
This is a repository copy of Semantics-preserving cosynthesis of cyber-physical systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164989/

Version: Accepted Version

Article:

Roy, Debayan, Zhang, Licong, Chang, Wanli orcid.org/0000-0002-4053-8898 et al. (2
more authors) (2018) Semantics-preserving cosynthesis of cyber-physical systems.
Proceedings of the IEEE. pp. 171-200. ISSN 1558-2256

https://doi.org/10.1109/JPROC.2017.2779456

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

ABSTRACT | Software-based control of physical systems

is common in domains such as automotive, avionics, and

industrial automation. Safety of such systems is determined

by control-theoretic properties such as stability, settling time,

and peak overshoot. These properties strongly depend on the

software code generated from high-level controller models, and

the implementation of such code on an embedded platform. To

ensure safety, the semantics of the system model considered

for controller design must be faithfully preserved in the

platform implementation. However, traditionally, controller

design and implementation platform design are carried out in

isolation, followed by their integration, which often relies on

simulations to estimate the behavior of the controllers. Thus,

safety properties that were proven at the model level using

control-theoretic tools can no longer be established in an actual

implementation. This makes the design of embedded control

Manuscript received March 25, 2017; revised August 4, 2017; accepted August 4, 2017.

Date of current version December 20, 2017. This work was supported by Deutsche

Forschungsgemeinschaft (DFG) through the Technical University of Munich (TUM)

International Graduate School of Science and Engineering (IGSSE).

D. Roy, L. Zhang, and S. Chakraborty are with the Real-Time Computer Systems,

 Department of Electrical and Computer Engineering, Technical University of Munich,

80333 Munich, Germany (e-mail: debayan.roy@tum.de; licong.zhang@tum.de;

 samarjit@tum.de).

W. Chang is with the Department of Computer Science, University of York, UK (e-mail:
wanli.chang@york.ac.uk).
S. K. Mitter is with the Laboratory for Information and Decision Systems, Electrical
Engineering and Computer Science, Massachusetts Institute of Technology,

 Cambridge, MA 02139 USA (e-mail: mitter@mit.edu).Digital Object Identifier: 10.1109/

JPROC.2017.2779456

systems costly, error prone, and hinders certification. In

this paper, we review recent efforts in control-platform

cosynthesis techniques toward addressing this problem.

Here, the control and the embedded systems communities

have come together to adopt a cyber�physical system

(CPS)-oriented design paradigm. This cosynthesis paradigm

integrates the design of control algorithms and platform

parameters within a holistic optimization framework and

accounts for relevant details from both sides. We survey the

evolution of design approaches for such cosynthesis and

show how�the originally disjoint�controller and the platform

design methods are gradually converging.

KEYWORDS | Control systems; cosynthesis; cyber�physical

systems; embedded control systems; embedded systems;

platform aware; safety

I . IN TRODUCTION

Over the last ten years the concept of cyber–physical
 systems (CPSs) has emphasized the integrated modeling
and analysis of computational platforms and the physi-
cal processes that are controlled by such platforms. One
typical class of CPSs is made up of embedded control sys-
tems. In such a system, physical processes are controlled
by a piece of software running on an embedded plat-
form. Such systems are commonly found in automotive,
 avionics, industrial automation, and medical devices.

Semantics-Preserving
Cosynthesis of Cyber–Physical
Systems
While control theory provides methods for designing provably correct controllers,
there is a lack of available techniques to ensure that high-level controller models
are transformed into implementations while preserving model-level semantics and
safety properties. This paper reviews recent efforts to address this issue using
cyber–physical system (CPS)-oriented controller/platform cosynthesis techniques.

By Debaya n Roy , Student Member IEEE, L icong Zh a ng, Student Member IEEE,

Wa nLi ch a ng, Member IEEE, Sa njoy K. M i t t eR , Fellow IEEE, a nD

Sa M a Rji t ch a K R a boRt y, Senior Member IEEE

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 171

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

172 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

These systems are often safety critical with strict require-
ments on stability and performance (characterized by set-
tling time, peak overshoot, or similar metrics) [1] and must
meet certain certification standards [2], [3]. Traditionally,
the design of control algorithms and the embedded plat-
forms on which such algorithms are to be implemented are
designed by different groups of engineers with different
expertise. Such separation of concerns while common in the
general- purpose computing domain becomes problematic for
 embedded control systems. Here, a fundamental challenge in
ensuring that safety properties at the model level (or control-
ler design stage) hold true in an implementation requires that
model-level semantics are faithfully preserved when generat-
ing implementations from the models. This is, however, not
straightforward considering that current controller design
methods are mostly based on idealistic assumptions on the
implementation platform, such as: computing the control
law takes negligible time; there are no sensor-to- controller
and controller-to-actuator delays; control inputs can be
computed with infinite precision; and when software code
is generated from high-level models (such as those specified
in Matlab/Simulink), the code generator does not introduce
any side effects and accurately preserves the model level
semantics. As implementation platforms become more com-
plex, distributed, and heterogeneous, these assumptions are
increasingly not true, thereby resulting in a large deviation
in the behavior of an implementation from the designed
 controllers at the model level, and often violating safety prop-
erties that were true at the model level.

Here, the question is: How should platform configu-
ration parameters—e.g., scheduling policies/parameters,
arithmetic precision, code generation policies—be chosen
so that model-level semantics are preserved in an implemen-
tation? Given an already designed (model-level) controller,
the choice of such platform parameters may be restricted or
in the worst case there might not be any feasible platform
parameters. Since there might be multiple controllers that
satisfy given stability and performance specifications (safety
properties), a better approach is to determine the controller
and platform configuration parameters together. In other
words, by cosynthesizing the controller and platform con-
figuration parameters—i.e., as a part of a common optimi-
zation framework—we can ensure that the two designs are
compatible (or model-level semantics are preserved) and
there is a larger set of parameters that may be explored [4].

In this paper, we survey such cosynthesis techniques for
embedded control systems design and implementation. We
first study the problems with separation of concerns, where
controller design and platform implementation are carried
out in isolated design spaces without sufficient knowledge
of each other. Subsequently, we survey different works
that follow a CPS-oriented approach and broadly classify
them in terms of whether 1) the implementation platform
is fixed and the control algorithm is adapted to fit the plat-
form architecture [as in networked control systems (NCSs)

where the characteristics of the wireless network such as
delay and packet loss probabilities are given and the control
algorithms are designed taking them into account]; 2) the
control algorithm and its assumptions are given and the
platform is designed to meet these assumptions as closely
as possible (e.g., by designing appropriate scheduling and
resource allocation policies); or 3) it is a true cosynthesis
where the parameters of the control algorithms and the
implementation platform are jointly determined within an
integrated optimization framework.

Recently, a lot of work in this area has been done,
especially in the context of automotive embedded con-
trol systems. This is because automotive software systems
implement a large number of safety-critical control loops.
They have to be implemented on a resource-constrained,
distributed, and heterogeneous platform architecture,
and increasingly need to be certified. This combination of
requirements makes it a challenging and a particularly suit-
able domain for studying design methods for embedded con-
trol systems. Hence, most of the examples we review in this
paper are from this domain. However, the problems and the
solutions that we discuss in this paper are also relevant to
other CPS domains. In particular, we survey several works
on NCSs that are commonly found in avionics, power grid,
and industrial-automation-related CPSs. We believe that
it is possible to leverage the progress made in NCSs and
extend existing cosynthesis approaches from the automotive
domain to other CPS domains as well.

A. Separation of Concerns

Automatic control is a well-studied subject with sev-
eral decades of history and a large pool of design methods.
Early works on design and analysis of a control system have
focused on the mathematical model of the closed-loop sys-
tem, including the plant and the controller. The controller
is designed such that the system is stable and certain perfor-
mance requirements, e.g., settling time, peak overshoot, and
energy constraints are satisfied. However, these works do not
consider implementation related details such as nonnegligi-
ble and variable times for software execution and data trans-
mission, faulty networks, and finite precision arithmetic.

Embedded platform design is also well known and is
composed of several stages: 1) task partitioning and map-
ping; 2) frame packing (for communication messages); and
3) task and frame scheduling. Platform design and analy-
sis consider timing properties, e.g., application latencies,
periods, relative deadlines, task execution times, and mes-
sage frame transmission times. The main focus has been to
synthesize implementations that are schedulable (i.e., all
real-time software tasks meet their deadlines), and resource
efficient (i.e., minimum usage of computation and com-
munication resources). However, this theory is not directly
applicable to control applications as control require-
ments such as stability and performance cannot always be

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 173

expressed as timing properties such as deadlines and periods
(and when expressed in this form, the parameters can be
overly pessimistic).

B. Safety Challenges for CPS Design:
The Semantic Gap

In the context of CPSs, the separate design of controllers
and platform parameters leads to a semantic gap between the
system models considered in the controller design and the
actual implementation. On one hand, the controller design
is only influenced by the physical plant. Therefore, system
stability and performance are derived without considering
the cyber part, i.e., the implementation on the embedded
platform. However, the implementation-related timing
properties such as sampling period and sensing-to-actuation
delay may degrade the performance and in the worst case
may also cause system instability. Thus, the semantics of the
control models may not be preserved in the implementation
when the controller design is oblivious to the implementa-
tion details. On the other hand, the synthesis of platform
parameters is based on the software-level timing details and
does not consider control-theoretic metrics such as stability
and performance. An incorrect timing characterization of
control properties can result in an inconsistency between
models and their implementation. For example, the perfor-
mance requirement can enforce a strict constraint on appli-
cation latency which if not correctly modeled may not be
satisfied by the implementation.

Hence, it is difficult to design a safe CPS with such sepa-
ration of concerns due to the associated semantic gap. We
define an embedded control system to be safe when the
corresponding software implementation meets the con-
trol requirements on stability and performance even in the
worst case. Now, to ensure safety with separation of con-
cerns, the whole process is usually carried out in an itera-
tive manner as shown in Fig. 1. Here, the controllers and
platform parameters are separately designed followed by
integration and testing. In case a test shows that the require-
ments are not met, the steps are reiterated, possibly without

any systematic feedback for improvement. This paradigm
relies strongly on the prior experience of engineers and can
be error prone. With the increasing size and complexity of
modern embedded systems, this design paradigm is not sus-
tainable. This leads to the need for new design approaches
that can guarantee safety in a correct-by-design manner and
do not depend on testing.

C. Bridging the Semantic Gap: CPS-Oriented
Approaches

Due to the strong dependency between controller and
platform design, both the control and the embedded sys-
tems design methods are gradually moving toward a CPS-
oriented design paradigm. Control theorists have started
accounting for implementation details and constraints of
the underlying embedded platform and are integrating
them in the mathematical models for controller design. For
example, properties such as the sensing-to-actuation delay,
input and output jitter, packet drops, deadline misses, and
finite precision arithmetic are modeled and considered in
the controller design phase, so that the designed controllers
are platform aware. In the same vein, embedded systems
engineers have also begun to study properties of control
loops and are considering them in platform design methods.
These properties include stability, performance, and robust-
ness of control loops, and steady state and transient state
characteristics. Consequently, the platform parameters
such as task and message schedules can be tuned accord-
ing to control objectives, rather than solely on intermediate
objectives such as deadlines and latencies.

These CPS-oriented approaches, as shown in Fig. 1, con-
sider realistic details of one side while designing parameters
on the other side. In particular, they mathematically trans-
late control properties into timing characteristics and vice
versa to bridge the semantic gap. However, these methods
consider the parameters on one side as given and design
the parameters on the other side accordingly, and thus, it
provides limited opportunity for optimization. They may
result in a suboptimal design configuration with respect to

Fig. 1. Different design paradigms.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

174 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

control performance, resource efficiency, or both. In order
to achieve higher design efficiency, it is important to design
the control and the platform parameters together from joint
specifications in a holistic optimization framework.

D. Ensuring Safety and Optimality: Cosynthesis
of CPSs

In many cost-sensitive domains (such as automotive) it
is not only necessary to ensure safety but it is equally desir-
able to achieve design optimality. In this survey, we empha-
size on the importance of control-platform cosynthesis for
CPSs toward ensuring safety and design optimality.

In recent years, a group of cosynthesis approaches have
emerged that consider the design of control and platform
parameters as a holistic optimization as shown in Fig. 1.
Generally, the cosynthesis problem is formulated as a non-
convex optimization problem and is solved using a cus-
tomized design space exploration (DSE) technique. The
solutions provide both sets of parameters which are tuned
according to certain objectives such as control performance
and resource efficiency. Therefore, the synthesized parame-
ters represent optimal design configurations. Moreover, the
control model semantics are fully preserved in the imple-
mentation. This is because the controllers are designed
according to the detailed constraints from the platform side
and the platform parameters are synthesized considering
stability and performance requirements from the control
side. The synthesized parameters are, therefore, correct by
design and ensure safety.

However, there exist considerable challenges that need
to be addressed, if these approaches are to be applied to
industrial scale applications. These challenges include
handling complexity and scalability, developing closed-
form optimization frameworks, inadequate toolchains,
and certification issues. Moreover, existing approaches do
not consider several aspects of platform architectures, e.g.,
memory hierarchy, heterogeneous networks, or multicore
processors, all of which are common in modern embedded
 systems. Furthermore, they also do not take into account
complex characteristics of control systems, e.g., time vari-
ance, nonlinearity, or input saturation. Hence, control-
platform cosynthesis is a promising research direction with
a number of open problems.

E. Paper Organization

We start with traditional problems and approaches that
exist in both control theory and the embedded systems
literature. In Section II, the basics of control theory are
reviewed, particularly, system models, stability theorems,
performance metrics, and common controller design meth-
ods. Subsequently, Section III provides the background on
embedded systems design such as platform models, imple-
mentation constraints, and platform design and analysis

techniques. Section IV first states the safety challenges
associated with the design and implementation of CPSs.
Subsequently, it reviews works on 1) how control engi-
neers can consider implementation details in controller
design; and 2) how embedded systems engineer can take
into account the control properties in platform design. This
is followed by Section V, where recent works on control-
platform cosynthesis are studied and the general design
flow for such approaches is outlined. Finally, possible future
research directions and challenges are discussed in Section
VI, followed by some concluding remarks (Section VII).

II . FEEDBACK CON TROL SYSTEMS

Control systems form an integral part of technological
advancement in almost any field. They help in ensuring
the intended functionality from machines and make pro-
cesses run by adapting to the environment variables. More
often than not, they are based on the theory of feedback as
depicted in Fig. 2. In feedback control systems, a control
action is decided based on the values of plant state variables
and the reference that the plant must follow. In practice,
some variables of the plant may not be measurable, and
therefore, the corresponding values are estimated using an
estimator. The basic idea is to mitigate the error between
the plant output and the reference and therefore manipu-
late the plant to satisfy requirements on stability and per-
formance. In this section, we will discuss how such a system
can be mathematically modeled and the requirements can
be mathematically expressed. Subsequently, we will also
mention some techniques to design feedback controllers
such that specified requirements are satisfied.

A. System Model

In this paper, we predominantly survey works which
consider linear and time-invariant (LTI) systems with
 single-input–single-output (SISO). The mathematical model
of the dynamic behavior of such a system in continuous time
can be represented as

 x ̇ (t) = Ax(t) + Bu(t)
(1)

 y(t) = Cx(t)

Fig. 2. Block diagram of feedback control systems.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 175

where vector x(t) ∈ ℝ n×1 represents the states of the system,
and y(t) and u(t) represent, respectively, the system output
and the control input at instant t . Here, the constant matri-
ces A ∈ ℝ n×n , B ∈ ℝ n×1 , and C ∈ ℝ 1×n are, respectively, the
state, input, and output matrices.

Considering that the controller is implemented on an
embedded platform, the control input is applied to the plant
only at discrete instants k ∈ ℤ * . Let us assume that the time
interval between two consecutive instants is a constant h
and the control input to the plant is held constant until the
next input is generated and applied, i.e., u(t) = u(kh) , where
kh ≤ t < (k + 1)h . This is equivalent to a system with a sam-
ple and hold device connected at the input, and correspond-
ingly, h is the sampling period of the system. Consequently,
the equivalent state–space model of the sampled data
(discrete-time) system is given by

 x[k + 1] = φx[k] + Γu[k]
(2)

 y[k] = Cx[k]

where the discrete-time state and input matrices φ and Γ can
be derived from the continuous time matrices for a given
sampling period h as follows:

 φ = e Ah , Γ = ∫
0

 h

 (e At dt) ⋅ B (3)

B. Notions of Stability

For a given system model, the goal of a control engi-
neer is to design a control law that computes the control
input such that the closed-loop system satisfies specific
requirements. One of the most important requirements is
the stability of control loops. There are different notions
of stability in control theory among which two important
definitions are given here. To define stability, we must first
introduce the equilibrium state x e of a system as the state
to which it converges in the absence of a control input (an
unforced system), i.e., u[k] = 0 .

1) Stability in the sense of Lyapunov: The equilibrium
state x e is stable in the sense of Lyapunov when the follow-
ing holds:

 ∀

ϵ∈ R +

 k∈ ℤ *
x[0]

 ∃
δ∈ R +

 (|| x[0] − x e || ≤ δ) ⇒ (|| x[k] − x e || < ϵ). (4)

Moreover, x e is uniformly stable in the sense of Lyapunov
when (4) holds and δ is independent of the initial state.

2) Asymptotic stability: x e is said to be asymptotically
 stable when besides being stable in the sense of Lyapunov
the following expression holds:

 ∀
x[0]

 ∃
δ∈ R +

 (| | x[0] − x e || ≤ δ) ⇒ lim
k→∞

 | | x[k] − x e || = 0. (5)

Moreover, x e is uniformly asymptotically stable when
δ is independent of the initial state in (5). x e is globally

asymptotically stable if, despite δ being arbitrarily large, the
states finally converge to x e .

C. Stability Analysis

For an unforced LTI system given by x[k + 1] = φx[k]
with initial state x[0] , we can write as follows:

 x[k + 1] = φ k+1 x[0]. (6)

Without loss of generality, we can assume x e = 0 from the
definition of equilibrium state. Therefore, for a system to be
asymptotically stable for a finite nonzero initial state, the
following must hold:

 lim
k→∞

 || φ k || = 0. (7)

This is only possible when the eigenvalues of φ , i.e., λ i s,
∀ i = 1, 2, . . ., n , satisfy the following:

 | λ i | < 1. (8)

Here, λ i s also represent system poles. Thus, for a system to
be asymptotically stable all the poles must lie within the unit
circle in a complex z -plane.

However, this constraint is only valid for LTI systems
and a more powerful technique for analyzing stability of
both linear and nonlinear systems is the second method of
Lyapunov. According to this theorem [5], for a discrete-time
unforced system x [k + 1] = f(x[k]) , where f(0) = 0 , if a sca-
lar continuous function V(x[k]) exists such that

 i) V(0) = 0 ii) ∀
x≠0

 V(x) > 0 iii) lim
||x||→∞

 V(x) → ∞
 (9)

 iv) ∀
x≠0

 ∆V(x[k]) = V(x[k + 1]) − V(x[k]) < 0

then x e = 0 is globally asymptotically stable and V(x) is a
Lyapunov function.

This method can be simplified and applied for LTI sys-
tems x[k + 1] = φx[k] , where x e is asymptotically stable
if and only if, for a given positive–definite real symmet-
ric matrix Q , there exists a positive–definite real symmetric
matrix P such that the following criterion is satisfied:

 φ ′ Pφ − P = − Q. (10)

Here, V(x[k]) = x ′ [k]Qx[k] is a Lyapunov function for the
system and ∆V(x[k]) = − x ′ [k]Px[k] [5].

D. Quality of Control

Although stability is an essential requirement, different
control applications may also need to satisfy different per-
formance criteria. The performance of a controller is often
measured by a metric that quantifies the quality of control
(QoC). Thus, the goal of a control engineer is to design a

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

176 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

controller which not only meets the performance criteria
but preferably has a higher QoC.

The performance measures of a control loop have
evolved over the years from common metrics such as peak
overshoot, rise time, settling time, and steady state error, to
more complex cost functions and gains. Here, we will not
discuss the common metrics, however, readers are encour-
aged to read [5] for more insights. We list some important
performance measures as follows.

1) Integral cost function: System response to a given ref-
erence r[k] can be analyzed for QoC based on several cost
functions [6]. These cost functions consider tracking error
e[k] = r[k] − y[k] and are given as follows:

 ∑
0

∞
 e [k] 2 ∑

0

∞
 |e[k]| ∑

0

∞
 k | e[k]|. (11)

Moreover, a more general quadratic cost which is a function
of system states and control input can be considered. This is
represented for finite and infinite horizon, respectively, as

 J = 1 __ 2 [x [N] ′ Sx[N] + ∑
0

N−1
 (x [k] ′ Qx[k]

 + 2x [k] ′ Mu[k] + u [k] ′ Ru[k])]
(12)

and

 J = 1 __ 2 ∑
0

∞
 (x [k] ′ Qx[k] + 2x [k] ′ Mu[k] + u [k] ′ Ru[k]). (13)

Here, S and Q are symmetric positive–semidefinite matrices
while R is a symmetric positive–definite matrix. S , Q , R , and
M are coefficient matrices used for weighing different terms
according to their dimensions or importance.

2) ℒ 2 gain: For a given input, let γ u be defined as the ratio
of the output and the input energy of a system and can be
represented as follows:

 γ u =
||y| | 2

||u| | 2

 = (
 ∫ 0 ∞ | |y(t)| | 2 dt

 ∫ 0 ∞ | |u(t)| | 2 dt

)
1/2

 . (14)

Now, the ℒ 2 gain γ ℒ 2 of a system is defined as follows [7]:

 γ ℒ 2 = sup
u∈ ℒ 2

 γ u . (15)

By the second method of Lyapunov, it can be stated that a
system is asymptotically stable when γ ℒ 2 is finite. Moreover,
the ℒ 2 gain gives an idea of the robustness of a system and,
therefore, is used as a performance measure.

Given a performance measure, the task of a control
engineer is to design a controller that optimizes the system
 performance. However, this is not trivial as the design param-
eters, e.g., control gains, affect the control performance in a
nonlinear and complex manner. Therefore, engineers may
often need to do extensive analysis. For example, using root
locus diagram, an engineer can analyze how control gains
affect the system poles which in turn influence the transient
response of the system. However, with performance metrics,

such as gains and cost functions, control theorists have come
up with novel design approaches for optimal control.

E. Control Design

Over the years, different techniques to design controllers
that stabilize the system and also optimize QoC have been
developed. A naive approach could use simulation where a
controller is assumed to be given and then the closed-loop
system is simulated for a certain given initial condition and
reference. In case design requirements are not satisfied, then
a different controller is assumed heuristically and the process
is repeated until a suitable controller is found. However, this
iterative approach is time consuming and cumbersome, and
therefore, systematic mathematical approaches are more
common. Here, we discuss three such approaches.

1) Pole placement technique: This design approach [8]
exploits the fact that an LTI system is asymptotically sta-
ble when (8) holds. Now, for a state-feedback controller to
reject impulse disturbance, control law can be written as

 u[k] = −Kx[k] (16)

where vector K ∈ R 1×n represents feedback control gains.
Therefore, (2) can be reformulated as

 x[k + 1] = (φ − ΓK)x[k]. (17)

Now, a system represented by (17) will be asymptotically
stable when the eigenvalues of φ cl = φ − ΓK satisfy (8).
The pole placement approach exploits this, and therefore,
the control gains can be calculated for single-input systems
using the Ackermann’s formula

 K = [0 0 ⋯ 1] γ c
−1 H(φ) (18)

where γ c is the controllability matrix

 γ c = [Γ φΓ φ 2 Γ ⋯ φ (n−1) Γ] . (19)

For the eigenvalues λ i s, H(φ) is given by the following:

 H(φ) = (φ − λ 1 I) (φ − λ 2 I)⋯(φ − λ n I). (20)

However, this approach is only applicable when the system
is controllable, i.e., γ c has full rank. Otherwise, not all the
eigenvalues or poles can be freely selected. This means that
the system is stabilizable only when the closed-loop poles
which cannot be manipulated are already stable.

2) Linear quadratic regulator (LQR): This design
approach [5] not only designs an asymptotically stable sys-
tem but also considers optimization of the quadratic cost
given by (12) and (13). Now, the linear feedback control for
the finite horizon case is given by

 u[k] = −K[k] x[k] (21)

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 177

where control gains K[⋅] can be different for different sam-
ples. Here, the gains can be calculated from a dynamic
Riccati equation by iterating backwards [8]. For an infinite
horizon, the gain is constant for all samples and is obtained
by solving the algebraic Riccati equation until a stationary
solution is reached [8].

3) Linear quadratic Gaussian control (LQG): The limita-
tion when using LQR is that all the states must be measur-
able to compute the control input. However, the measured
states may not be accurate as there may be some noise in
the measurement or noise inherent in the system. The noisy
system model can be represented as

 x[k + 1] = φx[k] + Γu[k] + w[k]
(22)

 y[k] = Cx[k] + v[k]

where for the sake of simplicity w and v can be assumed
to be white noise. Now, to design an optimum controller
which minimizes the loss function given by (13), we can
apply the separation theorem [8]. Here, we first estimate
the states x ̂ [k] and then apply the LQR technique to design
the controller using the estimated states x ̂ [k] . In this
approach, the state estimation is realized using Kalman
filtering [8], where the objective is to minimize the vari-
ance of the estimation error. This can be realized, for
example, using a one-step-ahead predictor, where the
next states are predicted based on the current state esti-
mations, control input, and system output which can be
expressed as follows:

 x ̂ [k + 1|k] = φ x ̂ [k|k − 1] + Γu[k] + K[k](y[k] − C x ̂ [k|k − 1]). (23)

To minimize error variance, the Kalman gains K[⋅] can be
calculated by solving the parametric optimization problem
based on the predictor model in (23) [8]. This can be rep-
resented as

 x ̂ [k | k] = x ̂ [k | k − 1] + K f [k] (y[k] − C x ̂ [k | k − 1])
 v ̂ [k | k] = K v [k] (y[k] − C x ̂ [k | k − 1]) (24)
 x ̂ [k + 1 | k] = φ x ̂ [k | k] + Γu[k] + v ̂ [k | k] .

The Kalman filter gains, i.e., K f [⋅] and K v [⋅] , can be obtained
by solving a Ricatti equation [8].

These mathematical design approaches guarantee stabil-
ity and, in particular cases, optimal performance. However,
they do not consider the controller implementation on the
embedded platform which may influence the system model
and therefore nullify the safety guarantees. Moreover, for
an embedded implementation, the resources needed by a
control software must also be an important consideration
in the controller design stage. Consequently, the aforemen-
tioned techniques must be extended to consider resource
constraints and specific characteristics of the implementa-
tion platform.

F. Nonlinear Dynamical Systems

Although we do not consider it in this survey, an impor-
tant research direction in the field of control theory is the
stabilization and control of nonlinear dynamical systems. In
the context of CPSs, most of the works consider linear mod-
els of the physical system as commonly found in electrical
circuits, mechanical systems, and chemical processes.
However, new models found in the domains of avionics,
autonomous vehicles, and power grid are inherently nonlin-
ear due to their complex interaction with the environment.
Naturally, the problems of stability analysis and controller
design for nonlinear systems considering the details of
platform implementation have become relevant. Toward
this, there have been works focusing on NCSs, where the
control loop is closed over a communication network.
Correspondingly, several network-specific characteristics
such as time-varying network delays, packet drops, and
quantization influence control properties.

Besides techniques derived from traditional nonlinear
control theory, two important approaches toward solving
problems of nonlinear NCS are: 1) fuzzy-model-based con-
trol; and 2) formal synthesis of hybrid control systems. There
has been significant progress on these two approaches where
several implementation aspects have also been considered.
However, most of these works assume very abstract platform
models. They do not really derive the abstraction from real
platform parameters such as network schedules, communi-
cation protocols, size of gateway buffers, or switch latencies.
Hence, an integrated approach that closely binds controller
design with platform parameter estimation is still missing.
We discuss this topic again in Section VI-B. However, for
more detailed survey on fuzzy-model-based nonlinear con-
trol and formal synthesis of hybrid control systems the read-
ers are referred to [9] and [10]–[12], respectively.

III . EMBEDDED PL ATFOR MS: DESIGN
A ND A NA LYSIS

Embedded systems are widely used in various domains such
as automotive, consumer electronics, healthcare, avionics,
and industrial automation. In each of these domains, an
underlying electrical/electronic (E/E) platform is required,
which provides computation and communication services
to the functional software. A typical hardware architecture
for such a platform consists of one or more processing
units. Fig. 3 shows an example of a distributed embed-
ded platform. Here, each processing unit has one or more
processing cores, memory systems and input/output (I/O)
ports. In the case of distributed architectures, multiple pro-
cessing units are connected by one or more communication
bus systems. Data can be transmitted between process-
ing units as messages packed into frames over the bus. In
a large-scale system, heterogeneous bus protocols are used
where communication gateways can connect different bus
clusters. Toward implementing software applications on

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

178 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

such platforms, in this section, we will first describe the
implementation model and associated implementation con-
straints, followed by common implementation techniques.

A. Platform Implementation Model

A software application can be implemented as several
pieces of software codes called tasks. These tasks can be
data dependent in the sense that the output of one task is
considered as an input to another task. Two data-dependent
tasks can be mapped on different processors due to reasons
such as spatial distribution of sensors and actuators. In such
a case, the data between them are transmitted over a com-
munication bus via messages packed into frames. Thus, an
application can be modeled as a directed task graph. Here,
each vertex is a task and directed connecting lines represent
data transmitted from source to target tasks. Subsequently,
we will explain the timing models of tasks and data frames.

1) Task Model: Typically, in an embedded application, a
task is executed multiple times triggered either a) periodi-
cally via time interrupts, i.e., in a time-triggered fashion;
or b) aperiodically via events, i.e., in an event-triggered
fashion. Moreover, when multiple tasks are mapped on a
common processor, certain arbitration mechanisms are
necessary. This is achieved by the operating system (OS),
which is a software that schedules the tasks and allocates
resources. Depending on the requirements of the applica-
tions, different scheduling schemes can be employed by the
OS. Common scheduling schemes include time-triggered
(TT) scheme (e.g., eCos), fixed-priority preemptive (FPP)
scheme (e.g., OSEK), and dynamic scheduling schemes
such as earliest deadline first (EDF).

In TT static scheduling, processor time allocation is pre-
configured, i.e., it is known when a task will be executed
by the processor. In this scheme, a periodic task is charac-
terized by a tuple T i ~ { p i , o i , e i } , where p i , o i , and e i repre-
sent, respectively, the period, the schedule offset, and the
execution time. Since the execution time of a task is usually
not deterministic, the worst case execution time (WCET) is
used to represent the task schedule.

In contrast, in an FPP scheme, it is not known when a
task will allocate a processing resource. Instead, it is decided
at runtime by the OS according to the preset priority of the
task. Without loss of generality, a periodic task can be char-
acterized by the tuple T i ~ { p i , a i , π i , e i } , which represent,
respectively, the period, release time, priority, and execu-
tion time. The release time determines when a task instance
is dispatched to be scheduled by the OS. Here, tasks are
executed according to their priorities. If a task is currently
running and a higher priority task arrives, the current task
will be preempted. It will be resumed again when all task
instances with higher priority are processed completely.

In the case of EDF scheduling scheme, the priorities of
the tasks are not assigned offline, but are determined online
according to remaining time to the deadline. Here, a task is
represented as T i ~ { d i , e i } . d i is the relative deadline which
is the time that the processor has to finish executing the task
after the task release.

Each of these scheduling schemes has its own advan-
tage such as timing predictability, resource efficiency, and
implementation overhead, and the appropriate scheme can
be chosen depending on requirements.

2) Frame Model: Each message frame may be packed
with one or more data items and is transmitted over the
bus according to different communication protocols. For
example, message transmission may be achieved through a
wireless medium (e.g., ℤigbee, Bluetooth, and WLAN) or a
wired medium (e.g., CAN, FlexRay, and Ethernet). Typical
bus protocols include a) CAN, FlexRay, LIN, Ethernet, and
MOST in the automotive domain; b) ProfiNet, Profibus,
and EtherCAT in industrial automation; and c) AFDX in the
avionics domain. Different communication protocols imple-
ment different scheduling schemes, which is determined by
the media-access control (MAC) layer. For example, the
CAN bus employs a fixed-priority nonpreemptive (FPNP)
scheme, Ethernet implements collision sense multiple
access/collision detection (CSMA/CD), EtherCAT imple-
ments polling, while FlexRay implements a hybrid scheme
composed of a time-division multiple-access (TDMA)-
based static segment and a flexible TDMA (FTDMA)-based
dynamic segment.

For different protocols, frame timing models can be
represented differently. For example, a CAN frame sched-
ule can be represented as f r i ~ { p i , a i , π i , c i } where c i repre-
sents the frame transmission time over the bus. However, a
static FlexRay or TDMA frame timing is expressed as a tuple
 f r i ~ { s i , b i , r i } where s i is the slot id in which the frame is
transmitted, b i is the TDMA cycle when the frame is sent
for the first time, and r i represents the number of bus cycles
after which the frame is sent again.

B. Implementation Constraints

The platform implementation often consists of determin-
ing various parameters associated with the processors and

Fig. 3. A distributed embedded platform.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 179

the communication network. In processors, these param-
eters include task partition and mapping, and scheduling
parameters such as the static task schedule or priorities. On
the communication side, various parameters of the network
need to be determined. The exact parameters depend on the
protocol and the implementation. For example, the design
parameters for CAN are the priorities of the messages. For
FlexRay, this would include the whole configuration of the
FlexRay communication cycle, i.e., the frame packing and
frame-to-slot assignment.

Different constraints need to be considered when
 determining the platform parameters. These constraints
may be enforced by the platform or are derived from applica-
tion requirements. We discuss some important constraints
as follows.

1) Processor Utilization: This is defined as the fraction of
computation time for which the processor may be busy in
the worst case for a given task mapping. Let us denote the
WCET and the period of a task T i as e i and p i , respectively.
Now, for a set of tasks (P i) mapped onto a processor
P i , the processor utilization U(P i) is given by the following
expression:

 U(P i) = ∑
 T i ∈(P i)

 e i __ p i . (25)

The processor utilization usually must be lower than a cer-
tain value, beyond which, the tasks are no longer schedula-
ble (in practical cases, the value is much smaller the 100%
for reliability reasons).

2) Bus Load: Bus load depends on the communication
protocol used by the bus. For example, let us consider the
FlexRay static segment. It is partitioned into N slots of equal
length. In FlexRay, time is organized as an infinite repetition
of 64 bus cycles. Here, the total number of slots in 64 cycles
is 64N . If Θ is the set of frames mapped onto a FlexRay bus,
then the constraint on bus load U FR is derived as follows:

 U FR = ∑
f r i ∈Θ

 64 __ r i ≤ 64N. (26)

However, for bus systems, besides the reliability, the exten-
sibility (i.e., provision for mapping future messages) of the
design also needs to be considered [13]. This is because
industrial systems often follow an iterative design para-
digm where the previous version is first inherited and then
extended with new features. Now, if a bus is too highly
loaded, it reduces the possibility of adding future messages.

3) Application-Level Constraints: In addition to the con-
straints imposed by limited platform resources, applica-
tion requirements must also be considered in the design.
Consider an application represented by a chain of tasks and
messages as a i ~ T 1 → f r 1 → T 2 → f r 2 → ⋯ → T n . In such an
application, the tasks and messages must be scheduled in a
way such that the task dependency constraints are satisfied.
For example, T 1 must finish before f r 1 is sent and T 2 must

start only when f r 1 has arrived. Furthermore, there may be
constraints on application latency, i.e., the time between
the start of T 1 and the completion of T n . This constraint is
imposed on hard real-time distributed applications and cor-
respondingly they must satisfy strict deadlines. Even the
sensing-to-actuation delay of a control application can be
expressed as a latency requirement.

4) Task- and Frame-Level Constraints: Application-level
requirements are typically translated to deadlines of tasks
and messages. Deadline constraints specify when the execu-
tion of a task (or transmission of a message) needs to be fin-
ished after its release. In this regard, the response time of
a task (or a frame) is defined as the time elapsed between
the release of the task (or frame) and the completion of task
execution (or frame transmission). Response time not only
depends on the code size in a task or the data size in a frame
but also on the scheduling scheme on the processor and the
bus. Denoting the response time of a task or a frame as R i ,
and the deadline it must satisfy as d i , then the deadline con-
straint is given as follows:

 R i ≤ d i . (27)

In addition, for shared resources, tasks and messages must
also satisfy constraints related to resource conflicts. Such
a constraint typically states that no two tasks or messages
must be allocated to the same resource at the same time.

C. Platform Analysis

Platform analysis verifies if the system design meets the
specified constraints and timing requirements. The analysis
techniques depend on the implemented scheduling strategy
on a platform. Considering the wide spectrum of scheduling
algorithms available in different domains, we would not go
into the details of any specific analysis.

Early works on this topic have focused on providing
schedulability tests and worst case response time (WCRT)
analysis. For example, Liu and Layland [14] and Xu and
Parnas [15] address the problem of schedulability tests
for rate-monotonic, deadline-monotonic, and EDF sched-
uling schemes. Bril [16] and Bril et al. [17] propose the
response time analysis for tasks. For example, in FPP
scheduling, the WCRT of a task t i can be computed using
an iterative algorithm based on the following recurrence
relation [16]

 R i = e i + ∑
 Π j > Π i

 ⌈
 R i __ p j ⌉ e j . (28)

In the case of communication networks, Davis et al. [18]
address the problem of timing analysis of the CAN bus and
Pop et al. [19] and ℤeng et al. [20] consider the FlexRay bus.

Much effort has also been spent in deriving formal
methods for compositional timing analysis. In this context,
network calculus [21], real-time calculus [22], [23], and

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

180 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

SymTA/S approach [24] have been developed. These meth-
ods have been applied to processor scheduling [23] and to
analyze communication networks such as FlexRay [25] and
switched Ethernet topologies [26]–[28]. In addition, the
problem of combined task and message timing analysis has
also been addressed [29]–[31]. In this case, timing proper-
ties are considered at the application level.

D. Platform Design

Another important research focus in embedded systems
is the design of platform parameters according to the con-
straints and timing requirements. Here, the design is mostly
aimed at task mapping, frame packing, and task and mes-
sage scheduling [32]–[35]. Several works also consider the
combined synthesis of task and message schedules from
the application-level timing requirements such as latencies
and response times [36]–[39]. In these approaches, usually
a constraint programming (CP) problem is formulated and
solved with integer linear programming (ILP) or satisfiability
modulo theories (SMTs) solvers, heuristics or metaheuris-
tics methods. These approaches can usually guarantee that
the requirements are met and further tune the parameters
according to certain optimization objective(s). When multi-
ple conflicting objectives are considered, a Pareto front can
be generated or a DSE algorithm [40] can be applied to help
the designer analyze different tradeoffs.

E. Hardware/Software Codesign

One additional direction of embedded systems design
that has received attention in the past decade is hardware/
software (HW/SW) codesign. Traditionally for electronic
systems, the hardware is designed first, followed by the
design of the software. HW/SW codesign approaches design
both hardware and software components concurrently, thus
enabling faster time to market and achieving more efficient
design. However, these approaches only consider cost, per-
formance, reliability, and power consumption as design
objectives. They do not consider high-level control require-
ments such as stability and performance, when the software
in question implements a feedback control loop. This survey
focuses on the design of embedded control system from a
CPS perspective and we refer the reader to [41] for a survey
on HW/SW codesign. It may be noted that many optimiza-
tion techniques used in HW/SW codesign, when appropri-
ately adapted, can be utilized in the design of embedded
control systems.

I V. CPS - OR IEN TED A PPROACHES TO
EMBEDDED CON TROL SYSTEMS
DESIGN

Our setup consists of a group of physical plants controlled
by software running on a single processor or on a network
of processors. In this section, we first study the interplay

between the control system and the embedded platform
using a motivational example. In doing so we point out
the associated safety challenges. We will also discuss how
the control and the embedded systems communities have
attempted to address these challenges from their own
perspectives.

A motivational example: As an example, we have con-
sidered a second-order system with the following system
matrices:

 A = [− 0 . 2 0 . 667
− 10

− 100

] B = [0
100

] C = [1 0] . (29)

For a sampling period of h = 0.02 s, the discrete-time matri-
ces can be calculated using (3) as follows:

 φ = [0.9953 0.0057
− 0.0862

 0.1349

] Γ = [0.0076
0.8643

] . (30)

Let us consider the control law as u[k] = − Kx[k] + Fr
where K and F are the feedback and the feedforward gains
and r is the reference. Without loss of generality, we can
assume r = 0 and use the pole placement technique
described in Section II-E to calculate the feedback gain.
Feedforward gain can be calculated using the final value
theorem, i.e., lim

t→∞
 y(t) = r , and is given by the following

relation:

 F = 1 ____________
C (I − ϕ + ΓK) −1 Γ

 . (31)

For both the closed-loop poles at 0.9, K and F can be calcu-
lated as follows:

 K = [0.7032 − 0.7811] F = 0.8689. (32)

Using these values, we have simulated the closed-loop sys-
tem for unit step reference and plotted the output in Fig. 4.

Next, let us assume that the control code is implemented
as three tasks T s , T c , and T a in temporal order where the
WCETs of the tasks are 1ms , 3ms , and 1ms , respectively.
These tasks are mapped on different ECUs, each with a TT
scheduler. The data between T s and T c are transmitted as a
message m s and the data between T c and T a are transmitted

Fig. 4. Closed-loop simulation curves with delay.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 181

as another message m c . The messages are transmitted
over CAN. Now, let us consider two scenarios where the
WCRTs of m s and m c are, respectively, calculated as follows:
Case 1) 2ms and 3ms ; and Case 2) 6ms and 8ms . We can
schedule the tasks in a way such that all task depend-
ency constraints are satisfied and the end-to-end delay
is minimum. Now, for both cases, we have simulated the
closed-loop system for a unit step reference signal. We have
modeled the tasks T s and T a and the messages m s and m c
as delay blocks of appropriate values, while T c executes the
control law followed by a delay of 3ms . The response curves
for both the cases are shown in Fig. 4. It may be noted that
the overshoot and the settling time have increased from the
ideal case with no delay. Thus, we may say that the perfor-
mance has deteriorated, and more importantly, it does not
match the expected values that were obtained at the model
level. This performance degradation can be attributed to
the delays introduced in the loop which will be studied
later in this section. Fig. 5 shows the interplay between the
control models and the platform implementation, i.e., how
the task and message schedules affect the sampling period
and the closed-loop delay of the control loop. Thus, control-
ler design without considering the timing properties of the
platform implementation is unreliable and in the worst case
may even result in an unstable system in spite of the model-
level controller being stable.

As mentioned earlier, safety properties of embedded
control systems is usually captured in terms of stability
and performance guarantees. We can observe in the above
example that when the controller is designed separately
from the embedded platform and is oblivious to the imple-
mentation details, no such guarantees at the implemen-
tation level are possible. In practice, costly testing and
integration efforts are necessary to obtain an acceptable
implementation by iteratively changing the controller
model and the platform parameters.

To address this issue, new controller design techniques
that account for platform characteristics and resource con-
straints are discussed in Section IV-A. These techniques
analyze properties of the platform architecture and incor-
porate them into the controller model, and then determine
the appropriate parameters corresponding to this aug-
mented model in order to ensure stability and performance.

Similarly, on the embedded systems side, new techniques for
platform design have been proposed that take into account
the particular requirements of embedded control systems;
we discuss them in Section IV-B. Here, a given control sys-
tem is first analyzed to determine timing constraints that sat-
isfy stability and performance requirements. Subsequently,
platform parameters are synthesized taking these timing
constraints into account. Both the aforementioned design
paradigms have made significant progress in bridging the
semantic gap between controller design and its implementa-
tion that is illustrated in the results shown in Fig. 4.

A. Platform-Aware Controller Design

The control theory community has looked into new con-
troller design methods that take into account the implemen-
tation platform characteristics. Here we review some of the
important work in this direction.

1) Sensing-to-Actuation Delay: The discrete-time control
system model described in Section II-A assumes that there is
a negligible time delay between sensing and actuation. This
implies that the computation of control input takes negli-
gible time. This is an idealistic assumption as embedded
processors often have limited computation bandwidth and
take nonnegligible time for computation. Moreover, sensors
and actuators are often spatially distributed and the control
loop may involve some communication over a shared net-
work, which may introduce additional delays. Assuming a
sensing-to-actuation delay (or closed-loop delay) of τ where
0 < τ ≤ h , u(t) = u[k − 1] for kh ≤ t < kh + τ , and u(t) = u[k]
for kh + τ ≤ t < (k + 1)h . Consequently, the discrete-time
state-space model for the delayed system [8] becomes the
following:

 x[k + 1] = φx[k] + Γ 0 u[k] + Γ 1 u[k − 1]
(33)

 y[k] = Cx[k].

Here, Γ 0 and Γ 1 for a sampling period h and a delay τ are
given as follows:

 Γ 0 = ∫
0

 h−τ

 (e At dt) ⋅ B Γ 1 = ∫
h−τ

 h

 (e At dt) ⋅ B. (34)

Consequently, we can consider an augmented state vector
as z[k] = [x[k] u[k − 1]] ′ , for which the state–space model
can be written as

 z[k + 1] = φ z z[k] + Γ z u[k]
(35)

 y[k] = C z z[k]

where φ z , Γ z , and C z are as follows:

 φ z = [φ Γ 1
0

0

] Γ z = [Γ 0
I
] C z = [C 0] . (36)

Fig. 5. Task/message schedules in a controller implementation.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

182 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

This model is identical to the ideal discrete time model
given by (2). Therefore, now the standard controller
design methodology that was explained in Section II
can be applied. This system model has been used in [42]
and [43].

2) Input and Output Jitter: The closed-loop delay intro-
duced in a controller implementation may not be a constant
value and instead be time varying, resulting in output jitter.
Similarly, a control task may not be sampled at regular inter-
vals, thereby resulting in input jitter. This nondeterminism
in timing may be induced by event-triggered preemptive
scheduling of shared resources, or by asynchronous clocks
in a distributed system, among other reasons. Moreover,
this nondeterministic behavior may cause system instabil-
ity or inadequate QoC. Thus, it is important to analyze the
influence of input and output jitter on stability and perfor-
mance of a control loop.

Toward this, there have been some work in NCSs that
considers stochastic or approximate analysis of system
stability [44]–[48]. However, Cervin [49] has proposed
an analysis of system stability and worst case perfor-
mance considering both input and output jitter. In [49],
the assumption is that only the worst case delay, i.e.,
input and output jitter, is given without any information
on the statistical distribution. Cervin introduces a novel
technique to transform the closed-loop system model by
adding two error paths corresponding to input and output
jitter. In one error path, the influence of output jitter is
modeled as an error in the actuation signal. In the second
error path, the influence of input jitter is modeled as an
error in the measurement. Subsequently, the stability and
the performance of the transformed closed-loop system
are analyzed in the frequency domain. This analysis can
be very useful in practice to ensure safety of an implemen-
tation in the presence of jitter without extensive simula-
tions or testing.

3) Processor Architecture and Operating Systems: Design
of embedded systems often starts with the selection of
architectural components, e.g., processors, buses, and
the OS along with its scheduling policy and parameters.
However, at this stage, the designer only has a very rough
idea of the applications. Therefore, the choice of proces-
sor architecture and OS is almost oblivious of the applica-
tions that will run on the processor. However, there are
certain OS features that invalidate the assumptions made
in the controller design if not taken into account. For
example, an OS such as ERCOSek, running on a proces-
sor may offer only a preconfigured set of sampling peri-
ods. Controllers implemented on such a processor must
be implemented according to a sampling period selected
from this set. The straightforward scheme is to find the
largest sampling period H j from the preconfigured set
ℋ = { H 1 , H 2 , …, H k } for which a controller can be designed
satisfying the requirements. However, this might result in

using an unnecessarily high sampling rate, and thereby
overloading the processor.

To address this issue, Goswami et al. [50] have pro-
posed to design controllers with nonuniform sampling. The
idea is to choose a sampling order ∏ h i = h 1 → h 2 → ⋯ →

h n → repeat . Here, h i ∈ ℋ and h avg = 1 __ n ∑
i=1

n
 h i . Then, the control-

ler is designed such that the obtained performance J (∏ h i)
for the assumed sampling order satisfies the requirement
 J ̅ while h avg > H j . Higher h avg implies savings in computa-
tion resource. Goswami et al. [50] also suggest a design
technique for such a multirate controller. The controller
is designed for the average sampling period h avg using the
pole placement technique described in Section II-E. The
closed-loop system φ cl (∏ h i) = φ cl (h 1) φ cl (h 2)⋯ φ cl (h n)
can be analyzed for stability and performance using stand-
ard techniques.

A similar approach is also valid for multicore architec-
tures where a TDMA-based execution policy is employed
to eliminate interapplication interference or to offer com-
positionality. In such an architecture [51], processor time
is partitioned into slots where each slot is dedicated to an
application. Correspondingly, several instances of a con-
troller may run in its TDMA slot thus resulting in a shorter
sampling period. However, the last instance may either
have to wait for the next dedicated slot to finish or the time
gap between the last instance of the current slot and the
first instance on the next slot is much larger. In both cases,
the controller implementation naturally resembles a mul-
tirate case with only two sampling periods. Valencia et al.
[42] have studied such an implementation of controllers
in multicore architectures. The sampling order for a given
TDMA policy is derived. Subsequently, a linear matrix
inequality (LMI)-based approach is proposed to design
the controller. Here, the two sampling periods result in
two different subsystems and the overall system switches
between the two. Therefore, it is suggested to design the
controller corresponding to the shorter sampling period
(the dominant one) using pole-placement technique. The
stability of the overall switching system can be ensured
by finding a common P such that (10) holds for both
subsystems.

4) Deadline Misses, Packet Drops, and Fault Tolerance:
A controller can be designed assuming a closed-loop
delay and sampling period as discussed in Section IV-A1.
Subsequently, in the schedulability analysis, the control-
ler is treated as a hard real-time application where the
delay is considered as a deadline and the sampling period
as the dispatch period. A system is schedulable if all the
WCRTs satisfy the deadline constraints. This schedulabil-
ity test is conservative in nature because it relies on a criti-
cal instant (i.e., all the controllers are contending to run at
the same time,) and on WCET estimates of the controller
tasks (which are pessimistic in nature). Since the worst

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 183

case occurs rarely, this results in a poor resource utili-
zation. Similarly, in NCSs, there is a hard constraint on
in-time packet delivery. However, there may be momen-
tary faults in the network which can corrupt the data. In
highly constrained networks, there may be some packet
losses as well.

In domains such as automotive, efficient utilization of
resources is of utmost importance in order to minimize cost.
Hence, the goal is to map as many applications as possible
on a given embedded platform (single processor or network
of processors). Moreover, for control applications, dead-
line or in-time packet delivery is not an accurate reflection
of stability and QoC and designs driven by them might be
overly conservative. This is because of the inherent robust-
ness of control loops, which allows for certain deadline
misses. However, quantifying such deadline miss patterns
is not straightforward.

Recently, a number of works have addressed this issue
[52]–[59]. Most of them consider a switched system model
to represent a control-loop with deadline misses or packet
drops [52]–[54], [58], [59]. There can be several ways in
which deadline misses or packet drops can be modeled, i.e.,
1) as an open-loop system, i.e., u [k] = 0 ; 2) as the last con-
trol input being used, i.e., u [k] = u [k − 1] ; or 3) as two
consecutive misses, i.e., u[k] = u[k − 2] . The probability of
a deadline miss can either be stochastic or guided by the
(m, k) -firm rule (i.e., only m out of k times deadlines can
be missed).

It is natural to study the impact of deadline misses on
the performance of control loops. Towards this, Geelen
et al. [53] and Antunes and Heemels [54] have considered
stochastic systems with packet drops or deadline misses.
For a given ideal input signal (i.e., without any misses),
mean and variance of the output signal are calculated in
time domain and in frequency domain. Furthermore, van
Horssen et al. [52] have studied performance degradation
for switched systems with (m, k) -firm data losses, where
a system switches between closed-loop and open-loop
 subsystems. Here, van Horssen et al. have represented the
system with deadline misses as an automaton for which
a stable controller can be designed using an LMI-based
approach. Correspondingly, the loss in performance can
be calculated by comparing the quadratic costs corre-
sponding to the stable controller and the ideal (without
misses) LQR controller. Van Horssen et al. [52] have fur-
ther proposed that the performance can be improved at
the cost of online computation by deadline-miss-aware
controller updates.

In the same vein, Majumdar et al. [59] have consid-
ered ℒ ∞ -to-RMS gain as the performance measure, and,
for a given successful packet transmission rate, an upper
bound on ℒ ∞ -to-RMS gain is derived. This gain measure
of a discrete-time LTI system with input disturbance ​ω​ and

||ω| | ∞ = sup
k≥0

 || ω[k] | | 2 is given by the following expression

and indicates how a system reacts to disturbance:

 sup
||ω| | ∞ ≠0,x[0]=0

 (lim sup
N→∞

 1 __
N

 ∑
j=0

N

 y ′ [j] y[j])
 1 __ 2

| | ω| | ∞

 . (37)

The lower the gain value is, the smaller is the effect of dis-
turbance and the better is the robustness. Considering this,
an expression for the minimum successful transmission rate
r min is derived for which the system is stable. Later, Saha
et al. [58] have derived that the successful transmission rate
at which the performance is optimal is either the minimum
possible rate r min (constrained by stability) or the maximum
possible rate r max (constrained by network availability).

In addition, Goswami et al. [57] have studied a restric-
tion on deadline misses over a finite horizon (k samples)
and proposed an exponential stability criterion in terms of
allowable deadline misses. This criterion forces a bound on
the rate at which the system must approach the equilibrium
state from a given initial state which is mathematically given
by [60]

 ||x[k] − x e || ≤ c 1 + c 2 β k ||x[0] || (38)

where c 1 ≥ 0 , c 2 > 0 , and 0 < β < 1 . Furthermore, Goswami
et al. [57] have considered a performance measure tuple
{ S, χ} as follows:

 S ≥
||x[k + χ] − x e || ___________

|| x[k]||
 × 100%. (39)

This implies that χ samples after the disturbance has
arrived, at least (100 − S)% of the disturbance is rejected.
Subsequently, the number of samples κ s that can be missed
out of χ samples can be calculated to meet the performance
requirement given by S .

5) Finite Precision Arithmetic: Traditionally, control-
lers are designed by solving a set of differential equations
in a way that stability and performance requirements are
met. At the model level, no assumptions on the arithme-
tic precision of computations are made. However, for an
embedded implementation, the control law is calculated
by a processor that allows only fixed precision arithmetic
operations. As a result, safety and performance guarantees
are no longer valid due to quantization errors. Moreover, it
may so happen that the system constantly oscillates around
the equilibrium state.

To address this, there has been work on quantization-
error-aware verification of control software [61]–[64]. The
goal is to verify that the final implementation results in a
practically stable system, i.e., the final state of the system is
within a bounded region of the equilibrium state.

Furthermore, Majumdar et al. [65] have proposed
to synthesize controllers by cooptimizing the LQR cost

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

184 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

function and the quantization error, thereby constructing a
Pareto front of the two objectives. The proposed approach
can be partitioned into two stages. In the first stage, an
upper bound on the quantization error in the computation
of control law is calculated. For a given implementation and
the bounds on plant states, the range of each controller vari-
able is analyzed and the bitwidths allocated accordingly. For
given bitwidth allocations, the maximum quantization error
in an arithmetic operations is calculated. Subsequently,
since the computation of the control law involves multi-
ple arithmetic operations, the quantization error accumu-
lates accordingly. In addition to the quantization error in
the computation, the approach also considers quantization
error in measurement, for which the bound will simply
depend on the allocated bitwidths. The errors are modeled
as disturbance in the observer dynamics and the feedback
gain codes. Subsequently, in the second stage, a multiobjec-
tive optimization problem is formulated and solved using
particle swarm optimization (PSO) [66]. The objectives
considered are LQR–LQG quadratic cost function [see (13)]
and ℒ 2 induced gains from input disturbance to output [see
(14) and (15)], where the input disturbances are the two
quantization errors. Finally, the PSO algorithm generates
several Pareto points that depict the tradeoff between per-
formance and quantization error.

B. Controller-Aware Platform Design

As discussed in Section III, traditional approaches of
platform design are based on timing requirements, which
might be overly conservative. In the context of CPS, a more
appropriate approach is to consider the control properties of
the system at the platform design stage. These control prop-
erties include stability, QoC, and robustness, among others.
This design approach will ensure either 1) optimal QoC of
the overall system for a given platform resource; or 2) mini-
mize resource usage while satisfying all performance and
stability constraints. Toward this, in this section, we will
discuss some of the platform design approaches that have
been proposed in the literature.

1) Stability- and Performance-Aware Platform Design: In
Section IV-A, we have discussed several platform character-
istics that may influence the stability and performance of
control systems if not considered at the controller design
stage. Most of these platform characteristics are config-
urable, subject to certain constraints. For example, the
sensing-to-actuation delay and jitter can be manipulated
by changing the schedule parameters to the extent that the
overall system still remains feasible. Now, given a set of con-
trollers, how to determine platform parameters considering
their influence on stability and performance is an important
research problem.

Toward this, Mancuso et al. [67] have addressed the
problem of calculating the priorities and periods of the con-
trol tasks. It is assumed that several control loops run on a

given platform with FPP scheduling. An optimization prob-
lem is also formulated with the objective of maximizing the
overall QoC. Here, the control performance of each loop is
measured by the LQR cost function approximated as a linear
function of sampling period and delay. Solving the optimiza-
tion problem is difficult due to the nonlinear dependency of
the WCRT of a task on priority assignment. Consequently, a
branch and bound technique is proposed to solve the prob-
lem. Furthermore, Aminifar et al. [68] have proposed a scal-
able algorithm to determine the priorities and periods of
control tasks taking into account both worst-case delay and
jitter. However, only the stability of control loops is consid-
ered instead of optimizing the overall QoC. The impact of
delay and jitter on stability of a control loop is studied using
the Jitter Margin Toolbox [69]. Finally, a stability condition
in terms of delay and jitter is derived as a linear inequality.

In the same vein, Aminifar et al. [70], [71] have studied
server-based scheduling of control tasks. The server-based
scheduling of real-time tasks is introduced to achieve isola-
tion, i.e., misbehavior in one task will not effect the others.
In [70] and [71], Aminifar et al. have defined periodic server
as a tuple of budget Q , period P , and deadline D . It is assumed
that each server is assigned to only one control task. The
server ensures that Q amount of processor time is allocated
to the assigned task in each period P before the deadline D .
Here, the constraint is that the resource reserved by a server
must be greater than or equal to the resource requirement
of the assigned task. A task runs only when its dedicated
server allocate processor time to it. Now, given the period
and the best and the worst case execution times of a control
task, it is possible to derive the best and worst case response
time of the task. Corresponding to these values, nominal
delay and jitter can be calculated which can be subsequently
analyzed to determine the stability of the system. It may be
noted here that in this server-based approach, each task can
be analyzed independent of other tasks running on the same
processor. The idea is to calculate the parameters of each
server taking into consideration the stability and the worst
case performance of the assigned control loop. Although,
the server-based approach is pessimistic in nature, it offers
compositionality and isolation, which are important aspects
to guarantee safety in control systems (i.e., model-level
guarantees are preserved in an implementation).

2) Robust-Control-Aware Platform Design and Verification: In
Section IV-A4, we have mentioned that any control-loop has
some inherent robustness. Hence, occasional deadline misses
or packet drops may not make the system unstable or violate
its performance requirements. We have also mentioned pre-
vious work that derived the minimum rate of ideal closed-
loop action [(m, k) -firmness] necessary to ensure stability and
performance of the system. Given these rates for multiple
control loops, the task of an embedded systems engineer is
to implement the corresponding controllers on an embedded
platform such that these constraints/rates are satisfied.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 185

In this context, Majumdar et al. [59] have proposed a
static scheduling algorithm that satisfies the (m, k) -firmness
of all the controllers and at the same time tries to maxi-
mize the overall QoC of the system. The algorithm solves a
 multiobjective optimization problem where (m, k) - firmness
is treated as one of the constraints. The optimization objec-
tives are the QoCs of all the control systems. Next, the
 multiobjective optimization problem is transformed into
a single-objective problem by a weighted combination of
the QoCs. Here, the weights are assigned in a way such
that the control loop, which is the most sensitive to the
rate of packet drops, has maximum influence on the objec-
tive. Consequently, the solution to the problem will be an
undominated one in the multiobjective space.

Another body of research that studies the impact of
missed control action on stability and performance is plat-
form-aware formal verification of control software [55],
[56], [72], [73]. Here, an embedded platform architecture
is represented as a network of time-stamped event count
automata (TS-ECA) where each message is stamped with a
time as it moves from one buffer to another. Moreover, the
(m, k) -firm rule can be formulated as a linear temporal logic
(LTL) formula where all possible combinations of allowed
misses can be represented. Subsequently, the network of
TS-ECAs are model checked to verify satisfiability of the LTL
formula. Thus, a control software can be formally verified
using model checking to ensure that all the control applica-
tions satisfy the constraints on their deadline misses.

Furthermore, Behrouzian [73] has proposed an analyti-
cal technique to verify (m, k) -firmness. The authors assume
that the control tasks are running on a processor according
to a TDMA scheme where each application is assigned a
dedicated slot to execute. For such an architecture, given a
sampling period between the best and worst case response
time, the proposed technique can calculate an upper bound
on the percentage of dropped samples. The estimation is
based on an analysis of a finite regular window with the
assumption that tasks arrive periodically. This technique
is faster than timed-automata-based approaches that were
proposed earlier.

3) Application-Criticality-Aware Platform Design: Mixed
criticality systems are becoming increasingly more com-
mon; here, applications of different criticality share the
same resource. These applications have different require-
ments, e.g., hard real-time applications have strict timing
requirements, while control applications have stability and
performance requirements. Thus, techniques discussed in
Section IV-B1 are not applicable in a straightforward man-
ner for platform design in such cases.

Toward this, Wu et al. [74] have considered control and
noncontrol tasks running on a processor with EDF schedul-
ing strategy. Upper and lower bounds are assumed on sam-
pling periods and relative deadlines of all applications. Here,
the bounds for control applications are derived from stability

and performance requirements. Subsequently, an optimiza-
tion problem is formulated and solved where the variables
are the periods and deadlines of all tasks. The objective is to
maximize the overall QoC of the system while satisfying the
deadline constraints of noncontrol tasks. The QoC metric
of each control loop is the loss in LQR cost due to sampling
period and output jitter.

Later, Schneider et al. [75], [76] have considered a simi-
lar problem for an FPP scheduling scheme. A multilayered
scheduling approach is proposed. In this approach, real-time
and control applications form the top and bottom layers,
respectively. The scheduling algorithm starts with the worst
priority and iteratively approaches the best priority where
in each iteration one task is assigned the worst priority
from the available set. In each iteration, the algorithm first
tries to find a task with the longest deadline from the pool
of unassigned tasks in the top layer. Correspondingly, the
WCRT of the task is calculated if the current worst available
priority is assigned. If the deadline is satisfied, the task is
assigned the priority. Otherwise, the algorithm then tries to
find the controller which remains stable and for which the
performance degradation is minimum if assigned the worst
available priority. If such a controller is found, then the
priority is assigned. As performance degradation is a non-
linear function of sensing-to-actuation delay, the obtained
overall QoC may not be the guaranteed optimum. However,
this algorithm is at least more analytical than a deadline
 monotonic scheme and will be more useful in mixed criti-
cality scenarios.

4) Using Hybrid Architectures: Time-triggered archi-
tectures (TTAs) have inherent timing determinism. This
makes it easier to implement control algorithms on them.
However, TTAs may not be resource efficient. For exam-
ple, in TDMA, if a slot is allocated to a message it will be
consumed irrespective of whether any data are sent and it
cannot be reallocated to a different message. As a result,
time-triggered slots are judiciously used. On the other
hand, event-triggered architectures (ETAs) offer higher
resource efficiency but timing nondeterminism makes it
difficult to implement control algorithms on them. If used,
the worst case delay values have to be considered, which
makes a design pessimistic. Moreover, a control law need
not be computed at high frequency if the controlled plant is
in the equilibrium state [77], which makes TTAs unsuitable
candidates if resource usage is to be maximized. Ideally,
the resource allocated to a controller could be dynami-
cally determined based on the state of the system. This fact
has been exploited for hybrid platform architectures that
 support both TT and ET task execution and message trans-
mission [78].

Examples of work along these lines include that of
Goswami et al. [79]. Distributed control applications using
FlexRay communication bus are studied. A controller is
proposed which can switch from an event-triggered mode

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

186 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

to a time-triggered mode based on the occurrence of distur-
bances. The performance of such a hybrid implementation
is almost equivalent to one in which only TT communica-
tion is used.

Later, Masrur et al. [80], [81] have proposed worst
case performance analysis techniques for such a setup. In
particular, these works calculate the minimum number of
TT slots required such that all the applications satisfy the
corresponding performance requirements. The analysis
consists of two nested layers. The inner layer considers the
case of a single slot assigned to several applications and
investigates if such an assignment is safe. Here, two differ-
ent arbitration policies are considered: 1) FPNP [80]; and
2) FPP [81]. In FPNP, when an application gets a TT slot,
it stays there for a certain dwell time which is enough to
stabilize the system even in the worst case. In FPP, a lower
priority application may be preempted by a higher priority
one. Preemption is only allowed at a point where the higher
priority application if not given a TT slot will not satisfy
the performance requirement. However, a retransmission
cost is considered due to preemption. For both arbitration
policies, worst case analysis can be carried out by extending
the WCRT analysis for nonpreemptive deadline monotonic
scheduling schemes. In the outer layer, a slot provision-
ing algorithm maps applications to slots one by one using
a customized first fit heuristic. It uses the inner layer to
determine the feasibility of mapping the current applica-
tion to the slots which are already provisioned. If it is not
feasible, then a new slot is added. It may be noted that such
hybrid implementations may require runtime reconfigura-
tion of the underlying platform [82], [83], which has been
addressed in [84].

Recently, Balszun et al. [85] have proposed a control
algorithm for mixed TT and best effort communication. The
algorithm uses TT communication to guarantee worst case
performance requirement while exploiting best effort com-
munication to improve the performance and thereby achiev-
ing higher average performance.

5) Event-Triggered and Self-Triggered Control: Traditionally,
a controller is implemented on an embedded platform as a
group of tasks dispatched periodically. However, when the
system is in steady state it is not necessary to apply control
inputs as frequently as when the system is in a transient
state. Moreover, periodic execution of control tasks at high
frequency may be very expensive in resource-constrained
embedded systems. In this context, two new implementa-
tion techniques have come up: event-triggered [86] and
self-triggered control [87]. In event-triggered control, the
 control law is executed only when a certain error threshold
is violated based on the current system states. This decision
is taken by a feedback scheduler which also monitors the sys-
tem states. On the other hand, self-triggered controllers cal-
culate the current control input and also the next sampling

instant based on the current system states. Therefore, they
do not require an additional feedback scheduler.

In both cases, stability and performance analysis tech-
niques that are based on a known sampling period are no
longer valid. Tabuada has derived a constraint for task acti-
vation such that the system is stable with respect to meas-
urement noise [86]. This constraint is based on the current
state and the difference norm between 1) the current state;
and 2) the state used in the calculation of the last control
input. Here, nonlinear systems given by x ̇ = f(x, K(x + e))
have been studied, where e is the measurement noise and
u = K(x + e) is the control input. Notion of input-to-state
stability (ISS) in this case is given by [88]

 | | x[k]|| ≤ β(x [0], k) + γ (sup u[k] :k ∈ Z *) (40)

where the functions β and γ are of class ℒ and  , respec-
tively. Now, a closed-loop system is ISS with respect to the
measurement noise if there exists an ISS Lyapunov function
V(x) such that V(x) is continuous and

 α 1 (| x|) ≤ V(x) ≤ α 2 (| x |) ∀ x[0] ∈ ℝ n

∂ V

∂ x

 f(x, K(x + e)) ≤ − α 3 (| x |) + σ (| e |)
(41)

where α 1 , α 2 , α 3 , σ ∈  ∞ -function.
Based on the derivation in [86], Anta et al. have calcu-

lated the next activation time for self-triggered control that
renders the closed-loop system ISS [87]. In addition, there
have been other works that determine triggering condi-
tions or trigger instants such that the system is stable, e.g.,
1) stable in the sense of Lyapunov [89]; and 2) uniformly
globally asymptotically stable [90]. Furthermore, a recent
work also considers ISS taking output quantization [91]
into account.

Besides safety, it is also important to consider control
performance while designing event-triggered controllers.
Toward this, Martí et al. [92] have proposed synthesizing
triggering instants such that resource usage is minimized
while maintaining optimal performance. The optimal per-
formance is determined by the corresponding LQR cost
for which the controller is designed. The trigger synthesis
requires solving an online optimization problem which may
be computationally expensive. Velasco et al. [93] have sug-
gested approximations for solving the optimization problem
in order to reduce computational complexity.

On the platform side, the problem with event-
triggered or self-triggered control is that it is difficult to
accurately analyze the schedulability of the system as task
activation patterns are not known in advance. Toward
this, Velasco et al. [94] have proposed a schedulability
analysis of event-driven controllers. Here, the worst case
activation is based on an assumed minimum interevent
time. Later, Aminifar et al. [95] have analyzed the request
bound function of a self-triggered controller for the worst
case request pattern. This approach starts by discretizing

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 187

the space and then calculating the maximum possible
sampling interval for each polytope such that the open-
loop system is stable. Subsequently, a state-transition
graph is constructed from which the worst case request
pattern can be obtained.

Besides stability, performance, and schedulability analy-
sis, another important component of event- or self-triggered
control is its implementation, which has attracted quite
some research. For example in sensor/actuator networks,
Mazo and Tabuada [96] have proposed to employ a tree
wave-algorithm for computing control inputs and for eval-
uating triggering conditions (in event-triggered control),
and for calculating trigger times (in self-triggered control).
Here, each sensor node computes its contribution to gain
and error. Furthermore, for several control applications
sharing a common platform resource, Samii et al. [97] first
analyze the worst case schedulability based on minimum
interevent time and calculate an upper bound on interevent
time to ensure worst case performance. Subsequently, a
dynamic scheduler that explores several schedule options at
runtime is proposed. Out of these, one is selected based on
the desired tradeoff between control performance and pro-
cessor utilization.

One challenge in implementing self-triggered control-
lers is the computation time for the next activation, which
may sometimes undermine the advantages of using self-
triggered control. For this, Saha et al. [98] have proposed a
hybrid implementation approach. Here, for a certain discre-
tized region around a given operating point, trigger times
are precalculated and stored in the cache. Now, if the cur-
rent state is within the precalculated region, trigger times
can be just fetched from the cache. However, when it is not
in the cache, then the trigger time calculation task is dis-
patched with a very low priority such that it does not inter-
fere with other control tasks. In the worst case, the control
loop goes back to periodic execution. Furthermore, in the
wireless network domain, Araújo et al. [99] have shown how
event-triggered control can be implemented over the IEEE
802.15.4 standard. In summary, although periodic imple-
mentation has been preferred for simple design and analysis
techniques, event-triggered control has also become popular
for better resource efficiency.

V. CON TROL-PL ATFOR M COSY N THESIS

The design approaches, discussed in Section IV, are far from
being holistic. These approaches focus on the design either
on the control side or on the platform side and consider the
parameters on the other side as given. Thus, the opportunity
for optimization is very restrictive. Toward optimal design of
CPS, semantics-preserving control and platform cosynthesis
approaches have emerged in recent years. In this section, we
will review these approaches for both single-processor and
distributed systems. Furthermore, we will present a general
cosynthesis framework.

A. Existing Cosynthesis Approaches

1) Single-Processor Systems: Here, the problem setting
consists of a number of applications mapped on a shared
processor. It is required to compute the control law and the
task schedules for each of the applications. In this setting,
one of the earliest approaches on integrated controller
design and scheduling is proposed by Aminifar et al. [100].
The proposed approach optimizes the expected control
quality while guaranteeing the worst case performance.
Here, an application is represented by an acyclic graph of
tasks. The execution time of each task is assumed to follow
a distribution between the best case and the worst case val-
ues. The jitter is modeled as some stochastic disturbance.
The sensitivity of a control loop is measured as gain from
the stochastic control input to output. The worst case sen-
sitivity analysis involves finding the lowest priority group to
which the application must be assigned such that the worst
case performance is ensured. Now, the proposed cosynthe-
sis approach employs an iterative scheme. In each iteration,
the applications are assigned periods based on a hybrid
search technique. Subsequently, for given sampling periods,
applications are first grouped based on worst case sensitivity
analysis of the control loops. Applications with same sensi-
tivity are grouped together. Now, based on delay and jitter
analysis, LQG controllers are synthesized for expected value
of delay to tackle uncertainties. Then, within each priority
cluster, control applications are assigned concrete priorities
such that the expected performance is optimized.

For server-based controller implementation, Aminifar
et al. [101] have proposed extension to the earlier work [70],
which is discussed in Section IV-B1. Here, controller-server
codesign is considered and thus a controller is designed
together with the dedicated server parameters. In the same
vein, Valencia et al. [102] have presented a codesign frame-
work as an extension to the work [42] (which is reviewed
in Section IV-A3). A tradeoff analysis between resource
utilization and QoC is offered for controllers implemented
on a composable platform. Furthermore, Xu et al. [103],
[104] consider partial codesign where task priorities are
given, however, task dispatch periods need to be calculated
along with the controllers. These works determine the per-
turbed dispatch period by exploiting the periodic delay pat-
tern such that a finite and short hyperperiod is obtained.
Subsequently, LQG controllers are designed considering
the delay pattern and also the distribution of execution time.

2) Distributed Systems: For distributed embedded control-
lers, communication network schedules must also be calcu-
lated during the cosynthesis. Samii et al. [105], as one of the
first few, proposed a control-platform cosynthesis approach
for distributed systems. Both static–cyclic scheduling and
priority-based scheduling are considered on the processor
and on the bus. The design follows an iterative approach. In
each iteration, sampling periods of all the applications are
first selected according to a genetic algorithm. Now, for a

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

188 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

specific set of periods, in the case of static–cyclic schedul-
ing, the schedules are synthesized and delay distributions
are derived. The control gains are synthesized for each appli-
cation based on the corresponding expected delay value,
while the QoC is computed based on the stochastic delay
using Jitterbug toolbox [106]. For priority-based scheduling,
the different priority sets are iterated over, and for each set,
the delay distributions are obtained through timing analysis.
Correspondingly, the control gains and the associated QoC
values are computed. Later, Samii et al. [107] extend their
work with specific characterization of the FlexRay param-
eters. In the same vein, Aminifar et al. [108] have extended
the approach developed for single-processor architecture
[100], as mentioned in Section V-A1, with added complex-
ity due to schedule computation for the communication bus
(CAN bus).

Furthermore, Schneider et al. [109] have proposed a
method to codesign controllers and a FlexRay-based dis-
tributed system. TT scheduling scheme is assumed on the
processor and FlexRay protocol is considered on the bus.
The whole approach is divided into three stages: the con-
troller design, the platform constraints, and the platform
configuration synthesis. In the first stage, each controller is
designed with the sampling period selected from a precon-
figured set (given by the FlexRay protocol), such that the
control performance is optimized. In the second and third
stages, the platform parameters are synthesized according
to the selected sampling period and one sample sensing-to-
actuation delay. This paper addresses the specific semantics
of the FlexRay protocol and consider different performance
metrics such as settling time and a modified quadratic cost
function. The cost function is as follows:

 ∑
0

N
 ∫

kh

(k+1)h

 [λu [k] 2 + (1 − λ)e (t) 2]dt. (42)

It is to be noted here that the cost for each discrete step is
integrated over the sampling period h which is different
from the quadratic cost usually considered in the literature.
This is required to compare controllers designed for differ-
ent sampling periods based on this metric. Therefore, the
quadratic cost will be calculated until a certain given time
 T R from which the number of samples N for a given sam-
pling period h can be calculated as T R / h .

Later, Goswami et al. [110] have assumed variation in
delay during the controller design instead of one sample
delay. Optimal controllers are designed for selected sam-
pling periods and different sensing-to-actuation delays. The
control performance curve depending on the period and
delay is then discretized and approximated with piecewise
linear functions. This function is considered together with
the platform constraints into an ILP problem. The whole
scheme then iterates through different combinations of the
sampling periods and decides on the configuration that opti-
mizes the overall system performance.

Recently, Roy et al. [111] have also considered FlexRay-
based distributed systems. In aforementioned approaches,
iteration over different sets of sampling periods serves as the
outer loop of the cosynthesis problem. In contrast to them,
Roy et al. [111] first design prospective optimal controllers
at all possible sampling periods for each application. Then,
the tables of prospective controllers and their corresponding
performance are considered in the cooptimization problem.
Here, a nested two-layer hybrid optimization scheme is pro-
posed to generate a Pareto front for the objectives of overall
control performance and communication resource utiliza-
tion. This is also one of the first works to consider design
objectives from both control and platform sides.

B. General Cosynthesis Framework

Fig. 6 shows the general design flow for control-
platform cosynthesis. The cosynthesis methods usually
start with modeling of the control systems and the under-
lying embedded platform. The model on the control side
is typically the system dynamics of the control plants and
limitations of the physical devices such as the actuator limit.
Most of the related research works focus on LTI systems
[103], [105], [109]–[111]. System modeling further includes
the controller type (e.g., state feedback). On the platform
side, the model includes the relevant aspects of platform
architecture, for example, whether it is a single processor
system [100]–[104], [112] or a distributed system [105],
[108]–[111], [113], [114]. The platform model also incor-
porates the scheduling schemes on the processors (e.g., TT
scheduling [102], [105], [109]–[111] or priority-based
scheduling [100], [103]–[105]). Specifics of the bus proto-
cols must also be considered in the platform model (e.g.,
FlexRay [107], [109]–[111]; CAN [107]). Furthermore, the

Fig. 6. Design flow for control-platform cosynthesis.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 189

task partitions of the control software and the execu-
tion times of the tasks are also modeled. In terms of
exe cution time, most approaches assume that a model is
available, be it WCET [109]–[111] or a distribution of the
execution time [105], [108]. Usually the task mapping is also
considered as provided by the specification.

Besides the models, design requirements can also be
specified. They can come from both control and platform
sides. Requirements from the control side are typically
related to the control performance (e.g., settling time
[109], [111]; cost function [105], [108], [110]) and stability.
They usually reflect the QoC of the designed controller in
terms of transient response, steady-state error, and energy
consumption. On the platform side, the requirements may
include, for example, upper bounds on processor utilization
and bus load. These requirements are specified due to rea-
sons such as limited resource bandwidth, reliability, extensi-
bility of the system or certification requirements.

Subsequently, constraints can be formulated from the
models and the requirements. On the control side, the con-
straints may include some minimal performance require-
ment and limits of the physical devices such as the input
saturation. On the platform side, the constraints come from
the models of the scheduling scheme, the limitations of the
resources and the design requirements. The constraints are
usually expressed mathematically.

Typically, the goal of a cosynthesis technique is to find a
valid parameter set that satisfies all the constraints. In many
a case, multiple such parameter sets can be found. Moreover,
based on design requirements, optimization objectives may
also be considered in the cosynthesis problem. In that case,
one or more parameter sets that optimize the objectives,
while being feasible, must be synthesized. Such objectives
include, e.g., control performance [105], [108], [110], [111],
and resource utilization [111]. Often multiple conflicting
objectives are also considered. In such a scenario, tradeoff
between the objectives must be explored, for example, by
constructing a Pareto front [111].

Once such a synthesis problem is formulated, it needs
to be solved efficiently. Assuming that the constraints are
precise characterization of the semantics of the closed-loop
system and the embedded platform, the design problem
boils down to finding a valid parameter set that satisfies all
the constraints. Common approaches used to solve the opti-
mization problems include ILP [110], SMT, metaheuristics
such as genetic algorithms [105] and PSOs. However, in
the case of control-platform cosynthesis, hybrid techniques
are often employed to solve the whole problem due to the
complexity. It is often the case that in order to tackle com-
plexity, the whole design problem is partitioned into several
subproblems while retaining the feasible regions of design
space as much as possible. Now, different subproblems
may be solved using different approaches. For example,
control performance often depends nonlinearly on design
parameters such as control gains and closed-loop delay, and

thus optimal control design problem may be solved using
metaheuristic algorithms. On the other hand, TT schedule
synthesis problem fits very well into the linear programming
model while priority-based scheduling may require a heu-
ristic search. Thus, different problem settings may call for
different hybrid approaches and this imposes a major chal-
lenge towards considering more complex CPS architectures
in the future.

V I. F U T U R E OU TLOOK A ND
CH A LLENGES

Although there have been efforts in developing cosynthe-
sis techniques for CPS, there are still a number of open
problems. In this section, we will discuss these problems
and classify them as follows. 1) Architectural aspects, such
as memory hierarchy, heterogeneous networks and mul-
ticore processors, must be considered in the cosynthesis.
2) Complex closed-loop dynamics, such as input saturation,
time-variance and nonlinearity, can be modeled. 3) Besides
being safe, CPS must also be secure, reliable, and energy
efficient. We also identify several challenges toward these
extensions, e.g., problem complexity, certification, and lack
of tool support.

A. New Architectural Considerations

Most of the available cosynthesis techniques are specific
to certain architectural consideration and cannot be trivially
applied when considering additional platform details. New
techniques are required to deal with them. Here, we will
discuss three such architectural aspects which are becoming
relevant in the context of embedded control systems.

1) Memory Hierarchy: Memory architecture plays an
important part in determining the cost and size of a pro-
cessor chip. Larger the storage capacity of faster memory is,
higher is the cost and space required. Typically, a proces-
sor has access to several levels of memory, such that, faster
the memory access speed is, smaller is the capacity. For the
sake of simplicity, let us assume two levels of memory, i.e.,
a faster on-chip cache memory and a slower off-chip flash
memory. The access speed of cache is many times faster
than the flash. When a processor executes an instruction
first it checks the cache and if present executes directly from
cache. This is called cache hit and is very fast. In case the
instruction is not in the cache, then the processor brings it
from the flash to the cache and executes it. This is a cache
miss. However, the next time when the instruction is called
again, if it is still in the cache, it will result in a cache hit.

Consider a scenario when several control codes are run-
ning on a processor in round-robin fashion. If the cache is
larger then lower is the probability of cache misses. It is
desirable to have more number of cache hits than misses
for control applications. This is because longer access time
of cache misses will result in higher WCET, and therefore,

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

190 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

higher closed-loop delay. This in turn results in perfor-
mance degradation and in worst case system instability.
Thus, to improve QoC of closed-loop systems it is desirable
to have larger cache, however, it will increase the cost of
the system. For cost-sensitive systems, the question is can
we achieve better QoC by exploiting certain characteris-
tics of memory hierarchy and management. Along similar
lines, the embedded systems community have exploited the
cache reuse by code rearrangement during compile-time
[115]–[117] or runtime [118]. However, this is not applica-
ble for control applications because it is difficult to analyze
the timing properties for such compile-time rearrangement
in the design stage.

Until recently, to the best of our knowledge, there has
not been any work on memory-aware design of embedded
control systems. In [43], Chang et al. have proposed a novel
approach to maximize cache reuse without losing timing
determinism. In this approach, the schedule is still round
robin, however, in each round a controller is executed mul-
tiple times in succession instead of once. In each round, the
execution time of the first instance will be the same as in
the case of standard round robin. However, the second and
subsequent instances take less time due to cache reuse. This
is because some part of the code can be expected to be in
the cache if the code size is comparable to the cache size.
In this scheme, the controller executes with nonuniform
sampling with average sampling period less than the stand-
ard round-robin case. Consequently, we can expect that it
is possible to design a controller with better performance
for the reduced average sampling period. Chang et al. [43]
have introduced a technique to design a controller for such a
case. However, it does not consider determining a schedule
which optimizes the overall QoC of the system. Thus, we
believe it is possible to extend this idea and to do a cosyn-
thesis of controller and platform schedules offering tradeoff
between QoC and cache size.

Furthermore, modern processor chips are equipped
with scratchpad memory in addition to cache. Scratchpad
memories are as fast as cache but are programmable. A soft-
ware code can determine which memory block to fetch and
store in the scratchpad. We imagine that scratchpad-cen-
tric design of embedded controllers will be an important
research topic in the future. The idea is to develop efficient
scratchpad allocation algorithm to reduce code execution
time and correspondingly design the controller to improve
QoC. Here, program analysis techniques can help iden-
tify frequently invoked part of the code. These parts can
be stored in the scratchpad thus optimizing the program
execution time.

2) Heterogeneous Networks: The cosynthesis techniques
for distributed CPS discussed in Section V-A2 predomi-
nantly consider a single bus. However, modern CPS such as
automotive systems typically consist of several bus clusters
connected via gateways. Each bus cluster serves a certain

functional domain, e.g., FlexRay for chassis, high speed
CAN or FlexRay for powertrain, low speed CAN and LIN
for body, MOST and Ethernet for infotainment. Today, with
increasing demand for advanced driver assistance systems
(ADAS) and autonomous driving, the need for interdo-
main interaction and communication has also increased.
Control applications across heterogeneous network have
also emerged. Designing such applications is not a straight-
forward extension of existing techniques. The problem
is that different communication protocols have different
timing models, and therefore, require different analysis
framework. For example, CAN employs FPNP scheduling
while FlexRay uses TDMA for static segment and flexible
TDMA for the dynamic segment. Designing an application
across CAN and FlexRay will require finding TDMA sched-
ules for FlexRay messages and priorities for CAN messages.
Moreover, interdomain communication also involves trans-
mission of messages across communication gateways. This
requires additional timing analysis and buffer characteri-
zation for gateways. Therefore, the design of applications
across different network domains leads to increase in design
dimensions and a more complicated timing analysis.

In this context, Glaß et al. [119] have proposed a hybrid
analysis framework where different timing analysis tech-
niques can be composed together to determine, for example,
end-to-end delay of a message. However, control applica-
tions over such heterogeneous networks are not yet con-
sidered. Control properties depend nonlinearly on timing
properties, thereby adding to the complexity of the problem.
Therefore, cosynthesis of controllers, heterogeneous net-
work schedules and gateway parameters will be challenging
to explore.

3) Multicore Processors: Multicore processors are becom-
ing increasingly more popular in embedded systems due to
their higher instruction throughput as compared to single-
core processors. High throughput is achieved through simul-
taneous processing of multiple tasks in parallel on different
processing cores. However, the cores may share different
hardware components, e.g., memory, I/O, and on-chip bus.
Simultaneous access to these shared resources may result in
contention. Access to shared resources if not properly man-
aged or synchronized may result in nondeterministic timing
behavior which is difficult to analyze.

There have been few works addressing this problem from
both hardware [120], [121] and software [122] perspective.
Recently, Tabish et al. have proposed a scratchpad- centric
solution [123]. They have assumed that each core has its own
scratchpad with size greater than any two tasks running on
the core. The access to main memory is with TDMA-based
schedule via a direct memory access (DMA). The idea is
that the codes for the next task can be prefetched in one half
of the scratchpad while the current task is running from the
other half. In this approach, there is no resource conten-
tion. Additionally, the WCETs of the tasks are also reduced

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 191

as the instructions are already in the scratchpad before
execution. Consequently, control codes can be mapped
on such an architecture to achieve higher QoC. However,
large-sized and dedicated scratchpad for each core substan-
tially increases the cost of the system which may not be
acceptable in cost-sensitive domains. Therefore, we believe
there is a possibility of using smaller dedicated scratchpad
or shared scratchpad. And program analysis techniques
may be used for appropriate memory partitioning and code
mapping. Program analysis integrated with cosynthesis of
controllers, processor, and memory access schedules may
result in an improved overall QoC and better load balancing
across the cores.

B. Complex System Dynamics

The cosynthesis approaches developed so far mostly
consider LTI systems. However, systems often demonstrate
complex dynamics with time variance, input saturation,
and nonlinearity. Although there are works that study these
aspects from control theory perspective, almost none actu-
ally evaluates the possibility of a true cosynthesis for such
system dynamics.

1) Input Saturation: Primitive control design approaches
do not consider any constraint on control input. However,
this is not realistic as actuators often have limited range and
energy is often an important factor for most control loops.
Toward these considerations, model predictive control
(MPC) is very popular. Typically, an MPC controller solves
a constrained optimization problem online. Solution to the
optimization problem gives a set of N control inputs corre-
sponding to N time steps up to a finite horizon. The problem
often considers actuator limits as constraints and energy
or control quality or a combination of both as an objective.
However, MPC is more applicable in process control as it
requires considerable amount of time to solve the optimi-
zation problem. This is not acceptable for high-frequency
machine control software running on constrained embed-
ded platforms.

Recent works such as [124] have proposed approxi-
mate solution to the online optimization problem while
preserving the guarantees on stability. This facilitates the
application of MPC to high frequency control systems.
Furthermore, Yao et al. [125] have proposed a resource-
efficient implementation by exploiting the characteristics of
MPC. Here, the actual system state is compared with the
predicted state. If the error is more than a threshold then
the optimization problem is solved otherwise the precal-
culated control action is applied. However, to utilize the
released processor time, the underlying platform needs to
be runtime adaptable. Thus, a complex scheduling algo-
rithm must be cosynthesized along with MPC to ensure pro-
cessor resource to the application based on requirement. In
addition, we believe MPC will find more and more applica-
tions in resource-constrained embedded systems. Tradeoff

between optimality and computation time can be explored
further with self-triggered nonuniform sampling.

2) Time Variance: In control theory, adaptive control
techniques were known since many decades. An adaptive
controller can manipulate the control gains online based on
the changing plant dynamics. Therefore, it can stabilize the
system in the event of unforeseen environmental variations.
Such a control technique is inherently applicable to time-
varying systems. However, these techniques have not been
considered for safety-critical systems until recently as it is
difficult to quantify the transient performance of an adap-
tive control loop.

A popular adaptive control technique is model refer-
ence adaptive control (MRAC). In this technique, the error
between the output of the reference model and the actual
output is fed back to adapt the control gains. In order to
improve the transient performance, closed-loop reference
models are considered of late. Here, the error is also fed
back to change the reference model.

In this regard, there have been some works [126]–[129]
which quantify the transient performance using ℒ 2 norm
of error signals. However, only very few [130]–[132] have
actually tried to consider cosynthesis of controller and plat-
form parameters. Voit and Annaswamy [131] have derived
an adaptive controller considering network induced delay.
Furthermore, Voit et al. [132] have considered codesign of
adaptive controllers and shared hybrid communication bus
minimizing resource utilization while guaranteeing stability.

As a future extension, one can consider a setting where
multiple applications mapped on a shared platform. Here,
worst case bounds on time variance can be analyzed.
Correspondingly, it is possible to cosynthesize platform
schedules along with adaptive controllers providing guaran-
tees on stability and performance.

3) Nonlinearity: Nonlinear systems can be widely found
in several domains of embedded systems, including avion-
ics and automotive. However, cosynthesis of controllers
and platform parameters for such systems is still an open
problem. There has been significant progress in the stabili-
zation and control of these systems based on abstraction of
platform characteristics. Many related works in this direc-
tion are based on concepts such as input-to-state stability
[133], [134], small gain theorem [135], passivity [136], and
feedback linearization [137].

Fuzzy-model-based analysis and control of nonlinear
systems have also received significant attention. Among
different fuzzy models, nonlinear systems fit well into
Takagi–Sugeno (T–S) models [138]. In such a model, at
each sampling time the system is represented as an averaged
linear model. Based on T–S models, there have been works
that consider network-specific properties such as packet
dropout, signal quantization, and time delays. Toward con-
sidering packet drops, data loss in T–S fuzzy-based systems is
modeled as a Bernouli process. Correspondingly, 1) stability

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

192 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

is studied based on a common quadratic Lyapunov function
and a fuzzy Lyapunov function [139]; and 2) design of ℋ ∞
state feedback control [140], static/dynamic output feed-
back control [141], [142], observer-based output feedback
reliable control [143], and model predictive control [144]
are proposed. Toward time-delayed nonlinear systems, most
works assume parameters such as maximum allowable delay
bound [145], maximum allowable transfer interval [146],
and delay distribution [147], [148]. Corresponding to these
parameters, the stability and control of such systems can be
evaluated. Furthermore, there have been some works which
consider the impact of network induced signal quantization
on T–S fuzzy-based nonlinear systems. They use abstracted
platform models based on time-invariant logarithmic quan-
tizer [149] or time-varying quantizer [150] to study stabiliza-
tion and control problems. However, we may point out here
again that all these works start with platform abstractions.
Therefore, in the context of CPSs, we can leverage on these
advanced theories of fuzzy-based control. We can also con-
sider cosynthesis of platform parameters and controllers by
systematically deriving an interface between the platform
parameters and the abstraction models.

Another important approach to tackle complex closed-
loop system dynamics is formal methods [151]. The embed-
ded control systems naturally fall in the category of hybrid
systems where physical plant is in continuous time while
the corresponding control action is generated and applied
in discrete time [152]. There are several approaches to study
such systems [10]. One of the earliest works toward control
of hybrid nonlinear systems is by Branicky et al. [153]. This
work presents a systematic notion of hybrid systems unify-
ing differential equations and automata. Subsequently, it
proposes sufficient conditions for optimal control by deriv-
ing quasi-variational inequalities. A powerful approach to
analyze such systems is the theory of hybrid automata (e.g.,
timed automata). It can be applied to study system prop-
erties according to complex specifications of reachability
and safety, given by some LTL formulas [154] or automata
on infinite strings. This approach can deal with complex
nonlinear systems [155]–[159] and correspondingly can
formally synthesize controllers [160]–[162] which are cor-
rect by construction. To apply this theory, the first step is
finite abstraction [163]–[165] of the dynamical systems.
This abstraction can already consider implementation-
level imperfections such as delay, jitter, packet loss, quan-
tization error, and limited resource. The abstracted model
has a well-defined formal relation with the original system.
Subsequently, given a hybrid (or timed) automata model,
controller can be synthesized satisfying specifications
using algorithmic theory such as two-player games [166],
safety games, reachability games, and minimal and maxi-
mal fixed point theorem [167]. Guglielmo et al. [168] have
solved the controller synthesis problem by formulating a
bounded model checking (BMC) problem and subsequently
solving the problem using SMT solver. The synthesized

controller is then refined to be applied to the original sys-
tem using information such as quantized state, according to
the relations derived in the abstraction stage, e.g., bisimula-
tion relations [169], [170], alternating simulation relations
[171], and feedback refinement relations [171], [172]. There
have been several works addressing the design problem of
embedded controllers from the perspective of hybrid sys-
tems. However, none of them considers the synthesis of plat-
form parameters. Therefore, the cosynthesis of controller
and platform parameters considering hybrid system model
is an important problem yet to be addressed and can be a
prominent research direction for the future. Nevertheless,
an important challenge here is the complexity of the prob-
lem and the scalability of the approach considering multiple
control applications mapped on a shared platform.

C. Emerging Topics

Security, reliability, and energy efficiency have become
important requirements in the design of CPS. It is impor-
tant to understand how these requirements influence the
system safety. Here, we will review the prospect of consid-
ering these requirements while design safe CPS.

1) Secure CPS: With modern connected systems, secu-
rity has become an important concern while designing
embedded systems. For example, in [173], Checkoway
et al. have stated that the security of a modern vehicle can
be compromised via a number of interfaces. These include
Bluetooth, cellular radio, RFID car keys, and onboard diag-
nostic. Furthermore, it is reported that a malicious binary
can be injected into car electronics via onboard diagnostics
to which a WiFi-enabled PassThru device is connected.
The malicious binary can then send preprogrammed CAN
messages over the vehicular network. It is further claimed
in [174] that if a malicious item can enter the internal net-
work of a car, then it can gain control over critical compo-
nents in a car such as engine or brake.

Thus, it is necessary to add security infrastructure to
embedded architecture, e.g., encrypted network messages.
However, it is difficult to incorporate cryptographic algo-
rithms on the ECUs and message authentication codes
(MAC) on the bus because they consume substantial com-
putation power and communication bandwidth, respec-
tively. These security overheads impact the timing of the
applications which in turn may affect system stability and
performance. Therefore, it is important to have a cosynthe-
sis approach to the problem where controllers are designed
along with cryptographic algorithms with a thorough timing
analysis of the complete system.

In this regard, ℤheng et al. have proposed a cross-layer
design framework [175]. This framework combines control-
ler design and implementation along with security integra-
tion. Thus, it offers a tradeoff analysis between degree of
security, control performance, and platform schedulability.
The degree of security is measured as the number of messages

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 193

that are encrypted. The larger the degree of security is, the
lower is the platform schedulability due to resource con-
straints. Similarly, the interplay between control quality and
platform resource usage is often via the choice of sampling
periods. The more frequently the control task is invoked,
the higher is the performance but the lower is the schedula-
bility. These interdependencies are mathematically formu-
lated into a cosynthesis problem. Subsequently, a simulated
annealing algorithm is proposed to solve the problem. In
the same vein, we believe that there exists scope to further
exploit (m, k) -firmness and nonuniform sampling of control
algorithms to achieve a better degree of security while satis-
fying performance requirements.

2) Energy-Efficient CPS: In electric vehicles (EVs), actua-
tors are powered by in-vehicle battery system and current
drawn from the batteries determines the actuation values.
However, the actuation values are calculated by the con-
trol laws running on the processors. The battery capacity is
constrained by weight and volume limitations. Additionally,
battery capacity fades due to ageing calculated in terms of
number of charging/discharging cycles. The battery ageing
also depends on the discharging current profiles according
to Peukert’s law [176]. In practice, for the sake of reliabil-
ity in safety-critical systems, a battery is replaced on reach-
ing 80% capacity. Due to high battery cost, it is required to
ensure battery usage in a way such that battery lifetime is
enhanced. Therefore, modern battery systems typically con-
sist of a battery management system (BMS) for this purpose.

On the other hand, controllers are designed oblivious
to battery characteristics except it may consider a con-
straint on actuator saturation. Therefore, separate design
of controllers and BMS may result in a performance gap or
inappropriate battery usage where neither is desirable. An
obvious alternative will be to design controllers in conjunc-
tion with BMS such that a tradeoff analysis between control
performance and battery lifetime is possible. Toward this,
Chang et al. [177] have proposed to design a direct current
(dc) motor speed controller taking battery characteristics
into consideration. In the same vein, Vatanparvar et al. have
proposed design of heating, ventilation, and air condition-
ing (HVAC) control together with BMS [178]. This design
improves battery lifetime and driving range of EVs while
keeps vehicle climate within acceptable range. On average,
their approach has successfully improved the battery life-
time by 14% and reduced the power consumption by 39%
compared to state-of-the-art methodologies.

In this direction, we envision a more holistic cosynthe-
sis approach where all the control loops powered by the
battery system will be considered together with the BMS.
Moreover, in the future, hybrid electrical energy storage
(HEES) systems [179] can be considered where multiple
storage elements are packed together for better energy effi-
ciency. For such a setting, dimensioning of HEES system

may also be integrated in the control/battery system code-
sign framework.

3) Reliable and Fault-Tolerant CPS: There has been
emphasis on reliability of embedded systems or design of
fault-tolerant embedded systems. A natural choice is to add
redundancy [180]. However, dual redundancy can only help
in error detection. This is because any mismatch between
two systems only indicates fault but cannot say by certainty
which one is faulty. However, triple redundancy may allow
uninterrupted functionality as it can be safely assumed that
at least two behave correctly. However, it results in more
cost and space. Toward fault-tolerant systems, Kim et al.
have proposed a middleware-based solution [181]. The
middleware remaps and reschedules the tasks of the faulty
 processor to achieve full system functionality. It further con-
siders timing analysis of hard real-time systems to ensure all
deadline constraints. However, it is assumed that the system
can withstand fault for certain minimum time. This may be
critical for control loops running at high frequency as the
system can become unstable in no time. On the other hand,
control theorists regard fault as some outages in sensors
or actuators. In case a fault is detected, it can be mitigated
using compensation in the reference input [182].

In a safety-critical control application, it is not desirable
that a fault in the underlying embedded platform propagates
to the control loop and jeopardizes the safety of the system.
Toward this, Goswami et al. [183] have considered designing
controller such that the control loop is stable to intermit-
tent hardware faults. They have characterized an intermit-
tent hardware fault using intermittent bit flip model. They
have calculated from Monte Carlo simulations the probabil-
ity that a faulty sample is followed by at least N nonfaulty
samples. The value of N should be such that the calculated
probability is close to 1. In case of a faulty sample, let us
assume that the control input u[k] is held. Here, the over-
all system can be represented as a switched system where
the system switches between faulty and nonfaulty instances.
For such systems, Goswami et al. [183] have suggested to
design two controllers. The first one ensures performance
under nonfaulty execution while the second one ensures
fault recovery within the next N nonfaulty executions after a
faulty sample. In this direction, further research efforts are
required to consider different fault scenarios while design-
ing the controllers.

Along similar lines, it is also important to consider the
impact of processor ageing on control loops. As processor
ages, delay in the critical path increases which may call for a
decrease in operating frequency of a processor. As a result,
the execution time of control tasks will increase which
may jeopardize safety. Toward this, Chang et al. [177] have
 proposed to mitigate the performance degradation by rede-
signing the controller. The redesign exploits energy com-
pensation to meet the performance demand. In the current
age, the negative impacts of aggressive technology scaling,

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

194 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

e.g., manufacturing variabilities and ageing, are becoming
more apparent. Therefore, embedded control system design
taking into consideration processor errors or ageing will
gain grounds in near future.

D. Challenges

It is established that control-platform cosynthesis is nec-
essary for safe and efficient implementation of embedded
controllers. There exist some fundamental challenges that
impede future advancement in this direction [184], [185].

1) Scalability and Complexity: It may be noted that the
future directions discussed in this section somehow increase
the dimensions of the cosynthesis problem. Examples
include adding program analysis in case of memory-aware
design, gateway characterization in heterogeneous net-
works, and DMA scheduling in multicore architectures.
The problem of complexity and scalability is a big challenge
in moving forward. In general, the complexity of a problem
grows rapidly with increase in design dimensions, i.e., the
number of parameters that needs to be synthesized. In addi-
tion, the complexity might also depend on the number and
nature of the constraints.

In control-platform cosynthesis, the controller and
the platform parameters are synthesized together. This
increases considerably the complexity as compared to sepa-
ration of concerns. Therefore, the related works explained
in Section V can only be scaled to a certain size. The sec-
ond problem is that usually the controller design problem
cannot be formulated in a closed-form mathematical repre-
sentation. Moreover, the tools and methods for controller
design are different from those used in platform synthesis.
The complexity problem becomes even challenging, if cer-
tain objectives need to be optimized. In this case, the solver
needs to spend a lot of computation effort on proving the
optimality of the solution.

Toward addressing the problem of complexity, effi-
cient design space pruning is required. It may be possible
to divide the whole design space into the controller design
subspace and the platform design subspace, which are
interconnected [111]. This requires a clearly defined inter-
face between the two subspaces so that feasibility region is
well preserved. The whole synthesis problem can then be
solved using an efficient DSE technique. The technique may
consist of heuristic search to choose a value for sampling
period, evolutionary algorithms for designing the control-
ler for a given sampling period, and linear programming
for computing the schedules. Moreover, the characteristics
of specific problem setting can also be exploited to reduce
complexity. For example, sampling period of controllers can
be restricted to some discrete values, which is enforced by
some platform constraints [110], [111].

Furthermore, making a tradeoff between optimality
and computational effort can also help the scalability of the
approach. For example, Samii et al. [105] utilize a genetic

algorithm to iterate through sets of sampling periods.
However, the algorithm stops as soon as the cost satisfies a
certain metric without finding the global optimal solution.

2) Certification and Verification: Industrial CPS, espe-
cially safety-critical control systems in domains such as
avionics and automotive, need to meet certain national
and international safety standards [2], [3]. They have
to be certified accordingly by corresponding certifica-
tion authorities. Traditionally, the certification process
involves verification or extensive testing of system proper-
ties. This not only consumes a lot of time and effort but is
also expensive.

Toward addressing this issue, model-based design
approaches are popular which are based on accurate math-
ematical model of the system. Specifications expressed as
mathematical expressions can be formally proved. Since
cosynthesis techniques are model based, the synthesized
control and platform parameters are correct by design.
However, the codes generated from the models that will run
on the processors may not preserve the model-level guaran-
tees. This is due to some optimization in the compiler. Thus,
further verification or testing of generated codes or compiler
to prove satisfaction of safety requirements is necessary.

Over the years there have been considerable research
efforts in systematic testing and verification of embedded
codes. However, it is far from being effective for industrial
systems. On one hand, verification requires formal mathe-
matical proofs for correct system behavior. It employs tools
such as model checking [186], [187] and theorem prov-
ing [188]. However, these tools are not scalable to indus-
trial-sized embedded code. On the other hand, testing which
usually examines system behavior for a finite set of inputs
and parameters, e.g., [189], [190], does not guarantee safety
in all possible scenarios. Moreover, it is difficult to achieve
substantial coverage owing to the exponential increase in
scale and complexity of modern embedded systems. Thus,
verification or testing of complex embedded control soft-
ware is an important aspect to be considered in the coming
years to comply with safety certification standards.

3) Control Design and Optimization Hurdles: In control-
ler design, the emphasis is not only on stability of closed-
loop systems but also on optimal control. Therefore, for
given resource constraints the requirement is to maximize
QoC. However, for certain performance metrics, such as
settling time and overshoot, it is difficult to come up with
closed-form expressions. There does not exist any closed-
form standard framework for optimal control. Therefore,
often exhaustive search of design parameters, such as
system poles, is employed to design an optimal control-
ler [111]. However, for higher system orders, this approach
is not scalable. Therefore, more scalable heuristics or opti-
mization techniques are required to be developed to syn-
thesize optimal control parameters. On the other hand,
although LQR/LQG techniques gives optimal control for

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 195

a given cost function, determining the weight matrices
which correctly represent the desired performance meas-
ure is challenging.

Moreover, considering that control performance is
nonlinearly dependent on timing properties, it is difficult
to integrate the controller design and the platform design
problems in a closed-form mathematical formulation.
Therefore, cosynthesis approaches often iterate through all
feasible combinations of sampling periods to determine the
optimal design configuration [105], [110]. However, based
on specific platform characteristic, efficient design space
pruning may also be possible. For example, Roy et al. [111]
predesign for each application optimal controller at each
possible sampling period. Consequently, in the optimization
stage, it considers only those sampling periods for which the
predesigned controllers satisfy the performance require-
ments. This is only possible as the choice of closed-loop
delay is assumed to be constrained for a selected sampling
period. Nevertheless, different problems may offer different
opportunities for design space pruning and it is challenging
to identify them.

Furthermore, the related works mostly consider that the
type of controller is specified and only one type is used for
all the applications. However, it is interesting to consider
a system where different applications may need different
control strategies. For example, time-variant plant dynam-
ics may require adaptive control while input saturation may
necessitate the use of MPC. Thus, for a heterogeneous set of
applications, it is challenging to design the complete system
using a single framework. As different types of controllers
are designed differently, it is difficult to combine them in
a single design problem. On the other hand, separation of
concerns may lead to an inefficient design.

4) Toolchain Support: In industry, the design and imple-
mentation of CPS follow strict procedures from require-
ments to test and integration. Therefore, these steps are

 supported by standard and reliable commercial-off-the-
shelf (COTS) tools, so that products can be developed in
a systematic way. Traditionally, controllers are designed
in MATLAB/Simulink and are provided as a black box
to the embedded systems engineer with defined inter-
faces. The latter then uses platform design tools, e.g.,
Metropolis [191] and Metro II [192]. These tools support
the synthesis of platform parameters, such as cache sizes,
scheduling algorithms, and schedules, followed by the gen-
eration of final software implementation. However, these
tools are restricted to the platform synthesis and do not
consider the control aspect. Therefore, the algorithms
described in Section V need to have well-defined interfaces
with the COTS tools for controller and software codesign
and implementation. We believe that a prerequisite for the
applicability of cosynthesis methods in industrial systems
is a systematic and possibly standardized design flow and
toolchain support.

V II. CONCLU DING R EM A R K S

In this paper, the evolution of design approaches and the
shift of design paradigm for embedded control systems are
reviewed. It is established that to ensure safety of these
systems, it is required to preserve the semantics of control-
ler design in the platform implementation and vice versa.
Corresponding to this requirement, the design paradigm
is gradually moving from isolated design of controllers and
platform to a more integrated approach. A group of cosyn-
thesis approaches have emerged which synthesizes param-
eters on both sides by employing efficient and novel design
space exploration and optimization techniques. These
approaches can, therefore, effectively bridge the semantic
gap between controller and platform designs. We further
believe that several future extensions to the cosynthesis par-
adigm are possible and it will draw increasing attention in
the context of CPS design. 

REFERENCES

 [1] A. Banerjee, K. K. Venkatasubramanian,
T. Mukherjee, and S. K. S. Gupta, “Ensuring
safety, security, and sustainability of mission-
critical cyber-physical systems,” Proc. IEEE,
vol. 100, no. 1, pp. 283–299, Jan. 2011.

 [2] Medical Electrical Equipment—Part 1–11:
General Requirements for Basic Safety and
Essential Performance, Standard IEC 60601-1-11,
2010.

 [3] Road Vehicles—Functional Safety—Part I,
Standard ISO 26262-1:2011, 2011.

 [4] W. Chang, L. ℤhang, D. Roy, and
S. Chakraborty, “Control/architecture
codesign for cyber-physical systems,” in
Handbook of Hardware/Software Codesign.
Amsterdam, The Netherlands: Springer-
Verlag, 2017.

 [5] B. C. Kuo, Digital Control Systems, New York,
NY, USA: Holt McDougal, Series in
Electrical and Computer Engineering, 1980.

 [6] W. C. Schultz and V. C. Rideout, “Control
system performance measures: Past, present,
and future,” IRE Trans. Autom. Control,
vol. AC-6, no. 1, pp. 22–35, Feb. 1961.

 [7] D. G. Roberson and D. J. Stilwell, “L2 gain
performance analysis of linear switched
systems: Fast switching behavior,” in Proc.
Amer. Control Conf., Jul. 2007.

 [8] K. J. Aström and B. Wittenmark, “Computer-
controlled systems: Theory and design,” in
Information and System Sciences, 3rd ed.
Englewood Cliffs, NJ, USA: Prentice-Hall,
1997.

 [9] J. Qiu, H. Gao, and S. X. Ding, “Recent
advances on fuzzy-model-based nonlinear
networked control systems: A survey,”
IEEE Trans. Ind. Electron., vol. 63, no. 2,
pp. 1207–1217, Feb. 2016.

 [10] P. J. Antsaklis, X. D. Koutsoukos, and
J. ℤaytoon, “On hybrid control of complex
systems: A survey,” Eur. J. Autom., vol. 32,
nos. 9–10, pp. 1023–1045, 1998.

 [11] B. De Schutter, W. P. M. H. Heemels,
J. Lunze, and C. Prieur, “Survey of modeling,
analysis, and control of hybrid systems,” in
Handbook of Hybrid Systems Control—Theory,
Tools, Applications. Cambridge, U.K.:
Cambridge Univ. Press, 2009.

 [12] R. Alur, “Formal verification of hybrid
systems,” in Proc. Int. Conf. Embedded Softw.,
Oct. 2011, pp. 273–278.

 [13] Q. Zhu, H. Liang, L. Zhang, D. Roy, W. Li,
and S. Chakraborty, “Extensibility-driven
automotive in-vehicle architecture design,”
in Proc. Design Autom. Conf., 2017.

 [14] C. L. Liu and J. W. Layland, “Scheduling
algorithms for multiprogramming in a hard-
real-time environment,” J. Assoc. Comput.
Machinery, vol. 20, no. 1, pp. 46–61, 1973.

 [15] J. Xu and D. L. Parnas, “Scheduling
processes with release times, deadlines,
precedence and exclusion relations,” IEEE
Trans. Softw. Eng., vol. 16, no. 3, pp. 360–369,
Mar. 1990.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

196 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

 [16] R. J. Bril, “Real-time scheduling for media
processing using conditionally guaranteed
budgets,” Ph.D. dissertation, Department of
Mathematics and Computer Science,
Eindhoven University of Technology,
Eindhoven, Netherlands, 2004.

 [17] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh,
“Worst-case response time analysis of
real-time tasks under fixed-priority
scheduling with deferred preemption,”
Real-Time Syst., vol. 42, nos. 1–3,
pp. 63–119, 2009.

 [18] R. Davis, A. Burns, R. J. Bril, and
J. J. Lukkien, “Controller area network
(CAN) schedulability analysis: Refuted,
revisited and revised,” Real-Time Syst.,
vol. 35, no. 3, pp. 239–272, 2007.

 [19] T. Pop, P. Pop, P. Eles, ℤ. Peng, and A. Andrei,
“Timing analysis of the FlexRay
communication protocol,” Real-Time Syst.,
vol. 39, nos. 1–3, pp. 205–235, 2008.

 [20] H. Zeng, A. Ghosal, and M. Di Natale,
“Timing analysis and optimization of
FlexRay dynamic segment,” in Proc. Int.
Conf. Comput. Inf. Technol., Jun. 2010,
pp. 1932–1939.

 [21] J. Le Boudec and P. Thiran, Network Calculus:
A Theory of Deterministic Queuing Systems for
the Internet. Berlin, Germany: Springer-
Verlag, ser. Lecture Notes in Computer
Science, 2001.

 [22] L. Thiele, S. Chakraborty, and M. Naedele,
“Real-time calculus for scheduling hard real-
time systems,” in Proc. Int. Symp. Circuits
Syst., 2000, pp. 101–104.

 [23] S. Chakraborty, S. Künzli, and L. Thiele, “A
general framework for analysing system
properties in platform-based embedded
system designs,” in Proc. Design Autom. Test
Eur. Conf. Exhib., 2003, p. 10190.

 [24] R. Henia, A. Hamann, M. Jersak, R. Racu,
K. Richter, and R. Ernst, “System level
performance analysis—The SymTA/S
approach,” Inst. Electr. Eng. Proc.—Comput.
Digit. Techn., vol. 152, no. 2, pp. 148–166, 2005.

 [25] U. D. Bordoloi, B. Tanasa, P. Eles, and
ℤ. Peng, “On the timing analysis of the
dynamic segment of FlexRay,” in Proc. Int.
Symp. Ind. Embedded Syst., Jun. 2012,
pp. 94–101.

 [26] J. Diemer, D. Thiele, and R. Ernst, “Formal
worst-case timing analysis of Ethernet
topologies with strict-priority and AVB
switching,” in Proc. Int. Symp. Ind. Embedded
Syst., 2012, pp. 1–10.

 [27] R. Schneider, L. Zhang, D. Goswami,
A. Masrur, and S. Chakraborty,
“Compositional analysis of switched
Ethernet topologies,” in Proc. Design
Autom. Test Eur. Conf. Exhib., 2013,
pp. 1099–1104.

 [28] F. Reimann, S. Graf, F. Streit, M. Glaß, and
J. Teich, “Timing analysis of Ethernet AVB-
based automotive E/E architectures,” in Proc.
18th Conf. Emerg. Technol. Factory Autom.,
Sep. 2013, pp. 1–8.

 [29] E. Wandeler, L. Thiele, M. Verhoef, and
P. Lieverse, “System architecture evaluation
using modular performance analysis: A case
study,” Int. J. Softw. Tools Technol. Transf.,
vol. 8, no. 6, pp. 649–667, 2006.

 [30] A. Hagiescu, U. D. Bordoloi, S. Chakraborty,
P. Sampath, P. V. V. Ganesan, and S. Ramesh,
“Performance analysis of FlexRay-based ECU
networks,” in Proc. Design Autom. Conf.,
2007, pp. 284–289.

 [31] D. B. Chokshi and P. Bhaduri, “Performance
analysis of FlexRay-based systems using

real-time calculus, revisited,” in Proc. Symp.
Appl. Comput., 2010, pp. 351–356.

 [32] M. Lukasiewycz, M. Glaß, J. Teich, and
P. Milbredt, “FlexRay schedule optimization
of the static segment,” in Proc. Int. Conf.
Hardw./Softw. Codesign Syst. Synth., 2009.

 [33] W. Steiner, “An evaluation of SMT-based
schedule synthesis for time-triggered multi-
hop networks,” in Proc. Real-Time Syst. Symp.,
2010, pp. 375–384.

 [34] D. Tamas-Selicean, P. Pop, and W. Steiner,
“Synthesis of communication schedules for
TTEthernet-based mixed-criticality systems,”
in Proc. Int. Conf. Hardw./Softw. Codesign Syst.
Synth., 2012.

 [35] Z. Hanzalek, P. Burget, and P. Sucha,
“Profinet IO IRT message scheduling with
temporal constraints,” IEEE Trans. Ind.
Informat., vol. 6, no. 3, pp. 369–380,
Aug. 2010.

 [36] F. Sagstetter, P. Waszecki, S. Steinhorst,
M. Lukasiewycz, and S. Chakraborty,
“Multischedule synthesis for variant
management in automotive time-triggered
systems,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 35, no. 4, pp. 637–650,
Apr. 2016.

 [37] F. Sagstetter, M. Lukasiewycz, and
S. Chakraborty, “Generalized asynchronous
time-triggered scheduling for FlexRay,” IEEE
Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 36, no. 2, pp. 214–226, Feb. 2017.

 [38] S. S. Craciunas and R. S. Oliver, “SMT-based
task-and network-level static schedule
generation for time-triggered networked
systems,” in Proc. Int. Conf. Real-Time Netw.
Syst., 2014, p. 45.

 [39] L. Zhang, D. Goswami, R. Schneider, and
S. Chakraborty, “Task-and network-level
schedule co-synthesis of Ethernet-based time-
triggered systems,” in Proc. Asia South Pacific
Design Autom. Conf., Jan. 2014, pp. 119–124.

 [40] M. Lukasiewycz, F. Sagstetter, and
S. Steinhorst, “Efficient design space
exploration of embedded platforms,” in Proc.
Design Autom. Conf., 2015.

 [41] J. Teich, “Hardware/software codesign: The
past, the present, and predicting the future,”
Proc. IEEE, vol. 100, pp. 1411–1430, 2012.

 [42] J. Valencia, D. Goswami, and K. Goossens,
“Composable platform-aware embedded
control systems on a multi-core
architecture,” in Proc. Eur. Conf. Digit. Syst.
Design, 2015.

 [43] W. Chang, D. Goswami, S. Chakraborty,
J. Xue, L. Ju, and S. Andalam, “Memory-
aware embedded control systems design,”
IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 36, no. 4, pp. 586–599,
Apr. 2017.

 [44] R. Krtolica, Ü. Özgüner, H. Chan,
H. Goktas, J. Winkelman, and M. Liubakka,
“Stability of linear feedback systems with
random communication delays,” in Proc.
Amer. Control Conf., 1991.

 [45] J. Nilsson, B. Bernhardsson, and
B. Wittenmark, “Some topics in real-time
control,” in Proc. Amer. Control Conf., 1998.

 [46] W. ℤhang, M. S. Branicky, and S. M. Phillips,
“Stability of networked control systems,”
IEEE Control Syst. Mag., vol. 21, no. 1,
pp. 84–99, Feb. 2001.

 [47] J. Nilsson, B. Bernhardsson, and
B. Wittenmark, “Stochastic analysis and
control of real-time systems with random
time delays,” Automatica, vol. 34, no. 1,
pp. 57–64, 1998.

 [48] E. Boje, “Approximate models for continuous-
time linear systems with sampling jitter,”
Automatica, vol. 41, no. 12, pp. 2091–2098,
2005.

 [49] A. Cervin, “Stability and worst-case
performance analysis of sampled-data
control systems with input and output
jitter,” in Proc. Amer. Control Conf., 2012,
pp. 3760–3765.

 [50] D. Goswami, A. Masrur, R. Schneider,
C. J. Xue, and S. Chakraborty, “Multirate
controller design for resource- and schedule-
constrained automotive ECUs,” in Proc.
Design Autom. Test Eur. Conf. Exhib., Mar. 2013.

 [51] K. Goossens, “Virtual execution platforms
for mixed-time-criticality systems: The
CompSOC architecture and design flow,”
SIGBED Rev., vol. 10, no. 3, pp. 23–34, 2013.

 [52] E. P. van Horssen, A. R. B. Behrouzian,
D. Goswami, D. Antunes, T. Basten, and
W. P. M. H. Heemels, “Performance analysis
and controller improvement for linear
systems with (m, k)-firm data losses,” in
Proc. Eur. Control Conf., 2016, pp. 2571–2577.

 [53] W. Geelen, D. Antunes, J. P. M. Voeten,
R. R. H. Schiffelers, and W. P. M. H. Heemels,
“The impact of deadline misses on the
control performance of high-end motion
control systems,” IEEE Trans. Ind. Electron.,
vol. 63, no. 2, pp. 1218–1229, Feb. 2016.

 [54] D. Antunes and W. P. M. H. Heemels,
“Frequency-domain analysis of control loops
with intermittent data losses,” IEEE Trans.
Autom. Control, vol. 61, no. 8, pp. 2295–2300,
Aug. 2016.

 [55] M. Kauer, S. Steinhorst, D. Goswami,
R. Schneider, M. Lukasiewycz, and
S. Chakraborty, “Formal verification of
distributed controllers using time-stamped
event count automata,” in Proc. Asia South
Pacific Design Autom. Conf., Jan. 2013.

 [56] M. Kauer, D. Soudbakhsh, D. Goswami,
S. Chakraborty, and A. M. Annaswamy,
“Fault-tolerant control synthesis and
verification of distributed embedded
systems,” in Proc. Design Autom. Test Eur.
Conf. Exhib., 2014, pp. 1–6.

 [57] D. Goswami, R. Schneider, and S. Chakraborty,
“Relaxing signal delay constraints in
distributed embedded controllers,” IEEE
Trans. Control Syst. Technol., vol. 22, no. 6,
pp. 2337–2345, Nov. 2014.

 [58] I. Saha, S. Baruah, and R. Majumdar,
“Dynamic scheduling for networked control
systems,” in Proc. Int. Conf. Hybrid Syst.
Comput. Control, 2015, pp. 98–107.

 [59] R. Majumdar, I. Saha, and M. ℤamani,
“Performance-aware scheduler synthesis for
control systems,” in Proc. Int. Conf. Embedded
Softw., 2011, pp. 299–308.

 [60] V. C. Aitken and H. M. Schwartz, “On the
exponential stability of discrete-time systems
with applications in observer design,” IEEE
Trans. Autom. Control, vol. 39, no. 9,
pp. 1959–1962, Sep. 1994.

 [61] A. Podelski and S. Wagner, “Model checking
of hybrid systems: From reachability towards
stability,” in Proc. Int. Conf. Hybrid Syst.
Comput. Control, 2006.

 [62] A. Podelski and S. Wagner, “Region
stability proofs for hybrid systems,” in Proc.
Int. Conf. Formal Modelling Anal. Timed
Syst., 2007.

 [63] A. Anta, R. Majumdar, I. Saha, and
P. Tabuada, “Automatic verification of
control system implementations,” in Proc.
Int. Conf. Embedded Softw., 2010.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 197

 [64] E. Feron, “From control systems to control
software,” IEEE Control Syst. Mag., vol. 30,
no. 6, pp. 50–71, Jun. 2010.

 [65] R. Majumdar, I. Saha, and M. ℤamani,
“Synthesis of minimal-error control
software,” in Proc. Int. Conf. Embedded Softw.,
2012, pp. 123–132.

 [66] J. Kennedy and R. Eberhart, “Particle swarm
optimization,” in Proc. Int. Conf. Neural
Netw., 1995.

 [67] G. M. Mancuso, E. Bini, and G. Pannocchia,
“Optimal priority assignment to control
tasks,” ACM Trans. Embedded Comput. Syst.,
vol. 13, no. 5s, pp. 161:1–161:17, 2014.

 [68] A. Aminifar, P. Eles, ℤ. Peng, and A. Cervin,
“Stability-aware analysis and design of
embedded control systems,” in Proc. Int. Conf.
Embedded Softw., 2013, Art. no. 23.

 [69] A. Cervin, B. Lincoln, J. Eker, K. E. Årzén,
and G. Buttazo, “The jitter margin and its
application in the design of real-time control
systems,” in Proc. Int. Conf. Real-Time
Embedded Comput. Syst. Appl., 2004.

 [70] A. Aminifar, E. Bini, P. Eles, and ℤ. Peng,
“Designing bandwidth-efficient stabilizing
control servers,” in Proc. Real-Time Syst.
Symp., Dec. 2013, pp. 298–307.

 [71] A. Aminifar, E. Bini, P. Eles, and ℤ. Peng,
“Analysis and design of real-time servers for
control applications,” IEEE Trans. Comput.,
vol. 65, no. 3, pp. 834–846, Mar. 2016.

 [72] M. Al Khatib, A. Girard, and T. Dang,
“Verification and synthesis of timing
contracts for embedded controllers,” in Proc.
Int. Conf. Hybrid Syst. Comput. Control, 2016,
pp. 115–124.

 [73] A. R. B. Behrouzian, “Sample-drop firmness
analysis of TDMA-scheduled control
applications,” in Proc. Symp. Ind. Embedded
Syst., May 2016.

 [74] Y. Wu, G. Buttazzo, E. Bini, and A. Cervin,
“Parameter selection for real-time
controllers in resource-constrained systems,”
IEEE Trans. Ind. Informat., vol. 6, no. 4,
pp. 610–620, Apr. 2010.

 [75] R. Schneider, D. Goswami, A. Masrur, and
S. Chakraborty, “QoC-oriented efficient
schedule synthesis for mixed-criticality
cyber-physical systems,” in Proc. Forum
Specification Design Lang., 2012, pp. 60–67.

 [76] R. Schneider, D. Goswami, A. Masrur,
M. Becker, and S. Chakraborty, “Multi-
layered scheduling of mixed-criticality cyber-
physical systems,” J. Syst. Archit., vol. 59,
no. 10, pp. 1215–1230, 2013.

 [77] P. Martí, J. M. Fuertes, G. Fohler, and
K. Ramamritham, “Improving quality-of-
control using flexible timing constraints:
Metric and scheduling,” in Proc. Real-Time
Syst. Symp., Dec. 2002, pp. 91–100.

 [78] D. Roy, M. Balszun, D. Goswami, and
S. Chakraborty, “Hybrid automotive
in-vehicle networks,” in Proc. Int. Symp.
Netw. Chip, 2017.

 [79] D. Goswami, R. Schneider, and S. Chakraborty,
“Re-engineering cyber-physical control
applications for hybrid communication
protocols,” in Proc. Design Autom. Test Eur.
Conf. Exhib., 2011.

 [80] A. Masrur, D. Goswami, R. Schneider,
H. Voit, A. Annaswamy, and S. Chakraborty,
“Schedulability analysis of distributed cyber-
physical applications on mixed time-/event-
triggered bus architectures with
retransmissions,” in Proc. Int. Symp. Ind.
Embedded Syst., Jun. 2011, pp. 266–273.

 [81] A. Masrur, D. Goswami, S. Chakraborty,
J. Chen, A. Annaswamy, and A. Banerjee,
“Timing analysis of cyber-physical applications
for hybrid communication protocols,” in Proc.
Design Autom. Test Eur. Conf. Exhibit., 2012.

 [82] L. Zhang, D. Roy, P. Mundhenk, and
S. Chakraborty, “Schedule management
framework for cloud-based future
automotive software systems,” in Proc. Int.
Conf. Embedded Real-Time Comput. Syst. Appl.,
Aug. 2016, pp. 12–21.

 [83] P. Mundhenk, G. Tibba, L. Zhang,
F. Reimann, D. Roy, and S. Chakraborty,
“Dynamic platforms for uncertainty
management in future automotive E/E
architectures: Invited,” in Proc. Design
Autom. Conf., 2017, Art. no. 15.

 [84] D. Majumdar, L. ℤhang, P. Bhaduri, and
S. Chakraborty, “Reconfigurable
communication middleware for flex ray-
based distributed embedded systems,” in
Proc. Int. Conf. Embedded Real-Time Comput.
Syst. Appl., Aug. 2015, pp. 159–166.

 [85] M. Balszun, D. Roy, L. ℤhang, W. Chang,
and S. Chakraborty, “Effectively utilizing
elastic resources in networked control
systems,” in Proc. Int. Conf. Embedded Real-
Time Comput. Syst. Appl., 2017.

 [86] P. Tabuada, “Event-triggered real-time
scheduling of stabilizing control tasks,” IEEE
Trans. Autom. Control, vol. 52, no. 9,
pp. 1680–1685, Sep. 2007.

 [87] A. Anta and P. Tabuada, “Self-triggered
stabilization of homogeneous control
systems,” in Proc. Amer. Control Conf.,
Jun. 2008, pp. 4129–4134.

 [88] ℤ.-P. Jiang and Y. Wang, “Input-to-state
stability for discrete-time nonlinear systems,”
Automatica, vol. 37, no. 6, pp. 857–869,
Jun. 2001.

 [89] M. Velasco, P. Martí, and E. Bini, “On
Lyapunov sampling for event-driven
controllers,” in Proc. Conf. Decision Control,
2009.

 [90] R. Postoyan, P. Tabuada, D. Nešic, and
A. Anta, “Event-triggered and self-triggered
stabilization of distributed networked control
systems,” in Proc. Conf. Decision Control Eur.
Control Conf., 2011, pp. 2565–2570.

 [91] M. Abdelrahim, V. S. Dolk, and W. P. M. H.
Heemels, “Input-to-state stabilizing event-
triggered control for linear systems with
output quantization,” in Proc. Conf. Decision
Control, Dec. 2016.

 [92] P. Martí, M. Velasco, and E. Bini, “The
optimal boundary and regulator design
problem for event-driven controllers,” in
Proc. 12th Int. Conf. Hybrid Syst. Comput.
Control, 2009, pp. 441–444.

 [93] M. Velasco, P. Martí, J. Yépez, F. J. Ruiz,
J. M. Fuertes, and E. Bini, “Qualitative
analysis of a one-step finite-horizon
boundary for event-driven controllers,” in
Proc. Conf. Decision Control Eur. Control Conf.,
Dec. 2011, pp. 1662–1667.

 [94] M. Velasco, P. Martí, and E. Bini, “Control-
driven tasks: Modeling and analysis,” in
Proc. Real-Time Syst. Symp., 2008.

 [95] A. Aminifar, P. Tabuada, P. Eles, and
ℤ. Peng, “Self-triggered controllers and
hard real-time guarantees,” in Proc.
Design Autom. Test Eur. Conf. Exhib., 2016,
pp 636–641.

 [96] M. Mazo and P. Tabuada, “On event-
triggered and self-triggered control over
sensor/actuator networks,” in Proc. Conf.
Decision Control, 2008, pp. 435–440.

 [97] S. Samii, P. Eles, ℤ. Peng, P. Tabuada, and
A. Cervin, “Dynamic scheduling and
control-quality optimization of self-
triggered control applications,” in Proc.
Real-Time Syst. Symp., 2010, pp. 95–104.

 [98] I. Saha and R. Majumdar, “Trigger
memoization in self-triggered control,”
in Proc. Int. Conf. Embedded Softw.
(EMSOFT), 2012.

 [99] J. Araújo, M. Mazo, A. Anta, P. Tabuada,
and K. H. Johansson, “System architectures,
protocols and algorithms for aperiodic
wireless control systems,” IEEE Trans. Ind.
Informat., vol. 10, no. 1, pp. 175–184, 2014.

 [100] A. Aminifar, S. Samii, P. Eles, ℤ. Peng, and
A. Cervin, “Designing high-quality
embedded control systems with guaranteed
stability,” in Proc. Real-Time Syst. Symp.,
Dec. 2012, pp. 283–292.

 [101] A. Aminifar, E. Bini, P. Eles, and ℤ. Peng,
“Bandwidth-efficient controller-server
co-design with stability guarantees,” in
Proc. Design Autom. Test Eur. Conf. Exhib.,
Mar. 2014, pp. 1–6.

 [102] J. Valencia, E. P. van Horssen, D. Goswami,
W. P. M. H. Heemels, and K. G. W. Goossens,
“Resource utilization and quality-of-control
trade-off for a composable platform,” in Proc.
Design Autom. Test Eur. Conf. Exhib., 2016.

 [103] Y. Xu, K.-E. Årzén, E. Bini, and A. Cervin,
“Response time driven design of control
systems,” IFAC World Congr., vol. 47, no. 3,
pp. 6098–6104, 2014.

 [104] Y. Xu, K.-E. Årzén, A. Cervin, E. Bini, and
B. Tanasa, “Exploiting job response-time
information in the co-design of real-time
control systems,” in Proc. Int. Conf.
Embedded Real-Time Comput. Syst. Appl.,
Aug. 2015.

 [105] S. Samii, A. Cervin, P. Eles, and ℤ. Peng,
“Integrated scheduling and synthesis of
control applications on distributed
embedded systems,” in Proc. Design Autom.
Test Eur. Conf. Exhibit., 2009, pp. 57–62.

 [106] B. Lincoln and A. Cervin, “JITTERBUG: A
tool for analysis of real-time control
performance,” in Proc. Conf. Decision
Control, Dec. 2002.

 [107] S. Samii, P. Eles, ℤ. Peng, and A. Cervin,
“Design optimization and synthesis of
FlexRay parameters for embedded control
applications,” in Proc. Int. Symp. Electron.
Design Test Appl., 2011, pp. 66–71.

 [108] A. Aminifar, P. Eles, ℤ. Peng, and
A. Cervin, “Control-quality driven
design of cyber-physical systems with
robustness guarantees,” in Proc. Design
Autom. Test Eur. Conf. Exhibit., 2013,
pp. 1093–1098.

 [109] R. Schneider, D. Goswami, S. ℤafar,
M. Lukasiewycz, and S. Chakraborty,
“Constraint-driven synthesis and tool-
support for FlexRay-Based automotive
control systems,” in Proc. 7th IEEE/ACM/
IFIP Int. Conf. Hardw./Softw. Codesign Syst.
Synth., 2011, pp. 139–148.

 [110] D. Goswami, M. Lukasiewycz, R. Schneider,
and S. Chakraborty, “Time-triggered
implementations of mixed-criticality
automotive software,” in Proc. Design Autom.
Test Eur. Conf. Exhibit., Mar. 2012.

 [111] D. Roy, L. ℤhang, W. Chang, D. Goswami,
and S. Chakraborty, “Multi-objective
co-optimization of FlexRay-based
distributed control systems,” in Proc.
Real-Time Embedded Technol. Appl.
Symp., 2016.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

198 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

 [112] T. Gommans, D. Antunes, T. Donkers,
P. Tabuada, and M. Heemels, “Self-triggered
linear quadratic control,” Automatica,
vol. 50, no. 4, pp. 1279–1287, 2014.

 [113] A. Aminifar, S. Samii, P. Eles, and Z. Peng,
“Control-quality driven task mapping for
distributed embedded control systems,” in
Proc. Int. Conf. Embedded Real-Time Comput.
Syst. Appl., Aug. 2011, pp. 133–142.

 [114] D. Goswami, R. Schneider, and
S. Chakraborty, “Co-design of cyber-physical
systems via controllers with flexible delay
constraints,” in Proc. Asia South Pacific
Design Autom. Conf., 2011, pp. 225–230.

 [115] K. Pettis and R. C. Hansen, “Profile guided
code positioning,” in Proc. Conf. Programm.
Lang. Design Implement., vol. 25, no. 6,
pp. 16–27, 1990.

 [116] J. Kalamationos and D. R. Kaeli,
“Temporal-based procedure reordering for
improved instruction cache performance,”
in Proc. Int. Symp. High-Perform. Comput.
Archit., Feb. 1998, pp. 244–253.

 [117] N. Gloy, T. Blackwell, M. D. Smith, and
B. Calder, “Procedure placement using
temporal ordering information,” in Proc.
Int. Symp. Microarchitect., 1997.

 [118] K. W. Batcher and R. A. Walker, “Dynamic
round-robin task scheduling to reduce
cache misses for embedded systems,” in
Proc. Design Autom. Test Eur. Conf. Exhibit.,
2008, pp. 260–263.

 [119] M. Glaß, M. Lukasiewyc, J. Teich,
U. D. Bordoloi, and S. Chakraborty,
“Designing heterogeneous ECU networks
via compact architecture encoding and
hybrid timing analysis,” in Proc. Design
Autom. Conf., Jul. 2009, pp. 43–46.

 [120] D. Bui, E. Lee, I. Liu, H. Patel, and
J. Reineke, “Temporal isolation on
multiprocessing architectures,” in Proc.
Design Autom. Conf., 2011, pp. 274–279.

 [121] T. Ungerer, “Merasa: Multicore execution
of hard real-time applications supporting
analyzability,” IEEE Micro, vol. 30, no. 5,
pp. 66–75, Sep. 2010.

 [122] S. Girbal, X. Jean, J. L. Rhun, D. G. Pérez,
and M. Gatti, “Deterministic platform
software for hard real-time systems using
multi-core COTS,” in Proc. Digit. Avion.
Syst. Conf., Sep. 2015, pp. 8D4-1–8D4-15.

 [123] R. Tabish, “A real-time scratchpad-centric
OS for multi-core embedded systems,” in
Proc. Real-Time Embedded Technol. Appl.
Symp., Apr. 2016, pp. 1–11.

 [124] A. Bemporad, A. Oliveri, T. Poggi, and
M. Storace, “Ultra-fast stabilizing model
predictive control via canonical piecewise
affine approximations,” IEEE Trans. Autom.
Control, vol. 56, no. 12, pp. 2883–2897,
Dec. 2011.

 [125] Z. Yao and N. H. El-Farra, “Resource-
aware model predictive control of spatially
distributed processes using event-triggered
communication,” in Proc. Conf. Decision
Control, Dec. 2013, pp. 3726–3731.

 [126] T. E. Gibson, A. M. Annaswamy, and
E. Lavretsky, “Improved transient response
in adaptive control using projection
algorithms and closed loop reference
models,” in Proc. AIAA Guid. Navigat.
Control Conf., 2012.

 [127] T. E. Gibson, A. M. Annaswamy, and
E. Lavretsky, “Closed–loop reference
model adaptive control: Composite
control and observer feedback,” in Proc.

IFAC Int. Workshop Adaptation Learn.
Control Signal Process., Jun. 2013,
pp. 3376–3383.

 [128] T. E. Gibson, A. M. Annaswamy, and
E. Lavretsky, “Adaptive systems with
closed-loop reference-models, part I:
Transient performance,” in Proc. Amer.
Control Conf., 2013.

 [129] T. E. Gibson, A. M. Annaswamy, and
E. Lavretsky, “Closed-loop reference
models for output-feedback adaptive
systems,” in Proc. Eur. Control Conf., Jul.
2013, pp. 365–370.

 [130] L. Chunmao and X. Jian, “Adaptive
delay estimation and control of
networked control systems,” in Proc. Int.
Symp. Commun. Inf. Technol., 2006,
pp. 707–710.

 [131] H. Voit and A. Annaswamy, “Adaptive
control of a networked control system with
hierarchical scheduling,” in Proc. Amer.
Control Conf., Jun. 2011, pp. 4189–4194.

 [132] H. Voit, A. M. Annaswamy, R. Schneider,
D. Goswami, and S. Chakraborty,
“Adaptive switching controllers for
systems with hybrid communication
protocols,” in Proc. Amer. Control Conf.,
2012, pp. 4921–4926.

 [133] Y.-E. Wang, X.-M. Sun, P. Shi, and J. Zhao,
“Input-to-state stability of switched
nonlinear systems with time delays under
asynchronous switching,” IEEE Trans.
Cybern., vol. 43, no. 6, pp. 2261–2265,
Dec. 2013.

 [134] Y. Wang, X. Sun, and B. Wu, “Lyapunov–
Krasovskii functionals for input-to-state
stability of switched non-linear systems
with time-varying input delay,” IET Control
Theory Appl., vol. 9, no. 11, pp. 1717–1722,
Jul. 2015.

 [135] W. P. M. H. Heemels, “Stability analysis of
nonlinear networked control systems with
asynchronous communication: A small-
gain approach,” in Proc. Conf. Decision
Control, Dec. 2013, pp. 4631–4637.

 [136] Y. Wang, M. Xia, V. Gupta, and P. J. Antsaklis,
“On feedback passivity of discrete-time
nonlinear networked control systems with
packet drops,” IEEE Trans. Autom. Control,
vol. 60, no. 9, pp. 2434–2439, Sep. 2015.

 [137] J. Lei and H. K. Khalil, “Feedback
linearization for nonlinear systems with
time-varying input and output delays
by using high-gain predictors,” IEEE
Trans. Autom. Control, vol. 61, no. 8,
pp. 2262–2268, Aug. 2016.

 [138] T. Takagi and M. Sugeno, “Fuzzy
identification of systems and its
applications to modeling and control,” IEEE
Trans. Syst. Man Cybern. Syst., vol. SMC-15,
no. 1, pp. 116–132, Jan. 1985.

 [139] X. Zhang, G. Lu, and Y. Zheng,
“Stabilization of networked stochastic
time-delay fuzzy systems with data
dropout,” IEEE Trans. Fuzzy Syst., vol. 16,
no. 3, pp. 798–807, Mar. 2008.

 [140] H. Gao, Y. ℤhao, and T. Chen, “ H ∞ fuzzy
control of nonlinear systems under
unreliable communication links,” IEEE
Trans. Fuzzy Syst., vol. 17, no. 2, pp. 265–278,
Feb. 2009.

 [141] H. Li, C. Wu, and ℤ. Feng, “Fuzzy dynamic
output-feedback control of non-linear
networked discrete-time system with
missing measurements,” IET Control
Theory Appl., vol. 9, no. 3, pp. 327–335,
2015.

 [142] J. Qiu, G. Feng, and H. Gao, “Fuzzy-model-
based piecewise H ∞ static-output-feedback
controller design for networked nonlinear
systems,” IEEE Trans. Fuzzy Syst., vol. 18,
no. 5, pp. 919–934, 2010.

 [143] D. Du, “Reliable H ∞ control for Takagi-
Sugeno fuzzy systems with intermittent
measurements,” Nonlinear Anal. Hybrid
Syst., vol. 6, no. 4, pp. 930–941, 2012.

 [144] Y. ℤhao, H. Gao, and T. Chen, “Fuzzy
constrained predictive control of nonlinear
systems with packet dropouts,” IET Control
Theory Appl., vol. 4, no. 9, p. 1665–1677,
2010.

 [145] H. ℤhang, J. Yang, and C. Su, “T-S fuzzy-
model-based robust H ∞ design for
networked control systems with
uncertainties,” IEEE Trans. Ind. Informat.,
vol. 3, no. 4, pp. 289–301, Apr. 2007.

 [146] H. ℤhang, D. Yang, and T. Chai,
“Guaranteed cost networked control
for T–S fuzzy systems with time delays,”
IEEE Trans. Syst. Man Cybern. C,
Appl. Rev., vol. 37, no. 2, pp. 160–172,
Mar. 2007.

 [147] C. Peng and T. C. Yang, “Communication-
delay-distribution-dependent networked
control for a class of T-S fuzzy systems,”
IEEE Trans. Fuzzy Syst., vol. 18, no. 2,
pp. 326–335, Feb. 2010.

 [148] E. Tian, D. Yue, and ℤ. Gu, “Robust
H ∞ control for nonlinear systems over
network: A piecewise analysis
method,” Fuzzy Sets Syst., vol. 161, no. 21,
pp. 2731–2745, 2010.

 [149] M. S. Mahmoud and A.-W. A. Saif, “Robust
quantized approach to fuzzy networked
control systems,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 2, no. 1, p. 71–81,
Mar. 2012.

 [150] J. Yan, Y. Xia, and L. Li, “Stabilization of
fuzzy systems with quantization and
packet dropout,” Int. J. Robust Nonlinear
Control, vol. 24, no. 10, p. 1563–1583, 2014.

 [151] S. A. Seshia, “Combining induction,
deduction, and structure for verification
and synthesis,” Proc. IEEE, vol. 103, no. 11,
pp. 2036–2051, Nov. 2015.

 [152] W. Kohn, J. James, A. Nerode, K. Harbison,
and A. Agrawala, “A hybrid systems
approach to computer-aided control
engineering,” IEEE Control Syst., vol. 15,
no. 2, pp. 14–25, Apr. 1995.

 [153] M. S. Branicky, V. S. Borkar, and
S. K. Mitter, “A unified framework for
hybrid control: Model and optimal control
theory,” IEEE Trans. Autom. Control, vol. 43,
no. 1, pp. 31–45, Jan. 1998.

 [154] P. Tabuada and G. J. Pappas, “Linear time
logic control of discrete-time linear
systems,” IEEE Trans. Autom. Control,
vol. 51, no. 12, pp. 1862–1877, Dec.
2006.

 [155] X. Chen, E. Abraham, and S. Sankaranarayan,
“Taylor model flowpipe construction for
non-linear hybrid systems,” in Proc. Real-
Time Syst. Symp., 2012.

 [156] R. Testylier and T. Dang, “NLTOOLBOX: A
C++ library for reachability computation
of non-linear dynamical systems,” in Proc.
Int. Symp. Autom. Technol. Verification Anal.,
2013, pp. 469–473.

 [157] T. Dang, O. Maler, and R. Testylier,
“Accurate hybridization of nonlinear
systems,” in Proc. Int. Conf. Hybrid Syst.,
Comput. Control, 2010, pp. 11–20.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

Vol. 106, No. 1, January 2018 | Proceedings of the IEEE 199

 [158] E. Asarin, T. Dang, and A. Girard,
“Hybridization methods for the analysis of
nonlinear systems,” Acta Inf., vol. 43, no. 7,
pp. 451–476, 2007.

 [159] X. Chen and S. Sankaranarayanan,
“Decomposed reachability analysis for
nonlinear systems,” in Proc. Real-Time Syst.
Symp., 2016, pp. 13–24.

 [160] H. Ravanbakhsh and S. Sankaranarayanan,
“Robust controller synthesis of switched
systems using counterexample guided
framework,” in Proc. Int. Conf. Embedded
Softw., Oct. 2016, pp. 1–10.

 [161] H. Ravanbakhsh and S. Sankaranarayanan,
“Infinite horizon safety controller
synthesis through disjunctive polyhedral
abstract interpretation,” in Proc. Int. Conf.
Embedded Softw., Oct. 2014, pp. 1–10.

 [162] S. Ghosh, “Diagnosis and repair for
synthesis from signal temporal logic
specifications,” in Proc. Int. Conf. Hybrid
Syst. Comput. Control, 2016, pp. 31–40.

 [163] M. Zamani, M. Mazo, and A. Abate,
“Finite abstractions of networked control
systems,” in Proc. Conf. Decision Control,
Dec. 2014, pp. 95–100.

 [164] M. Khaled, M. Rungger, and M. ℤamani,
“Symbolic models of networked control
systems: A feedback refinement relation
approach,” in Proc. Conf. Commun. Control
Comput., 2016.

 [165] M. ℤamani, G. Pola, M. Mazo, Jr., and
P. Tabuada, “Symbolic models for
nonlinear control systems without
stability assumptions,” IEEE Trans. Autom.
Control, vol. 57, no. 7, pp. 1804–1809,
Jul. 2012.

 [166] A. Balluchi, L. Benveunuti, T. Villa,
H. Wong-Toi, and A. L. Sangiovanni-
Vincentelli, “Controller synthesis for
hybrid systems with lower bounds on event
separation,” in Proc. Conf. Decision Control,
Dec. 1999, pp. 3984–3989.

 [167] M. Rungger and M. ℤamani, “SCOTS: A
tool for the synthesis of symbolic
controllers,” in Proc. Int. Conf. Hybrid Syst.
Comput. Control, 2016, pp. 99–104.

 [168] L. Di Guglielmo, S. A. Seshia, and T. Villa,
“Synthesis of implementable control
strategies for lazy linear hybrid automata,”
in Proc. Federated Conf. Comput. Sci. Inf.
Syst., 2013.

 [169] A. Girard, “Controller synthesis for safety
and reachability via approximate
bisimulation,” Automatica, vol. 48, no. 5,
pp. 947–953, 2012.

 [170] P. Bouyer, K. G. Larsen, N. Markey,
O. Sankur, and C. Thrane, “Timed
automata can always be made
implementable,” in Proc. Int. Conf.
Concurrency Theory, 2011, pp. 76–91.

 [171] M. Rungger, G. Reissig, and M. ℤamani,
“Symbolic synthesis with average
performance guarantees,” in Proc.
Conf. Decision Control, Dec. 2016,
pp. 7404–7410.

 [172] G. Reissig, A. Weber, and M. Rungger,
“Feedback refinement relations for the
synthesis of symbolic controllers,” IEEE
Trans. Autom. Control, vol. 62, no. 4,
pp. 1781–1796, Apr. 2017.

 [173] S. Checkoway, “Comprehensive experimental
analyses of automotive attack surfaces,” in
Proc. Conf. Secur., 2011.

 [174] K. Koscher, “Experimental security
analysis of a modern automobile,” in Proc.
Symp. Secur. Privacy, 2010.

 [175] B. ℤheng, P. Deng, R. Anguluri, Q. ℤhu,
and F. Pasqualetti, “Cross-layer codesign
for secure cyber-physical systems,”
IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, no. 5, pp. 699–711,
May 2016.

 [176] D. Rakhmatov and S. Vrudhula, “An
analytical high-level battery model for use
in energy management of portable
electronic systems,” in Proc. Int. Conf.
Comput. Aided Design, 2001.

 [177] W. Chang, A. Pröbstl, D. Goswami,
M. ℤamani, and S. Chakraborty, “Battery-
and aging-aware embedded control systems
for electric vehicles,” in Proc. Real-Time
Syst. Symp., 2014.

 [178] K. Vatanparvar and M. A. Al Faruque,
“Battery lifetime-aware automotive climate
control for electric vehicles,” in Proc.
Design Autom. Conf., 2015.

 [179] M. Pedram, N. Chang, Y. Kim, and
Y. Wang, “Hybrid electrical energy storage
systems,” in Proc. Int. Symp. Low Power
Electron. Design, 2010.

 [180] M. Baleani, A. Ferrari, L. Mangeruca,
A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini, “Fault-tolerant platforms for
automotive safety-critical applications,” in
Proc. Int. Conf. Compil. Archit. Synth.
Embedded Syst., 2003.

 [181] J. Kim, G. Bhatia, R. Rajkumar, and
M. Jochim, “SAFER: System-level
architecture for failure evasion in real-time
applications,” in Proc. Real-Time Syst.
Symp., 2012.

 [182] D. Theilliol, C. Join, and Y. Zhang,
“Actuator fault-tolerant control design
based on reconfigurable reference input,”
Int. J. Appl. Math. Comput. Sci., vol. 18,
no. 4, pp. 553–560, 2008.

 [183] D. Goswami, D. Müller-Gritschneder,
T. Basten, U. Schlichtmann, and
S. Chakraborty, “Fault-tolerant embedded
control systems for unreliable hardware,”
in Proc. Int. Symp. Integr. Circuits, Dec. 2014,
pp. 464–467.

 [184] W. Chang, D. Roy, L. ℤhang, and
S. Chakraborty, “Model-based design of
resource-efficient automotive control
software,” in Proc. Int. Conf. Comput.-Aided
Design, Nov. 2016, pp. 1–8.

 [185] D. Roy, W. Chang, L. ℤhang, and
S. Chakraborty, “Automated synthesis of
cyber-physical systems from joint controller/
architecture specifications,” in Proc. Forum
Specification Design Lang., 2016.

 [186] C. Baier and J. Katoen, Principles of Model
Checking (Representation and Mind
Series). Cambridge, MA, USA: MIT Press,
2008.

 [187] A. Biere, A. Cimatti, E. M. Clarke,
O. Strichman, and Y. ℤhu, “Bounded
model checking,” Adv. Comput., vol. 58,
pp. 117–148, 2003.

 [188] M. Fitting, “First-order logic and
automated theorem proving,” in Graduate
Texts in Computer Science. New York, NY,
USA: Springer-Verlag, 1996.

 [189] S. Sims and D. C. DuVarney, “Experience
report: The Reactis validation tool,” in
Proc. Int. Conf. Funct. Programm., 2007.

 [190] M. Satpathy, A. Yeolekar, and S. Ramesh,
“Randomized directed testing
(REDIRECT) for simulink/stateflow
models,” in Proc. Int. Conf. Embedded Softw.,
2008.

 [191] F. Balarin, Y. Watanabe, H. Hsieh,
L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis:
An integrated electronic system design
environment,” Computer, vol. 36, no. 4,
pp. 45–52, Apr. 2003.

 [192] A. Davare, “metroII: A design environment
for cyber-physical systems,” ACM Trans.
Embedded Comput. Syst., vol. 12, no. 1s,
pp. 49:1–49:31, 2013.

ABOUT THE AUTHORS

Debayan Roy (Student Member, IEEE) received

the M.Sc. degree in communications engineer-

ing from the Technical University of Munich (TU

Munich), Munich, Germany, in 2015, where he is

currently working toward the Ph.D. degree.

He is currently a Researcher with the Chair of

Real-Time Computer Systems, TU Munich. His

current research interests include automo-

tive E/E architecture and embedded control

 systems.

Licong Zhang (Student Member, IEEE) received

the Dipl. -Ing degree in electrical and computer

engineering from the Technical University of

Munich (TU Munich), Munich, Germany, in 2011,

where he is currently working toward the Ph.D.

degree with the Chair of Real-Time Computer

Systems.

His current research interests include auto-

motive E/E architecture and software, in-vehicle

communication networks and control-platform cosynthesis.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

Roy et al . : Semantics-Preserving Cosynthesis of Cyber�Physical Systems

200 Proceedings of the IEEE | Vol. 106, No. 1, January 2018

Wanli Chang (Member, IEEE) received the Ph.D.

degree in electrical and computer engineer-

ing from the Technical University of Munich (TU

Munich), Munich, Germany, in 2017.

He is a Lecturer at the Singapore Institute

of Technology, Singapore. His current research

interest includes resource-aware automotive

control systems.

Sanjoy K. Mitter (Fellow, IEEE) received the

Ph.D. degree from the Imperial College of Sci-

ence and Technology, London, U.K., in 1965.

He is currently a Professor in Electrical

Engineering at the Massachusetts Institute of

Technology (MIT), Cambridge, MA, USA. His cur-

rent research interests are communication and

control in a networked environment, the rela-

tionship of statistical and quantum physics to

information theory and control, and autonomy and adaptiveness for inte-

grative organization.

Samarjit Chakraborty (Senior Member, IEEE)

received the Ph.D. degree in electrical engineer-

ing from ETH Zurich, Zurich, Switzerland, in 2003.

He is currently a Professor in Electrical and

Computer Engineering at the Technical Univer-

sity of Munich (TU Munich), Munich, Germany,

where he holds the Chair for Real-Time Com-

puter Systems. His research interests include dis-

tributed embedded systems, embedded control

systems, energy storage systems, electromobility, and sensor network-

based information processing for healthcare.

Authorized licensed use limited to: University of York. Downloaded on August 24,2020 at 11:04:44 UTC from IEEE Xplore. Restrictions apply.

