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A B S T R A C T

Background: In neuroblastoma, genetic alterations in ATRX, define a distinct poor outcome patient subgroup.

Despite the need for new therapies, there is a lack of available models and a dearth of pre-clinical research.

Methods: To evaluate the impact of ATRX loss of function (LoF) in neuroblastoma, we utilized CRISPR-Cas9

gene editing to generate neuroblastoma cell lines isogenic for ATRX. We used these and other models to iden-

tify therapeutically exploitable synthetic lethal vulnerabilities associated with ATRX LoF.

Findings: In isogenic cell lines, we found that ATRX inactivation results in increased DNA damage, homologous

recombination repair (HRR) defects and impaired replication fork processivity. In keeping with this, high-

throughput compound screening showed selective sensitivity in ATRX mutant cells to multiple PARP inhibi-

tors and the ATM inhibitor KU60019. ATRX mutant cells also showed selective sensitivity to the DNA damag-

ing agents, sapacitabine and irinotecan. HRR deficiency was also seen in the ATRX deleted CHLA-90 cell line,

and significant sensitivity demonstrated to olaparib/irinotecan combination therapy in all ATRX LoF models.

In-vivo sensitivity to olaparib/irinotecan was seen in ATRX mutant but not wild-type xenografts. Finally, sus-

tained responses to olaparib/irinotecan therapy were seen in an ATRX deleted neuroblastoma patient derived

xenograft.

Interpretation: ATRX LoF results in specific DNA damage repair defects that can be therapeutically exploited.

In ATRX LoF models, preclinical sensitivity is demonstrated to olaparib and irinotecan, a combination that can

be rapidly translated into the clinic.

Funding: This work was supported by Christopher’s Smile, Neuroblastoma UK, Cancer Research UK, and the

Royal Marsden Hospital NIHR BRC.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Neuroblastoma, a tumour of the peripheral sympathetic nervous

system is a common, poor outcome tumour of childhood. Half of

patients have clinical high-risk disease at the time of diagnosis,

defined as age greater than 18 months, the presence of distant

metastases and/or amplification of the MYCN oncogene [1]. Despite

intensification of conventional therapies in recent years approxi-

mately half of all children with high-risk neuroblastoma still die with

relapsed/refractory disease [2-4].

Recent studies have found that the majority of poor outcome neu-

roblastoma can be subdivided into three mutually exclusive molecu-

lar subgroups defined by: MYCN amplification (37%), telomerase

reverse transcriptase (TERT) rearrangements (23%) and alpha thalas-

saemia mental retardation X-linked (ATRX) mutations or deletions

(11%) [5,6]. With putative roles in the genesis of biologically
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aggressive disease, these genomic alterations represent attractive

therapeutic targets for high-risk neuroblastoma. In particular, the

ATRX subgroup of neuroblastoma patients has a distinct clinical phe-

notype, with an older age at diagnosis, conventional therapy resis-

tance and a chronic but progressive disease course [7], reinforcing

the notion that alterations in ATRX function underlie the unique

behaviour of these tumours. In support of this, ATRX is the third most

commonly mutated gene across all paediatric malignancies, and

recurrently mutated in poor outcome tumours such as high-grade

glioma and osteosarcoma [8]. Taken together these data indicate that

LoF alterations in ATRX are a likely driver of paediatric cancer biology,

emphasizing the urgent need to develop effective therapeutic strate-

gies for ATRXmutated cancers.

Numerous functions of ATRX could underlie the prominent role of

this gene in cellular biology of these cancers. ATRX plays an impor-

tant role in transcriptional regulation by extensive and not yet

completely understood mechanisms. ATRX is enriched at the silenced

allele of imprinted regions. It is also known to regulate gene tran-

scription via binding to the H3K9me3 mark and also via binding to

and the resolution of G-quadruplex structures [9-11]. ATRX also

orchestrates histone 3.3 deposition within telomeres, and pericentric

DNA, thus maintaining genomic stability in these repetitive regions

[12,13]. Concordant with this, ATRX LoF is the strongest predisposing

factor associated with the development of the recombination medi-

ated telomere synthesis mechanism: alternative lengthening of telo-

meres (ALT) [14].

ATRX has also been implicated in the regulation of DNA damage

repair (DDR) both by non-homologous end joining (NHEJ) and

homologous recombination repair (HRR). DDR reporter plasmid

assays have shown that ATRX knockdown by shRNA in murine glial

cells results in impairment of NHEJ but not HRR [15]. However, in

cancer cell line models siRNA down-regulation of ATRX has been

shown to result in impairment of RAD51 localization to BRCA1, a key

trigger for HRR signalling [16].

In summary the ATRX gene has multiple functions that may

underlie the ability of LoF alterations to influence both disease patho-

genesis and the response to therapeutic agents.

Specifically in neuroblastoma, the commonest genetic alterations

seen are either large multi-exon deletions encompassing the ADD

domain or mutations clustering around the Helicase C-terminal

region [7,17]. As in other cancers, both of these alterations are

thought to result in disruption of normal ATRX function, however

recently it has been shown that ATRX deletions also result in the for-

mation of a truncated in frame fusion protein which redistributes to

promoters of active genes [18].

Here we generated isogenic models of ATRX mutant neuroblas-

toma for mechanistic interrogation, then took an unbiased approach

using high throughput compound screening, in order to identify

which of these potential mechanisms are therapeutically exploitable.

We then validated findings in neuroblastoma models with ATRX dele-

tions/in frame fusions, with the ultimate aim of identifying rapidly

translatable novel therapeutic strategies for this poor outcome group

of patients.

2. Materials and methods

2.1. Cell lines

The SKNSH cell line was obtained from ATCC and cultured in Dul-

becco’s Modified Eagle Medium, supplemented with 10% foetal

bovine serum (Thermo Fisher). The CHLA-90 cell line was obtained

from the Children’s Oncology Group Cell Line Repository and cultured

in Iscove’s Modified Dulbecco’s Medium supplemented with 20% foe-

tal bovine serum (Thermo Fisher). Both cell lines were verified by

short tandem repeat DNA profiling and confirmed to be mycoplasma

free using the LookOut� mycoplasma PCR detection kit.

2.2. CRISPR Cas9 gene editing

NickaseNinja CRISPR Cas9 constructs (DNA 2.0) were designed

using the company’s gRNA design tool and checked to ensure target

specificity, using the Basic Local Alignment Search Tool (BLAST� -

https://blast.ncbi.nlm.nih.gov). The TP53 gRNA was designed to tar-

get exon 3 and the ATRX gRNA to target the helicase C terminal

domain. Twenty-four hours following transfection with the ATRX

CRISPR Cas9 plasmid or the TP53 CRISPR Cas9 plasmid, single cells

expressing RFP-Paprika or GFP (depending on the construct) were

FACS sorted into 96 well plates and then expanded to create stable

TP53 and ATRX knockout cell lines.

2.3. Generation of AMC-772 PDX model

The AMC-772 organoid was established as previously described

[19] and then used to establish a xenograft model. Ethical approval

was obtained under project number AVD3990020173068, study pro-

tocol PMC.63.3068.1801. 4.3 £ 106 AMC772T cells were xenografted

into both flanks of four NMRI nu-/nu- mice at 6�8 weeks of age.

tumour size was monitored twice a week by calliper measurements

and determined using the formula (p/6)d3. Once the tumour reached

1500 mm3 in size, tumors were passaged to 3 NMRI nu-/nu- mice at

6�8 weeks of age. Once the tumour reached 1500 mm3 in size,

tumors were cut in pieces and cryopreserved in 10% DMSO for xeno-

transplantation in recipient mice.

2.4. Animal experiments

Mice were subcutaneously injected unilaterally with 1 £ 106 cells

to obtain Passage 0 (P0) xenografts. To improve the latency, xeno-

grafts of both p53(2) and E6 cells were dissociated into single cells

and re-injected into NSG mice twice. P2 xenografts were used for the

pre-clinical trial. AMC-772 P2 xenografts were supplied frozen from

The Princes Maxima centre and passaged once. Calipers were used to

measure tumour diameter on two axes, 2�3 times per week. 4�6

Research in context

Evidence before this study

ATRX has been shown to have differing roles in the regula-

tion of DNA damage repair in different cell line and murine

models, hence it has been suggested that DNA damage

response inhibitors may have a role in selectively targeting

some ATRX mutant cancers. ATRX mutations are enriched in

poor outcome paediatric tumours, and specifically in neuro-

blastoma are associated with a chronic refractory phenotype

and poor survival. Novel therapies are urgently needed for this

group of patients.

Added value of this study

We show that in neuroblastoma models, ATRX loss of

function results in impairment of DNA damage repair by

homologous recombination and impaired replication fork

processivity. In keeping with this, using a screen of over 400

compounds, we identify PARP inhibitors as the most signifi-

cant hit showing selective sensitivity in ATRX mutant cells.

We then demonstrate that the combination of the PARP

inhibitor olaparib with the DNA damaging agent irinotecan is

effective in pre-clinical neuroblastoma models with genetic

alterations in ATRX.

Implications of all the available evidence

Our pre-clinical data supports the development of clinical

trials of PARP inhibitor combination therapy for children with

neuroblastoma associated with genetic alterations in ATRX.
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animals were enroled onto each treatment arm once the tumour size

reached 5�10 mm. Studies were terminated when the mean diame-

ter of the tumour reached 15 mm. Doses administered were: olaparib

50 mg/kg twice daily for 2 weeks, irinotecan 1.35 mg/kg daily for 2

weeks, temozolomide 8 mg/kg for 1 week. All experimental protocols

were approved and monitored by The Institute of Cancer Research

Animal Welfare and Ethical Review Body (PPL 70/7945, later PPL

P91E52C32), in compliance with the UK Home Office Animals (Scien-

tific Procedures) Act 1986. Antibodies used for immunohistochemis-

try were: ATRX (Santa Cruz, sc-55,584), Ki67 (BD biosciences,

556,003).

2.5. Immunofluorescence and immunoblotting

Immunoblotting for ATRX and p53, and Immunofluorescence for

phosphorylated histone H2AX(ser139) (gH2AX) foci was performed in

untreated cells. Immunofluorescence for RAD51/BRCA1 and gH2AX/

DNAPK(ser2056) was performed at eight hours and 30 minutes respec-

tively post irradiation (10 gray), or 24 h following the addition of

5 mM irinotecan. Antibodies used for immunofluorescence and

immunoblotting studies were: ATRX (Sigma - HPA001906), GAPDH

(Cell signalling � 2118), phospho-H2AX(ser139) (Cell signalling �

76,310), PARP (Cell signalling � 9532), HRP conjugated p53 (R&D sys-

tems � HAF1355), BRCA1 (Santa Cruz � sc6954), RAD51 (Abcam �

ab63801), DNAPK(ser2056) (Cell signalling � 12,311).

2.6. DNA fibre assay

7.5 £ 106 cells were seeded and left to attach for at least four

hours before labelling with a 25mM CldU pulse for 20 min, then

either left untreated or exposed to 4mM HU +/- 50 mM mirin for five

hours. Cells were trypsinised and re-suspended in cold PBS to a final

volume of 4 £ 105 cells/ml. 2mL of cells were mixed with 7mL of

spreading buffer (200 mM Tris�HCl, pH 7.4, 50 mM EDTA, and 0.5%

SDS) on a glass slide, incubated for two minutes, then tilted 15�45°

to allow the DNA spreads to run down the slide, then air dried, fixed

in 3:1 methanol:acetic acid, and refrigerated overnight.

DNA fibres were then denatured in 2.5 M HCl for one hour,

washed with PBS, and blocked with 1% BSA in PBS-T (PBS and 0.1%

Tween 20) for one hour. CldU DNA tracts were labelled for one hour

with 1:1000 rat a-BrdU (Biorad, UK) rinsed with PBS and the second-

ary antibody was applied (a-rat AlexaFluor 555 at 1:500). After fur-

ther PBS washes, coverslips were applied using Vectashield (Vector

Laboratories) and slides stored at �20 °C. The DNA fibres were visual-

ised using an Olympus FV1000 confocal microscope with a PLAPON

60x oil objective lens and a laser of 542 nm wavelength. DNA fibre

lengths were measured in ImageJ (Bethesda, MD, USA). Indicated

numbers of labelled DNA fibres from three independent experiments

per condition were imaged.

2.7. High throughput compound screening

Compounds were obtained from multiple sources including col-

lections from MicroSource Discovery Systems, Inc (US Drug Collec-

tion), ENZO Life Sciences (FDA approved Library, BML-2841),

Prestwick Chemical (Prestwick Chemical Library�) and a collection of

commercially available signal transduction inhibitors. Library 1 con-

tains 390 compounds tested at 4 dose levels with a maximum dose of

0.5 mM. Library 2 contains 80 compounds tested at 8 dose levels with

a maximum dose of 1 mM, (Table S1 and S2). Wells containing 0.2%

DMSO, were used as a control for viability, and vials containing 2 mg/

ml puromycin were used as a control for cell death.

Both screens contained 2 independent replicates of the SKNSH cell

line and the isogenic cell lines generated from SKNSH by CRISPR Cas9

deletion of TP53 and ATRX named: p53(2) (TP53 mutant), A3, E1 and

E6 (generated from p53(2), mutant for both TP53 and ATRX). 500 cells

per well were plated in opaque 384 well plates and after 24 h of incu-

bation compounds were then added in triplicate for each dose level.

After 5 days incubation, cell viability assessed by Cell Titre Glo�. Pear-

son’s correlation between normalised values for each replicate was

between 0.94 and 1. For each compound AUC was calculated using

the drc R-package as a read out for drug sensitivity.

Linear mixed effects models were used to test for differences in

AUC for each compound dependant on ATRX gene status. Fixed effects

(ATRX gene status) and random effects (replicate screen for each cell

line) were coded as factors and the drc R-package was used to fit

models. Compounds where the fixed effect (ATRX gene status) was

nominally significant (uncorrected p-value � 0.05) were selected. In

addition, we focused on those compounds where the magnitude of

the difference between the wild type and ATRX mutant group was

greatest, specifically focusing on those compounds where the differ-

ence in AUC between the wild type and ATRX mutant groups were

greater than 0.1 (with 1.0 being the maximum AUC corresponding to

no inhibition of growth).

2.8. Sequencing

WGS was done at the Genomic and Proteomics sequencing core

facility at the German Cancer Research centre (DKFZ), Heidelberg,

Germany. DNA was isolated using the Invitrogen PureLink� DNA

mini kit according to manufacturer’s instructions. Library preparation

was done using the Truseq DNA Nano kit (Illumina) and libraries

were size selected using SPRI beads (Beckman Coulter Genomics).

Samples were sequenced on the Illumina Hiseq X Ten platform using

150 bp paired end sequencing with 60 X coverage. Samples were

aligned by the One Touch Pipeline (OTP) service at the German Can-

cer Research centre (DKFZ). WGS data was aligned to the 1KGRef_-

PhiX reference genome using BWA-MEM version 0.7.15 (option -T 0).

Sambamba version 0.6.5 was used for merging and duplication mark-

ing. Samtools version 0.1.19 was used to filter and sort the bam files.

This in-house workflow was recently described in detail by Jabs. et al.

[20]. NGS Panel sequencing was analysed as previously reported [21].

2.9. SF50 experiments

SF50 experiments were performed in 96 well plate format. The

number of cells used for each SF50 experiment was determined in a

prior experiment to evaluate the number of cells necessary to reach

70�90% confluency by the desired time-point. Cells were seeded into

96-well plates and the following day compound was added to wells

in triplicate, across a concentration gradient including one three well

replicate of DMSO-only controls. At the relevant time point cell via-

bility was assessed by Cell titre Glo� assay. The SF50 was calculated as

the drug concentration that inhibits viability/cell growth by 50% com-

pared with controls, according to non-linear regression analysis,

using Graphpad Prism. Olaparib, rucaparib, talazoparib, KU60019 iri-

notecan and temozolomide were purchased from SelleckChem, Sapa-

citabine was purchased from AdooQ Bioscience.

2.10. PARP siRNA

Two different ON-TARGETplus siRNAs targeting PARP1 (#J-

006,656�06�0002 and #J-006,656�07�0002) and a non-targeting

control siRNA (#D-001,810�01�05) were purchased from Dharma-

con. Cells were transfected with Dharmacon 1 transfection agent as

per the manufacturers instructions. PARP1 downregulation was

assessed by western blotting and cell viability by Cell titre Glo� assay.

Survival in cells following PARP1 knockdown was normalized to the

non-targeting control siRNA.

S.L. George et al. / EBioMedicine 59 (2020) 102971 3



2.11. Pharmacodynamic assays

The HT PARP in-vivo pharmacodynamic assay kit (Trevigen) was

utilized to quantify PAR levels as per manufacturers instructions. For

the CHLA90 cell line the assay was performed 24 h after treatment

with vehicle versus 1 mM olaparib. For in-vivo studies, PAR levels

were quantified one hour after administration of either 50 mg/kg ola-

parib or vehicle.

2.12. Statistical analyses and data

All results are expressed as mean +/- standard deviation unless

otherwise indicated. Statistical analysis of compound screen data

using linear mixed effects models was done using the R package as

indicated above. All other statistical analysis was done using graph-

pad prism version 7.

2.13. Role of funding source

Financial support for this work was provided by the charities

Christopher’s Smile, Neuroblastoma UK, Cancer Research UK, and the

Royal Marsden Hospital NIHR BRC. None of these organizations had

any role in the study design, data collection, data analyses, interpre-

tation, or writing of report.

3. Results

3.1. ATRX CRISPR Cas9 knock-out in neuroblastoma cell lines results in

HRR deficiency and impairment of replication fork processivity

In neuroblastoma, ATRX alterations and ALT are mutually exclu-

sive with MYCN amplification [22]. In order to identify biologically

relevant models of neuroblastoma we evaluated a panel of 7 MYCN

non-amplified neuroblastoma cell lines for ATRX protein expression

and telomerase activity (Fig. S1 a-b). The SKNSH cell line was

selected for ATRX gene editing as it expresses high levels of ATRX,

and does not display the ALT phenotype. The only other cell line iden-

tified fulfilling these criteria was NBL-S, however this cell line is

known to express high levels of MYCN [23].

We surmised that generation of stable ATRX-deleted cells would

require prior p53 inactivation, given that ALT neuroblastoma cell

lines frequently show p53 pathway aberrations [24], CRISPR Cas9

gene-editing activates p53-mediated DNA damage repair in differen-

tiated cells [25], and that ATRX loss results in p53-driven apoptotic

cell-death in neural progenitors [26].. Indeed, ATRX knockout via

CRISPR Cas9 was lethal in TP53 wild type SKNSH cells (Fig. S1 c-e),

and as expected [25,26] drove high-levels of apoptosis in TP53 wild

type cells (Fig. S1f). However, with prior deletion of TP53, we gener-

ated three stable cell lines by CRISPR Cas9 ATRX gene editing (named

as A3, E1 and E6) that were devoid of ATRX expression (Fig. 1a).

Whole genome sequencing (WGS) confirmed presence of the small

indels in the targeted region of TP53, and differing indels in the tar-

geted region of ATRX in the A3, E1 and E6 clones (Table S1, Fig. S1h).

In untreated ATRX mutant cell lines we observed an increase in

the number of gH2AX foci (Fig. 1b-c), suggesting an increase in

stalled and collapsed replication forks. Given that ATRX plays a key

role in the regulation of DNA damage repair pathways, we asked

whether the increase in gH2AX could represent a failure to effec-

tively repair DNA lesions due to a defect in activation of canonical

double stranded DNA repair mechanisms: NHEJ and HRR. Induction

of DNA damage via ionizing irradiation resulted in auto-phosphoryla-

tion of DNA dependant protein kinase (DNA-PK(ser2056)) and localiza-

tion to sites of DNA damage in both ATRX wild type and mutant cells

(Fig. 1d-e), this suggests that ATRX mutant cells are still proficient in

the initiation of DNA repair by NHEJ [27]. Conversely, ATRX mutant

cells exhibited a clear loss of RAD51 and BRCA1 co-localization, an

indicator of defective homologous recombination (Fig. 1f-g). In view

of these findings, we assessed WGS data for off-target mutations in

genes with known roles in HRR that could explain the observed HRR

deficiency in the CRISPR Cas9 edited isogenic cell lines (Table S1).

This confirmed no off-target exonic variants or indels in any of the

CRISPR Cas9 generated cell lines, suggesting the ATRX LoF mutations

could be the cause of the RAD51 defect. WGS data were also used to

generate homologous recombination deficiency (HRD) scores [28].

There was no significant increase in the overall score in ATRX mutant

cell lines, but one of the contributing parameters: the number of telo-

meric allelic imbalance events was increased in the ATRX mutant

lines (Table S1), in keeping with the known role of ATRX in telomere

maintenance [29] and also indicative of DNA repair deficiencies [30].

The ability to faithfully replicate DNA is another key hallmark of

genomic integrity and both p53 and ATRX are reported to protect

stalled replication forks [16,31]. We evaluated mean DNA fibre

length, as a marker of replication fork processivity. As expected TP53

knockout resulted in a significantly lower mean DNA fibre length and

this was further enhanced by mutation of ATRX (Fig. 2a-d). In the

presence of hydroxyurea induced replication stress, all three cell lines

exhibited shortened fibre lengths compared to untreated cells sug-

gesting increased fork stalling as would be expected. However the

degree of shortening was far greater in ATRX mutant cells compared

to the other cell lines. This suggests that ATRX either reduces stalling

or has a protective role at stalled forks. In keeping with the ability of

ATRX to bind to and inhibit MRE11, an exonuclease that degrades

stalled forks following DNA damage [16] the MRE11 inhibitor mirin

was able to reverse the effects on fibre lengths only in the ATRX

mutant cells (Fig. 2e-g). This strongly suggests that ATRX mediates

MRE11-dependant degradation at stalled replication forks in the con-

text of neuroblastoma.

Taken together, these data indicate that ATRX plays an important

role in maintenance of DNA / genome integrity in neuroblastoma

cells, through regulation of DNA repair mechanisms and maintenance

of replication fork stability.

3.2. High-throughput small molecule inhibitor screening identifies

specific ATRX dependant DNA damage repair pathway vulnerabilities

and PARP inhibitor sensitivity

To identify therapeutic sensitivities relating to ATRX deficiency,

we performed high-throughput small molecule inhibitor sensitivity

screens using compound libraries containing inhibitors of DNA repair,

in addition to a broad range of conventional chemotherapy agents

and small molecules that target wide-ranging, cancer relevant path-

ways. The panel of isogenic cell lines varying in ATRX and TP53 status

was screened with two clinical compound libraries. A broad screen

containing 390 compounds tested at 4 dose levels (screen 1) and a

narrower but more sensitive screen containing 80 compounds tested

at 8 concentrations (screen 2) (Table S2).

Of the 390 distinct compounds tested in screen 1, three com-

pounds met the criteria for ATRX synthetic lethality. This was arbi-

trarily defined as both a statistically significant difference in AUCs

between the wild type and ATRX mutant groups, and a difference in

mean AUCs between the wild type and ATRX mutant groups of

greater than 0.1 (Fig. 3a). The strongest hit identified was the clinical

poly-(ADP-Ribose) polymerase (PARP) inhibitor talazoparib [32]. No

clear sensitivity patterns were identified for other modulators of

DNA damage repair (Fig. S2a). The other compounds identified with

selective sensitivity were the heat shock protein 90 (HSP 90) inhibi-

tor: 17-AAG [33], and the amino-peptidase inhibitor tosedosat [34].

Fourteen compounds met the criteria for selective resistance in the

ATRX mutants, including three different histone deacetylase (HDAC)

inhibitors and two different aurora kinase inhibitors, where a clear

trend towards relative resistance was identified for multiple com-

pounds from both classes of agent (Fig. 3a, Fig. S2b).
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In screen 2, nine distinct compounds met the criteria for selec-

tivity. In all cases the significant differences in AUC represented

greater sensitivity in the ATRX mutant group relative to the wild-

type group (Fig. 3b). Of the nine distinct compounds identified as

selective against the ATRX mutants, five of these implicated vul-

nerabilities in DNA damage repair mechanisms (Fig. 3b, Fig S3a).

Selective sensitivity to all three clinical PARP inhibitors contained

in the screen was identified (talazoparib, rucaparib and olaparib)

and independently verified (Fig 3b, Fig S3 b-d, g). The ATRX

mutants also showed selective sensitivity to the toolbox ataxia

telangiectasia mutated (ATM) inhibitor KU60019 and to sapacita-

bine, an inducer of DNA double strand breaks known to be effec-

tive in models of HR deficient cancer (Fig. 3b, Fig S3 e-g) [35].

Aside from inhibitors of the DNA damage response, additional

Fig. 1. Generation of stable ATRX CRISPR Cas9 knock-out neuroblastoma cell lines results in increased DNA damage and HRR deficiency. (a) Western blot showing ATRX and p53

expression in the isogenic panel of cell lines generated by CRISPR Cas9 gene editing of SKNSH (b) Proportion of untreated cells with >5 gH2AX foci (error bars represent SD from 2

independent experiments, minimum 140 cells, p<0.0001 by one-way Anova). (c) Representative images showing gH2AX foci in untreated cells. (d) Quantification of the overlap

coefficient of gH2AX and pDNAPK foci by immunofluorescence, 30 min post 10 Gy irradiation (IR) versus control (cont), in p53(2) and E6 cell lines (e) Representative images from

pDNAPK (red) and gH2AX (green) co-localisation experiment. (f) Quantification of the overlap coefficient of BRCA1 and RAD51 foci by immunofluorescence, 8 hours post 10 Gy IR

versus cont, in p53(2) and E6 cell lines. (g) Representative images from BRCA1 (red) and RAD51 (green) co-localisation experiment. For co-localisation experiments a minimum of

100 cells from 2 experiments were analysed by the ZEN software co-localisation analysis tool. Error bars represent SEM.
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compounds identified by the screen with a high degree of prefer-

ential sensitivity in the ATRX mutants were the multi-tyrosine

kinase inhibitor sunitinib [36] and, in keeping with screen 1, the

HSP 90 inhibitor: 17-AAG [33].

Taken together, the combined findings from both screens indi-

cate specific vulnerabilities in DNA damage repair in the ATRX

mutants, with broad class specific sensitivity identified to PARP

inhibitors. In keeping with this, genetic knockdown of PARP-1 also

reduced cell viability in ATRX mutant cells in comparison with the

parent cell line (Fig. 3c-d). We therefore focused on further pre-

clinical evaluation of the PARP inhibitor olaparib as a therapeutic

strategy for ATRX mutant neuroblastoma. This agent is already

clinically approved in adult use and is in clinical trials for children

so there is greater potential for rapid translation into the clinic for

this indication.

3.3. PARP inhibition increases sensitivity to irinotecan in models of ATRX

mutant neuroblastoma

In order to maximize the potential therapeutic benefit of PARP

inhibition, we then evaluated compound screen data from the iso-

genic panel to identify potential candidate chemotherapy agents for

combinatorial studies. Evaluation of compound screen data for sensi-

tivity to chemotherapy agents commonly used at the time of neuro-

blastoma relapse showed no differences between the groups in

sensitivity to temozolomide, topotecan or cyclophosphamide

(Fig. S4a-c) but revealed that although loss of TP53 results in irinote-

can resistance, loss of ATRX re-sensitises cells to irinotecan (Fig. 4a).

Preferential sensitivity to irinotecan in the ATRX mutant cells was

subsequently verified, and combination therapy with olaparib evalu-

ated (Fig. 4b). Although the addition of olaparib significantly

Fig. 2. ATRX facilitates replication fork processivity and fork protection in neuroblastoma cells. (a) SKNSH, p53(2) and E6 cells were pulsed with CldU and subsequently exposed to

hydroxyurea (HU) and mirin for five hours as indicated in the schematic. (b) Representative fibre images (c) Distribution of DNA fibre length for untreated cells together with (d)

mean fibre length. p53 knockout results in significantly reduced mean DNA fibre length which is further reduced with loss of ATRX. Data pooled from three independent repeats to

show the distribution of DNA fibre length with the median indicated by the black line. Total fibres counted are as follows: SKNSH (n = 241), p53- (n = 165), ATRX- (n = 350). The data

for mean fibre length are presented as the mean +/- SEM for three independent repeats. Response of (e) SKNSH, (f) p53(2) and (g) E6 cells to HU treatment alone or with mirin. The

data for mean fibre length are presented as the mean +/- SEM for three independent repeats. Significance determined by student’s unpaired t-test where ***p <0.001, **p <0.01,

*p <0.05.
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enhanced irinotecan sensitivity regardless of ATRX status, the cumu-

lative sensitivity to the combination of irinotecan and olaparib was

significantly greater in the ATRX mutants (Fig. 4b). Irinotecan stabil-

izes single strand breaks induced by topoisomerase 1 and is known

to induce double strand DNA breaks through collapse of replication

forks (37, 38). In keeping with impairment of HRR signalling at sites

of irinotecan induced double stranded DNA damage, ATRX mutant

cells were unable to co-localise RAD51 to BRCA1 following irinotecan

therapy (Fig. 4c).

The failure of HRR signalling via the RAD51-BRCA1 co-localisation

in response to irinotecan was also demonstrated in the ATRX deleted/

in frame fusion cell line CHLA-90 (Fig. 4d-e). Finally, although CHLA-

90 is relatively resistant to single agent olaparib the addition of ola-

parib at a low dose was sufficient to inhibit downstream PARP and

significantly sensitized the CHLA-90 cell line to irinotecan (Fig. 4f

and Fig. S4 d-f).

Taken together, this indicates that in neuroblastoma models, loss

of normal ATRX function is associated with HRR deficiency and a lack

of protection of stalled replication forks, thus sensitivity to PARP inhi-

bition, particularly when combined with DNA damaging agents.

3.4. Olaparib and irinotecan therapy causes tumour regression in-vivo

in ATRX mutant but not ATRX wild type xenografts

For in-vivo studies subcutaneous xenografts were established in

NOD scid gamma (NSG) mice using the p53(2) and E6 cell lines.

The median time from injection to tumour onset was significantly

longer in the E6 xenografts in comparison with p53(2) xenografts

(Fig. S5 a-b). Loss of ATRX expression seen in the E6 xenografts by

immunohistochemistry (IHC) but Ki67 staining was seen in both

xenografts (Fig. 5a). As published in preclinical Ewing sarcoma

studies [39], pharmacodynamic inhibition of PARP activity in both

Fig. 3. Therapeutic screening identifies specific ATRX dependant DNA damage repair vulnerabilities and PARP inhibitor sensitivity. (a) Volcano plots showing the difference in mean

AUC and the negative log10 p-value of the difference in the AUC between the ATRX mutant and wild type groups for the 390 compounds tested in screen 1. Compounds fulfilling the

criteria for selective sensitivity in the ATRX mutants are highlighted in the top left quadrant. Compounds fulfilling the criteria for selective resistance in the ATRX mutants are

highlighted in the top right quadrant. (b) Volcano plots showing the difference in mean AUC and the negative log10 p-value of the difference in the AUC between the ATRX mutant

and wild type groups for the 80 compounds tested in screen 2 (c) Cell viability as measured by CellTiter-glo following genetic knockdown of PARP 1 with two different siRNAs, (nor-

malized to control siRNA) in isogenic cell lines. (d) Western blot showing PARP 1 levels in same experiment as (c).
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p53(2) and E6 xenografts was confirmed at a dose of 50 mg/kg ola-

parib (Fig. 5b). On day 14 of olaparib/irinotecan combination ther-

apy, tumour regression was observed in E6 xenografts but there

was progressive disease in all treatment arms in the p53(2) xeno-

grafts (Fig. 5c-e, Fig. S5c-d). This translated into a small increase

in survival in the E6 xenograft model following only 1 cycle of ola-

parib/irinotecan therapy (Fig. 5f-g).

Although all cell lines were highly resistant to temozolomide in-

vitro (Fig. S6a), some sensitization to temozolomide was

demonstrated with the addition of olaparib, particularly in the E6 cell

line (Fig. S6b). This, in combination with the fact that temozolomide

is also used as standard backbone chemotherapy in relapsed neuro-

blastoma trials, prompted us to evaluate the combination of temozo-

lomide and olaparib in-vivo. In contrast to single agent irinotecan,

single agent temozolomide caused tumour regression in E6 xeno-

grafts. However, although the addition of olaparib to temozolomide

did slow tumour growth, this did not translate to increased survival

(Fig. S6).

Fig. 4. PARP inhibition increases sensitivity to irinotecan in ATRX mutant neuroblastoma. (a) AUC scores for irinotecan from the compound screen, subdivided into TP53 and ATRX

status. (b) Summary of SF50 results for irinotecan alone or given in combination with 1 mM olaparib in ATRX wild type/mutant isogenic cell lines from 3 independent experiments.

(c) Quantification of the overlap coefficient of BRCA1 and RAD51 foci by immunofluorescence, 24 h post irinotecan versus vehicle in p53(2) and E6 cell lines. (d) Quantification of

the overlap coefficient of BRCA1 and RAD51 foci by immunofluorescence, 24 h post irinotecan versus vehicle in the CHLA90 cell line, compared with a MYCN amplified cell line. For

(c) and (d), a minimum of 100 cells from 2 experiments were analysed by the ZEN software co-localisation analysis tool. Error bars represent SEM (e) Representative images from

BRCA1 (red) and RAD51 (green) co-localisation experiment from (d). (f) comparison of the SF50 for irinotecan +/- olaparib 1mM in the ATRX deleted cell line CHLA90, by three inde-

pendent experiments, p value by unpaired students t-test.
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Fig. 5. Olaparib and irinotecan therapy causes tumour regression in-vivo in ATRXmutant but not ATRXwild type xenografts. (a) Representative immunohistochemistry for ATRX and

Ki67 (b) PAR activity by HT PARP in-vivo pharmacodynamic assay kit in p53(2) and E6 xenografts after treatment with vehicle versus 50 mg/kg olaparib for 1 h. PAR is quantified as a

read out of relative light units (RLU) (c) Treatment schedule - animals received one 3 week cycle of treatment (d) Waterfall plot showing day 14 responses in individual p53(2) xeno-

grafts (e) Waterfall plot showing day 14 responses in individual E6 xenografts (f) Kaplan-Meier curve of survival following one cycle of therapy in p53(2) xenografts. No significant

difference in survival (g) Kaplan-Meier curve of survival following one cycle of therapy in E6 xenografts. *p<0.001 survival in olaparib/irinotecan versus other arms by unpaired stu-

dents t-test.
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3.5. Olaparib/irinotecan combination therapy induces sustained

remissions in an ATRX deleted patient derived xenograft (PDX)

neuroblastoma model

We established subcutaneous xenografts in NSG mice, using the

AMC-772 neuroblastoma PDX. Western blot confirmed an absence of

full-length ATRX protein expression and the presence of a truncated

protein in AMC-772, that is consistent with an in frame fusion

(Fig. 6a). Using a paediatric solid tumour next generation sequencing

panel (21) an ATRX multi-exon deletion was confirmed in the AMC-

772 PDX. TP53 was wild type. There was mosaic ATRX expression on

IHC, but diffuse Ki67 staining (Fig. 6b). On day 14 of therapy some

response was seen in the irinotecan alone group, which was further

improved by the addition of olaparib (Fig. 6c). Furthermore, sus-

tained responses were seen to just one cycle of olaparib/irinotecan

therapy, which translated to significantly improved survival in the

olaparib/irinotecan group (Fig 6. d-e).

4. Discussion

Despite urgent clinical need, there is currently a dearth of pre-

clinical research focused on the identification of novel therapeutic

strategies for children with ATRX mutant neuroblastoma. This is

partly due to the lack of available models for this subgroup of

patients. Here we address this by utilizing CRISPR Cas9 genetic engi-

neering to generate isogenic models of ATRX mutant neuroblastoma,

followed by unbiased screening and mechanistic studies in order to

identify therapeutic vulnerabilities associated with ATRX LoF.

In this study we identify both reduced replication fork processiv-

ity and protection and impaired HRR signalling as a consequence of

ATRX mutation which is consistent with others findings following

ATRX siRNA in HELA cancer cells lines [16]. In keeping with this, we

demonstrate that ATRXmutant neuroblastoma cells are preferentially

sensitive to PARP inhibitors, which are known to be synthetically

lethal in HRR deficient cancers [40,41]. In contrast, in a murine model

of glioma, following ATRX shRNA, a loss of pDNA-PKcs foci was dem-

onstrated, and consistent with this an impairment of DNA repair by

NHEJ was identified [15]. These relative phenotypic differences may

be accounted for by differences in the model systems used and the

degree of ATRX down-regulation by the different methodologies.

However, as the primary aim of this study was to identify clinically

translatable synthetic lethal approaches, we therefore decided to use

a compound screening approach to further elucidate the most rele-

vant DNA damage repair pathway vulnerabilities in ATRX LoF neuro-

blastoma models.

In addition to PARP inhibitor sensitivity, we also identify preferen-

tial sensitivity to sapacitabine in the ATRX mutated isogenic cell lines.

Sapacitabine is a nucleoside analogue that induces double stranded

DNA breaks, and has also been shown to be effective in other HRR

deficient cancers [35,42]. Therefore further evaluation of this agent

for ATRX mutant/deleted neuroblastoma and other HRR deficient

childhood tumours is also warranted.

Activation of ATM has been reported in other models of ATRX loss

of function and ATRX null cells are thought to rely on ATM associated

pathways for DNA repair [16,43]. We identify preferential sensitivity

to the toolkit ATM inhibitor KU60019 in the ATRX mutants. The clini-

cal ATM inhibitor AZD0156 is currently in phase 1 trials in adults

with advanced solid tumours in combination with either olaparib or

irinotecan [33�35,41]. There would therefore also be a strong ratio-

nale for further pre-clinical testing of these AZD0156 combinations

for ATRXmutant neuroblastoma.

The other major result from the compound screen was the identi-

fication of preferential sensitivity to the HSP90 inhibitor 17-AAG in

the ATRX mutants in both screens. HSP90 inhibitors have been

reported to be effective in a broad range of malignancies through

inhibition of interactions with multiple different client proteins

which play major roles in oncogenic signalling [44]. ATM has been

shown to be a client of HSP90, and inhibition of HSP90 with 17AAG
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Fig. 6. Olaparib and irinotecan therapy is effective in the ATRX deleted PDX AMC-772. (a) Western blot showing ATRX protein expression in GIMEN (a control ATRX wild-type neu-
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induces proteosomal degradation of ATM [45,46]. Furthermore,

BRCA1 deficient cells have been shown to be hypersensitive to

17AAG [47]. Taken together with the other findings in the screen, it is

probable that 17AAG sensitivity in ATRX mutant cell lines, is at least

in part a result of the downstream effects on the DNA damage

response pathways.

In addition to identifying compounds that are selective for ATRX

mutant cells, we also identified two classes of compound where there

is relative resistance. HDAC inhibitors selectively kill cancer cells via

inhibition of the many functions of HDAC proteins including chroma-

tin remodelling and the modulation of gene transcription, which are

thought to play a role in cancer development and progression [48].

The mechanism for relative HDAC resistance in the ATRX mutants is

not certain but it may be that the resultant far-reaching epigenetic

changes of ATRX LoF render HDAC mediated mechanisms less impor-

tant for cancer cell survival. The mechanism of resistance to aurora

kinase inhibitors is also unclear, although of note, both aurora kinase

A and B has been shown to phosphorylate HDAC1. Therefore aurora

kinase is implicated in the maintenance of HDAC enzymatic activity

[49]. The relative resistance to aurora kinase inhibition identified by

the screen is also in direct contrast with the preferential pre-clinical

sensitivity of MYCN amplified neuroblastoma to aurora kinase A

inhibitors [50], emphasizing the importance of molecular pre-selec-

tion for trials of novel agents in neuroblastoma patients.

The identification of specific DDR pathway vulnerabilities was the

most significant finding from our screen. We decided to further vali-

date PARP inhibition as a therapeutic strategy for ATRX mutant neu-

roblastoma, specifically olaparib, as a clinically available agent, which

is already available in paediatric clinical trials, albeit for other indica-

tions. To maximise the potential clinical efficacy, rational combina-

tions with standard therapies for relapsed neuroblastoma were

sought. We identified preferential sensitivity to irinotecan in the

ATRX mutants, which is in keeping with findings in an in-vivo model

of ATRX LoF glioblastoma [15]. There is a strong rationale for this

combination in other paediatric cancer models, where strong synergy

between olaparib and irinotecan has been demonstrated [51], which

we now also identify in neuroblastoma models.

Qadeer et al. recently reported that in neuroblastoma models with

multi-exon ATRX deletions, an in frame fusion protein is expressed

which activates RE1 Silencing Transcription Factor (REST), resulting

in EZH2 inhibitor sensitivity [18]. Of note we show HRR deficiency

and olaparib/irinotecan sensitivity in both ATRXmutant and deletion/

in frame fusion neuroblastoma models. Therefore, this approach

offers the opportunity for therapeutic targeting of loss of normal

ATRX function in neuroblastoma regardless of the whether this

results from a multi-exon deletion or frame-shift mutation.

In summary, we identify a distinct phenotype and clear differen-

tial compound sensitivity patterns following ATRX genetic deletion in

a neuroblastoma model. Furthermore, we identify a rapidly translat-

able therapeutic approach for this poor outcome group of patients.
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