
This is a repository copy of Local observability and controllability analysis and
enforcement in distributed testing with time constraints.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/164889/

Version: Published Version

Article:

Lima, B., Faria, J.P. and Hierons, R. orcid.org/0000-0002-4771-1446 (2020) Local
observability and controllability analysis and enforcement in distributed testing with time
constraints. IEEE Access, 8. pp. 167172-167191. ISSN 2169-3536

https://doi.org/10.1109/ACCESS.2020.3021858

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Received July 13, 2020, accepted August 17, 2020, date of publication September 4, 2020, date of current version September 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021858

Local Observability and Controllability Analysis
and Enforcement in Distributed Testing With
Time Constraints

BRUNO LIMA 1,2, (Student Member, IEEE), JOÃO PASCOAL FARIA 1,2, (Member, IEEE),
AND ROBERT HIERONS 3, (Senior Member, IEEE)
1Department of Informatics Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
2INESC TEC, FEUP, 4200-465 Porto, Portugal
3Department of Computer Science, The University of Sheffield, Sheffield S10 2TN, U.K.

Corresponding author: Bruno Lima (bruno.lima@fe.up.pt)

This work was financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, under

research grant SFRH/BD/115358/2016 and within the project UIDB/50014/2020.

ABSTRACT Evermore end-to-end digital services depend on the proper interoperation of multiple products,

forming a distributed system, often subject to timing requirements. To ensure interoperability and the timely

behavior of such systems, it is important to conduct integration tests that verify the interactions with the

environment and between the system components in key scenarios. The automation of such integration

tests requires that test components are also distributed, with local testers deployed close to the system

components, coordinated by a central tester. Test coordination in such a test architecture is a big challenge.

To address it, in this article we propose an approach based on the pre-processing of the test scenarios.

We first analyze the test scenarios in order to check if conformance errors can be detected locally (local

observability) and test inputs can be decided locally (local controllability) by the local testers for the test

scenario under consideration, without the need for exchanging coordination messages between the test

components during test execution. If such properties do not hold, we next try to determine a minimum

set of coordination messages or time constraints to be attached to the given test scenario to enforce those

properties and effectively solve the test coordination problem with minimal overhead. The analysis and

enforcement procedures were implemented in the DCO Analyzer tool for test scenarios described by means

of UML sequence diagrams. Since many local observability and controllability problems may be caused

by design flaws or incomplete specifications, and multiple ways may exist to enforce local observability

and controllability, the tool was designed as a static analysis assistant to be used before test execution.

DCO Analyzer was able to correctly identify local observability and controllability problems in real-world

scenarios and help the users fix the detected problems.

INDEX TERMS Test scenarios, observability, controllability, distributed systems, time constraints.

I. INTRODUCTION

Due to the increasing ubiquity, complexity and need for assur-

ance of software-based systems [1], testing is a fundamen-

tal but challenging lifecycle activity, with a huge economic

impact if not performed adequately [2]. This is particularly

true for the end-to-end services that are being proposed in

several domains (e-health, smart cities, etc.), taking advan-

tage of recent advances in cloud, mobile computing, and

Internet of Things (IoT) [3]–[5]. Such services depend on

the proper interoperation of multiple devices and applications

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianquan Lu .

from different vendors, forming a distributed and heteroge-

neous system or system of systems, often subject to tim-

ing requirements. To ensure interoperability and the correct,

secure and timely behavior of such systems, it is important to

conduct integration tests that verify not only the interactions

with the environment but also between the system compo-

nents in key scenarios. However, test automation in this type

of systems is a huge challenge [6].

Integration test scenarios may be conveniently specified by

means of UML Sequence Diagrams [7] (SDs), because they

are an industry-standard well suited for describing and visu-

alizing the interactions that occur between the components

and actors of a distributed system, and may be enriched with

167172 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

control flow variants and time constraints, as illustrated by

the example of Fig. 1.

FIGURE 1. Example of a fall detection scenario (simplified) from an
ambient assisted living ecosystem (AAL4ALL).

In this scenario, a care receiver has a smartphone that

has installed a fall detection application. When this person

falls, the application detects the fall and provides the user

with a message which indicates that it has detected a drop

giving the possibility for the user to confirm whether he/she

needs help. If the user responds that he/she does not need

help, the application does not perform any action; however,

if the user confirms that he/she needs help or does not

respond within 10 seconds, the application sends an alert to

a web application called AAL4ALL Portal. In addition to

the maximum duration constraint of 10 seconds for the user

response, other time restrictions are also represented, namely

1 second as the maximum delivery time of the messages and

13 seconds between the sending of the notification to the user

and the sending of the alert message in case of no response.

In order to be able to check the interactions with the envi-

ronment (actors) and between the system components, and

simulate inputs from the environment at multiple locations,

local testers have to be deployed close to the system compo-

nents, coordinated by a central tester, as depicted in Fig. 2.

The local testers may act as test monitors (observing the

messages sent and received by each component), test drivers

(simulating inputs from the environment), or even test stubs

(simulating responses from emulated system components).

To cope with non-determinism (multiple system outputs

being possible for the same input sequence) and response

time constraints, test inputs may have to be selected at run-

time in an adaptive and responsive way, based on the observed

execution events and the behavioral specification (UML SD),

suggesting an adaptive and distributed test input generation

approach. To facilitate fault localization, conformance errors

(i.e., deviations from the behavioral specification) should

be detected as early as possible and as close as possible to

the offending components, suggesting an incremental and

distributed conformance checking approach. Hence, the test

components (central and local testers) in the middle layer

FIGURE 2. Test architecture for the model-based integration testing of
distributed systems.

of Fig. 2 work as a Distributed Test Input Generation and

Conformance Checking Engine.

Test coordination in such a test architecture is a big

challenge.

To address this, we first check, in a pre-processing step

(performed by the Local Observability and Controllability

Analysis and Enforcement component in Fig. 2, closely inte-

grated with the Visual Modeling Environment), if confor-

mance errors can be detected locally (local observability) and

test inputs can be decided locally (local controllability) by the

local testers for the test scenario under consideration, without

the need for exchanging coordination messages between the

test components during test execution (which could delay

test input selection and conformance checking and impose a

communication overhead). In that case, a purely distributed

testing approach can be followed: after the central tester

initiates the local testers, no communication between test

components occurs during test execution; the central tester

only needs to receive a verdict from each local tester at the

end of successful execution or as soon as an error is detected.

If the properties of local (distributed) observability and

controllability do not hold for the test scenario under consid-

eration, we next try to determine a minimum set of coordina-

tion messages or coordination time constraints to be attached

to the given test scenario to enforce those properties, whilst

preserving the semantics of the test scenario. Then the refined

test scenario (test ready model in Fig. 2) is executed as in

the purely distributed approach. If only coordination time

VOLUME 8, 2020 167173

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

constraints are added, the whole testing approach is still

purely distributed. But if coordination messages are added,

the whole testing approach becomes a hybrid one (with some

coordination messages exchanged during test execution, with

minimal overhead and delays).

The analysis and enforcement procedures were imple-

mented in the DCOAnalyzer tool for test scenarios described

by means of UML sequence diagrams. DCO Analyzer was

able to correctly identify local observability and controllabil-

ity problems in real-world scenarios and help the users fix

the detected problems. Since many local observability and

controllability problems may be caused by design flaws or

incomplete specifications, and multiple ways may exist to

enforce local observability and controllability, the tool was

designed as a static analysis assistant to be used before test

execution.

To our knowledge, although observability and controlla-

bility have been addressed by other authors in the context of

distributed systems testing, they were not analyzed before in

the context of integration testing with control flow variants

and time constraints. The ability to recommend fixes in such

a context is also absent in other works, to our knowledge.

The main contributions of this article are:

• examples of test scenarios that exhibit different combi-

nations of local observability and local controllability

properties, illustrating common causes of those prob-

lems and ways to overcome them when appropriate;

• a set of procedures and a tool to automatically analyze

test scenarios with control flow variants and time con-

straints, and check their local (distributed) observability

and controllability, pinpointing any violations found;

• a set of procedures and a tool to automatically suggest

coordination messages and/or coordination time con-

straints to be added to test scenarios to enforce local

observability and/or local controllability;

• description of a real-world case study showing the

usefulness of local observability and controllability

analysis.

The rest of the paper is organized as follows: Section II

provides some insight about the problem addressed based on

a few examples; Section III presents some concepts, assump-

tions and definitions; procedures for checking local observ-

ability and controllability are presented in Sections IV and V;

procedures for enforcing local observability and controllabil-

ity are presented in Section VI; implementation and evalu-

ation (case study) are discussed in Sections VII and VIII;

related work is presented in Section IX; conclusions and

future work are presented in Section X.

II. MOTIVATING EXAMPLES

Figures 3 and 4 show examples of simple scenarios to illus-

trate local observability and controllability problems and

ways to overcome them.

Scenario a) illustrates a local controllability problem

caused by a race condition. Based on local knowledge only,

FIGURE 3. Interaction fragments with local observability and
controllability problems and possible refinements.

lifeline L1 doesn’t know when to send z to ensure that it

arrives at L3 after y, so it may generate invalid (unintended)

traces with ?z before ?y. On the right, are illustrated two ways

to overcome this problem. In the first solution, a coordination

message is transmitted from L3 to L1, so that L1 knows

when to safely send z. From a testing perspective, assuming

that L1 is simulated by a local tester (test driver) and L3 is

monitored by another local tester, the coordination message

would be exchanged between the local testers (without affect-

ing the SUT). The communication overhead of this solution

(1 message) is much smaller than the overhead incurred by a

centralized testing approach, in which the events observed by

the local testers are constantly communicated to the central

tester (4 messages from the local testers at L2 and L3 to the

central tester), that decides and communicates back to the

local testers the next test inputs (2 messages from the central

167174 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 4. Interaction fragments with local observability and
controllability problems and possible refinements (continued).

tester to the local tester at L1). The second solution relies

on coordination time constraints. From a testing perspective,

the maximum duration constraints could represent assump-

tions about the SUT behavior (lifelines and communication

channels), and the minimum duration constraint could repre-

sent a constraint to be followed by the test driver at L1. If such

assumptions can be made, this approach has the advantage

of not implying any communication overhead during test

execution (possibly at the cost of a pessimistic wait time

at L1).

Scenario b) illustrates a local observability problem caused

by an optional message without a corresponding acknowl-

edgment message. If message x is lost (i.e., is sent by L1

but does not arrive at L2), the problem will go unnoticed

at L2, because not receiving any message is also a valid

behavior. In other words, the invalid trace [!x] is locally

uncheckable. This problem may be overcome by adding a

coordination (acknowledgment) message c, as illustrated on

the right; now, if x is lost, that will be noticed at L1. The

coordination message need only be exchanged between the

local testers. Again, the communication overhead of this solu-

tion (1 message) is smaller than the overhead of a centralized

testing approach, in which the events observed by the local

testers are constantly communicated to the central tester for

conformance checking (2 messages from the local testers at

L1 and L2 to the central tester).

In scenario c), a roundtrip time constraint causes a local

controllability problem. Since there are no limits on the trans-

mission times of x and y, nor on the reaction time of L2,

there is no guarantee that the roundtrip constraint will be met,

so invalid (unintended) traces may be generated violating

it. The problem may be solved by setting appropriate limits

on the transmission and reaction times, as illustrated on the

right. This example also illustrates a tension between local

controllability and local observability, because the scenario

on the left is locally observable, contrarily to the scenario on

the right (inter-lifeline time constraints can only be checked

after merging the traces observed at each lifeline).

Scenario d) (Fig. 4) illustrates a local observability and

local controllability problem due to a non-local choice. In

this case, and based only on local information, L3 does not

know in which situations it should send y or w, leading to

invalid (unintended) traces with combinations of x & w or

z & y. Locally this error is also not detectable, since for L2

and L4, reception of x or z and y or w is always locally valid.

In order to solve this problem (as shown on the right), two

coordination messages (c1 and c2) are required between L1

and L2. With these coordination messages, L3 becomes able

to know locally which message to send in order to ensure

correct execution. Once again, the communication overhead

of this solution (2 messages) is smaller than the overhead of

a centralized testing approach.

Scenario e) illustrates a local observability and local con-

trollability problem caused by an inter-lifeline event ordering

constraint. Based on local knowledge only, lifeline L1 does

not know when to send y to ensure that this is done only after

x has reached L2 (the strict interaction operator requires

that all events in one interaction operand occur before all the

events in the next operand). The early emission of y can then

lead to invalid (unintended) traces with !y before ?x. On the

other hand, the above error may not be locally observable,

since, based on local knowledge only, the invalid execution

trace [!x, !y, ?x, ?y] is locally uncheckable. This problemmay

be overcome by adding a coordinating message c between

VOLUME 8, 2020 167175

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

L2 and L1, so that L1 knows when it can send message y.

The communication overhead of this solution (1 message)

is again smaller than the overhead of a centralized testing

approach. Alternatively, the problem may be overcome by

adding coordination time constraints in a way similar to

scenario a) (with the difference that, in this case, the ordering

we want to enforce is between events in different lifelines).

Scenario f) illustrates a local observability and local con-

trollability problem caused by mutually exclusive emission

and reception events simultaneously enabled. In this case,

L1 and L2 do not have local information that allows them

to determine which alternative should be executed; this can

lead to invalid (unintended) traces in which both y and z are

sent or none is sent. The scenario is also locally uncheck-

able, since the loss of both messages y and z will not be

detected by L1 and L2. This problem may be overcome

by adding a coordinating message c between L1 and L2.

Alternatively, the controllability problem may be overcome

by adding coordination time constraints so that emission and

reception events are not enabled at the same time from the

perspective of any of the lifelines. In this case, the minimum

duration constraint may be seen as a timeout after which L1

may send z.

In all cases, the scenarios on the right are refinements of

the scenario on the left, in the sense that execution traces

valid for the latter are also valid for the former (with coor-

dination messages removed), although the opposite may not

be true (that is, the semantics is narrowed for the sake of

implementability and testability).

In the rest of the paper we show how to automatically check

if an integration test scenario is locally observable and locally

controllable, pinpointing any violations (locally uncheckable

and unintended traces, respectively), and automatically sug-

gest coordination messages and/or time constraints to enforce

those properties.

The results of local observability and controllability anal-

ysis can be used by a user or a tool to refine the scenario or

decide about the test approach in several ways:

• if the analysis shows that a test scenario is locally

observable and controllable, then it can be executed

safely in a decentralized way, without any communi-

cation overhead during test execution; this is particu-

larly important when the local testers have to inject

time-constrained inputs (as in Fig 1);

• if the analysis shows that a test scenario is locally con-

trollable but not locally observable (as in scenario b

above), then it can still be executed safely in a decen-

tralized way, requiring only that events observed by the

local testers are communicated to the central tester at

the end of test execution to arrive at a final verdict

(at the cost of delayed error detection, complicated by

non-synchronized clocks);

• in many cases, local observability and controllability

problems are associated with incomplete specifications

or design flaws [8], so the analysis helps to identify the

needed refinements;

• in other cases, the analysis helps identifying timing con-

straints or coordination messages to insert manually or

automatically to enforce local observability or, at least,

local controllability, with a lower communication over-

head than a centralized testing approach.

III. PRELIMINARIES

Before investigating the procedures for local observability

and controllability checking of time-constrained SDs, it is

important to formalize their syntax and semantics.

A. TIME-CONSTRAINED SEQUENCE DIAGRAMS

In UML, an SD is a variant of an Interaction [7]. SDs may be

annotated with time constraints [7], as illustrated by the SD of

Fig. 1. Although the UML standard allows the specification

of more complex constraints, in this article we restrict our

attention to the types of time constraints that are commonly

addressed in the literature and are most relevant in practice:

constraints that specify the minimum and maximum duration

between two events (message sending or receiving) in the

same lifeline, or between the sending and receiving of a

message between two lifelines.

B. TIMED TRACES

In UML, the semantics of an Interaction is expressed in terms

of sets of valid and invalid traces [7]. In this article, we do not

handle the rarely used constructs for defining invalid traces

(such as the neg interaction operator), so only the valid traces

are relevant here.

In general, a trace is a sequence of event occurrences [7],

corresponding to the sending or receiving of messages at

lifelines. We represent an event by a tuple 〈m, l, k〉, where

m is the message, l is the lifeline where the event occurs

and k is the event kind (Send or Receive). For example,

the event e1 shown in Fig. 1 may be represented by the tuple

〈‘‘fall_signal’’, ‘‘Care Receiver’’, Send〉.

In the presence of time constraints, it is important to

store time information associated with the event occurrences.

We use the term timed traces (or t-traces, for short) for

traces that convey the time instants of the event occurrences,

and represent them by a sequence of pairs of events and

associated time instants, in some integer time scale (seconds,

milliseconds, etc.) as in [〈e1, 1〉, 〈e2, 5〉, 〈e3, 8〉].

C. TIME-CONSTRAINED TRACES

Since the set of valid timed traces defined by an SD is usually

infinite, we need a finite representation by means of a set of

time-constrained traces (or tc-traces, for short).

A tc-trace is a pair of a trace and an associated Boolean

expression on time constraints between pairs of event occur-

rences. In those constraints, the time instance of the i-th

event occurrence is represented by the time variable τi. The

time constraints are normalized as a conjunction of difference

constraints [9] of the form τi − τj ≤ d , where d is a time

duration literal (positive or negative integer).

167176 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

For example, the SD of Fig. 1 defines the following valid

tc-traces:

• 〈[e1, e2, e3, e4, e5, e6, e7, e8], τ4 − τ3 ≤ 1∧ τ5 − τ4 ≤

10∧τ6−τ5≤1〉

• 〈[e1, e2, e3, e4, e9, e10], τ4 − τ3 ≤ 1 ∧ τ5 − τ4 ≤ 10 ∧

τ6 − τ5 ≤ 1〉

• 〈[e1, e2, e3, e4, e11, e12], τ4−τ3 ≤ 1∧τ3−τ5 ≤ −13〉

D. VALID TRACES AND SATISFIABILITY CHECKING

We express the semantics of a time-constrained SD by a set of

valid tc-traces. In this article, we assume that loops have (or

are explored up to) a bounded number of iterations, so such a

set is finite.

Procedure 3.1 (Valid Time-Constrained Traces):We com-

pute the set V(ι) of valid tc-traces defined by an interaction ι

in 3 steps:

1) Compute the set U (ι) of valid (untimed) traces defined

by ι ignoring time constraints, following the procedure

described in [10] (this set gives all the possible event

combinations and total orderings defined by ι);

2) Obtain the set D(t, ι) of time constraints applicable to

each trace t in U (ι) (see Proc. 3.2);

3) Determine the satisfiability of those constraints (sat),

and select the traces with satisfiable constraints (see

Proc. 3.3).

Formally,

V(ι) , {(t,D(t, ι))|t ∈ U (ι) ∧ sat(D(t, ι))}

The procedure for obtaining the applicable time constraints

is presented next. The last condition is important for SDs

with loops, to make sure that time constraints are applied

to event occurrences in the same loop iteration. To this end,

the untimed traces calculated by U (ι) include the iteration

counter of each event occurrence.

Procedure 3.2 (Applicable Time Constraints): Generates

a conjunctive expression with time constraints between time

instants of event occurrences in a (untimed) trace t of an

interaction ι, based on the constraints defined between pairs

of events in ι.

D(t, ι) ,
∧

{τi + min ≤ τj ≤ τi + max|1 ≤ i < j ≤ |t|

∧〈ti, tj,min,max〉 ∈ timeConstr(ι)

∧itercounter(ti) = itercounter(tj)}

A set of time constraints c is satisfiable for a trace t if

there is an assignment of non-decreasing time instants to the

event occurrences in t that satisfies all the constraints in c.

Due to the special nature of the time constraints involved

(conjunction of difference constraints), satisfiability can be

checked in polynomial time, following the procedure summa-

rized below (partly based on [9]) and illustrated in Fig. 5. The

example refers to a trace derived from the SD of Fig. 1 that

is valid when the time constraints are ignored but is invalid

otherwise. In the case of a more general Boolean expression

on difference constraints, as we will need later, we reduce the

FIGURE 5. Satisfiability checking example (trace from Fig. 1).

expression to disjunctive normal form (DNF), and apply the

same procedure to each conjunctive term.

Procedure 3.3 (Satisfiability Checking): Checks if a con-

junctive expression E on time constraints is satisfiable

(sat(E)), i.e., there is an assignment of non-decreasing values

to the time variables referenced in E that makes the expres-

sion true, as follows:

1) Add to E implicit ordering constraints τi ≤ τj between

consecutive variables referenced in E (ordered by their

indices).

2) Normalize E into a conjunction E ′ of difference con-

straints of the form τi − τj ≤ d , where τi and τj are

integer (time) variables and d is a literal integer.

3) Build the corresponding difference constraint graph G,

with an edge (i, j) of weight d for each difference con-

straint τi − τj ≤ d in E ′.

4) E is satisfiable iff G has no cycles of negative weight.

E. OPERATORS ON TIMED TRACES AND

TIME-CONSTRAINED TRACES

The definitions and procedures for local observability and

controllability analysis use the operators defined in Fig. 6.

Due to space limitations, implicit (instead of explicit) defi-

nitions are given for some operators, resorting to a function

(ext) that gives the (possibly infinite) set of timed traces

defined by a set of tc-traces. We also apply the ext function

to complex structures (such as maps), in order to convert

all occurrences of sets of tc-traces to corresponding sets

of timed traces. By a feasible timed trace (see the join

operator), we mean a timed trace with non-decreasing time

instants that respects the fact that messages can be received

only after being sent. Application examples can be found

in Fig. 7.

VOLUME 8, 2020 167177

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 6. Operators on timed traces and time-constrained traces.

FIGURE 7. Example of local observability checking.

IV. LOCAL OBSERVABILITY ANALYSIS

In this section, we present procedures to check if confor-

mance checking of observed execution traces against the

expectations set by a time-constrained SD under consider-

ation can be performed by the local testers alone based on

the events observed locally, without the need to communicate

those events to the central tester to ensure that the final test

verdict is correct (local observability). The procedures pre-

sented in this article extend, for the case of time-constrained

SDs, the procedures presented in [10] for SDs without time

constraints.

Local observability is best defined in terms of timed traces,

but, since the set of valid timed traces is usually (almost)

infinite, it is best checked in terms of tc-traces.

A. DEFINITIONS

In this article we assume a strict notion of conformance,

i.e., we say that an observed time trace t conforms to the

specification (described by a time-constrained interaction ι),

or is globally valid, when t ∈ ext(V(ι)). However, in dis-

tributed testing, global traces are not directly observed, but

only the local traces observed at each lifeline. We say that a

timed trace t is locally valid when ∀l∈L(ι), πl t ∈ ext(πlV(ι)),

where L(ι) denotes the lifelines in ι.

We next define local observability based on the concepts

of global and local validity.

Definition 4.1 (Local Observability):We say that a test sce-

nario specified by a time-constrained interaction ι is locally

observable iff there are no feasible timed traces that are

locally valid but are not globally valid (also called locally

uncheckable traces).

B. LOCAL OBSERVABILITY CHECKING

Procedure 4.1 (Local Observability Checking): We check

the local observability of a test scenario described by a

time-constrained interaction ι in a constructiveway (pinpoint-

ing violations), as follows:

1) Calculate the set V(ι) of valid tc-traces defined by ι;

2) Compute the valid local tc-traces in each lifeline, i.e., the

projection P of V(ι) onto L(ι);

3) Compute the set J of all possible feasible joins of traces

in P;

4) Compute the global tc-traces that are not locally check-

able, by subtracting from J the valid traces V(ι).

5) The given scenario ι is locally observable iff the previous

result is empty.

Formally,

isLocallyObservable(ι) , (⋊⋉ (π
L(ι)

V(ι))) \ V(ι) = ∅

Theorem 4.1 (Correctness of Procedure 4.1): Procedure

4.1 correctly checks if an interaction ι is locally observable.

Proof: Follows from Definition 4.1 and from the defini-

tions of the operators involved in Procedure 4.1. Based on the

meaning of the difference operator (see Fig. 5), the right-hand

side of the formula in Procedure 4.1 can be rewritten:

{t | t ∈ ext(⋊⋉ (π
L(ι)

V(ι))) ∧ t /∈ ext(V(ι))} = ∅

Based on the definitions of the join operator (see Fig. 6),

the first term (t ∈ ext(⋊⋉ (π
L(ι)

V(ι)))) can be rewritten:

∀l∈L(ι), πl t ∈ ext(πlV(ι))

This corresponds to the definition of local validity in Defi-

nition 4.1, whilst the second term (t /∈ ext(V(ι))) corresponds

to the negation of global validity. Hence, we conclude that

Procedure 4.1 correctly checks local observability.

Example 4.1: Procedure 4.1 is illustrated in Fig. 7. In this

case, there are two tc-traces that are not locally checkable,

so the scenario is not locally observable. The first one is due

to an optional message without a corresponding acknowledg-

ment message. The second one is due to an inter-lifeline time

constraint (transmission constraint) that is not present in the

projections onto the lifelines.

167178 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

C. IMPACT OF NON-SYNCHRONIZED CLOCKS

Next we show that imperfect clock synchronization in a dis-

tributed SUT does not affect local observability. In distributed

testing, the time instant of each observed event occurrence

is measured with the local clock of the respective lifeline.

Although it is impossible to ensure perfect clock synchroniza-

tion between lifelines, in practice the difference between the

readings of any two clocks (clock skew) may be limited to a

small value of the order of 10ms over Internet and below 1ms

over LAN [11]. This clock skew might not have a practical

impact for coarser time scales used in testing (e.g., seconds),

but could be relevant for finer time scales (e.g., milliseconds).

In any case, for test cases that run for short time spans,

one can assume that there is no noticeable clock drift during

test execution (i.e., clocks run at the same rate). Under this

assumption, we next prove our proposition.

Theorem 4.2 (Local Observability and Clock Synchroniza-

tion): If an interaction ι is locally observable with perfectly

synchronized clocks, then it is also locally observable if

clocks are not perfectly synchronized but run at the same rate.

Proof: Let us assume that ι is locally observable, i.e., all

invalid feasible global traces are also locally invalid, in case

the clocks are perfectly synchronized. Let us pick one arbi-

trary of those invalid feasible global traces t , and let us denote

by tk an invalid local trace observed at a lifeline k (based on

our assumption, such lifeline and trace must exist). In case

clocks are not perfectly synchronized but run at the same rate,

the time instants of the corresponding observed local trace

t ′k in lifeline k will differ from the time instants in tk by a

constant amount (the clock skew δk of lifeline k). Since all

the local time constraints we are considering are difference

constraints, shifting time instants by the same amount will

not affect the validity of those constraints. So t ′k will also

be checked as invalid by lifeline k . Hence we conclude that

invalid traces will also be detected locally.

This result might look surprising, but is in reality consistent

with the fact that scenarios with inter-lifeline time constraints

not implied by other constraints are not locally observable.

V. LOCAL CONTROLLABILITY ANALYSIS

A. DEFINITIONS AND EXAMPLE

Definition 5.1 (Local Controllability): We say that a

time-constrained interaction ι is locally controllable if no

invalid timed traces are generated (i.e., there are no unin-

tended traces) and all valid timed traces can be generated

(i.e., there are no missing traces) when the lifelines and the

communication channels behave in a locally correct way,

using local knowledge only. Formally, denoting by S(ι) the

set of feasible timed traces that can be generated when the

lifelines and the communication channels behave in a locally

correct way, ι is locally controllable iff S(ι) = ext(V(ι)).

Unintended traces are given byS(ι)\ext(V(ι)). Missing traces

are given by ext(V(ι)) \ S(ι).

In a locally controllable interaction, local correctness

of actions implies global correctness. Local controllability

ensures that the decision of when andwhat inputs to inject can

be taken locally by the local testers (simulating lifelines that

represent external actors or mocked components) using local

knowledge only, without the need to exchange coordination

messages between the test components during test execution.

Example 5.1: The scenario of Fig. 1 is locally controllable.

In fact, the projection of the defined time constraints onto

the ‘‘Fall Detection App’’ lifeline generates the derived local

constraints time(e6) ≤ time(e3) + 12 and time(e10) ≤

time(e3) + 12. So, the lifeline knows that, after requesting

confirmation from the user (event e3), it should wait for a

response (events e6 or e10) of up to 12 time units, and only

send ‘‘notify_possible_fall’’ after at least one more time unit.

Without the specified constraints, the scenario would not be

locally controllable, because the lifeline would not know how

much time to wait before sending ‘‘notify_possible_fall’’.

This could result in the generation of invalid traces such as:

• [e1, e2, e3, e4, e11, e12, e5, e6] (and other permuta-

tions with e11 before e6)

• [e1, e2, e3, e4, e11, e12, e9, e10] (and other permuta-

tions with e11 before e9)

We next clarify and formalize the notion of a locally correct

behavior of lifelines, in Definition 5.2, and communication

channels, in Definition 5.3. The set S(ι) contains all feasible

timed traces that satisfy the conditions of 5.2 and 5.3.

Definition 5.2 (Locally Correct Behavior of Lifelines):

A global timed trace t in an interaction ι demonstrates a

locally correct (and complete) behavior of a lifeline l ∈ L(ι)

iff the local timed trace p = πl t observed at l satisfies the

following conditions:

(a) all outputs (emissions) are locally valid, i.e.,

∀i ∈ inds(p) · isSend(pi) H⇒ p1,...,i ∈ Pl

where Pl = prefixes(Vl) and Vl = πl ext(V(ι));

(b) l may remain in a quiescent state after p (i.e., not send

any output, at least without first receiving an input [12]),

because one of the following holds (denoted Ql(p)):

(i) p is a locally valid trace, i.e., p ∈ Vl ;

(ii) in case there are valid outputs that can be sent after

p, there are also valid inputs that can be received with

a deadline greater or equal than the deadline for the

outputs (in this case, l may decide to wait for input,

and, if it does not arrive up to the deadline, will no

longer be able to send any output); formally,

∀py [s] ∈ Pl · isSend(s) H⇒

∃py [r] ∈ Pl · isRecv(r) ∧ time(r) ≥ time(s);

(c) there are no missing intermediate outputs, i.e., for each

input event pi in p, not send any output between pi−1 and

pi is a valid behavior of l (because of a quiescent state

or because possible outputs have not expired); formally,

∀i ∈ inds(p) · isRecv(pi) H⇒ Ql(p1,...,i−1) ∨

∃p1,...,i−1 y [s] ∈ Pl · time(s) ≥ time(pi).

VOLUME 8, 2020 167179

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

Definition 5.3 (Correct Behavior of Communication Chan-

nels): A global timed trace t in an interaction ι demonstrates

a correct (and complete) behavior of the communication

channels iff the following conditions hold:

(a) messages are delivered within the specified transmission

duration constraints (between pairs of related emission

and reception events in t);

(b) all messages are delivered (i.e., for each emission event

in t there is a corresponding reception event).

B. SYMBOLIC SIMULATION

Because S(ι) may be infinite or almost infinite, we calculate a

finite setS ′(ι) of tc-traces (instead of timed traces), equivalent

to S(ι) in the sense that ext(S ′(ι)) = S(ι).

S ′(ι) is calculated incrementally by symbolic simulation,

starting from the empty tc-trace, as outlined in Procedure 5.1.

Procedure 5.1 (Symbolic Simulation):Computes a set S ′(ι)

of tc-traces describing the timed traces that can be generated

by the execution of an interaction ι when the lifelines and

communication channels behave in a locally correct way,

as follows:

S
′(ι) , {〈u, c ∧ Qι(〈u, c〉)〉|

〈u, c〉 ∈ T
∗

ι (〈[], true〉) ∧ sat(Qι(〈u, c〉))}

where

• Tι(〈u, c〉) is a transition function that gives the succes-

sors of tc-trace 〈u, c〉 (a pair of a trace u and a constraint

c) in the symbolic execution tree of ι, by appending

time-constrained emission or reception events generated

according to conditions 5.2.a) or 5.3.a), in a proper tem-

poral ordering. This ordering is determined by comput-

ing the earliest deadlineD among all emission deadlines,

for lifelines that are not in a quiescent state, and delivery

deadlines, for messages in transit. When working with

tc-traces, D is in fact a constraint on the time instants of

the next event and previous events. For each candidate

time-constrained event 〈e, c′〉 to append to 〈u, c〉, if the

conjunction c ∧ c′ ∧ D is satisfiable, then the event is

selected, generating the tc-trace 〈uy [e], c ∧ c′ ∧ D〉.

• T ∗
ι (〈[], true〉) denotes the set of tc-traces reachable from

the empty tc-trace 〈[], true〉 by 0 or more applications of

Tι (reflexive transitive closure);

• Qι(〈u, c〉) denotes the condition (on the time variables of

events in u) upon which the system may remain quies-

cent after the occurrence of 〈u, c〉, as set by conditions

5.2.b) and 5.3.b). If Qι(〈u, c〉) is satisfiable, 〈u, c〉 is

added to the result, further restricted by Qι(〈u, c〉).

Theorem 5.1 (Correctness of Procedure 5.1): Procedure

5.1 correctly computes S ′(ι).

Proof Sketch: Conditions 5.2.a) and 5.3.a) are satisfied for

any tc-trace in the generated execution tree, because they

trivially hold for the initial empty state, and are explicitly con-

sidered in the transition function Tι that generates next states.

Conditions 5.2.b) and 5.3.b) are also guaranteed, because

they are explicitly considered in the quiescence condition Qι

used to select tc-traces to include in S ′(ι). Condition 5.2.c) is

also satisfied for any tc-trace in the generated execution tree,

because it trivially holds for the initial empty state, and the

temporal ordering constraint (D) considered in Tι guarantees

that a message is not delivered in a timing after the expiration

of any existent emission deadline of the target lifeline. The

temporal ordering also guarantees that a quiescent state is

reachable from any execution state generated (i.e., infeasible

states are not generated). Procedure 5.1 is also complete,

in the sense that it generates all feasible tc-traces that satisfy

Definitions 5.2 and 5.3, due to the fact that all candidate

events are considered in Tι.

An example of an execution tree and possible quiescent

tc-traces generated by the application of Procedure 5.1 is

shown in Fig. 8.

FIGURE 8. Example of symbolic execution for the SD of Fig. 1 without the
"{13..}" time constraint.

VI. LOCAL OBSERVABILITY AND CONTROLLABILITY

ENFORCEMENT

As illustrated by the examples in Section II, many observabil-

ity and controllability problems can be solved by the addition

of coordination messages or coordination time constraints.

Hence, in this section, we present algorithms to search for

coordination messages or coordination time constraints to

enforce local observability and/or local controllability of an

interaction ι, whilst preserving the traces valid locally at each

lifeline (apart possibly from timing constraints).

167180 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

To guide the search, we use the following heuristic: the

locations of local observability or controllability problems

(locations where the locally uncheckable or unintended traces

deviate from valid traces) suggest points where coordination

messages or time constraints need to be inserted.

Therefore, our main algorithm (Procedure 6.1) comprises

four main steps, starting by determining the error locations.

Procedure 6.1 (Local Observability and Controllability

Enforcement):

Input: test scenario described by a time-constrained inter-

action ι with local observability or controllability problems.

Output: a failure indication or a set of coordination mes-

sages and/or time constraints to enforce local observability

and/or controllability.

1) Determine error locations (where the locally uncheck-

able or unintended traces deviate from valid traces);

2) Generate candidate coordination messages;

3) Generate candidate coordination time constraints;

4) Apply and evaluate candidate fixes (coordination mes-

sages or time constraints).

In the next subsections, we describe each of these steps.

A. DETERMINATION OF ERROR LOCATIONS

Procedure 6.2 (Determination of Error Locations):

Input: test scenario described by a time-constrained inter-

action ι.

Output: set E of missing or erroneous events in the unin-

tended and/or locally uncheckable tc-traces of ι; set S of

lifeline locations in ι where the events in E occur (error

locations).

1) Determine the set V of valid tc-traces defined by ι;

2) Determine the set U of unintended and/or locally

uncheckable tc-traces of ι (problematic traces);

3) Determine the set E of missing or erroneous events in

the traces in U , doing as follows for each trace t ∈ U :

a) if t is a valid partial trace (i.e., ∃v ∈ V · u ∈

prefixes(v)), select all the valid next events, formally

{e|t y [e] ∈ prefixes(V)} (missing events);

b) otherwise, select the first event e in t such that the

prefix of t up to e is not a valid partial trace (erroneous

event);

4) Determine the set S of lifeline locations in ι where the

events in E occur (error locations).

B. GENERATION OF COORDINATION MESSAGES

Procedure 6.3 (Generation of Coordination Messages):

Input: test scenario described by a time-constrained inter-

action ι; set S of error locations computed by Procedure 6.2.

Output: sorted set of candidate coordination messages.

1) Determine a set C of candidate coordination messages,

according to the following criteria:

• they can start in any location in any lifeline

(before/after any event or boundary);

• they cannot cross boundaries of interaction operands,

and, inside an interaction operand, can only be

exchanged between participating lifelines;

• they can terminate in any lifeline, different from the

start lifeline, in the earliest possible location;

2) Rank the candidatemessages in C based on their proxim-

ity to the error locations in S , in order to obtain a sorted

set C′ of candidates.

3) Filter out candidates below a certain ranking threshold

(e.g., to exclude candidates that do not touch any suspi-

cious lifeline).

C. GENERATION OF COORDINATION TIME CONSTRAINTS

As illustrated in Section II, several controllability problems

(such as race conditions and inter-lifeline event ordering

constraints) may be solved by adding coordination time con-

straints that impose an ordering between pairs of events.

In fact, lifelines may coordinate their actions by dynamically

exchanging coordination messages or by statically ‘agreeing’

on an adequate timing for their actions.

FIGURE 9. Fixing race conditions with coordination time constraints.

The pattern of race conditions that our heuristic algorithm

looks for and the fix strategy used are illustrated in Fig. 9.

FIGURE 10. Causal dependencies and slicing operations (trace of
Figure 3.a).

We use several trace slicing operations illustrated in

Fig. 10, based on the causal dependencies that exist between

pairs of emission and reception events, and between all the

events that precede an emission event in a lifeline and the

VOLUME 8, 2020 167181

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

emission event itself (assuming the emission decision is taken

based on the events previously observed in the lifeline).

Procedure 6.4 (Generation of Coordination Time Con-

straints to Fix Race Conditions):

Input: test scenario described by a time-constrained inter-

action ι; set E of missing or erroneous events computed by

Procedure 6.2.

Output: set of candidate fixes found, where each candidate

fix is a set of time constraints to enforce the ordering between

a particular pair of events.

1) Take as candidate instances for e2 the events in E .

2) Take as candidate instances for e1 the events that imme-

diately precede e2 (without intermediate events from the

respective lifelines) in at least one valid trace t ∈ V , and

do not occur after e2 in any valid trace.

3) Take as candidate instances for e0 the closest common

ancestors of e1 and e2 in the valid traces t ∈ V in which

both occur (calculated as illustrated in Fig. 10).

4) Discard triples (e0, e1, e2) where e0 = e1 or the max-

imum duration from e0 to e1 is less than the minimum

duration from e0 to e2 (cases where e1 is guaranteed to

precede e2).

5) Inject upper time bounds between pairs of events in the

causal chain of events from e0 to e1 (bidirectional slice),

based on default values for the maximum transmission

time (between emission and reception events) and max-

imum reaction time (between an event in a lifeline and

a subsequent emission event).

6) Determine the maximum duration τ from e0 to e1 that

results from step 5, and inject a lower time bound τ+1

(wait time) in the chain of events from e0 to e2, between

an event in a lifeline and a subsequent emission event

(giving priority to emissions performed by actors as

close as possible to e0). If a time bound cannot be

injected, the triple (e0, e1, e2) is discarded.

7) Return the set of candidate fixes found, where each

candidate fix is a set of time constraints to enforce the

ordering between a pair (e1, e2) of events.

Regarding controllability problems caused by pairs of

mutually exclusive emission and reception events simultane-

ously enabled in a lifeline, we use a similar fix strategy: we

inject coordination time constraints that impose an ordering

between those events, based on their physical vertical location

in the sequence diagram (although such physical location

does not have a semantic meaning inside alt fragments,

it usually has an intuitive meaning for the user).

Procedure 6.5 (Generation of Coordination Time Con-

straints to Fix Pairs of Mutually Exclusive Reception and

Emission Events Simultaneously Enabled):

Input: test scenario described by a time-constrained inter-

action ι.

Output: set of candidate fixes found, where each candidate

fix is a set of time constraints to enforce the ordering between

a particular pair of events.

1) Find pairs of events e1 and e2 that: (i) occur in the same

lifeline, with e1 located before e2; (ii) are of different

types (send and receive); (iii) are mutually exclusive

(i.e., there is no valid trace in which both occur); and (iv)

may be simultaneously enabled (from the perspective of

their lifeline).

2) Perform step 3 as in Procedure 6.4, with the difference

that distinct traces t1 and t2 have to be considered for

e1 and e2, instead of a common trace t .

3) Perform steps 4, 5, 6 and 7 as in Procedure 6.4.

D. APPLICATION AND EVALUATION OF CANDIDATE FIXES

Procedure 6.6 (Application and Evaluation of Candidate

Fixes):

Input: test scenario described by a time-constrained inter-

action ι; set F of candidate fixes, where each candidate fix is

a single coordination message or a set of coordination time

constraints, as computed by Procedures 6.3, 6.4 and 6.5.

Output: a failure indication or a set of coordination mes-

sages and/or time constraints to enforce local controllability

and/or observability.

1) Search for single fix solutions, doing as follows for each

candidate fix f (message or constraint-set) in F :

a) apply the fix f (i.e., insert the message or

constraint-set in ι), obtaining a new interaction ι′;

b) determine the set V ′ of valid traces defined by ι′;

c) if the projections of V and V ′ onto the lifelines of ι do

not coincide (apart from coordination events and time

constraints), discard f ;

d) if the set U ′ of unintended and/or locally uncheckable

traces of ι′ is empty, return f ;

e) otherwise, if #U ′ (with coordination events removed)

is not smaller than #U , discard f ;

2) If a single fix solution was not found, search for multiple

fix solutions using a greedy heuristic as follows:

a) pick the candidate fixes in F that were not discarded,

and rank them by increasing values of #U ′ (with coor-

dination events removed), obtaining a new ordered set

F ′ of candidate fixes;

b) for each candidate fix f ∈ F ′, by the defined order,

insert f onto ι and execute recursively Procedure 6.6;

if a solution is found, return the inserted messages

and/or time constraints.

3) If no single or multiple fix solution was found, fail.

Because of being based on several heuristics, the presented

algorithm has several limitations. Although it was able to find

a solution ofminimum size in a few seconds or tenths of a sec-

ond in all test cases and case studies we experimented with,

it might be unable to find a solution when a solution exists,

or might produce a solution more complex than needed.

VII. IMPLEMENTATION

The algorithms described in this article were implemented

in the DCO Analyzer tool [13]. DCO Analyzer is an appli-

cation developed in Java [14] and VDM++ [15] to analyze

167182 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 11. DCO analyzer overview.

UML SDs representing distributed systems test scenarios. As

depicted in Fig. 11, the user can use any visual editor of UML

SDs (e.g. Papyrus1) and then upload the created diagrams to

DCO Analyzer.

Internally, DCO Analyzer comprises a front-end, devel-

oped in Java, and a back-end, developed in VDM++. The

front-end is responsible for receiving and parsing.uml files

describing UML SDs, verifying their conformance with the

UML metamodel [16], and converting them into the for-

mal representation expected by the back-end (VDM++ data

structures). It is also possible to directly provide a.vdmpp file

containing the VDM++ data structures; this may be useful

to overcome limitations of modeling tools.

The DCO Analyzer back-end is capable of analyzing the

following properties:

• Valid Traces: Set of valid global traces defined by the

given SD;

• Unintended Traces: Set of invalid global traces caused

by locally valid decisions (representing violations of

local controllability);

• Locally Uncheckable Traces: Set of invalid global

traces that cannot be verified locally (representing vio-

lations of local observability);

• Local Controllability: The diagram is locally control-

lable if there are no unintended traces;

• Local Observability: The diagram is locally observable

if there are no locally uncheckable traces;

• CoordinationMessages andCoordinationTimeCon-

straints: Set of coordination messages and/or time

constraints to enforce local controllability and/or local

observability.

In the back-end, we implemented all the algorithms and

auxiliary operations needed for local observability and con-

trollability analysis and enforcement in the VDM++ formal

specification language [15]. Specifications in VDM++ can be

directly executed with the Overture tool and translated to Java

code ready for execution and integration with other code.

1https://papyrusuml.wordpress.com

To test the implemented algorithms regarding correctness

and performance, we used several test scenarios coming from

a nation-wide project in the ambient-assisted living (AAL)

domain, plus additional test scenarios to maximize coverage.

In total, 30 test scenarios (test cases) were defined, covering a

variety of causes for locally observability and controllability

(see Section II). The complete test suite ran in approximately

10 seconds in an Intel Core i7 machine running Windows

10 Professional at 2.20GHz with 16GB RAM.

Fig. 12 shows an example of an input test scenario, drawn

with the Papyrus tool, for an online driving license renewal

system (greatly simplified for illustration purposes). Fig. 13

shows the output produced byDCOAnalyzer for this scenario

when all the analysis options are selected.

FIGURE 12. Initial SD in Papyrus.

FIGURE 13. DCO Analyzer output.

In the output, a set of traces is represented between {. . .},

a trace (sequence of events) is represented between [. . .], the

emission of a message m by a lifeline L is represented as

!m@L, and the reception of a message m at a lifeline L is

represented as ?m@L.

In this example, our tool was able to detect that the given

diagram is not locally controllable, indicating six unintended

traces. These unintended traces are related to the possibility

VOLUME 8, 2020 167183

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

of the electronic payment message (m3) being received by the

electronic payment service (L3) before the reference valida-

tion message (m2).

In order to help the user to make this diagram locally

controllable, our tool suggests adding a coordination message

(Ctrl1) between the Electronic Payment Service (L3) and the

Driver APP (L1), after m2 (suffix ‘‘Am2’’) and m1 (suffix

‘‘Am1’’), respectively. In practice, such message might repre-

sent a payment authorization confirmation message, thereby

ensuring that payment can only be made after the payment

reference has been validated.

With this suggestion, the user can then refine the SD as

shown in Fig. 14.

FIGURE 14. Refined SD in Papyrus.

The suggestion given by our tool can be used in several

ways:

• the suggested message is actually implemented in the

SUT, so the SD is just modified to include it (incomplete

specification);

• the SUT is redesigned to incorporate the suggested mes-

sage, and the SD is updated accordingly (design flaw);

• the system design is not changed, so the suggested

message is marked as a test coordination message to

be exchanged between the test components during test

execution (e.g., between a test monitor co-located with

L3 and a test driver co-located with L1).

Another example, illustrating a local observability prob-

lem, is shown in Fig. 15. This diagram represents the

login scenario of a mobile application, where the user, after

login, can receive pending notifications since the last time

the application was connected to the server. By analyz-

ing the diagram with our tool it is possible to determine

that local testers are unable to locally detect the execution

trace [!m1@L1, ?m1@L2, !m2@L2], which corresponds to

the case where the message m2 is sent but lost. Such loss will

not be detected as an error at L1 because not receiving m2

is also a valid behavior at L1. The solution to this problem

recommended by the DCO Analyzer is to place a coordina-

tion message between L1 and L2 upon receipt of m2 in L1.

FIGURE 15. Example of a scenario not locally observable.

Such message can be interpreted as an acknowledgment mes-

sage; if m2 is lost (or the acknowledgment message is lost),

then a problem will be detected at L2.

More complex SDs are also supported, namely SDs with

other control flow variants (alt and loop combined frag-

ments) and time constraints.

DCO Analyzer executable files, algorithms (described in

previous sections) implemented in VDM, and some test

scenarios in UML can be found at https://brunolima.info/

DCOANALYZER/.

VIII. CASE STUDY

In order to validate the algorithms in industrial scenarios we

conducted an evaluation experiment with real-world test sce-

narios from an industrial partner who is currently developing

a solution for automatic incident detection on motorways.

The goals of the evaluation are:

1) to check if our analysis tool is able to correctly identify

local controllability and/or local observability issues in

real-world test scenarios;

2) to check if the analysis is performed in an adequate time;

3) to check if the output results produced by the tool help

the users to understand the root causes of the detected

problems and refine the input test scenarios accordingly.

FIGURE 16. Traffic control system.

A. MOTORWAY INCIDENT DETECTION PROJECT

The project of our industrial partner (here described in a

simplified way for privacy reasons), illustrated in Fig. 16,

167184 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 17. Initial scenario and problem locations.

consists of the placement of sensors on the motorways that

interact with each other and are able (among other features)

to detect incidents automatically.

When the system detects a possible incident, a message is

automatically presented to the drivers through the Dynamic

Message Sign (DMS), so that they can reduce the speed

and thus reduce the possibility of a chain collision. On the

other hand, the system also automatically informs the Oper-

ational Coordination Center (OCC) operators so that they

can validate the occurrence and trigger the help assistance if

necessary.

B. TEST SCENARIO

We asked our partner to describe the system interactions

(including temporal constraints) using UML SDs. Fig. 17

shows one of the scenarios that was provided.

The scenario involves 3 alternatives. In the first case,

a vehicle circulating on the motorway is detected by sensors

A and B, situated 1 km apart, in a time interval between 24 s

and 72 s (indicating that the vehicle circulates at a speed

between 50 and 150 kmh−1). In this case, the system does

not need to take any action. In the second case, the vehicle

is detected by the sensors A and B in a time interval less

then 23 s, which corresponds to a speed above 150 kmh−1.

In this case, the system sends a speed alert to the Traffic

Management Controller (TMC). In the last case, a vehicle is

detected by sensor A but is not detected by sensor B in the

next 72 s, meaning that something may have occurred with

the vehicle and it may be immobilized on the road. In this

case, the system informs the TMC that automatically sends a

message to be presented to the other drivers through the DMS

and informs the OCC. In the OCC the operator visualizes the

alert and can optionally cancel the alert which is done through

the TMC that removes the message from the DMS.

C. SCENARIO ANALYSIS - LOCAL CONTROLLABILITY

We analyzed the local controllability of the previous test

scenario (Fig. 17) with our tool, which took 1.1 s to run in

the machine previously described and reported 3 unintended

tc-traces (with lifeline indicated only when needed to disam-

biguate):

1) [!id_signal, ?id_signal@A, !notify_id , !id_signal,

?id_signal@B, ?notify_id , . . .], with τ4 − τ1 ≤ 72;

2) [!id_signal, ?id_signal@A, !id_signal, ?id_signal@B,

!notify_id , ?notify_id , . . .], with τ3 − τ1 ≤ 72;

3) [!id_signal, ?id_signal@A, !notify_id , ?notify_id ,

!notify_traffic_alert , . . . , ?warning_msg_off , ?warning_

msg_on], with τ5 − τ1 ≥ 73.

These 3 tc-traces correspond to the following 2 problems,

both related with race conditions:

1) Unexpected reception of id_signal at sensor B before

reception of notify_id (unintended traces 1 and 2).

As delays can occur in the transmission of the notify_id

message between sensor A and sensor B, the message

notify_id may arrive at sensor B before the message

id_signal. As a consequence, the system may be unable

VOLUME 8, 2020 167185

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

to use the sensor data or may incorrectly conclude that

a vehicle is moving against the flow of traffic; this

suggests a design flaw or an incomplete specification.

2) Unexpected late reception of warning_msg_on at DMS

after reception of warning_msg_off (unintended trace

3). As delays can occur in the transmission of the

warning_msg_on message between TMC and DMS,

the message warning_message_off may arrive at DMS

before the message warning_message_on. This case

shows that in some situations an alert message can

remain visible in theDMS even after it has been removed

by the operator, thereby transmitting erroneous informa-

tion to the drivers.

D. SCENARIO ANALYSIS - LOCAL OBSERVABILITY

We also analyzed the local observability of the previous test

scenario with our tool, which took 1.3 s to run in the machine

previously described and reported 22 locally uncheckable tc-

traces:

1) [!id_signal, ?id_signal@A, !notify_id , ?notify_id ,

!id_signal, ?id_signal@B, !notify_speed_alert], with

τ5−τ1 ≤ 72∧τ6−τ4 ≤ 23 (message notify_speed_alert

lost);

. . .

22) [!id_signal, ?id_signal@A, !notify_id , ?notify_id ,

!notify_traffic_alert , . . . , !warning_msg_off], with τ5 −

τ4 ≥ 73 (message warning_message_off lost).

After close inspection, we conclude that all the uncheck-

able tc-traces are due to the presence of the following

6 optional asynchronous messages without corresponding

acknowledgment messages:

• notify_speed_alert;

• notify_traffic_alert from SensorB to TMC ;

• warning_message_on;

• notify_traffic_alert from TMC to OCC ;

• message_cancel;

• warning_message_off .

As explained in Section II, if any of these messages is lost,

the problem will go undetected by the target lifeline, because

not receiving a message is also a locally valid behavior. The

solution recommended by our tool to enforce local observ-

ability consists of the addition of 6 corresponding acknowl-

edgment (coordination) messages.

However, in discussion with our partner, considering the

solution architecture and technologies, the possibility of such

messages being lost was deemed negligible, and the insertion

of acknowledgment messages was not considered a priority,

so we focused only on fixing the local controllability issues

as explained in the next section.

E. SCENARIO REFINEMENT

In discussion with our industrial partner, we concluded that

a maximum delay of 1 s could be assumed for all internal

actions in the system (message emission after some observed

events, and message transmission between lifelines). Hence,

we ran our tool again asking for recommendations of coor-

dination time constraints and/or coordination messages to

enforce controllability, using the 1s upper bound for system

transmission and reaction time where needed (these bound

are currently configured in a configuration file).

The tool recommended the addition of 3 upper time bounds

and 2 lower time bounds as indicated in red in Fig. 18, solving

both controllability problems. The analysis took 1.8 s to run

in the machine previously described.

Our partner accepted the suggestions, but opted to fur-

ther refine the test scenario as indicated by the solid arrows

in Fig. 18. Considering that a maximum car speed of

450 kmh−1 could be safely assumed, the minimum time for

a car to travel between sensors A and B was changed from

3 to 8 s. Our partner also decided to redesign the operator user

interface, so that traffic alert messages can only be canceled

after 5 s; hence, the minimum operator response time was

changed from 2 to 5 s.

Other test scenarios from the same project were also ana-

lyzed and refined successfully using the same procedure.

Those scenarios are related to other traffic anomalies that

can be detected and notified using the same road infrastruc-

ture (see Fig. 16), namely:

• cars that reverse direction after passing the first sensor

(A), causing the sensor activation sequence A-A;

• cars that move against the flow of traffic, causing an acti-

vation of sensor B without a prior activation of sensor A.

Those scenarios differ from the scenario in Fig. 17 in the

initial sensor activation sequence, but share a similar traf-

fic alert notification sequence, and present similar types of

observability and controllability problems.

F. DISCUSSION

Regarding the goals of the experiment, we conclude that:

1) our tool was able to correctly identify relevant local con-

trollability issues in real-world test scenarios, including

issues that escaped manual inspection;

2) the analysis was performed quickly by the tool (in a few

seconds);

3) the outputs produced by the tool helped in understanding

and fixing the root causes of the detected problems (in

this case, incomplete specifications or system design

flaws).

G. THREATS TO VALIDITY

Our experiments have several validity threats. First, our val-

idation examples may not cover all possible real-world sce-

narios. In order to reduce this possibility, in addition to the

scenarios provided by our industrial partner, we also tested

fictitious scenarios with all UML combined fragments. Sec-

ond, themanual interpretation of the error messages produced

by our solution can only mean that people with some experi-

ence in modeling can understand the errors in more complex

scenarios. In order to better understand this phenomenon we

asked our industrial partner to analyze the results produced by

167186 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 18. Refined locally controllable scenario (automatic refinement in red, followed by manual refinement indicated
with solid arrows).

our tool; this analysis was performed by people with different

modeling experiences. The results showed that although there

is a better perception from more experienced professionals,

the less experienced ones can also understand the problems

that have been detected.

IX. RELATED WORK

A. MODEL-BASED TESTING

Model-based testing (MBT) techniques and tools promote

the effectiveness and efficiency of the test process, by means

of the automatic generation of executable test cases from

behavioral models of the system under test (SUT) [17].

MBT can be performed offline, with separate test gener-

ation and execution phases [18], or online, with intermixed

phases [17], [19], [20]. The latter is the preferred approach if

the SUT is non-deterministic, because the test generator can

see which path the SUT has taken, and follow the same path

in the model [21].

Regarding the input models, one can distinguish

state-based approaches, in which UML state machines [22] or

similar models [23], [24] are used for describing all possible

behaviors of the SUT or its components, and scenario-based

approaches, in which UML SDs [25], message sequence

charts (MSC) [26] or similar models [27] are used for

describing interactions between the system components or

with the environment in key scenarios, minimizing test case

explosion [28].

However, few works address the challenges of MBT for

distributed systems, and the works found are mostly focused

on system testing and not integration testing.

B. OBSERVABILITY AND CONTROLLABILITY IN

DISTRIBUTED SYSTEMS TESTING

One difficulty in distributed systems testing is observabil-

ity, because communication delays and the lack of a global

clock limit the conformance faults detectable. Three test

architectures have been proposed, with different conformance

relations and fault detection capabilities: a purely distributed

test architecture with independent local testers communicat-

ing synchronously with the SUT components [29]; a purely

centralized test architecture, in which a single central tester

interacts asynchronously with the SUT components [30]; a

hybrid test architecture that combines local testers and a cen-

tral tester to achieve a higher fault detection capability [30].

Under the hybrid approach of [30], the central tester is

responsible for deciding and sending test inputs to the SUT

components, and local testers are responsible for observing

the events (inputs and outputs) at each location; the SUT

outputs are observed by the local testers and sent to the central

tester. This way, the local testers are able to detect confor-

mance faults associated with an incorrect combination or an

incorrect ordering of events occurring in the same location,

whilst the central tester is able to detect conformance faults

associated with an incorrect combination of events or an

incorrect ordering of pairs of input and output events occur-

ring at different locations (e.g., an SUT output that is pre-

maturely produced at one location before an input is injected

at another location). In our approach, we further decentralize

test input generation and injection, minimizing the messages

exchanged between the test components during test execution

and increasing the responsiveness of the test harness, whilst

VOLUME 8, 2020 167187

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

keeping the same fault detection capability. Another differ-

ence in our work is that we check not only the interactions

with the environment (system testing perspective), as in those

works, but also the interactions between the system com-

ponents (integration testing perspective), as well as timing

constraints.

Another difficulty in distributed systems testing is con-

trollability, i.e., the difficulty for the local testers to decide

when and what test inputs to inject, without causing global

conformance faults (e.g., in the presence of race conditions

or non-local choices). Solutions proposed in the literature are

based on the insertion of coordination messages between test

components [8], [12], [31], but they do not handle timing

constraints and, in most of the cases, they address only the

‘‘when’’ and not the ‘‘what’’ aspect (i.e., they don’t consider

control flow variants).

In [8], the author discusses the problems related to

race conditions in scenarios described through MSCs or

UML SDs, and presents solutions to these problems.

The focus of their work is on analyzing scenario-based

requirements specifications, but such scenarios can also be

used for testing purposes. However, only basic scenarios

are considered, without control flow variants and timing

constraints.

In [12], the author investigates the use of coordination

messages to overcome controllability problems when testing

from an input/output transition system (IOTS) and give an

algorithm for introducing sufficient messages. The algorithm

operates by identifying all of the controllability problems,

and then resolving these one at a time. The author also

characterizes the types of controllability problems that cannot

be solved this way, and introduces the notion of strongly

uncontrollable test cases. The author also proves that the

problem of minimizing the number of coordination messages

used is NP-hard. However, the approach is focused on system

testing only and not integration testing, i.e., the messages

exchanged between the system components are not consid-

ered (the observation of these messages by the local testers

may reduce the need for introducing coordination messages).

Other differences with our work are that they do not consider

timing constraints, and assume that test inputs are determin-

istic (which we do not require).

In [31], the authors propose algorithms to extend test sce-

narios for distributed systems represented by MSCs or UML

SDs, in order to obtain race-free scenarios suitable for test

implementation, by inserting coordination messages between

test components and quiescence observation events (based on

timeout events) in each test component. However, in their

work, only the interactions with the environment are mod-

eled, and they do not consider control flow variants and time

constraints.

A common limitation of the above works (except [8])

is that they only consider the messages exchanged with

the environment (system testing perspective), represented

by a single input or output event, and not the messages

exchanged between the system components (integration test-

ing perspective), that need to be represented by pairs of send

and receive events.

More recently, observability and controllability in the con-

text of integration testing of distributed systems based on

UML SDs were analyzed in [10]. In order to be able to check

not only the interactions with the environment but also the

interactions between the system components during integra-

tion testing, local testers are deployed close to the system

components, coordinated by a central tester. They introduce

the notions of local observability and local controllability, and

present procedures to check if a given test scenario (repre-

sented by a UML SD) is locally observable and/or locally

controllable. However, they did not take time constraints into

consideration and do not provide procedures to enforce local

observability and local controllability, as we do here. The

handling of time constraints greatly complicates the analysis

and enforcement procedures, because of the need to work

with time-constrained traces instead of plain (untimed) traces.

Even if not specified explicitly in the provided test scenarios,

time constraints play an important role for test coordination

in distributed testing, as shown in this article.

C. OTHER TESTABILITY ISSUES IN DISTRIBUTED

SYSTEMS TESTING

When testing a distributed system, it is sometimes neces-

sary to test a running/deployed system (runtime validation),

the additional challenge being that testing should not interfere

with system use. In runtime validation, a component of a

system is said to be testable if it has a separate test interface

whose use reduces the potential for interference. Isolation

methods have been proposed for components that are not

testable. There is a line of work in which approaches to run-

time validation have been developed using Testing and Test

Control Notation Language Version 3 (TTCN-3) in order to

enhance applicability [32]. The proposed approach (TT4RT)

includes a test management layer and a test isolation layer.

A further development aimed to optimise the placement of

test components that interact with system components, with

this taking into account resource availability and network

connectivity [33]. It has also been noted that a system might

have some components that are testable and some that are not,

with a procedure being proposed to choose the appropriate

test isolation approaches [34]. The focus of this line of work

is on the execution of abstract test cases that have already

been provided, and it does not address coordination issues.

However, there is potential for runtime validation approaches

to be integrated with techniques, such as those described in

this article, that analyse test case and address coordination

problems where they exist.

D. TIME CONSTRAINTS IN DISTRIBUTED

SYSTEMS TESTING

The temporal dimension is addressed in several works, but

very few refer to distributed systems testing.

167188 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

TABLE 1. Summary of comparison of related works in distributed systems testing and analysis and our work (*).

In [35], the authors derive the valid traces for Timed Mes-

sage Sequence Charts (T-MSCs), similar to UML SDs, but

do not address the problem of conformance checking based

on distributed observations. Timed traces are represented by

incorporating special time events between normal events.

In [36], the authors present a timed model of communicat-

ing finite-state machines, which communicate by exchanging

messages through channels and use event clocks to gen-

erate collections of T-MSCs. In a more recent work [37],

the authors addressmodel checkingmessage-passing systems

with real-time requirements. As behavioral specifications,

they use TC-MSCs (time-constrained MSCs), in which lower

and upper bounds on the time interval between certain pairs of

events are added to plain MSCs. As system model, they use a

network of communicating finite state machines with local

clocks, whose global behavior can be regarded as a timed

automaton. Their goal is to verify (by model checking) that

all timed behaviors exhibited by the system model conform

to the timing constraints imposed by the specification, and

not to check the conformity of the implementation with the

specification or system model.

In [38], the authors derive conformance relations taking

into account the event timestamps obtained with the local

clocks present at each system port (point of interaction with

the environment), assumed to differ up to a maximum clock

skew, but only for system testing.

In [39], the authors show that conformance checking in the

presence of time constraints, within a distributed test archi-

tecture without a global clock, can be done in two phases:

in the first phase, each local tester checks local conformance

according to the tioco conformance relation; in the second

phase, the local traces are brought together and it is checked if

events are exchanged following some communication rules.

Their results do not apply directly to UML SDs [7], since

they assume internal multicast communications, among other

differences.

In [40], the authors present criteria and decision procedures

to check the conformance of observed execution traces (based

on distributed observations) against the specification, in the

context of integration testing of distributed systems based on

UML SDs enriched with time constraints.

However, none of the above works address the observabil-

ity and controllability properties, as we do in this article.

The only previous work we found that relates the issue of

observability and controllability to time constraints is [41].

In this article, the author demonstrates how to solve the prob-

lems of observability and controllability using coordination

messages and time constraints. However, they do not support

timing constraints or non-determinism in the input models,

only consider interactions with the environment, and restrict

their attention to SUT behaviors consisting of alternating

sequences of inputs from the environment and outputs to the

environment. In a more recent work [42], the authors propose

to solve controllability problems using so called synchroniza-

tion messages, for the same type of input models, but do not

support timing constraints either in the input model.

E. SUMMARY

Table 1 summarizes themain characteristics and features cov-

ered by the related works previously analyzed, in comparison

with our work. Although some works address observability

and controllability problems in distributed systems testing

and design, none addresses the problem of observability and

controllability analysis and enforcement for time-constrained

distributed systems, as we do in this article. We believe this

is a key contribution to help solving the test coordination

problem in distributed testing with time constraints.

X. CONCLUSION AND FUTURE WORK

Given the growing importance of distributed systems testing,

and the benefits of distributed conformance checking and

test input selection in the scenario-based integration testing

of distributed systems, particularly in the presence of time

constraints and non-determinism, we presented in this article

an approach to assess if test scenarios are ready for distributed

execution, and, if not, refine them to become test ready with

minimal overhead.

Our approach is based on the notions of local (or dis-

tributed) observability and controllability, that is, the ability

to perform conformance checking (observability) and test

input selection (controllability) in a purely distributed way,

without exchanging coordination messages between the test

VOLUME 8, 2020 167189

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

components during test execution or overlooking confor-

mance faults or causing incorrect test inputs.

Local observability and controllability are checked in a

constructive way (pinpointing violations) by analyzing the set

of valid time-constrained traces defined by a time-constrained

test scenario under consideration. Local observability is

determined based on operators introduced in the paper for

manipulating time-constrained traces (join, project and dif-

ference). Local controllability is determined based on a

symbolic simulated execution algorithm. If needed, local

observability and/or local controllability are enforced by the

addition of coordination messages and/or coordination time

constraints, that are determined based on heuristic search.

All the algorithms were implemented in the DCO Ana-

lyzer tool, for test scenarios specified by means of UML

sequence diagrams. To validate the algorithms and the tool

in an industrial setting, we conducted an evaluation experi-

ment with real-world test scenarios from an industrial partner.

In that experiment, our tool was able to correctly identify

local observability and controllability issues and recommend

possible fixes; the outputs reported helped the users to under-

stand and fix the root causes of the detected problems.

As future work, we intend to integrate DCO Analyzer as a

static analysis tool in a full-fledged toolset for model-based

distributed systems testing, and conduct further experiments

in industrial settings.

REFERENCES

[1] B. Boehm, ‘‘Some future software engineering opportunities and chal-

lenges,’’ in The Future of Software Engineering. Cham, Switzerland:

Springer, 2011, pp. 1–32.

[2] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Soft-

ware Testing, vol. 7007, Nat. Inst. Standards Technol., RTI Project 011,

2002.

[3] F.-Z. Moutai, S. Hsaini, S. Azzouzi, and M. E. Hassan Charaf, ‘‘Testing

distributed cloud: A case study,’’ in Proc. Int. Symp. Adv. Electr. Commun.

Technol. (ISAECT), Nov. 2019, pp. 1–5.

[4] H. Kim, A. Ahmad, J. Hwang, H. Baqa, F. Le Gall, M. A. R. Ortega, and

J. Song, ‘‘IoT-TaaS: Towards a prospective IoT testing framework,’’ IEEE

Access, vol. 6, pp. 15480–15493, 2018.

[5] J. Hwang, A. Aziz, N. Sung, A. Ahmad, F. Le Gall, and J. Song,

‘‘AUTOCON-IoT: Automated and scalable online conformance testing for

IoT applications,’’ IEEE Access, vol. 8, pp. 43111–43121, 2020.

[6] B. Lima and J. P. Faria, ‘‘Automated testing of distributed and heteroge-

neous systems based on uml sequence diagrams,’’ in Proc. 10th Int. Joint

Conf. Softw. Technol. (ICSOFT). Cham, Switzerland: Springer, Jul. 2015,

pp. 380–396.

[7] OMG Unified Modeling Language TM (OMG UML) Version 2.5, Object

Management Group, Needham, MA, USA, 2015.

[8] B. Mitchell, ‘‘Resolving race conditions in asynchronous partial order

scenarios,’’ IEEE Trans. Softw. Eng., vol. 31, no. 9, pp. 767–784,

Sep. 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to

Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[10] B. M. C. Lima and J. C. P. Faria, ‘‘Towards decentralized conformance

checking in model-based testing of distributed systems,’’ inProc. IEEE Int.

Conf. Softw. Test., Verification Validation Workshops (ICSTW), Mar. 2017,

pp. 356–365.

[11] D. L. Mills, ‘‘Internet time synchronization: The network time

protocol,’’ IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493,

Oct. 1991.

[12] R.M.Hierons, ‘‘Overcoming controllability problems in distributed testing

from an input output transition system,’’ Distrib. Comput., vol. 25, no. 1,

pp. 63–81, Mar. 2012.

[13] B. Lima and J. P. Faria, ‘‘DCO Analyzer: Local controllability and observ-

ability analysis and enforcement of distributed test scenarios,’’ in Proc.

42nd Int. Conf. Softw. Eng. Companion (ICSE). New York, NY, USA:

ACM, 2020, pp. 1–4.

[14] Oracle. (Dec. 2019) Java SE 12. [Online]. Available:

https://www.oracle.com/technetwork/java/javase/overview/index.html

[15] E. Durr and J. van Katwijk, ‘‘VDM++, a formal specification language

for object-oriented designs,’’ in Proc. Comput. Syst. Softw. Eng., 1992,

pp. 214–219.

[16] OMG Unified Modeling Language TM (OMG UML) Version 2.5.1, Object

Management Group, Needham, MA, USA, 2017.

[17] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools

Approach. San Mateo, CA, USA: Morgan Kaufmann, 2010.

[18] S. Schulz, J. Honkola, and A. Huima, ‘‘Towards model-based testing with

architecture models,’’ in Proc. 14th Annu. IEEE Int. Conf. Workshops Eng.

Comput.-Based Syst. (ECBS), Mar. 2007, pp. 495–502.

[19] M. Mikucionis, K. G. Larsen, and B. Nielsen, ‘‘T-uppaal: Online model-

based testing of real-time systems,’’ in Proc. 19th Int. Conf. Automated

Softw. Eng., 2004, pp. 396–397.

[20] K. Chen, J. Lv, J. Huang, H. Guo, S. Su, and T. Tang, ‘‘Online conformance

testing of CBTC on-board ATO functions based on UPPAAL-TRON

framework,’’ in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019,

pp. 3334–3339.

[21] M. Utting, A. Pretschner, and B. Legeard, ‘‘A taxonomy of model-

based testing approaches,’’ Softw. Test., Verification Rel., vol. 22, no. 5,

pp. 297–312, Aug. 2012.

[22] J. Lilius and I. P. Paltor, ‘‘Formalising UML state machines for model

checking,’’ in Proc. Int. Conf. Unified Modeling Lang. Cham, Switzerland:

Springer, 1999, pp. 430–444.

[23] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and

L. Nachmanson, ‘‘Model-based testing of object-oriented reactive systems

with spec explorer,’’ in Formal Methods and Testing. Cham, Switzerland:

Springer, 2008, pp. 39–76.

[24] Q. Tani and A. Petrenko, ‘‘Input/output automata’’ in Proc. Test. Commun.

Syst. IFIP TC6 11th Int. Workshop Test. Commun. Syst. (IWTCS), vol. 3.

Tomsk, Russia: Springer, Aug./Sep. 1998, p. 83.

[25] A. Z. Javed, P. A. Strooper, and G. N. Watson, ‘‘Automated generation of

test cases using model-driven architecture,’’ in Proc. 2nd Int. Workshop

Autom. Softw. Test (AST), May 2007, p. 3.

[26] W. Damm and D. Harel, ‘‘LSCs: Breathing life into message sequence

charts,’’ Formal Methods Syst. Des., vol. 19, no. 1, pp. 45–80, 2001.

[27] W. Grieskamp, ‘‘Multi-paradigmatic model-based testing,’’ in For-

mal Approaches to Software Testing and Runtime Verification. Cham,

Switzerland: Springer, 2006, pp. 1–19.

[28] W. Grieskamp, ‘‘Multi-paradigmatic model-based testing,’’ in Proc. 1st

Combined Int. Workshops Formal Approaches Softw. Test. Runtime Veri-

fication (FATES). Berlin, Germany: Springer, Aug. 2006, pp. 1–19.

[29] A. Ulrich and H. König, ‘‘Architectures for testing distributed systems,’’

in Testing of Communicating Systems (The International Federation for

Information Processing), vol. 21, G. Csopaki, S. Dibuz, and K. Tarnay,

Eds. Cham, Switzerland: Springer, 1999, pp. 93–108.

[30] R. M. Hierons, ‘‘Combining centralised and distributed testing,’’ ACM

Trans. Softw. Eng. Methodology, vol. 24, no. 1, pp. 5:1–5:29, Oct. 2014.

[31] S. Boroday, A. Petrenko, and A. Ulrich, ‘‘Implementing MSC tests with

quiescence observation,’’ in Proc. 21st IFIP WG 6.1 Int. Conf. Test.

Softw. Commun. Syst. 9th Int. FATES Workshop. Berlin, Heidelberg:

Springer-Verlag, 2009, pp. 49–65.

[32] M. Lahami, F. Fakhfakh, M. Krichen, and M. Jmaiel, ‘‘Towards a TTCN-3

test system for runtime testing of adaptable and distributed systems,’’ in

Proc. 24th IFIP WG 6.1 Int. Conf. Test. Softw. Syst. (ICTSS), in Lecture

Notes in Computer Science, vol. 7641, B. Nielsen and C. Weise, Eds.

Cham, Switzerland: Springer, 2012, pp. 71–86.

[33] M. Lahami, M. Krichen, M. Bouchakwa, and M. Jmaiel, ‘‘Using knapsack

problem model to design a resource aware test architecture for adaptable

and distributed systems,’’ in 24th IFIP WG 6.1 International Conference

on Testing Software and Systems (ICTSS 2012), ser. Lecture Notes in

Computer Science, B. Nielsen and C. Weise, Eds., vol. 7641. Springer,

2012, pp. 103–118.

[34] M. Lahami and M. Krichen, ‘‘Test isolation policy for safe runtime val-

idation of evolvable software systems,’’ in Proc. Workshops Enabling

Technol., Infrastruct. Collaborative Enterprises, S. Reddy and M. Jmaiel,

Eds., Jun. 2013, pp. 377–382.

[35] T. Zheng, F. Khendek, and L. Helouët, ‘‘A semantics for timed MSC,’’

Electron. Notes Theor. Comput. Sci., vol. 65, no. 7, pp. 85–99, May 2002.

167190 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

[36] S. Akshay, B. Bollig, and P. Gastin, ‘‘Automata and logics for timed

message sequence charts,’’ in Int. Conf. Found. Softw. Technol. Theor.

Comput. Sci. Cham, Switzerland: Springer, 2007, pp. 290–302.

[37] S. Akshay, P. Gastin, M. Mukund, and K. Narayan Kumar, ‘‘Checking

conformance for time-constrained scenario-based specifications,’’ Theor.

Comput. Sci., vol. 594, pp. 24–43, Aug. 2015.

[38] R. M. Hierons, M. G. Merayo, and M. Núnez, ‘‘Using time to add order to

distributed testing,’’ in Proc. Int. Symp. Formal Methods. Cham, Switzer-

land: Springer, 2012, pp. 232–246.

[39] C. Gaston, R. M. Hierons, and P. Le Gall, ‘‘An imple-

mentation relation and test framework for timed distributed

systems,’’ in Proc. IFIP Int. Conf. Test. Softw. Syst. Cham,

Switzerland: Springer, 2013, pp. 82–97.

[40] B. Lima and J. Faria, ‘‘Conformance checking in integration testing of

time-constrained distributed systems based on UML sequence diagrams,’’

in Proc. 12th Int. Conf. Softw. Technol., 2017, pp. 459–466.

[41] A. Khoumsi, ‘‘A temporal approach for testing distributed systems,’’ IEEE

Trans. Softw. Eng., vol. 28, no. 11, pp. 1085–1103, Nov. 2002.

[42] S. Azzouzi, S. Hsaini, and M. E. H. Charaf, ‘‘A synchronized test control

execution model of distributed systems,’’ Int. J. Grid High Perform. Com-

put., vol. 12, no. 1, pp. 1–17, Jan. 2020.

BRUNO LIMA (Student Member, IEEE) received

the master’s degree in informatics and computing

engineering from the Faculty of Engineering of

the University of Porto (FEUP), in 2014, where

he is currently pursuing the Ph.D. degree with the

Department of Informatics Engineering. He con-

ducted a master’s thesis on component testing and

certification for an ambient assisted living ecosys-

tem, as a member of the AAL4ALL Research

Team, INESC TEC. He is currently an Assistant

Lecturer with the Department of Informatics Engineering, FEUP. He is also

a Researcher with INESC TEC, where he participates in research projects in

the area of e-health and software engineering. His research interests include

software engineering, certification, and software testing, particularly in the

scope of e-health and ambient assisted living systems.

JOÃO PASCOAL FARIA (Member, IEEE)

received the Ph.D. degree in electrical and com-

puter engineering from the Faculty of Engineer-

ing of the University of Porto (FEUP), in 1999.

He is currently an Associate Professor with FEUP,

a Senior Researcher with the Institute for Sys-

tems and Computer Engineering, Technology and

Science (INESC TEC), and the President of the

Sectorial Commission for Information and Com-

munications Technology (CS/03) in the scope of

the Portuguese Quality Institute (IPQ). He has more than 25 years of research

and development experience in software engineering, having published more

than 60 papers in several journals and conferences, and obtained four Best

Paper Awards. His current research interests include model-based testing,

software process improvement, and model-driven development. He is a

member of ACM.

ROBERT HIERONS (Senior Member, IEEE)

received the B.A. degree in mathematics from

the Trinity College, Cambridge, and the Ph.D.

degree in computer science from Brunel Univer-

sity. He then joined the Department of Mathemati-

cal and Computing Sciences, Goldsmiths College,

University of London, before returning to Brunel

University, in 2000. He was promoted to a Full

Professor in 2003 and joined The University of

Sheffield, in 2018.

VOLUME 8, 2020 167191

