter. An 
important prerequisite for the introduction of this parameter is the following sim-
ple preprocessing procedure that can be applied to any BDD instance. Given an 
instance I = (G, d,�) of BDD, the core of I  , denoted by �(I) = (�(G), d,�) , is the 
BDD instance obtained from I  after removing all edges whose both endpoints have 
degree at most d from G.

Observation 7 Let I = (G, d,�) be a BDD instance. Then I  and �(I) are equivalent 
instances of BDD in the sense that any solution for I  is also a solution for �(I) and 
vice versa. Moreover, �(I) can be computed in linear time w.r.t. the number of edges 
of G.

In the following we will assume that we have already applied the above preproc-
essing procedure to any BDD instance and hence the graph of the instance does 
not contain any edges between vertices whose degree is already below the given 
degree bound. The core fracture number of a BDD instance I = (G, d,�) , denoted 
by ���(I) , is the minimum integer k such that there is a deletion set D ⊆ V(G) with 
|D| ≤ k and the number of vertices in any component C of G ⧵ D of degree larger 
than d in G is at most k. In other words, each connected component of G − D may 
contain only at most k vertices of degree greater than d. We start by showing that 
this parameter is orthogonal to treecut width.

Theorem  8 For every d ∈ ℕ , there are classes C
d

1
 and C

d

2
 of BDD instances 

I = (G, d,�) with �(I) = I  such that:

– all instances in Cd

1
 have core fracture number at most 1 and for every n > 1 there 

is a graph in Cd

1
 with treecut width n,

– all graphs in Cd

2
 have treecut width at most 1 and and for every n > 1 there is an 

instance in Cd

2
 with core fracture number n,

Proof For the class Cd

1
 we make use of the class H

2
 that was used in previous work 

on treecut width [24, Proposition 3]. In particular, H
2
 is the class of graphs S

n
 

obtained from a star with n leaves l1,… , l
n
 by replacing each edge with n subdivided 
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edges; Fig. 6 illustrates the graph S
3
 . Following the arguments used in previous work 

[24, Proposition 3], we can verify that ���(S
n
) ≥ n : suppose for a contradiction that 

���(S
n
) ≤ n − 1 . Then any two leaves zi and zj , i ≠ j , must be contained in the same 

bag in any tree-cut decomposition of width at most n − 1 as they are connected by 
n edge-disjoint paths. This means there exists a bag t containing all zi ’s in any such 
tree-cut decomposition, which however implies that ���(t) ≥ n.

Towards defining the class Cd

1
 of BDD instances, we need to ensure that graphs do 

not change after the core operation is applied. We do so by introducing the graphs 
S

d

n
 , which are obtained from S

n
 after attaching d − 1 novel leaf vertices to every 

l
i
 . Then Cd

1
 contains all BDD instances (Sd

n
, d,�) for any n,� ∈ ℕ . Because S

n
 is a 

subgraph of Sd

n
 , we still have that ���(Sd

n
) ≥ n . Moreover, for every d > 1 it holds 

that after deleting the center vertex of Sd

n
 every component has only one vertex with 

degree larger than d and hence ���(Sd

n
) ≤ 1.

Towards the definition of the class Cd

2
 , let Pd

n
 be the path on n vertices after attach-

ing d novel leaf vertices to every vertex in the path. Then Cd

2
 is the class of all BDD 

instance (Pd

n
, d,�) for any n,� ∈ ℕ . Note that �(I) = I  for every I ∈ C

d

2
 . Because 

the treecut width of any tree is at most one (simple take the tree itself as the treecut 
decomposition), we have that ���(I) ≤ 1 for every I ∈ C

d

2
 . Towards showing that 

the core fracture number of the instances in Cd

2
 is unbounded, assume for a contra-

diction that this is not the case, i.e., there is k ∈ ℕ such that ���(I) ≤ k for every 
I ∈ C

d

2
 . Consider the BDD instance I = (Pd

(k+1)2
, d,�) ∈ C

d

2
 . Then any vertex set 

D ⊆ V(G) witnessing ���(I) must contain at least one vertex from every subpath of 
P(k+1)2 of length k + 1 . Since P(k+1)2 contains k + 1 such subpaths, which are pairwise 
disjoint, this is not possible if |D| ≤ k . Hence ���(I) > k , a contradiction to our ini-
tial assumption.   ◻

For completeness, we note that the treedepth (and hence also treewidth) of the 
core is always upper-bounded by a function of the core fracture number. Indeed, 
observe that deleting k vertices from a graph with core fracture number k leads to 
a graph where every connected component has at most k vertices; from this and 
the definition of treedepth [40], it is easy to show that the graph has treedepth at 
most 2k + 1 . On the other hand, the core fracture number is upper bounded by 
the vertex cover number (i.e., the size of a minimum vertex cover). Hence our 

Fig. 6  The graph S
3
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tractability results for core fracture number also imply analogous results for the 
vertex cover number.

We are now ready to present our fixed-parameter algorithm for BDD param-
eterized by the core fracture number. The algorithm consists of two steps: (1) it 
computes a deletion set D of size at most k, witnessing that ���(I) ≤ k and (2) it 
solves I  with the help of the deletion set D. Namely, our algorithm will consists 
of fixed-parameter algorithms for the following two parameterized problems. 

Core Fracture Number Detection (CFND)

Input: An instance I = (G, d, ℓ) of BDD and an integer k.
Parameter: k

Question: Decide whether cfn(I) ≤ k and if so output a deletion
set D ⊆ V (G) witnessing this.

Core Fracture Number Evaluation (CFNE)

Input: An instance I = (G, d, ℓ) of BDD and a deletion set D

witnessing cfn(G) ≤ |D|.
Parameter: |D|

Question: Decide whether I has a solution and if so output a
solution for I.

Theorem  9 CFND can be solved in time O((2k + 1)k|E(G)|) and is hence fixed-
parameter tractable.

Proof Let I = (G, d,�, k) be any instance of CFND and let M be the set of all ver-
tices in G that have degree larger than d. We will show the lemma by providing a 
depth-bounded search tree algorithm, which is based on the following observations. 

O1 If G is not connected then a solution for I  can be obtained as the disjoint union 
of solutions for every component of G.

O2 If G is connected and C is any subset of V(G) such that G[C] is connected and 
|C ∩ M| > k , then any solution for I  has to contain at least one vertex from C.

These observations lead directly to the following recursive algorithm that given 
the instance I  either determines that the instance is a NO-instance or outputs a 
solution D ⊆ V(G) of minimum size for I  . The algorithm first checks whether 
G is connected. If G is not connected the algorithm calls itself recursively on 
the instance (C, d,�, k) for each component C of G. If one of the recursive calls 
returns NO or if the size of the union of the solutions returned for each component 
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exceeds k, the algorithm returns that I  is a NO-instance. Otherwise the algorithm 
returns the union of the solutions returned for each component of G.

If G is connected and |V(G) ∩ M| ≤ k , the algorithm returns the empty set as 
a solution. Otherwise, i.e., if G is connected but |V(G) ∩ M| > k the algorithm 
first computes a set C of at most 2(k + 1) − 1 vertices of G such that G[C] is con-
nected and |C ∩ M| > k . This can for instance be achieved by a depth-first search 
that starts at any vertex in M and stops as soon as k + 1 vertices of M have been 
visited. Then |C| ≤ 2(k + 1) − 1 because at most every second vertex that is visited 
by the depth-first search can be a vertex in V(G) ⧵ M ; this is because G − M is an 
independent set (recall that we assume �(G) = G and hence G contains no edges 
between vertices of degree at most d). The algorithm then branches on the verti-
ces in C, i.e., for every v ∈ C the algorithm recursively computes a solution for the 
instance (G − {v}, d,�, k − 1) . It then returns the solution of minimum size returned 
by any of those recursive calls, or NO-if none of those calls returns a solution. This 
completes the description of the algorithm. The correctness of the algorithm follows 
immediately from the above observations. Moreover the running time of the algo-
rithm is easily seen to be dominated by the maximum time required for the case that 
at each step of the algorithm G is connected.

In this case the running time can be obtained as the product of the number of 
branching steps times the time spent on each of those. Because at each recursive call 
the parameter k is decreased by at least one and the number of branching choices 
is at most 2(k + 1) − 1 , we obtain that there are at most (2(k + 1) − 1)k = (2k + 1)k 
branching steps. Furthermore, the time at each branching step is dominated by the 
time required to check whether G is connected, which is linear in the number of 
edges of G. Putting everything together, we obtain O((2k + 1)k|E(G)|) as the total 
time required by the algorithm, which completes the proof of the lemma.   ◻

We note that the depth-first search algorithm in the above proof can be eas-
ily transformed into a polynomial time approximation algorithm for CFND that 
exhibits an approximation ratio of 2k + 1 . In particular, instead of branching on 
the vertices of a connected subgraph C of G with at most 2k + 1 vertices, this 
algorithm would simply add all the vertices of C into the current solution. This 
way we obtain:

Theorem  10 CFND can be approximated in polynomial time within a factor of 

2k + 1.

Let I = (G, d,�, D) be an instance of CFNE and assume w.l.o.g. that �(G) = G 
and k = |D| . We start by showing that we do not need to consider solutions 
V
� ⊆ V(G) for I  that contain more than 2k − 1 vertices from any component C of 

G − D.

Lemma 7 If I  has a solution, then it has a solution V ′ such that |V � ∩ V(C)| < 2k for 

every component C of G − D.



1 3

Algorithmica 

Proof Let V
′ be a solution for I  and C be a component of G − D with 

|V � ∩ V(C)| ≥ 2k ; if no such component exists, then we are done. Let M be the set of 
all vertices in C, whose degree is larger than d in G. Then (V � ⧵ V(C)) ∪ M ∪ D is also 
a solution for I  and moreover |(V � ⧵ V(C)) ∪ M ∪ D| ≤ |V �| − 2k + k + k ≤ |V �| . 
By iterating the same process for every component C with |V � ∩ V(C)| ≥ 2k , one 
obtains the desired solution for I  .   ◻

Let C be a component of G − D and let M ⊆ V(C) be the set of all vertices with 
degree larger than d in G. Then the signature of C, denoted by S(C) , contains all 
pairs (D�

,� ) such that:

– D
′ ⊆ D,

– �  is the set of all pairs (o, �) such that:

– o is an integer with 0 ≤ o < 2k , and
– � ∶ D ⧵ D

�
→ {0,… , 2k − 1} is a mapping such that there is a set V � ⊆ V(C) 

with |V �| = o satisfying the following conditions:

 (S1) every vertex in M ⧵ V
′ has degree at most d in G − (V � ∪ D

�) and
 (S2) for every vertex v in D ⧵ D

′ , V ′ contains exactly �(v) neighbors of v.

Informally, for every subset D′ of vertices that we decide to delete from D, the 
signature tells us how many vertices in C we need to delete and how their dele-
tion affects the degrees of the remaining vertices in D − D

� . Because we only 
need to consider solutions containing less than 2k vertices from C (Lemma 7), the 
number of ways in which different solutions effect the degrees of vertices in D is 
bounded (in terms of k), which allows us to compute the signatures.

Lemma 8 The signature S(C) can be computed in time O(|V(C)| + |E(C)| + 2
k(2k)2

2k

) 

for any component C of G − D.

Proof Let I = (G, d,�, D) be the given instance of CFNE, let C be any component 
of G − D , and let M be the set of all vertices in C that have degree more than d in 
G. Note that |M| ≤ k and because G = �(G) also C − M is an independent set. The 
main idea behind the algorithm to compute S(C) is that even though there can be 
many vertices in V(C) ⧵ M the vertices can only behave in a limited number of ways 
towards the vertices of high degree, i.e., the vertices in D ∪ M . Namely, let D′ be an 
arbitrary subset of D. Then we say that two vertices v, v

� ∈ V(C) ⧵ M have the same 
type if both have the same neighborhood in M ∪ (D ⧵ D

�) . Let NT  be the set of types 
of vertices in V(C) ⧵ M and for a type t ∈ NT  we denote by #(t) the number of verti-
ces in C having type t. Because |D ∪ M| ≤ 2k , it holds that |NT| ≤ 2

2k . For a vertex 
v ∈ D ⧵ D

� let NT(v) be the set of all types having v as a neighbor. Observe that if 
two vertices u and v have the same type then the effect of removing u is the same as 
the effect of removing v, i.e., the resulting graphs will be isomorphic. Hence for the 
computation of S(C) it is not necessary to distinguish between vertices of the same 
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type. Namely, there is a pair (o, �) satisfying (S1) and (S2) if and only if there is a 
subset M′ ⊆ M together with a mapping � ∶ NT → {0,… , 2k − 1} such that: 

 (S0’) �(t) ≤ #(t) for every t ∈ NT  and �M�� +
∑

t∈NT
�(t) = o,

 (S1’) every vertex in M ⧵ M
′ has degree at most d in the graph obtained from 

G[(D ⧵ D
�) ∪ V(C)] − M

� after deleting �(t) vertices of type t for every t ∈ NT  , 
and

 (S2’) for every vertex v in D ⧵ D
′ , �(v) = �N(v, M

�)� +
∑

t∈NT(v) �(t).

Hence for a given D
′ we can compute �  by enumerating all pairs (M�

, �) and for 
each pair testing whether it satisfies (S0’)–(S2’). If it does then we add the pair 
(o, �) , where o = �M�� +

∑
t∈NT

�(t) and �(v) = �N(v, M
�)� +

∑
t∈NT(v) �(t) for every 

v ∈ D ⧵ D
� to �  , otherwise we do not.

The total running time of the algorithm is obtained as follows. To compute NT  
and #(t) for every t ∈ NT  it is sufficient to make one pass through the vertices in 
V(C) ⧵ M ; since one also needs to store the values the total running time of this 
step is at most O(|V(C)| + |E(C)| + 2

2k) . Moreover, the time needed to enumerate 
all pairs (M�

, �) and verify that the pair satisfies Conditions (S0’)–(S2’), is domi-
nated by the number of these pairs, i.e., O(2k(2k)2

2k

) . The same holds for calculating 
the pair (o, �) from (M�

, �) in the case that all conditions were met. Hence the total 
running time of the algorithm is O(|V(C)| + |E(C)| + 2

k(2k)2
2k

) .   ◻

Let D′ ⊆ D and let C and C′ be two distinct components of G − D . We say that 
C and C′ are equivalent w.r.t. D′ if (D�

,� ) ∈ S(C) ∩ S(C�) for some �  . Let P(D�) be 
the partition of all components of G − D into equivalence classes and for an equiva-
lence class C ∈ P(D�) let � (C) denote the set �  such that (D�

,� ) ∈ S(C) for every 
C ∈ C . Note that |P(D�)| ≤ 2

2k(2k)k.

Lemma 9 An instance I = (G, d,�, D) has a solution if and only if there is a subset 

D
′ of D and a mapping � that assigns to every C ∈ P(D�) and every (o, �) ∈ � (C) a 

natural number satisfying the following conditions: 

 (C1) (
∑

C∈P(D�)∧(o,�)∈� (C) o ⋅ �(C, (o, �))) + �D�� ≤ 𝓁 , i.e., the budget � is not exceeded,
 (C2) 

∑
(o,�)∈� (C) �(C, (o, �)) = �C� for every C ∈ P(D�) , i.e., all components are con-

sidered,
 (C3) 

∑
C∈P(D�)∧(o,�)∈� (C) �(v) ⋅ �(C, (o, �) ≥ �N

G−D�(v)� − d for every v ∈ D ⧵ D
� , i.e., 

the degree conditions for the vertices in D ⧵ D
′ are satisfied.

Informally, for C ∈ P(D�) and every (o, �) ∈ � (C) , � gives the number of compo-
nents in C that use the configuration (o, �).
Proof Towards showing the forward direction let V ′ be a solution for I  . We start 
by setting D�

= D ∩ V
� . Consider a component C of G − D and let �  be the set such 

that (D�
,� ) ∈ S(C) . Because of Lemma  7, we can assume that |V � ∩ V(C)| < 2k . 
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Hence �  contains a pair (|V � ∩ V(C)|, �) , which we denote by A(C), such that for 
every v ∈ D ⧵ D

� , it holds that v has exactly �(v) neighbors in V � ∩ V(C) . For every 
C ∈ P(D�) and (o, �) ∈ � (C) , we now set �(C, (o, �)) to be the number of compo-
nents C in C with A(C) = (o, �) and claim that � satisfies the conditions (C1)–
(C3). Because (

∑
C∈P(D�)∧(o,�)∈� (C) o ⋅ �(C, (o, �))) + �D�� = �V �� and |V ′| ≤ � , we 

obtain that � satisfies (C1). Condition (C2) follows immediately from the defini-
tion of � . Finally, Condition (C3) follows because for every v ∈ D ⧵ D

� it holds that 
∑

C∈P(D�)∧(o,�)∈� (C) �(v) ⋅ �(C, (o, �)) is equal to the number of neighbors of v in V ′ ⧵ D 
and the fact that v can have at most d neighbors in G − V

�.
Towards showing the reverse direction let D

′ ⊆ D and � be a mapping satisfy-
ing (C1)–(C3). For a component C ∈ C and (o, �) ∈ �  , where C ∈ P(D�) and 
(D�

,� ) ∈ S(C) , we denote by V(C, (o, �)) a subset of V(C) of size o satisfying the 
conditions (S1) and (S2) in the definition of a signature. Then a solution V ′ for I  is 
obtained as follows. For any C ∈ P(D�) we take the union of V(C, (o, �)) for exactly 
�(C, (o, �)) components C ∈ C . Condition (C2) ensures that there are enough compo-
nents in C and moreover that this way we use every component exactly once. Finally, 
we add D

′ to V ′ . Because of Condition (C1), we have that |V ′| ≤ � . Moreover, 
because of Condition (C3), we obtain that every vertex in D ⧵ D

′ has degree at most 
d in G − V

� . The same holds for every vertex in any component C of G − D , because 
of Property (S1). Hence V ′ is a solution for I  of size at most � .   ◻

With the help of the above lemma, we can express the existence of a solution 
in terms of the solution of an integer linear program with a bounded number of 
variables, which in turn can be solved in fpt-time w.r.t. the number of variables 
(Proposition 3).

Theorem 11 CFNE is fixed-parameter tractable.

Proof Let I = (G, d,�, D) be the given instance of CFNE. The algorithm first com-
putes the signature S(C) for every component C of G − D according to Lemma 8. 
It then uses the characterization given in Lemma 9 to decide whether I  has a solu-
tion. Namely, for every D′ ⊆ D the algorithm constructs an ILP instance I′ whose 
optimum is at most � − |D�| if and only if the BDD instance I  has a solution V ′ 
with V �

∩ D = D
� . In accordance with Lemma 9 the ILP instance I′ has one variable, 

denote by xC,(o,�) , for every C ∈ P(D�) and (o, �) ∈ � (C) and consists of the following 
constraints:

Observe that there is a one-to-one correspondence between assignments � for the 
variables in I′ and the assignment � defined in Lemma 9. Moreover, the constraints 
of I′ ensure Condition (C2) and (C3) and Condition (C1) can be satisfied if and only 

minimize
∑

C∈P(D�),(o,�)∈Γ(C)

o ⋅ xC,(o,�)

subject to
∑

(o,�)∈Γ(C)

xC,(o,�) = �C� ∀C ∈ P(D�)

∑
C∈P(D�)∧(o,�)∈Γ(C)

�(v) ⋅ xC,(o,�) ≥ �N
G−D�(v)� − d ∀v ∈ D⧵D

�
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if the optimum value of I′ is at most � − |D�| . This completes the description of the 
algorithm and the running time of the algorithm is obtained as follows.

Apart from constructing the ILP instance, the main task of the algorithm are to 
compute the signature for every component C of G − D and to compute P(D�) for 
every D

′ ⊆ D . The first task can be achieved in time O(|E(G)| + |V(G)|2k(2k)2
2k

) 
due to Lemma 8. The second task can be achieved by going over all of the at most 
|V(G)|2 pairs of components of G − D and checking for each such pair whether 
the signatures are the same. Hence the total time required for the second step is 
at most O(2k|V(G)|2k(2k)k) . Finally, constructing and solving the ILP instance 
I
′ for every D′ ⊆ D is dominated by the time required to solve I′ , which because 

of Proposition  3 takes time at most O(p2.5p+o(p)
⋅ L) , where p is the number of 

variables and L is the size of I′ in bits. Now the number of variables p of I′ is 
at most |P(D�)|max

�
 , where max

�
= maxC∈P(D�) |� (C)| . Moreover, the size of I′ in 

bits is dominated by the size of the last row of constraints in I′ , which is at most 
O((log(k)|P(D�)|max

�
) + log(|V(G)|)k) . Since |P(D�)| ≤ 2

k(2k)k and max
�
≤ k(2k)k , 

we obtain that p ∈ O(2k(2k)k k(2k)k) and L ∈ O((log(k)2k(2k)k k(2k)k) + log(|V(G)|)k) , 
which shows that constructing and solving I′ is fixed-parameter tractable parameter-
ized by k. Taking everything together, we obtain O(2k(|V(G)|2k(2k)k + p2.5p+o(p)L) , 
where p ∈ O(2k(2k)k k(2k)k) and L ∈ O((log(k)2k(2k)k k(2k)k) + log(|V(G)|)k) , as the 
total running time of the algorithm.   ◻

As our final result, we show a kernel lower bound for CFNE.

Theorem 12 CFNE has no polynomial kernel unless ���� ⊆ ��∕poly.

Proof We give a polynomial parameter transformation from the well-known SET 

COVER parameterized by the size of the universe. The result then follows from 
Proposition 1.

Set Cover

Input: A universe U , a family F of subsets of U , k ∈ N.
Parameter: |U |.
Task: Find a subfamily F ′ ⊆ F such that |F ′| = k and F ′

covers U , i.e.,
⋃

F∈F ′ F = U .

It is known that SET COVER does not admit a polynomial kernel under standard complexity 

assumptions, notably, unless ���� ⊆ ��∕poly [12]. Given an instance I = (U, F, k) of 

SET COVER, we construct an instance I� = (G, d,�, D) of CFNE as follows. G has one vertex 

v
u
 for every u ∈ U as well as one vertex w

F
 for every F ∈ F  . Moreover, G has an edge 

between a vertex v
u
 and a vertex w

F
 if and only if u ∈ F . We set D = { v

u
| u ∈ U } . Let 

� be the maximum degree of any vertex in G. Then we attach to every vertex in D new 

leaf vertices such that the degree of every vertex in D becomes � + 1 . This completes the 

construction of G. Finally, we set d = � and � = k . Because G − D is an independent 
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set, it shows that ���(G) ≤ |U| = |D| . It remains to show that I  has a solution if and 

only if so does I′.

Towards showing the forward direction let F′
⊆ F  be a solution for I  . Then it is 

straightforward to verify that {w
F
| F ∈ F

� } is a solution for I′.
Towards establishing the reverse direction let V � ⊆ V(G) be a solution for I′ . We 

first show that w.l.o.g. we can assume that V � ⊆ {w
F
| F ∈ F } . Suppose not then 

V
′ either contains a vertex in D or a leaf attached to a vertex in D. If V ′ contains a 

leaf, then we can replace the leaf with the vertex in D that it is attached to. Hence it 
only remains to deal with the case that V ′ contains a vertex in D. In this case we can 
replace the vertex say v

u
 in D with any vertex w

F
 such that u ∈ F and F ∈ F  . Note 

that such a vertex w
F
 exists since otherwise I  is a NO-instance. This works because 

all vertices in {w
F
| F ∈ F } already have degree at most d in G and moreover v has 

degree at most d + 1 in G. Thus let V ′ be a solution for I′ with V � ⊆ {w
F
| F ∈ F } . 

Then it is straightforward to verify that {F | w
F
∈ V

� } is a solution for I  .   ◻

6  Concluding Notes

Our results close a wide gap in the understanding of the complexity landscape of 
BDD parameterized by structural parameters. In particular, they not only resolve an 
open question from previous work in the area [6], but push the lower bounds signifi-
cantly further, specifically to deletion distance to trees of bounded depth. Moreover, 
we identified structural parameterizations which are better suited for the problem 
at hand and used these to obtain two novel fixed-parameter algorithms for BDD. 
In particular, it is interesting that treecut width is the only known decompositional 
parameter that allows for an fixed-parameter algorithm. Moreover, the core fracture 
number is a natural and quite significant generalization of the vertex cover number.

For future work it would be interesting to empirically evaluate how large the 
considered parameters are on practical instances, and whether the ideas used in our 
exact algorithms can be used to improve heuristic approaches commonly used to 
solve the problem.
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Appendix

Proof of Lemma 1

The proof of Lemma  1 is based on the following considerations. Let (T , X) be a 
rooted tree-cut decomposition of G whose width is at most w. We say that a node t, 
t ≠ r , is bad if ���(t) ≤ 2 and there is a sibling b of t such that N(Y

t
) ∩ Y

b
≠ � . For 

a bad node t, we say that b is a bad neighbor of t if N(Y
t
) ∩ X

b
≠ � and b is either a 

sibling of t or a descendant of a sibling of t.

REROUTING(t): let t be a bad node and let b be a bad neighbor of t of maxi-
mum depth (resolve ties arbitrarily). Then remove the tree edge e(t) from T 
and add a new tree edge {b, t}.

TOP-DOWN REROUTING: as long as (T , X) is not a nice tree-cut decomposition, 
pick any bad node t of minimum depth. Perform REROUTING(t).

For the following proof, we will use ���T (z) to denote the torso-size of a node z in 
the tree T; ���

T
 and ���

T
 are defined analogously, but for ��� and ��� . This will 

be useful when comparing adhesion and torso-size between two different tree-cut 
decompositions.

Lemma 10 REROUTING(t) does not increase the width of the tree-cut decomposition.

Proof Let b be the bad neighbor of t chosen by REROUTING(t), and let (T �
, X) be 

the tree-cut decomposition obtained from the tree-cut decomposition (T , X) by 
REROUTING(t). We will show that for each z ∈ V(T) , it holds that 

(1) ���T (z) ≥ ���T �(z) , and
(2) ���T (z) = ���T �(z),

from which the lemma follows.
Let us first consider Claim (1). Let P be the set of edges on the path in T between 

b and the parent a(t) of t. Then for any edge p ∉ P it holds that ���T (p) = ���T �(p) , 
and hence Claim (1) holds for all vertices z which are not incident to P and also 
for z = a(t) . As for the remaining choices of z, it holds that the edge between X

b
 

and t lies in ���T (e(z)) ⧵ ���T �(e(z)) . Furthermore, by thinness of t there may 
exist at most one edge e′ such that e� ∈ ���T �(e(z)) ⧵ ���T (e(z)) , and hence either 
���T (z) = ���T �(z) or ���T (z) = ���T �(z) + 1 . Thus Claim (1) holds.

Now we consider Claim (2). Since the contents of the bags did not change and the 
adhesion did not increase (Claim (1)) it follows that Claim (2) may only be violated 
if NT (z) ⊂ NT �(z) , which is only the case for z = b . However, it is easy to verify that 
���

T
(b) = ���

T �(b) since {t} = N
T � (b) ⧵ N

T
(b) and t is thin.   ◻

Lemma 11 TOP-DOWN REROUTING terminates after performing REROUTING at most |T|2 

times, where (T , X) is the initial tree-cut decomposition.
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Proof Let (T , X) be a rooted tree-cut decomposition with a bad node t at depth d such 
that all nodes at depth at most d − 1 are not bad, and let (T �

, X) be the rooted tree-cut 
decomposition obtained from (T , X) by REROUTING(t). Let depT (i) denote the num-
ber of nodes at depth i in T. It is easy to see that depT (d) = depT � (d) + 1 . Further-
more, for any tree-cut decomposition (T ��

, X
��) , if depT ��(i) = 1 then the single node 

at depth i cannot be bad. From these two observations it follows that REROUTING(t) 
can only be called at most |T| times at each depth d, and since d is bounded by |T|, 
the proof is finished.   ◻

Proof (of Lemma 1) By definition, the output of TOP-DOWN REROUTING is a nice tree-
cut decomposition. The lemma then follows from Lemma 11 and Lemma 10.   ◻

Proof of Lemma 2

We partition the nodes in A
t
 into two sets: A

′

t
 contains all thin nodes in A

t
 and A

′′

t
 

contains all the bold nodes in A
t
 . We claim that |A′

t
| ≤ k and |A��

t
| ≤ k + 1 , which 

will establish the statement. The inequality |A′

t
| ≤ k is easy to see. Indeed, recall 

that N(Y
b
) ⊆ X

t
∪ (V(G) ⧵ Y

t
) for every b ∈ A

�

t
 since (T , X) is nice. Furthermore, 

each b ∈ A
�

t
 satisfies N(Y

b
) ∩ (V(G) ⧵ Y

t
) ≠ � since otherwise, b would have been 

included in B
t
 . Therefore, each b ∈ A

�

t
 contributes at least one to the value ���(t) . 

From ���(t) ≤ k , the inequality follows.
To prove |A��

t
| ≤ k + 1 , suppose |A��

t
| = � ≥ k + 2 for the sake of contradic-

tion. Consider the torso H
t
 at t. For each b ∈ A

t
∪ B

t
 , let zb be the vertex of H

t
 

obtained by consolidating the vertex set Y
b
 in G and let ztop be the vertex of H

t
 

obtained by consolidating the vertex set V(G) ⧵ Y
t
 . Fix a sequence of suppress-

ing vertices of degree at most two which yields a sequence of intermediate graphs 
H

t
= H

(0)

t
, H

(1)

t
,⋯ , H

(m)

t
= H̃

t
 with the following property: whenever it is possible to 

suppress ztop as well as some other vertex, we always prioritize suppressing a vertex 
different from ztop.

Let us choose b�
, b

��
∈ A

��

t
 so that zb′ and zb′′ are the first and the second (distinct) 

vertex among zb for all b ∈ A
��

t
 whose degree strictly decreases in this sequence. 

Such b′ and b′′ must exist since at least two vertices zb , where b ∈ A
��

t
 , do not appear 

in H̃
t
 , and any zb may only be removed by suppression. Let a�

, a�� ∈ At ∪ Bt ∪ {top} 
and 0 ≤ i < j ≤ m be such that the first decrease in the degrees of zb′ and zb′′ is due 
to suppressing of za� ∈ V(H

(i)

t
) and of za�� ∈ V(H

(j)

t ) . We observe that the respective 
degree of z

a
′ and z

a
′′ are exactly one in V(H

(i)

t
) and in V(H

(j)

t ) since otherwise, the 
degree of zb′ and zb′′ would not decrease.

We first argue that a�
, a�� ∈ A��

t
∪ {top} . Notice that zb′ and z

a
′ are adjacent in H(i)

t
 

and also, zb′′ and z
a
′′ are adjacent in H(j)

t  . This means that zb′za′ and zb′′za′′ are edges in 
H

t
 as well. For the sake of contradiction, suppose a�

∈ A
�

t
∪ B

t
 . This means that a′ is 

a thin node. The property of a nice tree-cut decomposition implies N(Y
a�
) ∩ Y

b�
= � 

and thus zb′ and z
a
′ are non-adjacent in H

t
 . In particular, this implies that z

a
′ must 

have been adjacent to ztop in H
t
 and ztop must have been suppressed as a degree-2 

vertex at some step f < i to create an edge between z
a
′ and zb′ . However, observe 

that in this case it would also have been possible to suppress ztop immediately after 
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suppressing z
a
′ , contradicting our assumption about the sequence of suppressions. 

The same argument applies to a′′ . It follows that a�
, a�� ∈ A��

t
∪ {top} . Furthermore, 

as a suppressing of a vertex removes it from the considered graph, either a′ or a′′ 
belongs to A

′′

t
 . Since we pick b′ as the first b ∈ A

��

t
 such that the degree zb strictly 

decreases, it cannot be a�
∈ A

��

t
 . Hence, we have a�

= top and a��
∈ A

��

t
 . By a similar 

argument, we know that a��
= b

�.
Notice that the suppressing of z

a
′ , namely ztop , decreases the degree of zb′ by one. 

That is, the degree of zb′ in H(i+1)

t
 remains at least two. Now that the suppressing of 

zb′ in H(j)

t  strictly decreases the degree of zb′′ , the degree of zb′ in H(j) equals to one. 
This implies that there is a suppressing of a vertex, say z

a
∗ , which further decreases 

the degree of zb′ between the sequence of H(i+1)

t
 and H(j)

t  . However, then a∗
∈ A

��

t
 , 

which contradicts our choice of b′′ and H(j)

t  . This proves |A��

t
| = � ≤ k + 1.
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