
This is a repository copy of Crossflow:A framework for distributed mining of software 
repositories.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164779/

Version: Accepted Version

Proceedings Paper:
Kolovos, Dimitris orcid.org/0000-0002-1724-6563, Neubauer, Patrick orcid.org/0000-0002-
9811-4772, Barmpis, Konstantinos et al. (2 more authors) (2019) Crossflow:A framework 
for distributed mining of software repositories. In: Proceedings - 2019 IEEE/ACM 16th 
International Conference on Mining Software Repositories, MSR 2019. 16th IEEE/ACM 
International Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019 
IEEE International Working Conference on Mining Software Repositories . IEEE Computer
Society , CAN , pp. 155-159. 

https://doi.org/10.1109/MSR.2019.00032

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



CROSSFLOW: A Framework for Distributed
Mining of Software Repositories

Dimitris Kolovos∗, Patrick Neubauer∗, Konstantinos Barmpis∗, Nicholas Matragkas∗, Richard Paige∗†

†Department of Computing and Software, McMaster University, Canada
∗Department of Computer Science, University of York, United Kingdom

{firstname.lastname}@york.ac.uk

Abstract—Large-scale software repository mining typically
requires substantial storage and computational resources, and
often involves a large number of calls to (rate-limited) APIs such
as those of GitHub and StackOverflow. This creates a growing
need for distributed execution of repository mining programs to
which remote collaborators can contribute computational and
storage resources, as well as API quotas (ideally without sharing
API access tokens or credentials). In this paper we introduce
CROSSFLOW, a novel framework for building distributed repos-
itory mining programs. We demonstrate how CROSSFLOW can
delegate mining jobs to remote workers and cache their results,
and how workers can implement advanced behaviour such as
load balancing and rejecting jobs they cannot perform (e.g. due
to lack of space, credentials for a specific API).

Index Terms—Open source software, Public domain software,
Data collection, Data integration, Data analysis, Pipeline pro-
cessing, Data flow computing, Software engineering, Client-
server systems, Computer aided software engineering, Modeling,
Scalability, Distributed processing.

I. INTRODUCTION

In [1], we set out to assess the “popularity” of 22 different

model-driven engineering technologies by measuring their use

in open-source GitHub repositories. To achieve this we started

by querying GitHub for files with relevant extensions and

keywords. To expand our search and retrieve as many files

as possible, we collected all repositories of the files returned

by the first round of searches (1,900+ repositories overall), and

we then queried every repository again (through the GitHub

API) for files of all technologies of interest. This step alone

required 22×1, 900 GitHub API calls, which vastly exceeded

the 5,000 calls rate limit per hour imposed by GitHub. Given

that our team comprised several collaborators, one way around

this limit would have been for each collaborator to generate

a GitHub OAuth personal access token and to then collect

these tokens in one machine and rotate among them. As not

everyone felt comfortable with this option, we decided to use

one GitHub account and make our data collection program

wait for the API rate limit to be replenished, which led to an

overall execution time of more than 8 hours.

This experience motivated us to investigate approaches for

distributed execution of software repository mining programs

that would allow remote collaborators to contribute their API

call allowances and computational resources, without having

to share credentials or pre-authorised OAuth keys. This work

resulted in the development of CROSSFLOW, a Java-based

framework for development and distributed execution of multi-

step software repository mining programs (workflows). Before

resorting to implementing a new distributed execution frame-

work, we attempted to build on top of existing frameworks

such as Apache Spark and Flink, but they were not able to

accommodate our locality scheduling requirements, discussed

in Section II-F, and do not provide sufficiently fine-grained

job-result caching facilities.

The rest of the paper is organised as follows. Section II,

presents the architecture of CROSSFLOW, the domain-specific

language it uses for specifying software repository mining

workflows, as well as key features such as caching and locality

scheduling. Section III presents related work and section IV

concludes the paper and discusses directions for future work.

II. CROSSFLOW

CROSSFLOW is a novel distributed data processing frame-

work tailored to the needs of collaborative repository mining.

CROSSFLOW supports distributing tasks of multi-step reposi-

tory mining programs, which we call workflows in the remain-

der of the paper, over multiple computing nodes (workers),

which communicate through, and are orchestrated by, a master

node using messaging middleware (Apache ActiveMQ [2] in

our current implementation). We explain the building blocks

and facilities of CROSSFLOW through a running example.

In this example we wish to discover the degree to which

different technologies (e.g. programming languages, tools) are

used together in the same GitHub repositories. For instance,

we wish to discover if projects using the Eclipse Graphical

Modelling Framework (GMF)1 are more likely to also use the

ATL [3] or the QVTo2 model transformation languages. One

way to achieve this is to:

• Record information about the technologies of interest in

a structured format. For example, the CSV file (technolo-

gies.csv) in Table I, captures a known file extension and

keyword for each technology of interest;

• Query GitHub to find repositories containing files of

interest for each technology (the GitHub search API

returns the details of up to 1000 files for each search);

• Clone the repositories of all collected files and search the

local clones for files of all technologies of interest;

• Compute a co-occurrence matrix like the one in Table II.

1https://www.eclipse.org/gmf-tooling/
2https://projects.eclipse.org/projects/modeling.mmt.qvt-oml



Technology Extension Keyword

GMF .gmfgraph figure

ATL .atl rule

QVTo .qvto transformation

TABLE I: Technologies with file extensions and keywords

GMF ATL QVTo

GMF 16 25

ATL 16 7

QVTo 25 7

TABLE II: Technology co-occurrence matrix

A. Architecture

As illustrated in Figure 1, CROSSFLOW provides a purpose-

built domain-specific language for modelling repository min-

ing workflows, and a code generator that produces implemen-

tation scaffolding in Java, which depends on a reusable runtime

library. While a CROSSFLOW model specifies the sources,

tasks, streams and sinks of a workflow, how they are wired,

and where tasks are executed (in all workers vs. only in the

master node) it does not capture the behaviour of the mod-

elled sources, tasks and sinks. This is expressed using hand-

written Java code embedded in the generated scaffolding. Once

the desirable behaviour has been implemented, the compiled

workflow-specific code and the reusable core runtime library

are bundled in a self-contained runable JAR file, which is

executed on the nodes participating in the execution of the

workflow. The following sections discuss the components of

the CROSSFLOW architecture in detail.

B. CROSSFLOW DSL

The CROSSFLOW DSL has been implemented on top of

the Eclipse Modelling Framework and its abstract syntax

(metamodel) is illustrated in Figure 2. We explain its building

blocks using a model (cf. Figure 3) of our running example.

Sources feed the workflow with jobs based on user input. In

our example, TechnologySource reads a comma-separated file

structured like Table I, producing Technology jobs, consisting

Fig. 1: CROSSFLOW Architecture

Fig. 2: CROSSFLOW Language Metamodel

Fig. 3: CROSSFLOW Model of the Running Example

of a name, an extension and a keyword, into the Technologies

stream. Sources are only executed on the master node.

Streams are message channels to which sources and tasks of

the workflow can send jobs that other tasks can perform, or

results that sinks can aggregate and persist. In CROSSFLOW,

job steams are typed: for example the Technologies stream

only accepts jobs of type Technology (dashed line in the

diagram). CROSSFLOW supports two types of streams: queues

which send each job to only one of the subscribed workers,

and topics which send each job to all subscribed workers.

Tasks subscribe to one or more (incoming) streams and receive

jobs posted there by other tasks or sources. They can also post

new jobs to one or more outgoing streams. For example:

• the GitHubCodeSearcher task subscribes to the Technologies

stream, processes incoming jobs of type Technology by

searching for files with the specified keyword and extension

through the GitHub API, and for each result, it pushes

its repository path (wrapped into a Repository job) to

the Repositories stream. In a distributed execution of this

workflow, each worker contributes an instance of GitHub-

CodeSearcher (hence the double rectangle node shape in the

diagram) which can perform such GitHub searches under its

own credentials (and more importantly, its own rate limit);

• the RepositorySearchDispatcher task receives these reposi-

tories, and for every repository it has not encountered before,

it produces one RepositorySearch job into the Reposito-

rySearchesStream. Unlike GitHubCodeSearcher, Reposito-

rySearchDispatcher is represented with a single rectangle,

signifying that only one instance of the task is executed and

this instance lives on the master node. This does not have



a significant impact on the performance of the workflow as

the cost of filtering out duplicate repository IDs is negligible

to that of querying GitHub and cloning Git repositories;

• for each RepositorySearch job, the RepositorySearcher

makes a shallow clone of the Git repository and counts

the number of files with the extension and containing the

keyword relevant to each technology.

Sink components can subscribe to streams and receive results

to aggregate/persist. For example, the ResultsSink sink in

the example, collects RepositorySearchResults, builds the co-

occurrence matrix illustrated in Table II, and periodically

persists it into another CSV file (results.csv). As with sources,

sinks are only executed on the master node.

C. Code Generator

The CROSSFLOW code generator can consume a workflow

model and produce strongly-typed scaffolding Java code. In

particular:

• For every Task and Sink in the model, it produces an

abstract base class, as well as a skeleton subclass which

contains one consumeXYZ(...) method for every incoming

stream, where hand-written code needs to be added to

handle incoming jobs. For example, from the GitHubCode-

Searcher task of Figure 3 the generator produces an ab-

stract GitHubCodeSearcherBase class as well as a concrete

GitHubCodeSearcher class that extends the base class and

contains an empty implementation of a void consumeTech-

nologies(Technology technology) method, which is called by

the workflow when a new Technology job is received. The

hand-written body of the method is illustrated in Listing 1.

• Similarly, for every Source in the model, the genera-

tor produces an abstract base class with infrastructure-

communicating code and an abstract void produce() method,

as well as a concrete sub-class for developers to implement

the latter and specify the behaviour of the source (e.g. in the

case of TechnologySource, the implementation of produce

reads file extensions and keywords from an input CSV file

and pushes Technology jobs to the Technologies stream)

• The abstract base classes generated from Tasks and Sources,

also contain one sendXYZ(...) method for each outgoing

stream that developers can use to send outgoing jobs to the

respective stream. For example, GitHubCodeSearcherBase

contains a void sendToRepositories(Repository repository)

that is used by hand-written code in its concrete subclass

to send Repository jobs to the Repositories stream, for

RepositorySearchDispatcher to consume.

• For every Stream in the model, the generator produces a

Java class which contains code that subscribes instances

of the concrete task classes to the underlying ActiveMQ

topics/queues [2]. Unlike with tasks, sources and sinks,

developers do not need to write additional code to specify

the behaviour of streams.

• For every Type in the model that doesn’t specify an im-

plClass (i.e. is not a proxy for an existing Java class), the

generator produces a Java class which contains properties,

setters and getters for the type’s fields. If there is at least one

stream typed after the type in question, the generated Java

class is made to extend the built-in Job class, which provides

ID/correlation ID fields as well as serialisation capabilities

which are required for caching as discussed below.

1 @Override

2 public void consumeTechnologies(Technology t)

throws Exception {

3 List<String> paths = ...; // runs GitHub search

4 for (String path : paths) {

5 Repository r = new Repository();

6 r.path = path;

7 r.corellationId = t.id;

8 sendToRepositories(r); } }

Listing 1: The consumeTechnologies(...) hand-written method

of GitHubCodeSearcher

The generator also produces a main Java class named after

the workflow instance in the model, which starts and coor-

dinates the execution of the workflow on a node, supporting

command-line parameters through which users can specify:

• Whether the node runs in master or worker mode. Each

workflow execution can be coordinated by one master node.

In the master mode, additional command line parameters

specify whether the workflow needs to start an embedded

(ActiveMQ) messaging broker that will manage the message

channels of the workflow, or can use an existing one at a

specified IP address.

• For nodes in worker mode, relevant parameters can define

the IP address where the ActiveMQ broker instance is

running. An additional parameter (-exclude) can be used to

exclude particular tasks from their execution by the worker.

For example, a worker may exclude GitHubCodeSearcher

from its execution if it doesn’t have GitHub credentials, and

contribute to the workflow through cloning and searching

repositories by means of the RepositorySearcher task.

D. Worker Error Handling

Exceptions produced during the execution of hand-written

code in consumeXYZ(...)/produce(...) methods3, such as con-

sumeTechnologies(...), in workers are caught by the generated

base classes and sent to a dedicated stream (InternalExcep-

tions) together with the job that caused them. In the current

version of CROSSFLOW, jobs that cause exceptions during

their execution are not rescheduled, they remain in the Inter-

nalExceptions stream for inspection by developers. Temporary

loss of network connectivity between the master and the

worker nodes is handled through the message persistence

and wait-and-retry capabilities of the supporting (ActiveMQ)

messaging middleware.

E. Caching

Jobs performed in the context of a repository mining work-

flow can require fetching large volumes of remote data (e.g.

cloning Git repositories) or making calls to rate-limited APIs.

To avoid repeated execution of such jobs, CROSSFLOW pro-

vides built-in support for job-level caching. In CROSSFLOW,

each job has a unique (auto-generated) ID and an optional

correlation ID which records the ID of the job of which it

3The generated signatures of such methods allow exceptions to be thrown
during their execution.



is an output. For example, Listing 1 shows a redacted version

of the implementation of the consumeTechnologies(...) method

of the GitHubCodeSearcher class, where outgoing Repository

jobs are associated to the incoming Technology by setting the

correlation ID of the former to the ID of the latter (line 7).

The master node intercepts jobs submitted to all streams

and caches outputs against their respective inputs based on

IDs and correlation IDs so that previously-seen jobs are not

re-executed in subsequent runs of the workflow, but instead

their cached outputs are re-used.

F. Locality Scheduling

The first time the example workflow is executed in a

distributed setup, different worker nodes will end up with

different cloned Git repositories as a result of the execution of

their RepositorySearcher tasks. The next time the workflow is

executed (e.g. after a bug fix or after adding more technologies

in the technologies.csv input), RepositorySearch jobs should

ideally be routed to nodes that already have clones of relevant

repositories from the previous execution to avoid unnecessary

cloning of the same repositories in different nodes.

To achieve this, we originally considered delegating the

required book-keeping to the master node. In this approach,

the master node would be responsible for “remembering”

how Git repositories (and other expensive to re-fetch/compute

resources) were distributed between workers. However, given

that workers can appear/disappear at any point during the

execution of the workflow, we opted for a simpler and more

powerful approach which eliminates the need for centralised

book-keeping by enabling CROSSFLOW worker tasks to reject

jobs allocated to them. Using this feature, we can achieve the

desired locality scheduling in RepositorySearcher as follows:

• RepositorySearcher receives a Repository to analyse

• If the worker has a clone of the repository in question, it

accepts and performs the job

• If it does not have a clone of the repository:

– If it is the first time the worker encounters this job it adds

the ID of the job to a list of encountered jobs and rejects

the job

– If the ID of the job is already in the worker’s encountered

job list upon reception, it assumes that all other nodes

have previously rejected the job, and accepts it

The main advantages of this approach is that it eliminates

the need for book-keeping at the master node and that it

allows worker nodes to dynamically reject jobs, which is

useful in several scenarios (e.g. when a worker runs out of

GitHub API calls or out of space in its local filesystem).

On the flip side, it incurs a runtime overhead as in the first

execution of the workflow above all RepositorySearch jobs will

be rejected once (i.e. sent back to the master node) by each

worker before they start getting accepted. This can become

an issue in cases where job messages carry a lot of data so

developers of CROSSFLOW programs are encouraged to keep

such messages small and provide pointers to larger data as

opposed to embedding it when possible (e.g. the path of a

file on GitHub as opposed to its contents). In terms of fair

allocation of work across the workers, this is delegated to the

respective facilities of the ActiveMQ messaging middleware

(round-robin message distribution). Preliminary experiments

have provided no evidence of unfair allocation but this is an

area for additional investigation. The described

III. RELATED WORK

Boa [4] is a domain-specific language and infrastructure

for mining software repositories. Boa’s infrastructure leverages

distributed computing techniques to execute queries against a

multitude of software projects. The Boa language enables the

specification of analysis of Git repositories, but it does not

allow the specification of more complex workflows, such as

retrieving and combining data from two different sources.

Another tool for distributed mining of software repositories

is King Arthur4, which is part of the GrimoireLab5 tool chain.

King Arthur is a distributed job queue platform that schedules

and executes data retrieval jobs from software repositories

using Perceval [5], a dedicated Python library. This platform

enables the orchestration and distribution of data retrieval jobs

only, while CROSSFLOW enables the distribution of mining

workflows. Moreover, CROSSFLOW workers can selectively

choose jobs to undertake depending on their capabilities. This

is not the case with King Arthur workers, which simply pick

the next job from a queue whenever they are idle.

Finally, Boinc [6] is a software system that facilitates the

creation and execution of public-resource computing projects

and therefore it can support the execution of mining work-

flows. Boinc shares many similarities with CROSSFLOW.

Namely, it supports distributed computation, workers are as-

signed jobs based on their computational capabilities, and

locality scheduling is used. At the same time though, CROSS-

FLOW offers particular features that make it more suitable for

repository mining workflows. First, although Boinc supports

selective execution of jobs from workers, it is the server,

which decides on the distribution of jobs based on their

estimate of computational requirements. On the other hand, in

CROSSFLOW workers choose their jobs as the master node is

completely unaware of the exact composition of the system.

This results to increased robustness to specific faults, such

as as network and time-out errors. Moreover, Boinc does not

provide any high-level, declarative way to specify workflows.

IV. CONCLUSIONS AND FUTURE WORK

This paper introduced CROSSFLOW, a novel framework for

development and distributed execution of multi-step repository

mining programs. CROSSFLOW provides a domain-specific

language for designing distributed workflows as well as

a code-generator that produces implementation scaffolding

for developers to complement with hand-written Java code.

CROSSFLOW uses asynchronous message-based communica-

tion and provides built-in support for job-level caching and

locality scheduling.

We are currently working on the implementation of concrete

workflows for the needs of our industry partners in the collabo-

rative project supporting the development of CROSSFLOW, and

extending the framework with new facilities in the process.

4https://github.com/chaoss/grimoirelab-kingarthur
5https://chaoss.github.io/grimoirelab/



REFERENCES

[1] D. S. Kolovos, N. D. Matragkas, I. Korkontzelos, S. Ananiadou, and
R. F. Paige, “Assessing the use of eclipse mde technologies in open-
source software projects.” in OSS4MDE@ MoDELS, 2015, pp. 20–29.

[2] B. Snyder, D. Bosnanac, and R. Davies, ActiveMQ in action. Manning
Greenwich Conn., 2011, vol. 47.

[3] Frédéric Jouault and Ivan Kurtev, “Transforming Models with the ATL,”
in Proceedings of the Model Transformations in Practice Workshop at
MoDELS 2005, ser. LNCS, Jean-Michel Bruel, Ed., vol. 3844, Montego
Bay, Jamaica, October 2005, pp. 128–138.

[4] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa: a language
and infrastructure for analyzing ultra-large-scale software repositories,”
in 35th International Conference on Software Engineering, ICSE ’13,
San Francisco, CA, USA, May 18-26, 2013, 2013, pp. 422–431.
[Online]. Available: https://doi.org/10.1109/ICSE.2013.6606588

[5] S. Dueñas, V. Cosentino, G. Robles, and J. M. Gonzalez-Barahona,
“Perceval: software project data at your will,” in Proceedings of the
40th International Conference on Software Engineering: Companion
Proceeedings. ACM, 2018, pp. 1–4.

[6] D. P. Anderson, “Boinc: A system for public-resource computing and
storage,” in Grid Computing, 2004. Proceedings. Fifth IEEE/ACM
International Workshop on. IEEE, 2004, pp. 4–10.

[7] A. Bagnato, K. Barmpis, N. Bessis, L. A. Cabrera-Diego, J. D.
Rocco, D. D. Ruscio, T. Gergely, S. Hansen, D. S. Kolovos, P. Krief,
I. Korkontzelos, S. Laurière, J. M. L. de la Fuente, P. Maló,
R. F. Paige, D. Spinellis, C. Thomas, and J. J. Vinju, “Developer-
Centric Knowledge Mining from Large Open-Source Software
Repositories (CROSSMINER),” in Software Technologies: Applications
and Foundations - STAF 2017 Collocated Workshops, Marburg,
Germany, July 17-21, 2017, Revised Selected Papers, 2017, pp. 375–
384. [Online]. Available: https://doi.org/10.1007/978-3-319-74730-9 33

[8] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Eclipse development tools
for epsilon,” in Eclipse Summit Europe, Eclipse Modeling Symposium,
vol. 20062, 2006, p. 200.

[9] S. Madani and D. S. Kolovos, “Re-Implementing Apache Thrift
using Model-Driven Engineering Technologies: An Experience Report,”
in Proceedings of the 16th International Workshop on OCL and
Textual Modelling co-located with 19th International Conference on
Model Driven Engineering Languages and Systems (MODELS 2016),
Saint-Malo, France, October 2, 2016., 2016, pp. 149–156. [Online].
Available: http://ceur-ws.org/Vol-1756/paper11.pdf

[10] D. S. Kolovos and R. F. Paige, “Towards a modular and flexible human-
usable textual syntax for EMF models,” in Proceedings of MODELS
2018 Workshops, Copenhagen, Denmark, October, 14, 2018., 2018, pp.
223–232.

APPENDIX

The source code of the tool is currently available on a

public repository on GitHub6. The tool is developed in the

context of a large collaborative research project, Crossminer,

involving several industrial and academic partners [7]. All of

them have a vested interest in continuing the development

and maintenance of the tool in the future, and thus the tool

will remain available in the future on GitHub. Currently, the

tool is build on Eclipse Epsilon [8], Apache Tomcat, Apache

ActiveMQ [2], and Apache Thrift [9].

There are two use cases for the tool: a new mining work-

flow is specified and then executed; an existing workflow is

executed. Detailed instructions on how to execute the tool are

provided in the repository. A brief version is provided below.

Specify new workflow: To specify a new workflow, a

user needs an Eclipse Epsilon distribution7, Apache Tomcat8,

ActiveMQ9 and Thrift10. Instructions on how to install these

6https://github.com/crossminer/scava/tree/crossflow/crossflow
7https://www.eclipse.org/epsilon/download/
8http://tomcat.apache.org
9http://activemq.apache.org

10https://thrift.apache.org

are provided on our repository. Once these dependencies are

installed, the user will need to clone our repository and

import the projects in Eclipse. Our tool uses Apache Ivy11 for

dependency management, so once the projects are imported to

Eclipse all dependencies should be resolved automatically. To

specify the new workflow, the user has to create a new Eclipse

project and specify the workflow in an XML-based, human-

friendly notation called Flexmi [10]. Once the workflow is

specified, the code generator can be invoked to generate the

code skeleton. Developers then need to extend the generated

source, task and sink classes with the desirable behaviour.

Once the code is implemented and compiled, it needs to be

bundled into a runnable JAR which can then be executed as a

standard Java application on the master and worker nodes.

Execute workflow: To execute a workflow, the user simply

has to execute the runnable JAR produced in the previous step

on the command line. The JAR has to be executed on every

machine, which wants to contribute computational resources

to the analysis of the workflow. The user can specify the name

of the workflow, the type of the node (master or worker), the

IP address of the master node, and the listening port of the

master node by means of the parameters name, mode, master,

and port, respectively.

The current repository of the tool comes with detailed

instructions on how to perform the above process12. More-

over, the repository contains predefined workflows that users

can execute in order to experiment with the platform. The

repository contains the model and the code for the examples,

as well as how to generate JARs in order to execute them.

11http://ant.apache.org/ivy/
12https://github.com/crossminer/scava/tree/crossflow/crossflow/README.

md


	Introduction
	Crossflow
	Architecture
	Crossflow DSL
	Code Generator
	Worker Error Handling
	Caching
	Locality Scheduling

	Related Work
	Conclusions and Future Work
	References

