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Detecting Ground Deformation in the Built

Environment using Sparse Satellite InSAR data with

a Convolutional Neural Network
Nantheera Anantrasirichai, Member, IEEE, Juliet Biggs, Krisztina Kelevitz, Zahra Sadeghi, Tim Wright,

James Thompson, Alin Achim, Senior Member, IEEE and David Bull, Fellow, IEEE

Abstract—The large volumes of Sentinel-1 data produced over
Europe are being used to develop pan-national ground motion
services. However, simple analysis techniques like thresholding
cannot detect and classify complex deformation signals reliably
making providing usable information to a broad range of non-
expert stakeholders a challenge. Here we explore the applicability
of deep learning approaches by adapting a pre-trained convolu-
tional neural network (CNN) to detect deformation in a national-
scale velocity field. For our proof-of-concept, we focus on the UK
where previously identified deformation is associated with coal-
mining, ground water withdrawal, landslides and tunnelling. The
sparsity of measurement points and the presence of spike noise
make this a challenging application for deep learning networks,
which involve calculations of the spatial convolution between im-
ages. Moreover, insufficient ground truth data exists to construct
a balanced training data set, and the deformation signals are
slower and more localised than in previous applications. We
propose three enhancement methods to tackle these problems:
i) spatial interpolation with modified matrix completion, ii) a
synthetic training dataset based on the characteristics of the real
UK velocity map, and iii) enhanced over-wrapping techniques.
Using velocity maps spanning 2015-2019, our framework detects
several areas of coal mining subsidence, uplift due to dewatering,
slate quarries, landslides and tunnel engineering works. The
results demonstrate the potential applicability of the proposed
framework to the development of automated ground motion
analysis systems.

Index Terms—InSAR, earth observation, ground deformation,
machine learning, convolutional neural network.

I. INTRODUCTION

For the last few decades, it has been possible to accurately

measure ground deformation from space using Interferometric

Synthetic Aperture Radar (InSAR) [1]. Recent advances in

processing techniques and computing power (e.g. [2]), coupled

with the launch of the Sentinel-1 satellites have laid the foun-

dation for millimetre-scale monitoring of ground deformation

across Europe in near real time. This has obvious potential

for monitoring ground movement in urban and semi-rural en-

vironments. We use the United Kingdom as a test case, where
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the average annual cost to the insurance industry of ground

motion is estimated to be over £250M [3], [4]. Incidents

affecting critical infrastructure, such as mainline railways or

dams, can be associated with multi-million pound costs, even

for a single slope failure event. The sources of deformation

are both natural and anthropogenic: subsidence and heave due

to the legacy of the coal mining and quarrying industries [5],

shrink and swell of shallow clays [6], natural sinkholes [7],

landslides [8], coastal erosion [9], and engineering work, such

as tunnelling [10].

The Sentinel-1 satellites acquire data over a 250-km swath

at a 4 m by 14 m spatial resolution every 6 days on both

ascending and descending tracks, generating a large quantity

of data. So far, efforts have largely focused on improving data

processing methods and capacity [11], but the need for manual

inspection and expert interpretation are also barriers to the

timely dissemination of information. Various approaches to

automatic detection have been tested, for example, the authors

in [12] use a threshold of 10 mm/yr to identify anomalies

in time-series data from Northern Italy. However, applying a

threshold in the spatial domain is not reliable due to the effect

of reference-point selection and the performance deteriorates

heavily for noisy and low coherence signals. Albino et. al.

[13] used receiver operating characteristics to demonstrate that

applying a cumulative sum control chart [14] to the time-series

improves detection performance over simple thresholding.

However, both these methods work on individual pixels and do

not take into account the high spatial resolution information

that is a major advantage for InSAR. Independent Component

Analysis (ICA) has been used to separate deformation from

noise based on the assumptions that the signals are statistically

independent and non-Gaussian [15]–[17]. However, the main

drawback for the use of ICA in automated systems is the

uncertainty in the order of the separated components, known

as the permutation problem [18].

In this paper, we employ a convolutional neural network

(CNN) to automatically detect ground deformation across

the United Kingdom. Deep learning has been employed

in several acquisition types of remote sensing for nearly a

decade, e.g. very high resolution (VHR) satellite images [19]

and hyperspectral images [20], [21]. Here, InSAR images are

employed and the CNN models the spatial characteristics of

the InSAR data and then recognises the difference between

deformation and atmospheric noise. We base our study on

a transferable machine learning approach that has already
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been successfully used for detecting volcanic deformation in

global InSAR data [22]–[24]. Adapting these approaches for

detecting urban deformation is conceptually straightforward,

but challenging to implement due to the unsuitable nature of

available signals for CNN-based algorithms. The sources of

deformation in the UK are much shallower and slower than in

volcanic environments, meaning the deformation has a smaller

magnitude and spatial extent. The spatially variable coherence

and associated processing methods means that InSAR data for

the UK is typically sparse and has different noise characteris-

tics to volcanic environments.

In this paper, we propose three novel contributions to

address these problems: i) spatial interpolation with a modified

matrix completion method to tackle sparsity and simultane-

ously mitigate noise due to atmospheric effects and scatterer

properties, ii) a new synthetic dataset for training based on the

characteristics of real UK velocity maps, and iii) enhanced

over-wrapping techniques with offset and gain to minimise

the influence of reference point selection and to increase the

likelihood of detecting slow deformation.

II. MATERIALS AND METHODS

A. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a class of deep

feed-forward artificial neural networks. They comprise a series

of convolutional layers that are designed to take advantage of

2D structures, such as an image. The weights of the filter

in each convolutional layer are adjusted during the training

process. The low-level features are extracted and connected

to more semantic meaning at the deeper layers. In this paper,

we want to learn features from the velocity maps that can

distinguish deformation from stable ground.

Previous studies have used convolutional neural networks

(CNNs) to detect deformation in wrapped InSAR images of

volcanic environments [22]–[24]. Wrapped interferograms are

used because the high-frequency content of the fringes is easy

to identify and provides strong features for the CNN. The

work in [22] provided a proof of concept using a test dataset

of 30,249 interferograms, compared different pre-trained net-

works and found AlexNet [25] to be the most effective and

used data augmentation to train the network. The subsequent

work [23] improved the detection performance by overcoming

the lack of positive training data by using synthetic examples,

representing deformation, turbulent and stratified atmospheric

contributions. Recently, we studied the feasibility of using

the CNN to detect slow volcanic deformation by rewrapping

cumulative time series [24]. We found that applying a gain of

2 to the interferograms to double the number of fringes can

lower the detection threshold by 25–30%, which can be as low

as 1.3 cm/year.

In this paper, we use a transfer-learning strategy augmented

with fine-tuning the model trained in [23]. Then the CNN

model is retrained with some negative samples of the real

UK data along with synthetic positive and negative samples,

based on the characteristics of the real UK data as described

in Section III-B. In the prediction process, the velocity maps

are wrapped and converted into a grayscale image (i.e. the

pixel values are scaled to [0, 255]). Then they are divided

into overlapping patches at the required input size for AlexNet

(224×224 pixels). Each patch is then repeatedly shifted (by

28=224/8 pixels in this paper) to cover the entire image.

The output of the prediction process is a probability P of

there being deformation in each patch. The probabilities from

overlapping patches are merged using a rotationally symmetric

Gaussian lowpass filter with a size of 20 pixels and standard

deviation of 5 pixels.

B. UK InSAR dataset

Fundamentally, all InSAR methods use the phase differ-

ence between two radar images to estimate changes in path

length between the satellite and the ground surface. However,

there are two distinct classes of processing approaches for

generating time series of data: small baseline and persistent

scatterer (PS). The small baseline technique [26], [27] employs

many small distributed scatterers and is commonly used for

wide area monitoring, including tectonic and volcanic appli-

cations (e.g http://comet.nerc.ac.uk/COMET-LiCS-portal/). It

produces a series of 2D images that can be straightforwardly

employed by a CNN as shown by [24]. In contrast, permanent

or persistent scatterer methods [28], [29] focus on pixels

dominated by a stable large reflector. Thus PS methods are

well-suited to areas that have strong reflectors, especially

man-made objects like buildings and are usually preferred

for urban areas [30]. However, the output dataset is sparse

and not suitable for input into CNNs, where correlations

between adjacent pixels are learnt and used as local features

for classification.

The InSAR dataset used in this paper was provided by

SatSense Ltd who employ a novel pixel selection method,

RapidSAR [2]. This technique works by identifying siblings

of the selected pixel, i.e. evaluating nearby pixels with similar

phase and amplitude to the selected pixel. This is then used

to estimate the coherence of the selected pixel. This avoids

the common issue with both persistent scatterer and small

baseline methods whereby coherent points may be rejected or

incoherent points included, due to the effect of surrounding

pixels. The associated information loss and lower SNR is

therefore avoided. However, this still corresponds to sparse

representation, which is not directly suitable for CNNs.

For the UK-wide study, we use the medium resolution

SatSense product (10 m/pixel) for the period of 2015 - 2019

which consists of 66,801×121,501 pixels. Although time

series are available for each point, for this initial proof of

concept, we simply use the average velocity for each pixel.

In total, there are ∼64 million velocity measurements on

the ascending pass and ∼29 million on the descending pass.

The distribution of measurement locations is uneven with a

significantly higher density in urban areas. We also identify

three case study areas from the high resolution SatSense

product (5 m/pixel). The coal mining area of Normanton and

Castleford shows subsidence of more than 2 mm/yr (Fig 5a)

and South Derbyshire shows uplift of more than 6 mm/yr (Fig

5d). A linear pattern of subsidence is seen from Battersea

Power Station to Kennington in London (Fig 5g). This is the
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Fig. 1. Spatial characteristics of data in Easton, UK. (a) A 6 km length
variogram, showing the nugget near 0, then levels off to a sill of 2.3 mm2/yr2

at point separations of above around 2 km. (b) A covariance function, showing
the exponential fitted to the data, the nugget at zero point separation, and the
sill as the function levels off at point separations greater than 2 km.

Northern line extension, where two 3.2 km tunnels have been

created between 2017-2020. The difference between the two

resolutions is illustrated in Fig. S1.

To analyse the spatial characteristics of the SatSense

datasets in the UK, we performed a spatial analysis using

covariogram [31]. First, a spatial variogram γ(d) for point

velocity values in space is computed, where d is the distance

between the pixels. We found that the variance of point veloc-

ity increases sharply (the nugget µnugget) when the distance

between the points is close to zero, then exponentially in-

creases and exhibits a sill µfill, the background variance value,

at long length scales. Consequently, a theoretical variogram is

related to covariance C(d) on the basis of γ(d) = µsill−C(d).
That is, the covariance C(d) decreases exponentially when the

distance between points is more than zero, expressed as

C(d) =

{

ae−bd, if d > 0

µsill, if d = 0
(1)

where a and b are constants, a = µsill − µnugget, and d is

the separation distance in km. From the available UK dataset,

we found a = 0.7 − 1.8 mm2/yr2, b = 0.8 − 1.6, and

µsill = 1.5− 2.9 mm2/yr2. This appears as spike noise in the

InSAR image and disturbs the gradient calculations performed

by the CNN. Thus the spike noise needs to be accounted for

when addressing the issue of data sparsity. The plots of the

variogram and covariance are shown in Fig. 1.

III. THEORETICAL CONTRIBUTIONS

A. Spatial interpolation

CNNs rely on spatial or sequential attributes of dense data

to learn effectively. Adjacent pixels share information that is

important and the inherent structure to pixels in image data

gives meaning to the overall image. If the data is highly

sparse, then the network learns ‘zeros’, the gradient of the

loss function is zero and the performance does not improve

with iteration. Therefore, it is necessary to interpolate the data

during pre-processing to resemble a dense image. Here, we

propose and test a novel interpolation method specifically for

sparse InSAR data. We illustrate the process using the case

study of Normanton and Castleford as shown in Fig. 2 a-c

and test the ability of the CNN to identify signals for different

types of interpolation in section IV-A.

The simplest way to mathematically describe sparse images

is by y = Mx + n, where y is the sparse observation of an

ideal dense signal x, M is the sub-sampling matrix, which

can be seen as a mask of existing or non existing values, n is

noise. Here y is the raw velocity measurements shown in Fig.

2a). This poses an inverse problem for finding x. We employ

a matrix completion method (MC) which has been used for

compressive sensing [32], where the sparsity of a signal can

be exploited to recover it from far fewer samples than required

by the Nyquist Shannon sampling theorem [33]. This can be

solved with an optimisation process as

x̂ = argmin
x

{
1

2
||y −Mx||2

2
+ α||x||∗}, (2)

where ||x||∗ is nuclear norm of a matrix (a convex hull of

the rank function of x) and α is a regularization parameter.

This can be done through a non-convex matrix completion via

iterated soft thresholding [34]. The nuclear norm is computed

using singular values of matrix x and the process tries to

achieve

min
x

||Sx||p subject to ||y −Mx||2 < ε, (3)

where Ux, Sx, Vx = SVD(x), SVD is singular value decom-

position giving the outputs such that x = UxSxV
′
x and for a

non convex function, 0 < p < 1. The pseudocode to describe

this optimisation process is given in Algorithm 1.

First, we generate an initial x0 by first suppressing some

high noise and then applying Delaunay triangulation (DT)

(Fig. 2b). To suppress the high-amplitude noise, we simply

apply a two-dimensional median filter Med3×3(•) that omits

NaN values in the median calculation. We record the noise

map N = y − Med3×3(y), which will be used later for

generating synthetic data with similar characteristics (Section

III-B).

In the interpolation process, we add a Gaussian filter

G(x, σ) with standard deviation σ of 5 pixels, to remove the

remaining spike noise in each iteration loop. The proposed

technique achieves the estimation of missing pixels and noise

reduction simultaneously. The interpolated result is shown

in Fig. 2c. The wrapped version in Fig. 2d shows a clear

pattern of fringes in contrast to the wrapped version of the

raw data, which shows a noisy and unclear pattern and would

be challenging to identify using any automated detection

method – see the supplementary material (Fig. S2). Figure 4

shows that the proposed matrix completion method produces

more realistic results than conventional Delauney triangulation

alone.

B. Synthetic examples

We create synthetic datasets (X) for training the CNN

using 2 components, namely deformation D, and turbulent

atmosphere T , using the simple linear function X = D + T .

Following our previous work [22,23], each class has 10,000

samples which should be large enough for training [35]. Figure

4 demonstrates the process of synthetic example generation for

one example. In this paper, we concentrate on deformation

caused by coal mining and tunnelling as they are common in
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Fig. 2. Velocity map at Normanton and Castleford showing (a) raw sparse data, and its interpolated results from (b) Delauney Triangulation
and (c) Matrix Completion techniques. The wrapped velocity map of (c) with the wrap gain µ=8 is shown in (d).

Algorithm 1 Pseudocode of optimization algorithm

Input: y, x0, f0, p, α0, α, λ, τ , K
y : sparse observation
x0 : interpolation using DT and noise suppression
M : sub-sampling matrix
α : regularization parameter, α0 = 0.9max(|Mx|)
f : loss, initialled with f0 = ||y −Mx0||2 + α0||x0||
p : non-convex norm, p =0.8
λ : 1.1·eigenvalue of (M−1M)
τ : tolerance, τ = 10−4

C: cost function
K : maximum iterations, K =200

Output: x̂ = x
1: while α > τα0 do
2: for k = 1 to K do
3: x← x+ 1

λ
M−1(y −Mx)

4: U , S, V ← SVD(x)
5: S ← diag{S}
6: S ← sign(S)max(0, |S| − 1

2λ
α|S|p−1)

7: x← U(diag{S})V ′

8: x← G(x, σ)
9: fk ← ||y −Mx||2 + α||x||

10: C ← ||fk − fk−1||/||fk + fk−1||
11: if C < τ then
12: break
13: end if
14: end for
15: α← 0.9 α
16: end while

the UK. Therefore we employ two models as follows. i) A

set of synthetic examples of coal mining subsidence: Dpoint,

is generated using a point pressure source model [36], which

reproduces the surface deformation associated with inflation

and deflation of a subsurface point source. To represent the

shallow sources associated with coal mining, we use depths

of 3 - 80 m and volume changes of 100.3−103 m3. ii) A set of

synthetic examples of tunnelling subsidence, Dline is generated

following [37]. The tunnelling-induced subsidence profile is

modelled with sagging and hogging zones as demonstrated in

Fig. 3a, where the length and depth parameters of sagging

and hogging zones are lsag , lhog , dsag and dhog , respectively.

We use both lsag and lhog in a range of 30 - 80 m, dsag
of 1 - 10 mm, and dhog of 1 - 5 mm. Dline is generated

by varying these parameters along the curve and straight

lines, replicating the track of the underground tunnel. The

3D displacement vector is then projected to line of sight

(LOS) using Sentinel-1 UK incidence and heading angles for

ascending and descending passes. For both cases, the range of

parameters is chosen so that the LOS velocity is in the range

0-15 mm/yr. Note that, in this paper, we trained the models of

Dpoint and Dline separately, but they could be merged to train

a 3-class model (2 types of deformation and non-deformation)

in the future.

The satellite measurements of displacement are affected by

atmospheric delays caused primarily by water vapour in the

troposphere, T . The delays are spatially correlated and their

covariance is described in Section II-B. For simplicity, the

statistical properties of the atmosphere are assumed to be

radially symmetric and have a homogeneous structure [38].

We use Monte Carlo samples of these distributions to generate

synthetic variance-covariance matrices and use a Cholesky

decomposition to produce synthetic images with the corre-

sponding statistical properties [23]. For previous applications

to volcanic environments, we have also considered a stratified

atmospheric component related to the high relief of volcanic

edifices. This effect is small in the UK and is neglected here.

We then sub-sample the combined image (D+T ) using

randomly chosen distributions of points from the SatSense data

and add spike noise as described in Section II-B. This creates

a noise model closer to the real data than simply using additive
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Fig. 3. Synthetic tunnelling subsidence generated following the model
introduced in [37], where the cross section profile is shown in (a). Our
three-dimensional (3D) synthetic deformation and its projection to create
two-dimensional (2D) unwrapped velocity map are shown in (b) and (c),
respectively.

Fig. 4. Synthetic example showing (top row) unwrapped and (bottom
row) wrapped samples.

white Gaussian noise (AWGN). Finally the sparse signals are

interpolated as described in Section III-A.

C. Overwrapping and phase shifting

We wrap the velocity map to provide strong features for ma-

chine learning [22], i.e. edges where the phase jumps between

-π and π (the features activated by the first two convolutional

layers are shown in the supplementary material (Fig. S3)).

To deal with different deformation rates, we combine a range

of wrapping intervals following the method of [24], which

was originally designed to detect slow, sustained volcanic

deformation in time-series data, but can be adapted for detect-

ing slow, localised motion in the UK velocity measurements.

Theoretically, the number of fringes can be increased without

altering the signal to noise ratio by reducing the wrap interval

(µ). In this paper, following Sentinel-1 line-of-sight where one

fringe represents 28 mm of displacement, we employ wrap

intervals of 14 mm/yr, 7 mm/yr, 3.5 mm/yr, and 1.75 mm/yr

in the prediction process.

One problem with wrapping the velocity map is that differ-

ent reference points cause the wrap discontinuities to occur in

physically arbitrary locations. For some choices of reference

points, the number of fringes will increase, but for others it

will decrease or for very small signals, fail to produce any

discontinuities at all. To ensure that fringes exist on the test

image, a constant offset τ is added to the velocity map ψ

producing ψ′
τ , i.e. ψ′

τ ≡ ψ+ τ mod µ. We run 4 offsets, and

select the maximum probability from the CNN for each wrap

interval µ, i.e. Pµ = max{Pµ,τ}, τ ∈ {0, 3.5, 7, 10.5} mm/yr,

and µ ∈ {14, 7, 3.5, 1.75} mm/yr. The final result is the

average of the four probabilities, i.e. Pfinal =
1

4

∑

∀µ Pµ.

D. Combining different line of sight geometries

One limitation of InSAR technology is that the ground

motions are measured in a one-dimensional line of sight (LOS)

TABLE I
CLASSIFICATION PERFORMANCES (%) WHEN TRAINING WITH SPARSE

AND INTERPOLATED EXAMPLES

Dataset Accuracy Precision Recall False positive rate

Sparse 54.32 63.91 53.62 55.27
Interp. DT 89.06 99.10 82.52 20.98
Interp. MC 98.58 99.27 97.93 2.09

geometry, whilst the actual surface motions can occur in three

dimensions. This means the deformation detected in one LOS

direction might not be able to be detected in another LOS

direction. However, an advantage is that noise causing a false

positive result that appears in one acquisition might not affect

the acquisition in another LOS. Therefore in this study, if the

areas have both ascending and descending passes available,

the two velocity maps are processed independently and the

final probability results are obtained from the average. If there

are four looks (2 ascending and 2 descending passes), the

final probability map will be the maximum of four averages

between a pair of ascending and descending signals.

IV. RESULTS AND DISCUSSION

A. Spatial interpolation

We first investigate the performance of the proposed spatial

interpolation technique using synthetic datasets. Three ap-

proaches are tested i) sparse examples without interpolation,

ii) interpolated examples with Delauney Triangulation (DT),

and iii) interpolated examples using the proposed Matrix

Completion (MC) approach (see Fig. 4 last three columns).

The CNNs are trained with two classes: D+T (positive) and

T (negative). Each class contains 10,000 synthetic samples.

When training the CNN with sparse examples, the results

of convolution processes are computed from the pixels that

have values only. The classification results are shown in Table

I. It is obvious that without spatial interpolation, the CNN

cannot distinguish between deformation and non-deformation

(the accuracy is around 50%). The CNN performs significantly

better with dense datasets with an improvement of accuracy

by 64.0% with the initial DT and 81.5% with the proposed

MC. The DT produces 10 times more false positives than the

MC due to spike noise (the nugget - see Section II-B).

B. Application to case study sites

Initially, we test our machine learning algorithms on well-

known case study examples of coalfield subsidence Dpoint

and tunnelling Dline (as described in Section III-B) using the

high resolution InSAR product (5 m/pixel). The models are

trained separately, using the synthetic examples. The detection

results are shown in Fig. 5, where the first, the second and

the third columns show i) raw InSAR data, ii) wrapped and

interpolated velocity maps used as inputs of the CNNs, and

iii) the probability values overlaid on the velocity maps,

respectively. The first and the second rows are the results

from the coalfields at Normanton and Castleford, and South

Derbyshire, detected with the model Dpoint. The velocity
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map at South Derbyshire has fewer data points causing more

difficulties for the interpolation step than that at Normanton

and Castleford, but the detection algorithm still works well

in both cases. This two study cases demonstrate that the

CNNs can detect the fringe patterns that contain some missing

areas. The last row of Fig. 5 shows the detected tunnelling

subsidence in London using the model Dline. Interestingly the

model detects the line of the tunnel but does not pick out the

point-source deformation (on the right of the image). These

case study results are promising and warrant further testing to

check the generalisation of the model and the applicability to

a larger scale map.

C. Whole UK velocity map

As described in Section II-B, there are ∼64 million points

of sparse UK data. This is equivalent to a 2D image with

a resolution of 98,504×68,504 pixels, which is more than

3,250 full HD TVs combined. To automatically process this

large velocity map, we divide it into several 2500×2500 maps,

defined by the limitation of memory required to process the

spatial interpolation. After spatial interpolation, each velocity

map is further divided into overlapping patches following

the detection process described in Section II-A. The detected

deforming locations using model Dpoint and Dline are plotted

in Fig. 6 and Fig. 7, showing three levels of probability

P , which are >0.5, >0.75 and >0.9. In the supplementary

material (Fig. S4 and S5) we show areas with detection

probabilities >0.5 in more detail.

Fig. 6 shows the results of the Dpoint model. The method

detects numerous deforming areas in well-known coal-mining

regions from the Midlands up towards Leeds (area A in Fig 6),

in South Wales (area B [39]), Normanton and Castleford (area

C), North Staffordshire in Stoke-on-Trent (area D [40]), North-

west Leicester (area E [41]), Northumberland and Durham

(area F [42]). Several areas are detected in London, where

recent engineering work has taken place. For example, the

detected uplift at Canning Town, London, could be affected by

groundwater rebound after completion of dewatering works for

the underground construction (area G [43]). In the northwest

of Wales, the method detects subsidence from some former

slate quarries (area I), including the Dinorwic Quarry near

Llanberis (Fig. 6c), the Penrhyn Quarry near Bethesda, and

the Ffestiniog Slate Quarry in Blaenau Ffestiniog, where the

slate was mined rather than quarried. The method also detects

subsidence of clay works in Kingsteignton (area J, Fig. 6d).

Uplift was detected at Golborne, Leigh and Manchester (area

K) with a similar spatial extent to the subsidence reported

between 1992–2000 [44]. Although we are dominantly consid-

ering vertical deformation, horizontal motion associated with

landslides and coastal processes will also cause displacements

in the line of sight (see Fig. S6). For example, landslides with

significant horizontal motion were detected south of Kirkby

Stephen (area H [45]).

We analyse our detection performance by plotting a his-

togram of the deformation rate against probability output of

the detection method, shown in Fig. 8a. Several areas have

both high velocity and high probability as expected, confirm-

ing that both methods identify these regions. For example,

areas D2 and Q2 in the Stoke-on-Trent (Fig. 8b) [40] and

Lake District (Fig. 8c) [46] have velocities of -5.8 and -

9.5 mm/yr respectively and probabilities >0.95. However,

the CNN assigns high probabilities to some areas with low-

medium velocity because of their spatial pattern, for example

D1 and Q1 (Fig. 8b,c) have velocities of 3.2 and 3.0 mm/yr,

respectively. These would have been missed with a simple

thresholding technique if the threshold is set higher than 3.2

or 3.0 mm/yr. The CNN also assigns low probabilities to

some areas with high velocities because they do not have the

appropriate spatial pattern. For example, Bristol city centre

has several pixels with velocities >5 mm/yr which are caused

by spiky noise that is assigned a low probability (<0.05).

From this histogram, we set three thresholds at 3, 4.5 and

5 mm/yr to classify slow, medium and fast deformation and

apply a thresholding technique to the raw data. We apply

a dilation morphological operation with a size of 18 pixels

to connect sparse pixels (resulting 32k m2 with minimum 4

velocity points) and also employ a 3×3 median filter to remove

some spiky noise. Comparing with the proposed method, the

thresholding technique generates significantly more positive

points for expert to further investigate (258 vs 4064 positives).

The detection results of the thresholding approach are shown

in the supplementary material (Fig. S7).

Fig. 7 shows the results of the Dline model. We did not in-

clude examples of uplift in either positive or negative training

datasets for Dline, but nonetheless, we detect several uplifting

features because the fringes in the wrapped velocity map have

characteristics closer to the positive samples than the negative

ones. Since uplift and subsidence can be simply distinguished

by comparing the velocity with that of neighbouring areas, this

information can be added in post-processing. The only detec-

tion of tunnelling subsidence in London was at the case study

site shown in Fig. 5g-5i, but there were several detections

elsewhere in the UK, particularly in the Midlands. Several of

these are elongated areas of subsidence more in keeping with

mining (for example following coal seams) than infrastructure

tunnels (Area A in Fig. 7). In several cases, linear features

are associated with linear surface structures, such as roads,

probably due to the higher density of measurement points

on the man-made structures than in the surrounding fields.

The deformation signal itself is unlikely to be linear, but

this enables us to identify deformation sources that might be

missed by the dpoint model due to the uneven sampling of data

(e.g. Fig. 7c). In several places, rocky foreshores are picked

out, such as the coastline in Carradale (Fig. 7d), which appears

to be uplifting relative to the nearest inland point. We attribute

this to processing artefacts within the InSAR data.

D. Discussion

Monitoring ground deformation is crucial in urban and

semi-urban areas. The UK has a long history of coal mining,

and associated water pumping causes surface deformation

which can extend to city-sized areas. Slope instability can lead

to localised damage both in hilly areas and coastal regions.

Ground motion can have negative impacts on infrastructure,

particularly long linear assets such as drainage networks and
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Fig. 5. Detection results in (a-c) Normanton and Castleford, (d-e) South Derbyshire, and (g-i) London – Northern line extension. (a), (d) and
(g) are raw data. (b), (e) and (h) are the wrapped and interpolated velocity maps. (c), (f) and (i) are probability maps overlaid on the raw
data. The brighter yellow means higher probability. Areas inside orange and red contours are where P >0.5 and P >0.75, respectively.

pipelines. An example of the need of ground movement

detection is for the proposed HS2 route for high speed rail1

from Birmingham to Leeds, which would pass through the

large coalfield areas in Nottingham and Sheffield. Fig. 6 and

Fig. 7 show clear ground deformation in these areas and

although the velocity rate is only millimetres per year, it still

needs to be factored into construction plans.

Previous work on deep learning has demonstrated its po-

tential for automatically searching through large volumes of

wrapped InSAR images to detect both slow and rapid ground

deformation that may be related to volcanic activity [22]. In

this paper, we extend our work to the UK velocity map, where

the measurement points are sparse and unevenly distributed.

Moreover, the spatial noise characteristics of this dataset are

different from the distributed scatterer InSAR used in the

volcano case. We analysed this type of InSAR data and

propose several new adaptations to allow the transfer learning

approach to perform well under these circumstances.

This paper is a proof-of-concept that demonstrates the

potential applicability of the deep learning framework to

the development of automated ground motion analysis for

anthropogenic sources of deformation in urban and semi-

urban environments. We test the deep learning framework on

the UK dataset and produce a probability map of surface

movement. As the dataset is very large (see Section IV), it

would not be feasible to manually inspect the entire area

1https://www.hs2.org.uk

at high resolution. Using a probability threshold of 0.5, the

method produces some false positives and false negatives.

However, the probability values and the sizes of the detected

areas can be employed to prioritise further analysis.

This approach is not restricted to the UK dataset and could

be used for any national or regional velocity map, including

the European Ground Motion Service currently proposed by

Copernicus [47]. The main limitation of the current frame-

work is that it cannot detect very localised deformation, like

sinkholes, because their spatial characteristics are too similar

to noise. These areas however show clear changes in the

time domain. Future developments can incorporate both time-

series analysis and spatio-temporal (3D) analysis of InSAR

data. Moreover, if both ascending and descending passes are

available for the same period of time, 4D signals can be used.

In this paper, we train the model using only one pass (2D),

and the results of both passes are averaged (Section III-D). If

both passes are concatenated and trained together, we expect

that the deformation signals would be shown in both passes,

so the number of false positives arising from using only one

pass will be diminished.

V. CONCLUSIONS

This paper demonstrates the feasibility of using a transfer-

able CNN approach to detect ground deformation in urban

and semi-urban areas in the UK. We analyse characteristics

of the data and propose several adaptations to previously
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Fig. 6. Detection results in the 10-m velocity map showing the centre locations where the CNN using Dpoint identifies with high probability
of being deformation. For visualisation, the small and large areas are plotted separately: (a) the area size less than 32 km2, and (b) the area
size larger than 32 km2. Right column shows ground subsidence due to anthropogenic sources at (c) the Dinorwic quarry in North Wales
(Area I), (d) the clay works in Kingsteignton (Area J), (e) the coal yard of Uskmouth power station (L1) and residential areas around Brinell
Square (L2) in Newport (Area L).

Fig. 7. Detection results in the 10-m velocity map (a) showing the centre locations where the CNN using Dline identifies with high probability
of being deformation. Examples of linear deformation in (b) Kirkby-in-Ashfield (Area A), (c) Pontycymer, Wales (Area B), (d) uplift coastline
in Carradale, Scotland (Area C). The green dots on (b)-(d) are the centre of detected areas.
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Fig. 8. Detection analysis of the Dpoint model. (a) Histogram
of velocity against probability of being deformation. (b) North
Staffordshire in Stoke-on-Trent (Area D in Fig. 6). (c) Honister Pass
in Lake District (Area Q in Fig. 6), and (d) City of Bristol showing
spiky noise in non moving area.

developed deep learning methods. Matrix completion is used

to overcome the sparse and uneven measurement distribution

and simultaneously reduce spike noise. Synthetic examples

based on point sources and tunnels are used for training due to

lack of real signals of deformation. Finally overwrapping and

phase shifting techniques are employed to enhance features

and hence reduce the detection threshold. The methods are

tested using the velocity map generated by SatSense Ltd. dated

between 2015-2019 and successfully detect several types of

deformation occurring around the UK.
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[11] P. González, R. Walters, E. Hatton, K. Spaans, A. McDougall,
A. Hooper, and T. Wright, “Licsar: Tools for automated generation of
sentinel-1 frame interferograms,” AGU Fall Meeting, 2016.

[12] F. Raspini, S. Bianchini, A. Ciampalini, M. D. Soldato, L. Solari,
F. Novali, S. D. Conte, A. Rucci, A. Ferretti, and N. Casagli, “Continu-
ous, semi-automatic monitoring of ground deformation using sentinel-1
satellites,” Scientific Reports, vol. 8, no. 7253, 2018.

[13] F. Albino, J. Biggs, C. Yu, and Z. Li, “Automated methods for detecting
volcanic deformation using sentinel-1 insar time series illustrated by the
2017–2018 unrest at agung, indonesia,” J. Geophys. Res.: Solid Earth,
vol. 125, no. 2, p. e2019JB017908, 2020.

[14] E. S. PAGE, “Continuous inspection schemes,” Biometrika, vol. 41, no.
1-2, pp. 100–115, 06 1954.

[15] S. Ebmeier, “Application of independent component analysis to multi-
temporal insar data with volcanic case studies,” J. Geophys. Res.: Solid

Earth, vol. 121, no. 12, pp. 8970–8986, 2016.

[16] E. Chaussard, P. Milillo, R. Bürgmann, D. Perissin, E. J. Fielding,
and B. Baker, “Remote sensing of ground deformation for monitoring
groundwater management practices: Application to the santa clara valley
during the 2012–2015 california drought,” J. Geophys. Res.: Solid Earth,
vol. 122, no. 10, pp. 8566–8582, 2017.

[17] M. E. Gaddes, A. Hooper, M. Bagnardi, H. Inman, and F. Albino, “Blind
signal separation methods for insar: The potential to automatically detect
and monitor signals of volcanic deformation,” J. Geophys. Res.: Solid

Earth, vol. 123, no. 11, pp. 10,226–10,251, 2018.

[18] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust and precise
method for solving the permutation problem of frequency-domain blind
source separation,” IEEE Trans. Speech Audio Process., vol. 12, no. 5,
pp. 530–538, Sep. 2004.

[19] C. Vaduva, I. Gavat, and M. Datcu, “Deep learning in very high
resolution remote sensing image information mining communication
concept,” in Proc. Eur. Signal Process. Conf., 2012, pp. 2506–2510.

[20] Z. Lin, Y. Chen, X. Zhao, and G. Wang, “Spectral-spatial classification
of hyperspectral image using autoencoders,” in Int. Conf. Information,

Commun. Signal Process., 2013, pp. 1–5.

[21] K. Makantasis, K. Karantzalos, A. Doulamis, and N. Doulamis, “Deep
supervised learning for hyperspectral data classification through convo-
lutional neural networks,” in IEEE Int. Geosci. and Remote Sens. Symp.,
2015, pp. 4959–4962.

[22] N. Anantrasirichai, J. Biggs, F. Albino, P. Hill, and D. Bull, “Appli-
cation of machine learning to classification of volcanic deformation in
routinely-generated inSAR data,” J. Geophys. Res.: Solid Earth, vol.
123, no. 8, pp. 6592–6606, August 2018.

[23] N. Anantrasirichai, J. Biggs, F. Albino, and D. Bull, “A deep learning
approach to detecting volcano deformation from satellite imagery using
synthetic datasets,” Remote Sens. of Environ., vol. 230, p. 111179, 2019.

[24] ——, “The application of convolutional neural networks to detect slow,
sustained deformation in insar time series,” Geophys. Res. Lett., 2019.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Int. Conf. Neural

Information Process. Syst., vol. 1, 2012, pp. 1097–1105.

[26] P. Berardino, G. Fornaro, R. Lanari, and E. Sansosti, “A new algorithm
for surface deformation monitoring based on small baseline differential
sar interferograms,” IEEE Trans. Geosci. Remote Sens., vol. 40, no. 11,
pp. 2375–2383, 2002.

[27] D. A. Schmidt and R. Bürgmann, “Time-dependent land uplift and sub-
sidence in the santa clara valley, california, from a large interferometric
synthetic aperture radar data set,” J. Geophys. Res.: Solid Earth, vol.
108, no. B9, 2003.

[28] A. Hooper, H. Zebker, P. Segall, and B. Kampes, “A new method for
measuring deformation on volcanoes and other natural terrains using
insar persistent scatterers,” Geophys. Res. Lett., vol. 31, no. 23, 2004.

[29] M. Crosetto, O. Monserrat, M. Cuevas-González, N. Devanthéry, and
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