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Abstract: The characterization of carbon stocks and dynamics at the national level is critical for

countries engaging in climate change mitigation and adaptation strategies. However, several tropical

countries, including Kenya, lack the essential information typically provided by a complete national

forest inventory. Here we present the most detailed and rigorous national-scale assessment of

aboveground woody biomass carbon stocks and dynamics for Kenya to date. A non-parametric

random forest algorithm was trained to retrieve aboveground woody biomass carbon (AGBC) for

the year 2014 ± 1 and forest disturbances for the 2014–2017 period using in situ forest inventory plot

data and satellite Earth Observation (EO) data. The ecosystem carbon cycling of Kenya’s forests and

wooded grassland were assessed using a model-data fusion framework, CARDAMOM, constrained

by the woody biomass datasets from this study as well as time series information on leaf area,

fire events and soil organic carbon. Our EO-derived AGBC stocks were estimated as 140 Mt C for

forests and 199 Mt C for wooded grasslands. The total AGBC loss during the study period was

estimated as 1.89 Mt C with a dispersion below 1%. The CARDAMOM analysis estimated woody

productivity to be three times larger in forests (mean = 1.9 t C ha−1 yr−1) than wooded grasslands

(0.6 t C ha−1 yr−1), and the mean residence time of woody C in forests (16 years) to be greater than

in wooded grasslands (10 years). This study stresses the importance of carbon sequestration by

forests in the international climate mitigation efforts under the Paris Agreement, but emphasizes the

need to include non-forest ecosystems such as wooded grasslands in international greenhouse gas

accounting frameworks.

Keywords: biomass; carbon; carbon balance; random forests; machine learning; deforestation; radar;

multispectral; wooded grasslands; residence time

1. Introduction

Quantitative knowledge of the state, distribution and evolution over time of carbon stocks at the

national level is essential for countries engaging in climate change mitigation and adaptation strategies
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under the REDD+ Readiness process. Kenya covers an area of 582,646 km2, of which approximately

6.9% was estimated to be forest in 2010 and 7.2% in 2015, according to national statistics [1,2]. However,

there is considerable uncertainty in these estimates. For example, Hansen et al. [3] estimated the

forest area of Kenya in 2018 to be between 5.5% to 18.0% of the total land, with this range reflecting

uncertainty in mapping products and forest definitions.

About 80% of the territory in Kenya is arid or semi-arid with sparse woody vegetation, i.e.,

grasslands, wooded grasslands and savannahs. The remaining ~20% of the land includes farmland

and different types of forests and woodlands. Mangroves account for 0.2% of the land area [4]. Across

all ecosystem types, approximately 62% of the Kenyan land area contains some woody biomass but

much of it has canopy cover <15%. Even though woody vegetation is characteristic of this land cover,

it is not considered forest land since Kenya officially defines forest as land areas of at least 0.5 ha in size

with trees over 2 metres in height and a canopy cover over 15%; this includes natural and planted

forests on state, community and private land [5].

Kenyan forest ecosystems are some of the most diverse in East Africa, and include montane

rainforests, savannah woodlands, dry forests, coastal forests and mangroves. However, these forest

ecosystems are highly fragmented [6] due to high anthropogenic pressure. About 80% of the domestic

energy supply is met from fuelwood [7] and forests also provide other ecosystem services, such as

timber, to support livelihoods. Deforestation rates in Kenya have been calculated as approximately

12,000 ha yr−1 [8]. The main drivers of deforestation in Kenya are related to the unsustainable

utilisation and conversion of forest land to other land uses [8]. In response to reported deforestation,

the Government of Kenya has launched a national strategy for achieving and maintaining >10% tree

cover by 2022 [2].

Biomass, the dry weight of living plant material by unit area (e.g., t ha−1), is a biophysical variable

quantifying carbon stocks stored in vegetation, and comprises the Aboveground Biomass (AGB) of

stems, branches and leaves, and the Belowground Biomass (BGB) of roots. Approximately 47–50%

of AGB consists of carbon (AGBC) [9]. Robust and reliable information on forest biomass stocks is

needed to understand ecosystem carbon cycling at large spatial scales.

Earth Observation (EO) datasets from the radar (i.e., Synthetic Aperture Radar—SAR) and optical

domains are frequently used to retrieve the amount and spatial distribution of AGBC across large areas.

The use of optical imagery is limited by the saturation of the signal at low AGBC levels [10], while the

sensitivity of SAR backscatter to AGBC depends on the radar wavelength [11]. Longer wavelengths,

such as L-band, are more suitable for estimating AGBC as the sensitivity of backscatter to AGBC

saturates at approximately 75 t C ha−1 [12,13]. As shown by Rodríguez-Veiga et al. [14,15], methods that

combine the strengths of different sensors can improve AGBC estimation and to some extent mitigate

the saturation problem. Methods to map AGB can be either parametric, such as regression analysis and

geo-statistical methods [16,17], or non-parametric, such as k-nearest neighbour and machine learning

methods [15,18–20]. A recent global AGB map uses a semi-empirical model based on SAR C- and

L-band imagery, which avoids the utilisation of in situ data [21]. Pantropical maps [22–24], relying

on machine learning methods, spaceborne LiDAR and optical imagery, have also been developed in

recent years. These products are fairly consistent with reference data at coarser scales, but contain

poorly known biases, which result in large discrepancies at finer scales [14,24–27].

Land use change has caused major losses of forest cover in recent decades in Kenya, so biomass

maps need to be regularly updated. Satellites can monitor land use change and fire losses, for example

using Global Forest Watch, e.g., [3]) or MODIS burned area [28], but detecting small disturbance events

remains challenging for both land use change [29] and fire-affected areas <100 ha [28,30]. Moreover,

existing deforestation products are unable to detect more subtle forest degradation [31].

The distribution of AGBC across Kenya is a function of plant production and its lifespan

(or residence time). A fraction of photosynthetic production (gross primary productivity, GPP) is

used to generate biomass (net primary productivity, NPP). Photosynthesis is a function of light

absorption, plant water availability and plant nutrients [32]. Thus, the spatial distribution of the leaf
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area index (LAI) is a strong indicator of potential carbon accumulation across Kenya [33]. The actual

accumulation of photosynthates in the biomass depends on their residence time, particularly that

of woody material, the most long-lived plant tissue. This residence time will depend on plant traits

like wood density, that are linked to mortality, and also on disturbance factors, such as fire frequency.

However, the fractions of photosynthate allocated to new wood growth and wood residence times

are both poorly known, providing a major source of uncertainty in global carbon cycling models and

forecasts [34].

Estimates of ecosystem carbon dynamics can be constrained at the site level by combining multiple

biometric and ecosystem carbon flux measurements with process models [35–38]. However, intensive

repeated measurements (e.g., AGBC, dead organic matter) are challenging to collect over long time

periods and across large areas. At the landscape scale, carbon cycle estimates have larger uncertainties

due to the scarcity of data and data uncertainties introduced by statistical upscaling approaches.

EO data provide a means of strengthening the upscaling approach by providing full spatial coverage

and time series information. Combining the EO of ecological parameters (e.g., AGBC and LAI) with

ecosystem carbon cycle models through model-data fusion approaches is a powerful methodology

to quantify ecosystem properties, carbon cycling and their uncertainty, from plot scale to global

scale [38–42]. These analyses can determine how carbon cycling varies in space with climate, which can

provide insights into how climate change influences future carbon stocks.

This study has the overall objectives of: (i) providing an improved quantification of biomass

carbon (C) in wooded Kenyan ecosystems; (ii) quantifying the rate of C loss due to deforestation

processes; and (iii) providing a better understanding of the dynamics and underlying ecosystem

processes governing biomass carbon stocks in the country’s forests and wooded grasslands. We first

estimate the baseline AGBC stock for Kenya’s wooded vegetation for the year 2014 using a combination

of nationally collected field data and EO datasets, and then map forest loss between 2014 and 2017.

Finally, we combine the AGBC dataset, the forest loss data and other data (LAI, soil C, climate) with a

process-based carbon cycle model within the CARbon DAta MOdel FraMework (CARDAMOM) [39,40]

to map C accumulation (NPP allocated to wood) and the residence time of biomass. We focus

our analysis on comparing forest and woody grassland landscapes in Kenya to understand their

contribution to national C stocks and to quantify their contributions to C cycling.

2. Data

2.1. Reference Datasets

In situ forest inventory plots were established following a stratified random sampling across

four forest ecosystems (Montane and Western Rain forest, Dryland Forest, Coastal and Mangrove

and the Plantation Forest) and three canopy density classes (dense, moderate and open) across

Kenya [43,44]. The data was collected by the Kenya Forest Service (KFS) during a pilot forest

inventory taken between 2014 and 2016. Species identification of trees, bamboos and lianas, as well

as non-destructive measurements of diameter at breast height and total height were acquired within

each plot [43]. Approximately 61% of the plots were in forest and woodlands, 22% in dryland forest

and wooded grasslands and the remaining 17% in mangroves and other coastal forest. This dataset

consisted of 266 circular plots 30 m diameter (0.07 ha). We used all these plots for training and

validation of the AGB map. Plots were sometimes gathered in 4-plot clusters (0.28 ha per cluster)

where plots were set in a straight line and separated by different distances (Figure 1). This sampling

design allowed us to validate the AGB map at the cluster level as well (0.28 ha). Some plots stood

alone or were in clusters containing fewer than 4 plots for a variety of reasons (e.g., no access due to

private property). Only clusters with 4 plots (i.e., 40 clusters) were considered for validation.

Due to the small number of plots available, LiDAR footprints from the Geoscience Laser Altimeter

System (GLAS) onboard the ICESat satellite acquired between 2004 and 2008 were also used for

validation. The footprints sampled over forested areas were acquired from a spatially balanced sample
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at the national level [45,46]. GLAS data consist of full waveform LiDAR acquisitions, with each

footprint having a diameter of approximately 65 m (0.33 ha) (Figure 1). The canopy height was

estimated for all LiDAR footprints using the full waveform parameters and the method proposed

by Lefsky [47], while aboveground woody biomass (AGB) was derived using the allometric model

proposed for Africa by Saatchi et al. [22]. For Kenya, 40 footprints were available, which we could

increase to 64 by including footprints in close proximity from Tanzania, Somalia and Uganda. Due to

the temporal discrepancy between the GLAS LiDAR footprints (2004–2008) and this study (2014 ± 1),

we screened the footprint locations for disturbances in the dates between that time interval using the

Hansen et al. [3] forest loss product. From the final selection of footprints, 5 were discarded as forest

loss was detected.

 

 

ΐ
ΐ ΐ

Figure 1. Location of in situ forest inventory plots and the representative national sample of GLAS

LiDAR footprints (left). Histograms of relative frequency of aboveground woody biomass (AGB) for

both datasets, and the design of the in situ forest inventory plots within a given cluster (showing the

10m buffer around the plots), and a GLAS LiDAR footprint (right).

A dataset consisting of 500 polygons (60 m × 60 m) depicting stable classes according to the Kenya

land cover map 2014 [48], i.e., stable forest (SF), stable other vegetation (SOV), stable other land (SOL)

and stable water (SW), together with forest loss (Floss) during the 2014–2017 period, was generated by

means of stratified random sampling and the use of time series of very high resolution (VHR) imagery

available through Google Earth Pro. Each sample was visually interpreted and labelled. The dataset

was then randomly divided into training and validation subsets (70% and 30%, respectively) and used

to map these classes over the study period (2014–2017).

2.2. Landsat 8 Operational Land Imager (OLI)

Landsat 8 OLI surface reflectance Tier 1 imagery from the U.S. Geological Survey (USGS) acquired

between 2014 and 2017 over Kenya was used to produce cloud-free annual 30 m resolution composites.

Landsat 8 OLI data are atmospherically corrected using the Land Surface Reflectance Code (LaSRC) [49]

by the USGS and includes a cloud, shadow, water and snow mask derived by the C Function of Mask

(CFMASK) algorithm. We only retained bands 3 (Green; 0.533–0.590 µm), 4 (Red; 0.636–0.673 µm),

5 (Near Infrared, NIR; 0.851–0.879 µm), 6 (Shortwave Infrared 1, SWIR1; 1.566–1.651 µm) and 7

(Shortwave Infrared 2, SWIR2; 2.107–2.294 µm). In addition, a set of spectral indices was included:

normalised difference vegetation index (NDVI) [50], soil adjusted vegetation index (SAVI) [51], enhanced
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vegetation index (EVI) [52], normalised difference moisture index (NDMI) [53] and normalised burn

ratio (NBR) [54]. For each annual composite image, we selected for each pixel the median value of

all observations with low confidence cloud and low confidence cirrus over land, water and snow/ice.

These annual composites are the basis for mapping stable classes and detecting forest loss in the

2014–2017 period. Additionally, a median value composite and vegetation indices were generated

using the same procedure with data from 2014 ± 1 yr. Imagery from 3 years (i.e., 3340 scenes) was

needed to generate a completely cloud-free composite for the whole of Kenya. This composite was

used as input for generating the AGBC map.

2.3. Advanced Land Observing Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture
Radar (PALSAR)

The L-band PALSAR (2007–2010) and PALSAR-2 (2015–2017) mosaics produced and distributed

by JAXA under the ALOS Kyoto and Carbon Initiative [55] consist of dual-polarisation, pre-processed,

incidence-angle corrected radar backscatter expressed as γ0 in dB as follows:

γ
0 = 10× log10(DN)2 + CF (1)

where DN is the pixel digital number and CF is the calibration factor (−83.0 dB).

The pre-processing of these data products [55] involves calibration, multi-looking (16 looks),

projection, orthorectification and slope correction using the Shuttle Radar Topography Mission (SRTM)

Digital Elevation Model (DEM) data, along with a de-striping process [56]. We applied a multi-channel

filter [57] on the annual mosaics (2007–2010, and 2015–2017) with a 5 × 5 window to reduce speckle.

After performing the filtering, only the 2015 mosaic was used. The registration of PALSAR/PALSAR-2

mosaics showed more than 80 m displacement in some regions. This error comes in the processing of the

mosaics, resulting sometimes in shifts and sometimes in deformation ([58], personal communication to

K&C team). Therefore, an additional fine co-registration of the 2015 PALSAR-2 mosaic was performed

using a Sentinel-1 mosaic as reference. This was preferred over a SAR-to-optical approach because of

the different viewing geometry of optical and SAR images, which can lead to inaccurate co-registration.

In addition to both backscatter polarisations (γ0
HH

and γ
0
HV

), we calculated the cross-polarisation ratio

(CpR = γ
0
HV

/γ0
HH

) and the Radar Forest Degradation Index (RFDI = γ
0
HH
− γ

0
HV

/γ0
HH

+ γ
0
HV

) [59].

2.4. Land Cover Data

The Government of Kenya initiated a process for developing a system for the estimation of

land-based emissions in Kenya [4], and among the products developed were the national land cover

classification maps [48] based on IPCC guidelines [60]. The Kenya land cover map is a 10-class map

with 30 m spatial resolution developed using Landsat imagery. The classes are dense forest (canopy

cover > 65%), moderate forest (canopy cover 40–65%), open forest (canopy cover 15–40%), wooded

grassland, open grassland, perennial cropland, annual cropland, mangroves and vegetated wetlands,

open water and other land. The Kenya land cover product for the year 2014, in combination with

the JRC Global Surface Water product [61], was used to constrain the AGBC retrievals to only woody

vegetation classes: dense forest, moderate forest, open forest, wooded grassland and mangroves and

vegetated wetland. As previously mentioned, the land cover map was also used to guide the stratified

selection of reference observations of stable land cover classes in the 2014–2017 period.

2.5. Global Forest Change

The Global Forest Change (GFC) dataset v 1.6 [3] is a 30 m Landsat-based product that depicts

tree canopy cover for the year 2000, annual forest cover loss, and total forest cover gain for the period

of 2000–2018. The tree canopy cover 2000 and the loss/gain data from the 2000–2014 period were used

to generate a 2014 tree canopy cover product for Kenya used as input to generate the AGBC map.

Additionally, the validation subset was used to evaluate the accuracy of the GFC annual forest loss for
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the period 2014–2017 over Kenya in order to assess its value in constraining the CARDAMOM analysis

to undisturbed woody classes only (see Section 3.4 for details).

2.6. Leaf Area Index

The Copernicus Global Land Service (CGLS) Collection 300 m Leaf Area Index (LAI) Version

1 dataset was used as the input for the CARDAMOM analysis. This dataset is based on the daily

top-of-atmosphere reflectance measured in the blue, red and near infrared channels [62,63]. These were

transformed into estimates of LAI using a neural network in an approach similar to Baret et al. [64] and

Camacho et al. [65]. The daily estimates were smoothed, gap-filled and composited over 10-day periods

starting in January 2014. The uncertainty of the composited product is reported as its root-mean-squared

difference (RMSD) from daily estimates in the compositing period. The data were taken from the CGLS

online portal (http://land.copernicus.eu/).

2.7. Burned Area and Soil Data

The Global Fire Emissions Database version 4 (GFEDv4) was used to provide time series

information on the burned area at monthly time steps and 0.25◦ × 0.25◦ spatial resolution over

Kenya [66]. This was used to impose observed fire disturbance on the CARDAMOM analyses.

CARDAMOM also requires a prior estimate of the magnitude of the organic soil carbon stock, extracted

from the SoilGrids (250 m × 250 m) product [67]. SoilGrids was chosen over other products due to a

recent review of global soil maps against independent data indicating a greater degree of skill in the

SoilGrids (see https://www.soil-journal.net/5/137/2019/for details). For details on the data aggregation,

see Section 3.4.

3. Methods

The methodology adopted here has the following components: (i) in situ AGB estimation using

pantropical allometries, (ii) AGBC map production, (iii) mapping stable classes and forest loss and (iv)

carbon cycle analysis using a model-data fusion framework (Figure 2).

 

 

Figure 2. Flowchart of the overall methodology.

http://land.copernicus.eu/
https://www.soil-journal.net/5/137/2019/for
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We used a non-parametric machine learning random forest algorithm [68] to perform regression

and supervised image classification. Random forests (RF) have been used extensively to retrieve

biophysical parameters and land cover from remote sensing data [19,69–71]. RF is built as an ensemble

of binary decision trees, where each tree is fitted to a bootstrap sample of the training dataset (with

replacement) and the final prediction is generated as the average of all the estimates (for regression) or

by majority vote (for classification). The observations not selected for fitting a RF model (the out-of-bag

(OOB) sample) are combined to give the overall estimate of error. A sensitivity analysis was carried

out to find the combination of hyper-parameters generating the lowest OOB error.

3.1. AGB Estimation Using Allometric Models

The AGB for in situ plots was estimated using pantropical tree allometries [72] with diameter

at breast height, tree height and wood specific gravity as input variables (Equation (A1)) for all the

trees within each plot. The AGB of bamboos was estimated using Muchiri and Muga [73] allometries

(Equations (A2) and (A3)), while the AGB of lianas was estimated using the volume of the equivalent

cylinder and the mean wood density of 0.6 g m−3 [74]. For the LiDAR footprints, AGB was estimated

using the Saatchi et al. [22] footprint allometric model for sub-Saharan Africa, which used GLAS-derived

canopy height as predictor variable (Equation (A4)). The histograms of AGB values from both datasets

were similar (Figure 1), with an average AGB from the in situ plots and GLAS dataset of 90.7 t ha−1

and 97.6 t ha−1 respectively.

3.2. Biomass and Carbon Mapping

As the in situ plots were relatively small (30 m diameter) and geographical coordinates obtained

with a GPS under a forest canopy can have substantial geolocation error (5–10 m) [43], the AGB

field data may not correspond exactly to the overlapping pixel values at a given location. Therefore,

we added a 10 m buffer around the plot boundaries to obtain a representative 50 m diameter circular

area (Figure 1). We then extracted the average value of all the EO pixels from the different predictors

overlapping those areas to train the supervised regression. This had the aim of averaging out any

geolocation errors in the plots.

The AGB map was generated by combining the in situ AGB measurements with L-band SAR

ALOS-2 PALSAR-2 (γ0
HV

, γ0
HH

, RFDI and CpR), multispectral Landsat data (Green, Red, Near infrared,

both Shortwave infrared bands, NDVI, NBR, NBR2, NDMI and SAVI) and a Landsat tree canopy cover

product, and running RF within a stratified k-fold cross-validation framework. This framework was

designed to make the best use of the limited data available for training, to validate the map and, at the

same time, to estimate our prediction error at pixel level based on the standard deviation of the k

predictions performed by the models calibrated with different groups of data (see Appendix A).

The Kenya land cover product [48] and JRC Global Surface Water product [61] were used to

constrain the predictions to only forests, wooded grasslands and savannahs, mangroves and vegetated

wetlands, so water, croplands, open grasslands and bare land classes were set to zero AGB. The AGB

and SD maps in units of t ha−1 were then converted to AGBC units (i.e., t C ha−1) by using a 0.47

conversion ratio [75]. We also estimated the belowground biomass carbon (BGBC), i.e., the biomass

carbon of live roots, using a root-shoot ratio of 0.24 [75].

For accuracy assessment of the AGBC map we quantified the difference between our map and the

reference data using the mean bias difference (MBD), the mean absolute difference (MAD), the root

mean square difference (RMSD) and the relative squared difference (RSD) (Appendix A). We also

performed an accuracy assessment stratified by the AGBC range as seen in Rodríguez-Veiga et al. [14] to

evaluate random errors and biases using the Coefficient of Variation of the bias (CVbias) (Appendix A).

3.3. Forest Loss Mapping

The previously described 500 squares of 60 m × 60 m from the training dataset depicting stable

classes (SF, SOV, SOL and SW; according to the Kenya land cover map—see Section 2.1) and forest loss
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were used to extract the average value from each Landsat 8 OLI band and derive spectral indices. A RF

classifier was then used to perform supervised classification on a 70% random sample of that dataset

(n = 350). This map was validated using the validation subset (n = 150). The validation results are

reported using the testing subset to generate the corresponding confusion matrix, which was corrected

using the mapped area of each class according to Olofsson et al. [76].

RF gives the proportion of votes in each class on a pixel-by-pixel basis, which can be viewed as an

indicator of classification confidence. A likelihood scale can then be defined according to these values

using a similar approach to that developed by IPCC (2010). The likelihood of an outcome could be

defined as “unlikely” (probability < 0.33), “about as likely as not” (probability = 0.33–0.66) and “likely”

(probability > 0.66). We applied these intervals to the predictions from the RF model and generated

three levels of likelihood per class. We then used the “likely” (probability > 0.66) Floss class to update

the forest cover area to focus only on undisturbed forest during the study period.

3.4. Carbon Cycle Analyses: CARbon DAta MOdel fraMework (CARDAMOM)

We used the CARDAMOM [38,40,41] model-data fusion framework to analyse the terrestrial

carbon cycle in Kenya at 0.25◦ spatial resolution and monthly time step. CARDAMOM combines the

Data Assimilation Linked Ecosystem Carbon version 2 (DALEC2), which is an intermediate complexity

model of the terrestrial carbon cycle (Bloom and Williams [39]), with biophysical observations and

their uncertainties, plus meteorological information. Ecological and dynamic constraints (EDCs) are

used in CARDAMOM to ensure sensible parameter searches within a Bayesian framework using

an Adaptive Proposal-Markov Chain Monte Carlo (AP-MCMC). This process retrieves ensembles of

location-specific model parameters, providing probabilistic estimates of fluxes and pools of C over the

analysis period. The EDCs ensure that carbon cycle dynamics and trait retrieval are consistent with

ecological theory (e.g., ensuring litter turnover is faster than that of soil organic matter), as described in

Bloom and Williams [39]. DALEC simulates photosynthesis, respiration, the allocation of photosynthate

to foliar, root and wood pools, their turnover and the subsequent decomposition in the litter and soil

carbon pools.

CARDAMOM was used to estimate the carbon cycle of undisturbed Kenyan forests and

wooded grasslands for 2014–2017 under meteorology extracted from ERA-Interim re-analysis climate

data [77]. Fire was imposed using GFEDv4 (see Section 2.7) following the approach of Exbrayat

et al. (2018). Time series of LAI from the Copernicus Land Monitoring Service [64] were assimilated

into CARDAMOM to constrain canopy phenology and productivity, while the maps of AGBC

(this study) and soil organic matter carbon (SoilGrids; see Section 2.7) constrained the initial status of

the corresponding carbon pools.

The CARDAMOM analysis was conducted at 0.25◦ × 0.25◦ resolution as this was the resolution

of the coarsest dataset used (GFEDv4). However, many of the other observational constraints have

finer spatial resolutions. Using the map of undisturbed forest (this study) we resampled the AGBC

estimate, LAI time series and soil organic matter information from their native resolution to 0.25◦

following [78]. Each 0.25◦ grid cell was analysed by CARDAMOM using the average status of the

undisturbed forest within that pixel after removing contamination by other land cover types. Overall,

a total of 761 grid cells were simulated to represent the mean undisturbed forest state. To ensure

convergence, CARDAMOM’s AP-MCMC procedure was repeated three times at each location for

100 million iterations. Convergence was then tested using the Gelman–Rubin convergence criterion.

Grid cells which did not converge across the three repeated analyses were re-run. The results presented

here were derived by subsampling 250 parameter sets from the second half of each chain. Pixel level

uncertainties are estimated directly from the probability density function estimated from the ensemble

of simulations from the parameter sub-sample.

Estimates of the following land-atmosphere fluxes are reported in Section 4: gross primary

productivity (GPP), autotrophic respiration (Ra), net primary productivity (NPP = GPP − Ra),

heterotrophic respiration (Rh), net ecosystem exchange (NEE = −NPP + Rh) and net biome exchange
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(NBE = NEE + Fire). For NEE and NBE, negative values indicate a net C uptake from the atmosphere.

CARDAMOM also generates estimates of ecologically important information on the partitioning of

photosynthate allocated to plant tissues and their mean residence times, as well as carbon cycling.

4. Results

4.1. Biomass Carbon Stocks

The AGBC map for Kenya and its associated uncertainty map (Figure 3) shows a concentration of

AGBC in the western mountainous areas of the country and in the eastern coastal region.

 

ƺ

 

ƺ ƺ

ƺ ƺ

ƺ

ƺ ƺ

ƺ

ƺ

ƺ ƺ

ƺ

Figure 3. Kenya aboveground woody biomass carbon (AGBC) and SD maps for forest and woodlands

2014 ± 1.

The accuracy of the AGBC map was assessed using in situ plots, plot clusters and GLAS

LiDAR footprints (Figure 4). The assessments at plot and cluster level are the result of the k-fold

cross-validation framework, whereas the GLAS LiDAR footprints give an additional independent

validation. The accuracy assessment at plot level showed a coefficient of determination (R2) of 0.47,

RMSD of 39.0 t C h−1, RSD of 52.9%, and MBD in the overall mean of 1.4 t C ha−1. At cluster level,

R2 was 0.88, the RMSD was 18.0 t C ha−1, the RSD was 13.5% and the MBD was 3.2 t C ha−1. Validation

with the GLAS footprint data gave similar results, with R2 of 0.45, RMSD of 39.1 t C ha−1 and MBD of

the mean of −4.3 t C ha−1.

The error analysis indicated that random error, as measured by the CVbias, was dominant in the

low and middle AGBC ranges predicted by the map for plots and clusters. In the case of plot and GLAS

level assessments, bias dominated the error in ranges above 75 t C ha−1 for GLAS and 135 t C ha−1 for

plots, which resulted in an underestimation of AGBC (Figure 4 and Table A1). However, this effect is

reduced when assessing the errors using larger units (i.e., clusters).

Using the AGBC and the uncertainty map, we computed an average AGBC of 36.69± 17.04 t C ha−1

for forests (open to dense forests and mangroves) and 6.01 ± 2.98 t C ha−1 for wooded grasslands.

The highest AGBC densities estimated by the map in Kenya are in the dense forest areas, with values

up to 250.50 t C ha−1. The lowest AGBC values are found in the wooded grassland areas. Kenya

is dominated by arid and semi-arid conditions, leading to a dominance of low AGBC densities

(i.e., wooded grassland, Figure A1). However, the large area covered by wooded grassland means that

we estimate ~59% of Kenya’s total AGBC stocks are found there.



Remote Sens. 2020, 12, 2380 10 of 24

 

ȹ ȹ

ƺ

Figure 4. Scatterplots of average predicted AGBC vs average observed AGBC from (a) plots, (b) clusters

and (c) GLAS LiDAR footprints). Warmer colours indicate higher point density. The red solid line

corresponds to the y= x line.

The total AGBC stocks for the forests and wooded grasslands in Kenya was estimated to be

339.20 Mt C with a coefficient of variation at national level of <1%. Stratifying by cover type, the total

AGBC stock in forests (open to dense forests and mangroves) was 140.70 Mt C, and in wooded

grasslands 198.50 Mt C, representing 41% and 59% of the total stocks respectively. The total BGBC was

estimated as 81.41 Mt C, resulting in a total biomass carbon stock of 420.61 Mt C.

The AGBC map derived by this study was compared in terms of accuracy and carbon stocks to

previous global and pan-tropical studies from Avitabile et al. [24], Saatchi et al. [22], Baccini et al. [23]

and Santoro et al. [79] over Kenya at 1 km spatial resolution (Figure A2). These products correspond

to different years between 2000 and 2010, while our map corresponds to 2014. We used the GLAS

footprints and the clusters to assess the accuracy of these products. We made sure these were not

affected by forest disturbances between 2000 and 2015, according to Hansen et al. [3]. This study

showed higher accuracy and lower errors than any other product over Kenya (Table A2).

In terms of carbon stocks, Saatchi et al. [22] calculated almost twice the amount calculated by

this study or by Baccini et al. [23] for Kenya, and almost three times the stock estimated by Avitabile

et al. [24]. Dense, moderate and open forest areas showed similar AGBC values in all the studies, except

that of Avitabile et al. [24] with lower AGBC values for all vegetation types (Figure 5). The biggest

disagreements between the maps occur for wooded grasslands and mangroves and vegetated wetlands

(Figure 5). Each of the AGBC maps indicates that wooded grassland has the largest total AGBC stocks,

ranging from 48% to 76% of the total AGBC stock for the country (Figure 5).

 

ȹ ȹ

ƺFigure 5. Average AGBC (t C ha−1) by land cover class and map (left), and total AGBC (M t C) by

map and land cover class. Values correspond to this study, Avitabile et al. [24], Saatchi et al. [22],

Baccini et al. [23] and Santoro et al. [79]. The comparison was made after aggregating all the products

to 1 km spatial resolution.
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4.2. Deforestation and Carbon Loss

The accuracy assessment of the “likely” forest loss class refers to the testing subset and is given

as proportions, following Olofsson et al. [76]. Two products were validated using this subset: (i) the

globally calibrated forest loss product for 2014–2017 from the GFC dataset [3]; (ii) the locally calibrated

forest loss map generated in this study for the 2014–2017 period.

Our locally calibrated undisturbed land cover and forest loss product for the 2014–2017 period in

Kenya (Figure 6) showed an overall accuracy of 0.92 and κ of 0.83. The commission error for this forest

loss product was estimated at 3%, while the omission error was 0%. For comparison, the globally

calibrated GFC forest loss dataset for the 2014–2017 period in Kenya gave a commission error of 0%,

and a much higher omission error of 99%, for an overall accuracy of 0.89 and κ of 0.01 (Tables A3

and A4).

 

Ύ

Ύ

ƺ

ƺ

 

ƺ

ƺ

 

Figure 6. Undisturbed Land Cover 2014 and Forest loss for the 2014–2017 period.

As our locally calibrated forest loss product gave much higher accuracy, it was used for the

subsequent analysis. The total forest loss calculated using this dataset for the 2014–2017 period in

Kenya was estimated as 30,802 ha (deforestation rate of 10,267 ha yr−1), of which 87% occurred in

dense forests (Table 1).

Table 1. Deforestation rate (ha yr−1) and AGBC loss rate (t C yr−1) for the 2014–2017 period for forests

and wooded grasslands.

Previous Vegetation Deforestation Rate (ha yr−1) AGBC Loss Rate (t C yr−1)

Dense forest 8889 640,222
Moderate forest 1233 44,982

Open forest 284 10,781
Mangrove & wetland 53 1264

Wooded grassland 3806 97,724
Total 14,265 794,972

These figures change if wooded grassland is included in the calculation. Then, the total loss would

be 43,736 ha (14,579 ha yr−1), with 61% corresponding to dense forest and 30% to wooded grassland.

The combination of the forest loss product with the AGBC map allows us to estimate the AGBC

loss rates due to deforestation for the 2014–2017 period (Table 1). In this period, Kenyan forests lost
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approximately 2.09 Mt C, with an annual loss rate of approximately 0.70 Mt C yr−1, while approximately

0.29 Mt C (0.10 Mt C yr−1) was lost from wooded grassland due to deforestation. The deforestation

rate of wooded grasslands was half that of dense forest, but five times more AGBC was lost in the

latter. The CV for the total AGBC losses for all forest types was below 1%.

4.3. Ecosystem Carbon Cycling Properties and Dynamics

CARDAMOM accurately simulated the time series of observed LAI and single estimates of AGBC

and soil carbon used to constrain its initial conditions (R2 > 0.95 and mean absolute error <10%;

Figure A3). Consistent with the AGBC mapping, CARDAMOM estimated that ecosystem productivity

(GPP) and growth (NPP) are ~2.5 times greater per hectare for forest ecosystems than for wooded

grasslands. However, the more extensive wooded grasslands are overall three times more productive

than the forest area at the national scale (Table 2). Carbon losses from both forests and wooded

grasslands are dominated by respiration, with fire losses estimated to represent only ~1% of the net

biome exchange. Respiration has a similar magnitude from autotrophs and heterotrophs. Given the

currently assimilated information, the analysis cannot confidently identify either forest or wooded

grassland as a net source or sink of carbon for the analysis period (Table 2). The mean wood stock

estimates in 2014 for forests is more than 4 times larger than in wooded grassland. Similarly, the mean

magnitude of NPP allocated to wood is ~3 times larger in forests than wooded grassland, while the

residence time of wood is ~70% longer in forests than in wooded grassland (Table 3).

Table 2. The carbon budget of undisturbed Kenyan forests and wooded grassland land covers during

2015–2017. Median annual values are presented with their 50% confidence range in parenthesis.

Aggregation from pixel level to national scale assumed spatial correlation between uncertainties in

all pixels. Land-atmosphere fluxes: Gross primary productivity (GPP), autotrophic respiration (Ra),

net primary productivity (NPP = GPP − Ra), heterotrophic respiration (Rh), net ecosystem exchange

(NEE = −NPP + Rh) and net biome exchange (NBE =NEE + Fire). Negative values of NEE and NBE

denote net C uptake from the atmosphere.

Forest Wooded Grassland

(Mt C yr−1) (t C ha−1 yr−1) (Mt C yr−1) (t C ha−1 yr−1)

GPP 34 (21/50) 6.2 (3.9/9.1) 101 (67/152) 2.5 (1.7/3.8)
Ra 15 (9/24) 2.8 (1.6/4.4) 46 (28/75) 1.1 (0.7/1.9)

NPP 17 (11/26) 3.2 (2.1/4.7) 53 (36/77) 1.3 (0.9/1.9)
Rh 18 (12/28) 3.3 (2.1/5.1) 57 (38/84) 1.4 (1.0/2.1)

NEE 0.8 (−3/6) 0.2 (−0.6/1.1) 3.6 (−8.7/17.8) 0.09 (−0.2/0.4)
Fire 0.007 (0.006/0.008) 0.0012 (0.001/0.0015) 0.02 (0.02/0.03) 0.0005 (0.00045/0.0007)
NBE 0.8 (−3/6) 0.2 (−0.6/1.1) 3.6 (−8.7/17.8) 0.1 (−0.2/0.4)

Table 3. The net primary production of wood (NPP wood) and mean residence times (years) of

undisturbed Kenyan forests and wooded grassland during 2015–2017. Median annual values are

presented with their 50% confidence range in parenthesis. Aggregation from pixel level to national

scale assumed spatial correlation between uncertainties in all pixels.

NPP Wood Residence Time of Wood

(Mt C yr−1) (t C ha−1 yr−1) (Years)

Forest 10.1 (4.8/18.6) 1.9 (0.9/3.5) 16.3 (9.6/32.2)
Wooded grassland 24.5 (8.2/44.8) 0.6 (0.2/1.1) 9.5 (6.1/17.6)

5. Discussion

In this study we have combined field inventory and EO information within a machine learning

approach to create Kenya-wide improved estimates of AGBC (Figures 3–5), forest cover loss (Figure 6,

Table 1) and their uncertainties. These and other data have then been used to constrain a process-oriented
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model of the terrestrial carbon cycle to improve our understanding of the properties and carbon cycling

of the Kenyan ecosystem (Tables 2 and 3).

5.1. Biomass Carbon Stocks

The total AGBC stock estimated for Kenya is 339.20 Mt C. The coefficient of variation for AGBC at

national level was calculated to be <1%, which agrees with Saatchi et al. [22]. However, this result

must be treated with caution, as the CV of a sum of measurements can be made arbitrarily small by

adding more measurements/pixels (i.e., increasing the area of interest). This is because the precision of

the estimated total AGBC improves as the number of pixels increases (see Equations (A8) and (A9)),

but the accuracy of the estimate may increase or decrease as new measurements are added if there

are systematic biases in the measurements. The potential error depends on how bias depends on true

AGBC and the histogram of the true AGBC for the measurements being summed.

Previous EO-based pantropical and global maps correspond to different time-periods and used

different reference datasets and methods. These studies have estimated Kenya’s biomass carbon stocks

to be 174–556 Mt C, a range encompassing the estimate from this study [21–24]. However, all the

studies give an AGBC stock that is a lot smaller than the 694 Mt C reported in the Forest Resource

Assessment (FRA) [75]. The discrepancies between this study and the abovementioned EO-orientated

studies is due to the AGBC stocks estimated for wooded grasslands (Figure 5). In the studies, the forest

AGBC stock ranges from 88.82 Mt C to 139.21 Mt C, whereas the AGBC from wooded grasslands

presents a wider range from 84.22 Mt C to 424.95 Mt C. The lowest estimate for wooded grassland

comes from Avitabile et al. [24]; this is not surprising as this used the GLC2000 map [80] as a forest

mask, which excluded a large proportion of wooded grassland and other vegetation types from their

estimation, as seen in Figure 5. These large differences at national level, in the order of hundreds Mt C,

cannot be explained by inter-annual AGBC variation. Nevertheless, all studies suggest that the largest

pool of AGBC in Kenya is in wooded grasslands.

However, due to their low tree density wooded grasslands are not considered forest under

the Kenyan forest definition and are therefore not included within the framework of national and

international mechanisms aiming to protect carbon stocks, such as REDD+. This is an indication that

the role of wooded grasslands in the C cycle is not fully understood and that this role is undervalued,

as recently stressed by McNicol et al. [31], who for the first time identified: (i) degradation as the

main driver of C loss in the highly dynamic southern African savannahs and woodlands; and (ii)

the importance played by extensive regrowth, making this region a significant sink of carbon.

Even mechanisms such as the Bonn Challenge, which aims to reforest 150 Mha by 2030, include some

wooded grasslands and savannahs as targets for its afforestation agenda [81], implying that these

ecosystems need to be converted to forest, thereby underestimating not only their climate mitigation

capacity in their own right but also their ecological importance. Furthermore, fluxes from degradation

and regrowth, including recent reforestation efforts made by the government of Kenya to increase the

forest cover of the country to 10% of the national territory by 2022 [2], are unaccounted for.

5.2. Deforestation and Carbon Loss

We compared the accuracy of the locally calibrated forest loss product (Figure 6) generated in this

study with a globally calibrated forest loss product (GFC) [3] for Kenya. The GFC product does not

perform well for Kenyan forests and has a large omission error, indicating that it does not detect most

of the deforestation occurring in the country (Table A4). This has implications when calculating the

overall carbon budget for Kenya. As Kenya’s carbon stocks are relatively low, a miscalculation of the

deforestation might change the estimate from a net C source to net C sink and vice versa. Likewise,

Milodowski et al. [29] found that the GFC provides robust estimates of forest loss for large-scale

deforestation areas, but has serious problems detecting small-scale disturbances (<2 ha).

The estimated deforestation rates in Kenya between 1990 and 2015, as reported by the Food and

Agriculture Organization (FAO), are approximately 12,400 ha yr−1 [1], which roughly agrees with the
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average deforestation rate of 10,459 ha yr−1 (14,265 ha yr−1 if wooded grassland is included) reported

in this study for the 2014–2017 period. Based on these deforestation rates we estimated that 2.38 Mt C

was lost due to deforestation in that period (annual rate of 794,972 t C yr−1).

It should be noted that the deforestation rates reported in this study are only based on forest

cover loss, as satellites do not see if regrowth is allowed or there is land cover conversion after forest

removal. Additionally, our products do not differentiate harvesting occurring in forest plantations or

concessions from illegal logging of protected forests.

5.3. Ecosystem Carbon Cycling Properties and Dynamics

The CARDAMOM analysis emphasises the importance of carbon cycling in wooded grassland

ecosystems for Kenya’s overall biosphere carbon balance (Tables 2 and 3). Wooded grasslands cover

approximately 62% of the country while forest only covers approximately 7%, so the national carbon

fluxes both into and out of wooded grasslands are much larger (Table 2). Despite their limited tree

cover, our analysis indicates that at national scale more carbon is fixed into wood each year in the

wooded grasslands than in forests (Table 3). Thus, while forest ecosystems may be more productive per

unit area, wooded grasslands must be considered in Kenya’s carbon management strategy. The role of

fire within both ecosystems was estimated to be <1% of the net biome exchange of carbon (Table 2).

However, this estimate should be treated with caution given the widely reported difficulty in detecting

small fires from space, which has led to significant efforts to improve small fire detection in recently

released products, e.g., [28].

Given the currently available observational datasets, the remaining uncertainties in net carbon

exchange make it impossible to identify either forests or wooded grasslands as net sources or sinks

of carbon (Table 2). Large uncertainty in the net carbon balance is expected given the lack of repeat

measurements of woody biomass [38] or additional information that constrains the woody residence

time and/or net carbon exchange. Future CARDAMOM studies will be able to take advantage of new

EO-based estimates of biomass to provide additional constraints, such as the annual assessment of

woody biomass and its changes, e.g., ESA Biomass mission e.g., ESA Biomass mission [82]. In the

near-term, subsequent studies should investigate the usefulness of assimilating net biome exchange

estimates derived from atmospheric inversion analysis [83,84].

The CARDAMOM analysis focuses only on forest and wooded grasslands that were undisturbed

between 2014 and 2017 and therefore does not account for degradation, reforestation or afforestation

activity which occurred prior to the analysis period or degradation during this period. Additionally,

the analysis of vegetation dynamics does not represent the complex dynamics in this ecosystem

due to large herbivores, pastoral practices and small-scale fires not detected in the GFEDv4 burned

area product.

6. Conclusions

The assessment of forest carbon fluxes at national level requires precise and detailed carbon

stock estimations. However, the limited availability of in situ data together with the lack of accurate

forest carbon maps with fine enough spatial resolution for Kenya have until recently made this

particularly challenging.

The AGBC map and the forest loss products generated by this study are the most accurate and

detailed published for Kenya to date, giving estimates for every 30 m pixel along with an estimate

of the associated pixel-level uncertainty. They complement other Landsat-based national forest land

cover methods, and therefore facilitate national and international reporting on carbon dynamics.

The AGBC map quantifies carbon stocks not only for forests but also for wooded grasslands, which are

often neglected in this type of analysis. The AGBC and forest loss maps allowed us to produce the

most complete analysis of carbon stocks and fluxes for the forests and wooded grasslands in Kenya.

This study can therefore be considered a benchmark for studying carbon fluxes at national level.
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Our results emphasise the importance of other vegetated ecosystems (i.e., wooded grasslands)

besides forests for carbon sequestration, and stresses the importance of considering those in Kenya’s

carbon management strategy. Wooded grasslands represent 59% of the AGBC stocks in Kenya due to

the large area of this ecosystem type. However, unlike forests, international mechanisms for climate

mitigation, such as REDD+, do not recognise the importance of wooded grasslands by providing

economic incentives for their preservation and management. Moving from a concept of a discontinuous

landscape described by categorical land cover classes to a continuous landscape paradigm describing

landscapes through biophysical parameters such as percentage canopy cover will provide a way

forward for such international mechanisms.
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Appendix A. Methods

Appendix A.1. AGB Estimation Using Allometric Models

The allometric model from Chave et al. [72] was used to estimate tree AGB:

AGB = 0.0673×
(

ρD2H
)0.976

(A1)

where D is diameter at breast height in cm, H is tree height in m and ρ is wood specific gravity in

g cm−3.

The allometries from Muchiri and Muga [73] were used for AGB of bamboos:

AGB = 1.04 + 0.06×D×
(

1.11 + 0.36×D2
)

for bamboos with D > 3cm (A2)

AGB = 1.04 + 0.06×D×
(

1.11 + 0.36× 3.12
)

for bamboos with D ≤ 3cm (A3)

The volume of the equivalent cylinder and the mean wood density of 0.6 g m−3 [74] was used to

estimate the AGB of lianas.

In the case of GLAS LiDAR footprints, AGB was estimated using a footprint level allometric

model developed by Saatchi et al. [22] for sub-Saharan Africa including woodland savanna:

AGB = 0.3542×H2.0528
L (A4)

where HL is the basal area weighted canopy height (i.e., Lorey’s height).

Appendix A.2. K-Fold Cross Validation and AGB Error Mapping

The original sample of in situ data was stratified into 3 AGB ranges (high, medium, low) and

each range (stratum) was randomly partitioned into k equally sized subsamples (k = 10). Of the k
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subsamples, a single subsample is retained from each stratum as the validation data for testing the RF

model, and the remaining k − 1 subsamples are used as training data. The cross-validation process

was then repeated k times (the folds), with each of the k subsamples used exactly once as the validation

data. Therefore, all observations were used for both training and validation, and each observation

was used for validation exactly once. As a result of this framework, the k AGB maps were generated,

from which the mean value of all estimates for each pixel was used as the final AGB retrieval ( ˆAGB):

ˆAGB =

∑k
i=1 AGBi

k
(A5)

where AGBi is the prediction of each of the k AGB estimates. Accordingly, the standard deviation (SD)

of all k AGB estimates is defined as:

εprediction =

√

√

√

1

k

k
∑

i=1

(AGBi −
ˆAGB)

2
(A6)

The total SD (εAGB) for our final retrieval ( ˆAGB) is then propagated as explained in Rodriguez-Veiga

et al. [15], where:

εAGB =
(

ε
2
measurement + ε

2
allometry

+ ε2
sampling

+ ε2
prediction

)
1
2

(A7)

where εmeasurement is the SD from the measurement of tree level parameters averaged at plot scale,

εallometry is the SD from the use of allometric models and εsampling is the SD originating from the variability

of AGB within the pixel. The εprediction accounts for errors that arise if the sampling sites are not truly

representative of the of the distribution of AGB in the region [22]. In order to estimate these parameters,

we assumed the Coefficient of Variation of the measurement (CVmeasurement = εmeasurement/ ˆAGB) was

10% [85], CVallometry = εallometry/ ˆAGB was 11% [86], and CVsampling = εsampling/ ˆAGB was 31%, based on

Réjou-Méchain et al. [87].

Appendix A.3. Error Characterization for Vegetation Type/National Level

The dispersion of the total carbon stock estimates by vegetation type and at national level was

calculated by propagating the associated errors to all pixels within the area of interest (i.e., vegetation

type or national boundary). We calculated the SD for the area of interest (εAGBC f or AI) by summing

the variances for all pixels, and the Coefficient of Variation of the total AGBC for the area of interest

(CVAGBC f or AI) by dividing εAGBC f or AI by the total AGBC in the area of interest as follows:

εAGBC f or AI =

√

∑N

i=1
(εAGBCi)

2 (A8)

CVAGBC f or AI =
εAGBC f or AI
∑N

i=1 AGBCi

(A9)

where N is the number of pixels within the vegetation type or national boundary, AGBCi is the AGBC

for pixel i and εAGBCi is the error associated with pixel i.

Appendix A.4. Accuracy Assessment

We assess the accuracy of the AGBC map using 2 datasets: AGBC measurements derived from (i)

the in situ plots and clusters (k-fold cross validation), and from (ii) the GLAS LiDAR footprints.

Here we do not compute errors but differences, since the ground data have errors and are not the

true values. We quantified these differences using the mean absolute difference (MAD), the mean bias
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difference (MBD), the root mean square difference (RMSD) and the relative squared difference (RSD)

defined as follows:

MAD =

∑n
i=1

∣

∣

∣pi − ai

∣

∣

∣

n
(A10)

MBD =

∑n
i=1(pi − ai)

n
(A11)

RMSD =

√

∑n
i=1(pi − ai)

2

n
(A12)

RSD =

∑n
i=1(pi − ai)

2

∑n
i=1(a− ai)

2
(A13)

where n is the number of plots or footprints, pi is the AGBC estimated by the map, ai is the AGBC

estimated on the plot or footprint and a is the sample average of the latter.

The accuracy assessment was also carried out by stratifying the reference data into AGBC ranges

following the design shown in Rodríguez-Veiga et al. [14]. The selected ranges varied by reference

dataset, depending on the maximum biomass observed for the dataset and the need to have a sufficient

number of reference data within each range. The CV of the bias (CVbias) for a given AGBC range was

estimated as follows:

CVbias = SD/MBD (A14)

where SD and MDB are the standard deviation and the mean bias difference. When the CVbias exceeds

1, the RMSD is dominated by random error, but when it is less than 1 the dominant error source is bias

in the estimator.

An accuracy assessment was also carried out for the previous AGBC maps of Avitabile et al. [24],

Saatchi et al. [22], Baccini et al. [23], and Santoro et al. [79] over Kenya. For comparability purposes,

all the maps were aggregated to 1 km spatial resolution (including the map developed in this study).

The maps were then validated using GLAS footprints and the NFI clusters.

Appendix B. Additional Results
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Figure A1. Histograms of AGBC map predictions for broad vegetation cover type: (a) forest,

(b) mangroves and vegetated wetlands, and (c) wooded grassland. Note the different scale of

the y axis for wooded grasslands.
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Table A1. Summary accuracy assessment stratified by reference AGBC range: Mean Bias Difference

(MBD), Root Mean Square Difference (RMSD), Standard Deviation (SD), and Coefficient of Variation of

the bias (CVbias) (when CVbias > 1 the random error dominates, when CVbias < 1 the bias does). Units

are in t C ha−1, except for CVbias which is a ratio.

AGBC
Range

NFI Plots GLAS Footprints NFI Clusters

MBD RMSD CVbias MBD RMSD CVbias MBD RMSD CVbias

0–15 13.8 23.2 1.4 17.0 20.3 0.7 6.8 9.2 0.9
15–30 11.3 22.0 1.7 7.5 14.0 1.6 2.0 7.2 3.4
30–45 15.1 26.8 1.5 23.1 25.4 0.5 8.7 17.1 1.7
45–60 12.7 34.5 2.5 4.4 17.1 3.8 12.4 18.6 1.1
60–75 −14.2 27.3 1.6 0.2 29.2 145.0 3.6 8.0 2.0
75–90 −21.7 33.8 1.2 −17.3 17.7 0.2 9.0 24.0 2.5

90–105 −33.0 34.7 0.3 −49.4 49.8 0.1

−29.4 44.0 1.1
105–120 −28.1 45.9 1.3

−98.1 106.0 0.4120–135 7.2 11.6 1.3
135–150 −84.1 88.6 0.3
>150 −112.1 117.7 0.3

 

ƺ ƺ

ƺ
ƺ

ƺ
ƺ
ƺ

 

ƺ ƺ ƺ

ƺ
ƺ

ƺ

Figure A2. AGBC maps derived from (a) this study, (b) Avitabile et al. [24], (c) Saatchi et al. [22],

(d) Baccini et al. [23], and (e) Santoro et al. [79]. All the maps were aggregated to 1 km spatial resolution

and masked using the land cover map for Kenya to constrain prediction to only forests, wooded

grasslands, and mangroves & vegetated wetlands.
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Table A2. Summary accuracy assessment of AGBC maps. All the maps were aggregated to 1 km spatial

resolution. The maps are validated using a dataset consisting on GLAS footprints and NFI clusters

(N = 99).

AGBC Map R2 MBD (t C ha−1) MAD (t C ha−1) RMSD (t C ha−1)

This study 0.49 0.74 19.30 31.17
Avitabile et al. (2016) 0.44 −10.51 22.22 35.80
Saatchi et al. (2011) 0.32 −5.70 23.32 36.29
Baccini et al. (2012) 0.47 4.87 22.39 33.08
Santoro et al. (2018) 0.36 −2.44 24.16 34.94

Table A3. Summary of standard errors (SE) for the areas of the land cover change product.

Class Standard Error (SE)

Stable Forest (SF) 0.00%
Stable Other Vegetation (SOV) 6.19%

Stable Other Land (SOL) 19.07%
Stable Water (SW) 0.00%
Forest Loss (Floss) 0.00%

Table A4. Summary of accuracy assessment of the forest loss products derived by GFC and this study.

Forest Loss Product Commission Error (%) Omission Error (%)

GFC forest loss 0 99
This study 3 0

 

 

ȹ ȹ

 

 

 

 

 

 

Figure A3. Comparison of the assimilated information and CARDAMOM estimates of mean leaf area,

AGBC and soil organic matter for both stable forest and wooded grassland (savannah). Leaf area index

information is drawn from the ESA Copernicus product, while the prior on the initial soil C status is

drawn from the SoilGrids database. The constraint on initial woody biomass is drawn from this study.

Warmer colours indicate higher point density. The red solid line corresponds to the y= x line.
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