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Abstract: The etching of prior austenite grain boundaries in martensite for detailed quantitative

metallography of low to high carbon steel has been carried out using aqueous solutions of picric acid

containing different wetting agents. The choice of wetting agent was shown to be dependent on

the carbon content of the steel, with sodium dodecyl sulfate (SDS) being more suitable for use with

low and medium carbon steels, whereas sodium dodecylbenzene sulfonate (SDBS) was shown to be

more appropriate for high carbon steels. It is also recommended that, for a particular steel, a variety

of temper treatments should be carried out in order to reveal grain boundaries, particularly where

more detailed results than simple grain size measurements are required. Finally, the use of dummy

specimens prior to etching of the real samples was shown to reduce the need for re-polishing and

re-etching of the samples.

Keywords: steel; etching; grain boundaries; austenite; microstructure

1. Introduction

Etching is basically a controlled corrosion process resulting from the electrolytic action between

surfaces of different potential [1]. One of the more difficult structures to etch is that of prior-austenite

grain boundaries in as-quenched steels, such that the martensitic structure is represented as a low

contrast background against a higher contrast set of grain boundaries. The revealing of prior-austenite

grain boundaries in steels is important because the end properties of steels are influenced by the grain

structure developed during the reheating and/or thermomechanical processing which occurs in the

austenite. Several different methods and techniques such as chemical etching and thermal etching exist

to reveal the prior austenite grain boundaries [1–7]. These methods will be described below, together

with the associated advantages or problems.

1.1. Chemical Etching

There are many influencing factors when it comes to the etching of prior austenite grain boundaries.

These include the type of wetting agent used, the hydrochloric acid concentration, the solution

concentration, the temperature and the swabbing technique.

Saturated aqueous picric acid solution is most commonly used to reveal prior-austenite grains

because it produces a slow, uniform dissolution of the ferrite lamella with the cathodic cementite in

relief but suppresses ferrite grain boundaries. Nonetheless, it is difficult to reveal the prior-austenite

grain boundaries because no one single etchant is used for all samples. To obtain a successful etch

there should be a chemical attack on the boundaries but not on the matrix. Tempering the specimen

can aid in improving etch response without affecting the grain size; as it is a well-known phenomenon
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that impurities (e.g., P, Sn, Sb and As) segregate to prior austenite grain boundaries [8,9] when held for

long periods from 1 to 100 h, in the temperature range 350–600 ◦C [10,11]. The study of segregation

of impurity elements to grain boundaries has been studied using Auger electron spectroscopy to

investigate the cause of temper embrittlement. Barraclough [2], in 1973, reviewed the use of different

etching solutions to outline the prior austenite grain boundaries in 0.42 wt.% carbon steel with a

martensitic microstructure obtained by quenching. Specimens were etched in the quenched state

and after tempering at different temperatures for different durations. Barraclough concluded that

to produce a consistently sufficent delineation of the prior-austenite grain boundaries, the specimen

should be tempered for two hours at a temperature of 625 ◦C, then furnace cooled to 550 ◦C and

held for 72 h before finally being water quenched. He also concluded that the picric acid solution

works best when heated to 85 ◦C. A similar method was employed by Mahajan, et al. [12] in which

the samples were etched in boiling water saturated with picric acid. In both cases the solutions were

based on saturated aqueous picric acid plus a wetting agent (which is used to change the surface

energy of a liquid or solid surface and influence interfacial interactions) [13]. The wetting agent

generally utilised is sodium alkyl sulphonate “Teepol”(sodium alkyl sulphonate is known as Teepol

in the United Kingdom). Nelson, [14] evaluated the effect of five wetting agents for the delineation

of the prior-austenite grain boundaries using saturated aqueous picric acid, and found four different

responses by evaluating the effect of increasing the concentration of the wetting agents: (i) a maximum

limit is observed where a noticeable sharp improvement occurs; however, over this limit higher

concentrations of the wetting agent do not produce an effect. (ii) There is a slight gradual improvement

with increasing the concentration of the wetting agent. However above the maximum limit higher

concentrations are detrimental. (iii) The wetting agents have little or no value. (iv) The wetting agent

is counterproductive in any concentration or damaging with increased concentration.

1.2. Oxidation Etching

This technique reveals the prior-austenite grain boundaries by relying on the fact that oxidation

accumulation preferentially occurs along the grain boundaries or by grain boundary decarburization

(reduction of carbon) [1]. This method requires the steel specimen to be slightly polished prior to

placing it in an electrically heated furnace with an oxidizing atmosphere. So that oxidation can occur

on the required side, the polished side should be facing upwards. Once the sample has been held at

the required temperature for the desired hold time, the sample is water quenched to form a martensitic

structure. Careful removal of the oxide layer must be performed during the grinding and polishing

stage, as excessive grinding could remove the affected layers of oxide. The drawback of this method is

that at high austenitization temperatures, the bulk diffusion rate is too high to preferentially oxidize the

grain boundaries. However, at temperatures below 1038 ◦C [1], the grain boundary diffusion permits

selective oxidation as it predominates.

1.3. Thermal Etching

The thermal etching method consists of heating a steel sample which has been finely pre-polished

with a 1 µm diamond paste, in an inert atmosphere or a vacuum. A vacuum pressure of at least 1 Pa or

higher is needed to avoid oxidation [3,4]. The sample is heated to the austenitization temperature and

then cooled down to room temperature. The prior austenite grain boundaries are shown by grooves

which decorate them, these grooves at the grain boundaries are formed by matter transport and surface

tension effects. The rate at which the specimens are cooled from the austenitization temperature has an

effect on the grooves which decorate the prior austenite boundaries. When the cooling rate is too slow,

ghost traces of the grooves occur. This in turn leads to differences between the inner and outer grain

size, therefore leading to false measurements of the prior austenite grain size. Furthermore, during

slow cooling from temperatures higher than 1200 ◦C, the austenite grain can continue its growth,

therefore complicating the accuracy of the prior austenite grain boundary measurements [4].
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1.4. Other Methods

A direct method used to observe the prior austenite grain boundaries at high temperatures is

a high temperature microscope [5]. Another method used by many researchers to reveal the prior

austenite grain boundaries is the precipitation of ferrite, cementite and fine pearlite [1,6]. Vander Voort

(1984) [1] has reported that, when successfully employed, it is a reliable method for austenite grain size

measurements; the drawback of this is that considerable experimentation is generally required before

reliable results can be obtained.

As described above, delineation of the prior austenite grains can be achieved by many techniques.

In this paper, a chemical etching technique for high purity carbon steels, using two new wetting agents

has been developed for the etching of prior austenite grain boundaries.

2. Materials and Methods

The investigation was carried out on 12 silicon-killed steel samples with three different carbon

chemistries. Low (0.08 wt.% C) shown in Table 1, medium (0.38 wt.% C) shown in Table 2, and high

(0.8 wt.% C) shown in Table 3. Compositions were measured by inductively coupled plasma (ICP)

and optical emission spectroscopy (OES) techniques. Within each of these three groups, the niobium

concentration varied from 0 to 0.02 wt.%.

Table 1. Chemical composition of 0.08 wt.% carbon steel specimens (Weight Percent).

C, wt.% Mn, wt.% Si, wt.% S, wt.% P, wt.% Nb, wt.%

0.080 0.98 0.20 0.003 0.01 0
0.080 1.00 0.19 0.003 0.01 0.005
0.080 0.98 0.17 0.003 0.01 0.01
0.080 0.98 0.18 0.003 0.01 0.02

Table 2. Chemical composition of 0.38 wt.% carbon steel specimens (Weight Percent).

C, wt.% Mn, wt.% Si, wt.% S, wt.% P, wt.% Nb, wt.%

0.38 1.00 0.20 0.003 0.018 0
0.38 0.98 0.20 0.007 0.018 0.005
0.38 1.00 0.20 0.008 0.016 0.008
0.38 1.00 0.20 0.007 0.016 0.017

Table 3. Chemical composition of 0.8 wt.% carbon steel specimens (Weight Percent).

C, wt.% Mn, wt.% Si, wt.% S, wt.% P, wt.% Nb, wt.%

0.80 0.98 0.21 0.003 0.01 0.005
0.80 0.99 0.21 0.003 0.01 0
0.80 0.96 0.20 0.003 0.01 0.01
0.80 0.96 0.20 0.003 0.01 0.02

After the heat treatment shown in Figure 1 all the specimens were mounted, ground and polished

to 1 µm ready to be etched. During the etching procedure, a pH meter (Omega PHH-37, Egham, Surrey,

UK) was placed in the solution to obtain the pH value when the first 3 dummy specimens were each

placed in the solution for 5 min. The successful etching solution was produced by dissolving picric

acid into 100 mL of distilled water which was heated and maintained at 80 ◦C. It is important to keep

stirring the picric acid until the distilled water is completely saturated with picric. The second step is

to add a few drops of hydrochloric (HCl) acid into the solution and then to add the wetting agents.

HCl and the three wetting agents, sodium dodecyl sulfate, sodium dodecylbenzene and sodium alkyl

sulphonate were used in the etching of all of the samples discussed in this study. A total of 4 drops of

HCl and 1 g of wetting agent were used throughout. Trials were carried out using as little as 0.5 g and
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as much as 5 g of the wetting agent, but the best results were obtained for 1 g. As mentioned above,

an important point to note is that the solution was matured by using 3 dummy specimens which were

etched for 5 min each (15 min in total).

 

Figure 1. Schematic of the reheating temperature and quenching process used for the three carbon

steels with varying niobium concentration to examine the microstructural evolution. Holding time was

one hour, and heat treatments were carried out in an argon atmosphere.

Atomic Force Microscopy

Atomic force microscopy was conducted on the etched specimens using a Dimension 3100 AFM

(Bruker, Billerica, MA, USA), using a tapping technique to obtain the image. To obtain a high-resolution

image, the scan rate was set at 0.5 Hz and the tip velocity was 30 µm/s.

3. Results

3.1. Sodium Alkylate Sulfonate (Teepol)

All three different carbon contents are shown in Figure 2. All the specimens were quenched in

iced water from the temperatures shown below the micrographs. All the starting microstructures were

initially martensitic, and it can be seen that it is difficult to distinguish between the prior austenite

grain boundaries and the inner martensitic structure. It can be seen from these micrographs that

the addition of sodium alkylate sulfonate (Teepol) gives poor results which do not outline the prior

austenite grain boundaries, therefore, making it extremely difficult to measure the prior austenite grain

size of the specimen.
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(a) Low Carbon (0.08 wt.%) steel with 0.02 wt.% Nb (1050 ႏ). 

 

(b) Medium Carbon (0.38 wt.%) steel with 0.005 wt.% Nb (1100 ႏ). 

 

(c) High Carbon (0.8 wt.%) steel with 0.02 wt.% Nb (1000 ႏ). 

Figure 2. Steel specimens etched with saturated picric acid with different wetting agents. Sodium

alkylate sulfonate (Teepol) in the left-hand column, (a–c), Sodium dodecyl sulfate (SDS) in the right-hand

column (a,b), and Sodium dodecylbenzene sulfonate (SDBS) in the right-hand column (c).

3.2. New Wetting Agents

As reported in Section 3.1, conventional wetting agents performed poorly when attempting to

outline prior austenite grains, hence other wetting agents were trialled. The two new wetting agents

used in this work are sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS).

The results of using these agents can be seen in the micrographs presented in Figure 3. An important

point to note is that sodium dodecyl sulfate (SDS) is an effective wetting agent for low carbon (0.08 wt.%)

and medium carbon (0.38 wt.%) steel specimens but did not reveal any prior austenite grain boundaries

in the high carbon (0.8 wt.%) steel specimens. SDBS was the most effective wetting agent for the high

carbon (0.8 wt.%) steel specimens, as can be seen in Figure 3c.
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0.02 wt.% Nb 10× mag (1050 ႏ) 0.02 wt.% Nb 10× mag (1150 ႏ) 

(a) Low Carbon (0.08 wt.%) steel. 

 
0.005 wt.% Nb (1100 ႏ) 0.01 wt.% Nb (1150 ႏ) 

(b) Medium Carbon (0.38 wt.%) steel. 

  
0.02 wt.% Nb (1000 ႏ) 0.005 wt.% Nb (1000 ႏ) 

(c) High Carbon (0.8 wt.%) steel. 

Figure 3. Steel specimens etched with saturated picric acid with sodium dodecyl sulfate (SDS) as a

wetting agent used for (a,b) and sodium dodecylbenzene sulfonate for (c).

It is important to note that when the specimen is submerged in the saturated picric solution it

should be not be moved as this affects the etching layer that forms on the specimen surface causing

one side to be thicker and the other side to be thinner. In Figure 4a the black outline represents the

area where the etching layer was thin, and the red shaded area is where the etching layer is thicker as

the grain boundaries are much more clearly defined. Figure 4b shows the light optical micrograph of
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how the delineation of the prior austenite grain boundaries should be when the etching layer is evenly

distributed on the surface.

 

 

(a) (b) 

ႏFigure 4. Etching layer effect on 0.8 wt.% carbon steel with 0.005 wt.% Nb at 1100 ◦C. (a) shows the

effect of etching layer thickness on the definition of PAGBs and (b) shows how the delineation of PAGBs

should be when the etching layer is evenly distributed.

It is important to note that for every time interval a fresh solution was made, and the same

specimen was ground and polished again to keep the experimental work accurate as possible. Figure 5

illustrates the effect of the etchant layer on the specimen with increasing time, submerged under

saturated picric acid. It can be seen in the first row, (etching layer) that the etching layer gets thicker

with increasing time. The second row (LOM) shows the light optical micrographs of the microstructure

obtained when the submersion time was increased. As shown in the LOM micrographs for 30 s

submersion time, the martensitic structure is revealed but no prior austenite grain boundaries can

be seen. After the sample has been submerged for 120 s the austenite grain boundaries start to be

outlined; however, the image is still not clear enough to give reliable results. The best results were

obtained by submerging the specimen in the solution for 600 s. In this case, a thick black etchant layer

is formed on the steel surface; when this layer has been removed, clear prior austenite grain boundaries

can be observed. The third row in Figure 5 shows the topography of the specimen surface at each

time interval as characterized by atomic force microscopy (AFM). The results from the atomic force

microscopy are presented in more detail in the next section; however, in Figure 5, the topography image

for 30 s submersion can be seen to give a rough structure where no indication of prior austenite grain

boundaries can be found. A thin groove of the prior austenite grain boundaries can be seen at 120 s in

the AFM image of the topography (the dark orange line in the middle). However, the best results are

obtained at 600 s showing a deep grooved prior austenite grain boundary which is consistent with the

dark prior austenite grain boundaries shown by the light micrograph images.
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Figure 5. The effect of submerging the specimen for different time durations in saturated picric acid

with sodium dodecyl sulfate added. Samples shown here are 0.8 wt.% carbon with 0.005wt.% niobium.

(a) shows the etching layer on the specimen surface getting thicker with increased time, (b) shows the

effect of time on the etched microstructure and (c) shows the topography of the specimen surface at

each time duration.

The results shown above give a clear indication that the formation of a dark thick etchant layer on

the surface of the specimen is beneficial and can be part of the etching mechanism.

3.3. Atomic Force Microscopy (AFM)

Atomic force microscopy is used in this study to obtain the topography of the surface of the steel

specimen, etched using different wetting agents and for different times which in turn produces a

thicker etchant layer. This is to understand in greater detail, the mechanisms of the etching process,

especially the time taken to form an etchant layer and the effect of the thickness of the layer formed.

Figure 6 shows the light optical and atomic force micrographs of the surface roughness for the

specimen etched as a function of the total time the etchant solution has been in use. The graph illustrates

data using a pH meter (Omega PHH-37) to measure the acidity of the etchant solution. The pH results

indicate that the acidity of the etchant solution decreases with the time that the specimens are being

etched in the solution. The initial pH value of the etchant solution starts at 1.22 pH and this increases

to 1.27 pH after the first specimen is submerged into the solution for 5 min. As the second specimen is

submerged for an additional 5 min the pH of the solution further increases to 1.31 pH. Overall, the pH

of the solution increases to 1.36 for a total etching time of 19 min.
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(a) Light Optical Microscope 

   

(b) Atomic Force Microscope 

  
Virgin Solution (5 min) (10 min) Mature Solution (15 min) 

 
(c) 

Figure 6. Specimen surface roughness and pH change versus the total time that the etchant solution

has been in use. (a,b) show optical and AFM micrographs of the specimen surface as a function of the

total time the etchant has been in use. The graph in (c) shows mean surface roughness and pH as a

function of the time the etchant has been in use.

An interesting point to note is that the roughness of the specimen surface after being etched

also decreases. This can be seen by comparing the light optical micrographs and the atomic force

micrographs in Figure 6. The first specimen etched for 5 min has a mean surface roughness of 117.61 nm

indicating that the etchant had attacked the martensitic inner structure and the prior austenite grain

boundaries. This is confirmed by the light optical microscope images showing the inner microstructure
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of the prior austenite grains being etched. As a fresh identical specimen is held for an additional 5 min

in the same solution, the mean surface roughness decreases to 91.94 nm giving better results. However,

the best results were obtained when the solution was in use for a total of 15 min (matured solution);

in this case the mean surface roughness was 58.45 nm and a clear distinction can be made between the

inner structure and the prior austenite grain boundaries.

Figure 7a illustrates a surface profile analysis for a 30 µm length of the steel surface post etching,

showing the martensitic inner structure (MIS) and the prior austenite grain boundaries (PAGB).

It should be noted that the PAGB grooves are etched deeper than that of the MIS. Figure 7b shows

the image of a triple junction point where three prior austenite grain boundaries meet, this image is

obtained from the atomic force microscopy and corresponds to (a) clearly showing the MIS region and

the PAGBs which are darker.

 

 

 

(a) (b) 

ρmଶ

ђŵ 

Figure 7. Surface analysis shown in (a) and the two-dimensional image shown in (b).

Figure 8 illustrates a 3-dimensional image at a higher magnification analyzing an area of 15 µm2

of the steel surface post etching. From this figure, the prior austenite grain boundary groove can be

seen in the centre and the martensitic inner structure on either side.

 

ρmଶ

ђŵ 

Figure 8. Etched surface image obtained by atomic force microscopy, showing the martensitic inner

structure and the prior austenite grain boundaries.
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The effect of using this etching technique is shown in more detail in Figure 9a which shows the

surface profile of the inner microstructure remaining close to the origin level indicating that the etching

technique used does not encourage the etching of the martensitic inner structure (MIS) but accelerates

the etching of the prior austenite grain boundary (PAGB), as shown in Figure 10a.

 

 
 

(a) (b) 

ђŵ 

ђŵ 

Figure 9. Surface analysis of the martensitic inner structure shown in (a) and the two-dimensional

image shown in (b).

 

 
 

(a) (b) 

ђŵ 

ђŵ 

Figure 10. Surface analysis of the prior austenite grain boundary shown in (a) and the two-dimensional

image shown in (b).

4. Discussion

4.1. Effect of Wetting Agent

Wetting agents, also known as surfactants or surface-active agents, are added in small amounts to

the solution to change the surface energy of a liquid or solid surface and influence interfacial interactions

(modifying the etching behavior) [13]. Nelson, (1967) [14] reported that the concentration of the wetting

agents gives different responses to the etching. Voort, (1995) [13] also reported the importance of

wetting agents in the revealing of prior austenite grain boundaries. Many different wetting agents

have been used by previous researchers to reveal the prior austenite grain boundaries and these have

been shown to be effective with many different steel compositions [2,3,7,15,16] and different heat

treatment conditions, e.g., as quenched, tempered or deformed. Sodium alkylate sulfonate (Teepol)

in a saturated picric acid solution is the most widely used wetting agent for the delineation of prior
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austenite grain boundaries. Initially, sodium alkylate sulfonate was used in this study as a wetting

agent to etch the prior austenite grain boundaries from an initial martensitic structure quenched from

1050 ◦C, which can be seen in Figure 11a,b. This wetting agent, however, proved to be unsatisfactory

for the type of high purity steels which were used in this work. It can be seen from the micrograph

that a few austenite grain boundaries were revealed (white arrows), but the grain size was difficult to

determine as a lot of the internal martensitic structure (black arrows) was also revealed. This wetting

agent was also proven to be unsuccessful in the etching of low carbon (0.08 wt.%) and high carbon

(0.8 wt.%) steels as shown in Figure 2.

The new wetting agents used in this work to etch low carbon (0.08 wt.%) and medium carbon

(0.38 wt.%) steels are sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS)

These have been proven to give significantly good results for high carbon (0.8 wt.%) steel as shown in

Figure 3, where it can be seen that the etching of the martensitic inner structure (MIS) was retarded and

etching of the prior austenite grain boundaries was promoted. A side by side comparison is shown for

low carbon steel quenched in iced water from 1150 ◦C in Figure 12, where the effect of the two wetting

agents can clearly be seen. It is important to note that sodium dodecylbenzene sulfonate (SDBS) did

not work for any other carbon steel concentration in this work apart from high carbon (0.8 wt.%).

It is known that the modification of the surface tension is achieved by adding surfactants to the

etchant solution [13] and increasing the temperature further reduces the surface tension between

the liquid etchant and specimen surface interface [17,18]. The reduced surface tension energy by

using sodium dodecyl sulfate (SDS) with the temperature between 80–90 ◦C provides good adhesion

properties for a thick etchant layer to be formed on the steel specimen.

ႏ,

(a)

Figure 11. Cont.
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(a) 

8  

(b) 

Figure 11. Optical micrograph showing prior austenite grain boundaries as shown by the white arrows

in (a) and martensitic internal structure as shown by the black arrows in (b). Etched in saturated picric

acid with sodium alkylate sulfonate (Teepol) (0.38 wt.%) carbon steel.

 

ႏ

  

(a) Martensitic inner structure revealed (b) Prior austenite grain boundaries revealed 

ႏ

ႏ

݁ܨ ଷܱାܪ ՜ ଶା݁ܨ ൅ ʹ݁ି  ଷܱାܪ
 ି݈ܥ

 

Figure 12. Illustrates the effect of the wetting agent on low carbon (0.08 wt.%) steel with 0.02 wt.% Nb

(1150 ◦C). Teepol was used as the wetting agent in (a) and SDS used as the wetting agent in (b).

4.2. Effect of pH Concentration

Much of the previous research on this topic has either investigated the chemistry of the etching

solution [2,3], and/or the temperature and time it took for the prior austenite grain boundaries to be

successfully revealed [7]. It is also known that the time needed for effective etching to occur decreased

with an increase of the temperature of the etching solution. In addition to this, the stability of the

etching solution also changes with time due to the reactions occurring during etching [19]. The change

in the concentration can be seen from the changes in the pH of the solution as the initial pH value

prior to use was 1.22, which is acidic, but the solution becomes less acidic with use. It is known that

etching of the grain boundaries is a controlled corrosive process between surface areas of different

potential [18] and that an acidic solution increases the corrosion rate of the steel. Therefore, it is no

surprise that when the specimen is submerged in a virgin etching solution, the etchant attacks the whole
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microstructure, as illustrated in Figure 6. The steel undergoes corrosion in acidic solutions which have

a higher concentration of H3O+ ions. The electrons that have been generated in the anodic reaction

(Fe→ Fe2+
+ 2e− ) combine with the H3O+ ions in a reduction reaction which results in the production

of hydrogen gas and this in turn provides one explanation for the decrease in acidity of the etching

solution with use. It is important to note that the etchant pH will also be affected by other factors such

as the concentration of Cl− anions, derived from the HCl and potentially by atmospheric oxygen.

4.3. Effect of the Etchant Layer

Barraclough (1973) [2] indicated that removal of the etchant layer by swabbing with cotton during

the etching process resulted in a better outline of the prior austenite grain boundaries. The swabbing

method used by Barraclough ensures that the etching solution reacts with a fresh surface of the specimen

and a thick etchant layer does not form on the specimen. This technique has been unsuccessful in this

work as shown in Figure 13a,b, where two identical specimens are shown, one which has been swabbed

continuously and one which has been swabbed after 4 min when a thick etchant layer had formed on

the specimen. In this work the etchant layer on the specimen was kept still in order to form an even

thick etchant layer; it has been shown in Figure 4 that moving the specimen can lead to an uneven

etchant layer which does not give a uniform delineation of the prior austenite grain boundaries.

 

  

(a) (b) 

Figure 13. The sample shown in (a) has been continuously swabbed during the etching process, and the

sample shown in (b) has been swabbed once after the formation of the etchant layer. Both samples

were 0.8 wt.% carbon with 0.005 wt.% niobium and with sodium dodecyl sulfate used in the etching.

4.4. Novel Etching Mechanisms

Picric acid mixed with distilled water results in a corrosive solution; therefore, when the steel

specimen is immersed in a corrosive solution the grain boundaries are highly susceptible to corrode.

It is known that the atoms of the metal surface are not homogenous. Some atoms are highly coordinated,

as in close packed planes, whereas some are arranged at the grain boundaries and others may be

foreign solute atoms such as Nb, P, Sn, Sb and As. These elements are known to segregate to the prior

austenite grain boundaries [8,9] and this results in a higher energy at the grain boundaries, whereas

the atoms lying within a relatively perfect close-packed structure have a lower energy [20]. Therefore,

the grain boundaries are more liable to corrosive attacks than the internal microstructure.

Figure 14 illustrates the surface of the steel after the specimen has developed a thick etching layer

after etching for 2 to 4 min. The prior austenite grain boundary (PAGB) grooves can be seen where

selective grain boundary corrosion and retarding of the martensitic inner structure has occurred.
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Figure 14. Illustration of the successful etching mechanism using atomic force microscopy (AFM).

As explained earlier, this is due to the difference in the chemical potential of the martensitic inner

structure (MIS) and the prior austenite grain boundaries (PAGB). The mechanisms of the etching

process can be easily understood on the illustration. As the steel specimen is submerged into the

solution the etchant starts to react with the surface of the specimen, which results in the formation

of a protective etchant layer on the surface. The protective layer is a result of the corrosive reaction

taking place on the surface of the specimen. During the etching process the atoms are transferred

from the anodic surface to the etching solution, and this results in the formation of an insoluble metal

compound which forms the etchant layer [18]. The formation of this protective etchant layer on the

surface is considered to be of vital importance in the etching process as it helps stop the fresh etching

solution from reacting with the specimen surface, it further accelerates the anodic process [21] and

allows the reacting etchant to keep reacting with the prior austenite grains.

The unsuccessful etching mechanism, in which the specimen is swabbed with cotton to remove

the etchant layer, can now be analyzed in Figure 15. This results in the picric acid attacking both the

martensitic inner structure and the prior austenite grain boundaries. The importance of the etching

layer during the etching process and its benefits have been explained earlier.

 

 

 

 

Figure 15. Illustration of the unsuccessful etching mechanism using atomic force microscopy (AFM).

Other influences which are important to consider during etching are the concentration of the

etchant solution, the temperature, the HCl concentration and the wetting agent used. The successful

etching mechanism found in this work for high purity steel for low (0.08 wt.%) to high (0.8 wt.%)

carbon steel was successful in revealing the prior austenite grain boundaries and restricting the etching

of the martensitic inner structure.
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5. Conclusions

• The use of sodium dodecyl sulfate (SDS) as a wetting agent for high purity low (0.08 wt.%) and

medium (0.38 wt.%) carbon microalloyed steel gives superior results for the delineation of prior

austenite grain boundaries.

• The use of sodium dodecylbenzene sulfonate (SDBS) was shown to give good results in the revealing

of prior austenite grain boundaries in high purity high carbon (0.8 wt.%) microalloyed steel.

• The etchant layer which forms on the specimen surface is an important part of the overall

etching mechanism.

• Swabbing should not be done during etching after the etchant layer has formed on the surface.

• Using dummy specimens in the etchant solution prior to etching the real samples reduces the risk

of needing to re-polish and re-etch.

• The roughness of the etched specimens decreases with a decrease in the acidity of the etching

solution as indicated by the atomic force micrographs.
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