
This is a repository copy of Meshed Bluetree: Time-Predictable Multi-Memory Interconnect
for Multi-Core Architectures.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164761/

Version: Accepted Version

Article:

Wang, Haitong, Audsley, Neil Cameron orcid.org/0000-0003-3739-6590, Hu, Sharon et al. 
(1 more author) (Accepted: 2020) Meshed Bluetree: Time-Predictable Multi-Memory 
Interconnect for Multi-Core Architectures. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems. (In Press) 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE 1

Meshed Bluetree: Time-Predictable Multi-Memory

Interconnect for Multi-Core Architectures
Haitong Wang, Neil C. Audsley, Xiaobo Sharon Hu, Wanli Chang

Abstract—Multi-core architectures are widely adopted in the
emerging real-time applications, such as autonomous vehicles and
robotics, where latency is required to be both bounded in the
worst case (i.e., time predictability) and low. With the number
of processors growing, the conventional memory interconnects,
i.e., shared bus, crossbar, and network-on-chip (NoC), suffer
high latency due to the increasing logic size of their centralised
arbiter, which is deployed for time predictability. In this paper,
we introduce a novel distributed multi-memory interconnect,
Meshed Bluetree, and explain its operation. Constructed by
coupling a router network with multiple Bluetree-based memory
architectures in parallel, Meshed Bluetree allows simultaneous
access to multiple memory modules. We present the analysis for
the predictable timing behaviour of memory access to bound the
worst case. Evaluation on FPGA with synthetic memory work-
loads and real-world benchmarks demonstrates the effectiveness
of our work, i.e., as the number of memory modules increases,
the latency is reduced with the same scale. This work reports
the first time-predictable distributed multi-memory interconnect,
significantly contributing to multi-core real-time systems.

Index Terms—multi-core architecture, memory interconnect,
time predictability

I. INTRODUCTION

IN the emerging real-time application scenarios, such as

highly automated driving and robotics, there is a stringent

requirement on the latency being both bounded in the worst

case (hence time predictability) and low. To deal with com-

plex functionality and achieve high performance, multi-core

architectures are widely deployed, where multiple processors

share one memory module. With the trend of integrating more

processors into the multi-core architectures, the contention

over memory access aggravates and multiple memory modules

are getting engaged.

The conventional multi-core architectures employ shared

bus to connect processors and the shared memory modules,

e.g., AHB (Advanced High-Performance Bus) [1] in the SoC

(System-on-Chip) design. Communication between processors

and access to the memory must be delivered through the shared

bus. Once a single access occurs, the bus is blocked, which

leads to severe contention. Alternatively, the crossbar design,

e.g., AXI Interconnect (Advanced Extensible Interface) [2],

alleviates the contention issue with a set of switch boxes.

This article was presented in the International Conference on Hard-
ware/Software Codesign and System Synthesis 2020 and appears as part of
the ESWEEK-TCAD special issue. W. Chang is the corresponding author.

H. Wang, N. C. Audsley and W. Chang are with the Department of
Computer Science, University of York, UK (email: hw963@york.ac.uk;
neil.audsley@york.ac.uk; wanli.chang@york.ac.uk)

X. Hu is with the Department of Computer Science and Engineering,
University of Notre Dame, USA (email: shu@nd.edu)

It uses dedicated links to replace the shared bus, which

allows multiple accesses to occur simultaneously. The NoC

(Network-on-Chip) architecture employs a packet switching

network [3][4], where each processor is connected through a

router and experiences less contention compared to the shared

bus. The shared memory modules are commonly located on

the edge of the network.

In order to achieve time predictability, the above con-

ventional interconnects on multi-core architectures typically

implement an arbitration scheme, such as priority-based, time-

division multiplexing (TDM), or round-robin, on a centralised

arbiter. As the number of processors grows, the logic size of

the arbiter hardware increases, which limits the maximum syn-

thesisable clock frequency. One promising approach recently

investigated is to employ distributed memory interconnects,

where the tree-based structure with pipelined stages (Figure 1

as an example) can break the critical path of multiplexing

into multiple shorter steps with small logic size. Although

this introduces additional clock cycles, the latency is reduced,

as higher clock frequency can be synthesised, pipelining is

supported, and scaling to a large number of processors gets

enabled.

The distributed memory interconnects are classified as lo-

cally arbitrated and globally arbitrated. The locally arbitrated

interconnect is constructed with a distributed binary arbitration

tree that multiplexes the memory requests from processors to

the shared memory module. Based on this architecture, the

globally arbitrated interconnect integrates global scheduling

to the distributed data paths, and thus can be considered as

the locally arbitrated interconnect with traffic shaping. In

general, the locally arbitrated interconnect allows the average-

case latency to be much lower than the worst case, making

the time predictability analysis challenging. By contrast, the

globally arbitrated interconnect essentially limits the average-

case behaviour to be similar to the worst case, facilitating the

time predictability analysis. However, the processor is slowed

down, degrading the overall system performance. In addition,

the globally arbitrated interconnect requires complex schedul-

ing as well as strict coordination, and potentially suffers the

synchronisation issue.

Main contributions: In this paper, we introduce a novel

distributed memory interconnect, Meshed Bluetree, and ex-

plain its operation. Constructed by coupling a router net-

work with multiple locally arbitrated Bluetree-based mem-

ory architectures in parallel, Meshed Bluetree enables mul-

tiple processors to simultaneously access multiple memory

modules. We present the analysis for the predictable tim-

ing behaviour of memory access to bound the worst case,



2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE

which can be extended to other architectures than Bluetree.

Evaluation on FPGA with synthetic memory workloads and

real-world benchmarks demonstrates the effectiveness of our

work, i.e., as the number of memory modules increases, the

latency is reduced with the same scale. This work reports the

first time-predictable distributed multi-memory interconnect,

significantly contributing to multi-core real-time systems.

The remainder of this paper is structured as follows.

Section II reviews the related work on distributed multi-

core memory interconnects. Section III describes the basic

Bluetree-based architecture. The proposed Meshed Bluetree is

presented in Section IV with its predictable timing analysis in

Section V. The experimental results are reported in Section VI

and Section VII makes the concluding remarks.

II. RELATED WORK

In contrast to the conventional centralised design, distributed

memory interconnects are emerging in multi-core architec-

tures, especially for real-time applications. In this section, we

discuss the related works on locally arbitrated and globally

arbitrated distributed memory interconnects, and make a com-

parison. Whilst the locally arbitrated interconnects have the

potential for general applicability and good performance, the

resource contention is difficult to resolve and analyse, which

is the main contribution of this work.

Among the locally arbitrated distributed memory intercon-

nects, [5] develops an arbitration tree with globally synchro-

nised timestamps. The arbiter at each distributed multiplexing

stage applies the first-come-first-served (FCFS) scheme, where

memory requests relay to the next stage according to the

increasing order of their timestamp values. It is feasible for

very limited platforms, mainly those having AXI bus [6] with

small numbers of outstanding memory requests.

Alternatively, Bluetree [7][8][9] is initially developed for

the NoC architecture as the external memory tree, to provide

a second network exclusively for accessing the shared memory

module. It separates memory traffic from the processor router

network, hence preventing memory access from interfering

with communication between processors. Bluetree is con-

structed by a set of pipelined multiplexers using a local

round-robin arbitration scheme. The Bluetree-based memory

architecture does not require full synchronisation and allows

multiple memory requests to be transferred through the tree

network simultaneously. This aids further scalability towards

good average-case performance. However, the locally arbi-

trated Bluetree interconnect demands complicated analysis of

the predictable timing behaviour.

Among the globally arbitrated distributed memory intercon-

nects, TDM Tree [10] is built upon the integration of global

TDM scheduling components with a tree-based multiplexing

architecture. When a TDM time slot arrives, one memory

request from a specific processor is allowed to relay to

the tree network. With the global scheduling interval, there

is no contention to the shared resources, neither the data

paths nor the root memory module. No interference exists

between memory accesses. However, TDM Tree requires strict

synchronisation and complex coordination. In addition, it does

not support work-conservation, which potentially leads to a

considerable waste of bandwidth.

Based on the global scheduling interval, Globally Arbi-

trated Memory Tree (GAMT) [11][12] extends the distributed

multiplexing tree with priority-based rate control schemes.

This aims to better utilise the bandwidth with flexibility.

When a time slot arrives, successive memory requests from

a specific processor are allowed to relay to the tree network.

The behaviour of memory access is affected by the priority-

based rate control scheme, such as Frame-based Static Priority

(FBSP) and Credit-Controlled Static Priority (CCSP). GAMT

could only benefit specific applications, as it is generally

hard to model the memory requests on hardware, unlike task

scheduling in operating systems. In addition, the synchronisa-

tion suffers.

The contention over memory accesses aggravates with an

increasing number of processors integrated. The locally arbi-

trated memory architectures allow multiple memory requests

in transfer simultaneously, leading to contention over either

the shared root memory module or the overlapped data paths

in the tree-based interconnect. Once the root memory module

is occupied, the entire request flow is blocked. By contrast, the

globally arbitrated memory architectures provide contention-

free request paths, avoiding memory access interference. How-

ever, this reservation-based method fails to alleviate memory

workloads. Instead, it budgets memory bandwidth and slows

down a processor, consequently degrading the overall system

performance.

Such resource contention as discussed above has been

widely studied on multi-core architectures. For example, [13]

proposes message combining to reduce resource contention

within the tree-based architectures. As for the memory in-

terconnects with multiple pipelined stages, the requests si-

multaneously arriving at one arbiter stage can be merged,

and the memory response is then split to multiple individual

ones along the response path. This reduces contention on the

overlapped data paths. However, it leaves the burden to the

shared root memory module and requires an increasing logic

size for each pipelined stage.

The alternative method is to invest additional hardware

resources to increase bandwidth. For example, a virtual chan-

nel [14][15] can be employed to the shared router in NoC,

which alleviates the router contention from multiple communi-

cation flows and provides flexibility in the channel utilisation.

For the tree-based architectures, [16] proposes that multiple

memory banks can be deployed at the root of the locally

arbitrated Bluetree architecture, which increases bandwidth

and potentially supports mixed-criticality systems with diverse

memory features. However, it moves the design burden to the

shared memory controller, and this centralised design at the

Bluetree root inevitably limits the maximum clock frequency

of the synthesised hardware.

Following this idea of having multiple memory banks in

parallel, we propose the design of Meshed Bluetree with

distributed data paths and local arbitration. The aim is to pro-

vide a multi-memory interconnect for multi-core architectures,

towards predictable timing behaviour (i.e., with the memory



WANG et al.: MESHED BLUETREE 3

µ0 µ1 µ2 µ3 µ5 µ6 µ7µ4

D

P1

Fig. 1. A Bluetree-based architecture with 8 clients sharing one memory
module.

latency analysable and worst case bounded), latency reduction

in the average case, as well as scalability.

III. BASIC ARCHITECTURE

Our proposed distributed multi-memory interconnect,

Meshed Bluetree, is built upon the locally arbitrated Bluetree-

based architecture, and can be extended to other architectural

configurations, such as by reconfiguring with different local

arbitration schemes or integrating with global scheduling

schemes. In this section, we describe and analyse the con-

ventional Bluetree-based architecture.

Figure 1 illustrates an 8-client Bluetree-based architecture,

consisting of 8 clients, the Bluetree interconnect, and the

shared memory module. A client can be a single processing

core or a multi-core processor, and denoted by µi, where i is

the client index. Each client has a memory access path Pi, with

P1 for the client µ1 highlighted in the figure. The Bluetree

interconnect B employs multiple stages of 2-to-1 Bluetree

multiplexers to construct the tree network, connecting clients

at the leaves to the shared memory module D at the root.

Across this bi-directional Bluetree network, memory requests

issued by the clients are multiplexed and relayed to the shared

memory, and memory responses return to the corresponding

clients. As the number of clients grows, the tree network scales

with more Bluetree multiplexer stages, which increases the

Bluetree depth Nβ . In Figure 1, Nβ is equal to 3.

Figure 2 shows the Bluetree multiplexer with requests com-

ing from two client directions. Arbitration occurs in the request

path (RQ) to decide which direction of request to be relayed

to the memory direction, and the next Bluetree multiplexers.

The blocking factor α of the internal arbiter is defined such

that every α requests from Direction 0 can be blocked by at

most one request from Direction 1, where Direction 0 can

be considered as the local high-priority path, and Direction 1

is the local low-priority path. Starvation can be prevented by

allowing one request from the low-priority path to be relayed

for every α requests from the high-priority path. If there is no

request from Direction 0, the arbiter imposes no blocking on

Arbiter

Memory Direction

Client Direction 0

RQ

RSRQ

RS RQRS

Client Direction 1

DEMUX

Fig. 2. The Bluetree multiplexer.

Direction 1 with outstanding requests. The implementation of

the local arbiter requires an internal blocking counter. When

the blocking factor is set as α = 1, Bluetree can be considered

as the distributed binary tree stages with a local round-robin

scheme, which provides relatively fair access to the shared

memory module for all clients.

On the other hand, the response path (RS) is non-blocking.

The internal demultiplexer simply decides the route direction

of the memory response as shown in Figure 2. Besides, a buffer

is implemented along each direction as a common pipeline

design practice. The Bluetree multiplexer interface is designed

to operate in the client-server manner, which allows each

local Bluetree multiplexer to function independently, without

requiring the operating state knowledge of any other Bluetree

multiplexer nearby. The Bluetree interconnect does not require

full clock synchronisation.

The Bluetree-based architecture is initially designed to pro-

vide good average-case performance and guarantee the worst-

case memory latency. With the locally arbitrated data paths,

memory accesses show predictable behaviour. However, the

shared root memory is the architectural bottleneck. As shown

in Figure 1, closer to the Bluetree root, more memory access

paths overlap, where the memory requests from different

clients have to share the common hardware paths, as well as

the shared root memory. This shared interconnect architecture

inevitably causes resource contention during simultaneous

memory accesses.

IV. MESHED BLUETREE

In this section, we introduce the Meshed Bluetree distributed

memory interconnect. The topology of our design is based on

the Mesh-of-Trees (MoT), similar to [17][18][19], where [17]

and [18] focus on the topology research. In [19], the MoT is

developed with single-clock-cycle data paths, using a set of

switches coordinated by a global control signal to establish a

complete memory access path dedicated for a specific client

at a time. This MoT operates in the circuit-switched round-

robin manner with centralised control, allowing data transfer

between clients and memories within one clock cycle and

enabling relatively simple timing analysis. However, with the



4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE

D0 D1 D2 D3

µ2 µ3 µ4 µ7µ5 µ6µ0 µ1

Router Network R

P(1,1)

Fig. 3. An 8×4 Meshed Bluetree with 8 clients and 4 memory modules.

expanding system configuration (i.e., the number of clients and

memories), the logic size of the centralised design increases

logarithmically, which severely limits the maximum synthe-

sisable clock frequency.

By contrast, our Meshed Bluetree employs distributed data

paths with local arbitration. Although additional clock cycles

are introduced, it allows a much higher clock frequency,

enables pipelining, and scales to a large system. There have

been works quantitatively comparing the centralised and the

distributed design, such as in [12]. According to its experimen-

tal results, the centralised design fails to scale with the number

of processors, and the results can be even worse with more

complex arbitration schemes. By comparison, the maximum

synthesisable clock frequency of the distributed design remains

high and constant with the increasing number of processors,

demonstrating scalability.

With distributed data paths, Meshed Bluetree is proposed to

resolve the resource contention on the conventional Bluetree-

based memory architecture as discussed in Section III and to

enable multiple processors to share multiple memory modules.

Our aim is to achieve good and scalable average-case perfor-

mance, whilst providing predictable timing behaviour across

the pipelined multiplexing stages, i.e., with an analysable

memory access latency bound.

Figure 3 illustrates the architecture of Meshed Bluetree,

which is constructed by coupling a distributed router network

(the upper half) with multiple Bluetree-based architectures

in parallel (the lower half). In this particular example, eight

clients share four memory modules. Each client µi has a mem-

ory access path P(i,j) to connect to the memory module Dj ,

where j is the memory module index. The path P(1,1) for the

client µ1 to connect to the memory module D1 is highlighted

in the paper. The memory modules can be paralleled memory

banks within one DRAM module as analysed in [16]. The

design can also be extended with paralleled scratchpad mem-

ory, cache, or mixed types of memory components. Meshed

Bluetree allows sufficient design flexibility to support multi-

core applications.

When a client µi issues a memory request, the router

network R first decides the routing path and relays the

request to a specific Bluetree-based architecture. Then the

corresponding Bluetree interconnect Bj further multiplexes

and relays this request to the destination memory module Dj .

Here, the same subscript j indicates a one-to-one relationship

between a Bluetree interconnect and a memory module. The

memory response returns across the bi-directional meshed

interconnect in a reverse process. As the memory address

range can be partitioned across these paralleled memory mod-

ules, the simultaneous accesses to different memory modules

can be processed concurrently. This significantly reduces the

contention over a single memory module and increases the

system bandwidth.

The router network R is constructed with multiple stages

of Bluetree routers. With the number of memory modules ND

growing, the router network R scales with more pipelined

router stages, which increases the router depth NR in the

tree-based architecture. In Figure 3, NR is equal to 2. The

design of the Bluetree router is shown in Figure 4. The local

request path (named RQ as before) of the Bluetree router is

non-blocking, and the internal demultiplexer simply decides

the route direction of memory requests. Pipelined buffers and

client-server interfaces are also implemented, similar to the

Bluetree multiplexers.

Arbitration occurs in the local response path (named RS

as before) to decide which direction of memory response to

be relayed to the client, and the next Bluetree routers. An

applicable local arbitration scheme can be round-robin, which

provides locally fair access for both Bluetree directions. It

is also feasible to employ static priority-based arbitration at

the local router stage, always allowing the memory response

from one direction to have higher priority and get relayed first.

The consecutive responses along one path have time intervals



WANG et al.: MESHED BLUETREE 5

Arbiter

Client Direction

Bluetree Direction 1

RS

RQ RS

RQRS RQ

Bluetree Direction 0

DEMUX

Fig. 4. The Bluetree router.

in between, related to the responding speed of the memory

modules. Therefore, a memory response will not be blocked at

one router stage for long, even with a lower priority. The exact

amount of blocking along the response path depends on the

number of responses ahead in transfer. This Meshed Bluetree

architecture allows memory modules with different response

time, potentially supporting mixed-criticality applications.

The term system cardinality can be introduced to describe

the configuration of the Meshed Bluetree architecture. It is

expressed as the product of the number of clients Nµ and the

number of memory modules ND. For example, the system

cardinality of the Meshed Bluetree in Figure 3 is 8× 4. With

an increasing system cardinality, the Meshed Bluetree scales

with either higher router depth NR or higher Bluetree depth

Nβ , indicating larger hardware consumption.

Below we provide an analysis on the number of components

required to construct the Meshed Bluetree interconnect, includ-

ing Bluetree multiplexers, Bluetree routers, and Bluetree wires.

For a single Bluetree memory architecture as in Figure 1,

the number of Bluetree multiplexers Nmux increases with the

number of clients Nµ, considering the tree topology. For the

Meshed Bluetree, the total number of Bluetree multiplexers

Nmux also increases with the number of memory modules

ND. To sum up,

Nmux = (Nµ − 1)×ND. (1)

Taking Figure 3 as an example, the number of Bluetree

multiplexers Nmux is equal to (8−1)×4 = 28. Similarly, the

number of Bluetree routers Nrouter increases with the number

of memory modules ND in the tree-based router network and

the number of clients Nµ. To sum up,

Nrouter = (ND − 1)×Nµ. (2)

Taking Figure 3 as an example, the number of Bluetree

routers Nrouter is equal to (4 − 1) × 8 = 24. Bluetree wire

refers to the data bus for the communication between any

two Bluetree components within the interconnect, i.e., clients,

memory modules, multiplexers, and routers. The number of

Bluetree wires Nwire is,

Nwire = (Nµ − 1)×ND + (ND × 2− 1)×Nµ, (3)

CMD CPU_IDADDR DATA MEM_ID

Memory Access Information Route Information

Fig. 5. The packet format for the communication across the Meshed Bluetree
interconnect.

where for each Bluetree multiplexer, there is one Bluetree wire

(pointing towards the memory modules), thus (Nµ−1)×ND;

for each Bluetree router, there is one Bluetree wire (pointing

towards the clients), thus (ND − 1)×Nµ; and the rest ND ×
Nµ connects the multiplexers with routers. Taking Figure 3 as

an example, the number of Bluetree wires Nwire is equal to

(8− 1)× 4 + (4× 2− 1)× 8 = 84.

The width of the data bus within the Meshed Bluetree

interconnect depends on the communication packet format,

which generally includes the memory access information and

the route information as shown in Figure 5. The memory

access information is generated or received by the client or the

root memory, including the 1-bit command field CMD (i.e.,

the memory command type such as memory read or memory

write), the 32-bit address field ADDR, and the 32-bit data field

DATA. In the memory request packet, CMD ‘0’ indicates a

read request, and CMD ‘1’ indicates a write request. In the

memory response packet, CMD ‘0’ indicates a read response,

and CMD ‘1’ indicates a write acknowledgement.

The route information is required for the packet transfer

across the interconnect, and it is used for for each distributed

multiplexing stage to track or decide the route. The route

information includes the 8-bit client identifier field CPU ID

and the 8-bit memory identifier field MEM ID, which sup-

ports a maximum Bluetree depth Nβ = 8 and a maximum

router depth NR = 8. When a client issues a request, the

corresponding CPU ID is encoded by the local arbiter at each

Bluetree multiplexer to track the route: left shift by 1 bit with

‘0’ for the local high-priority path, or left shift 1 bit with

‘1’ for the local low-priority path. CPU ID is also used by

the demultiplexer along the response path to decide the route

back to the corresponding client, decoded by the right shift

operation at each local stage. Similarly, MEM ID is required

by Bluetree routers.

In the above design, the total bit-width of a packet is

81, which is also the width of the data bus as well as the

multiplexers and routers. It is to be noted that this design is

reconfigurable and allows flexible extension. For example, a

priority field can be employed in the route information for the

priority-based arbitration scheme. An extra interface is needed

for the conversion of the packet format (e.g. converting the

packet format between the Meshed Bluetree interconnect and

the AXI bus). In addition, our design is independent of the

memory addressing scheme.

In general, a single memory access over the Meshed Blue-

tree architecture incurs higher delay, considering the longer

pipelined data path with the router network. However, simul-

taneous memory accesses can be processed by the parallel

memory modules concurrently, which increases the bandwidth

and effectively alleviates the contention over one shared

memory module. Latencies for intensive memory accesses



6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE

can be reduced and hence the overall system performance

is improved. In addition, the Meshed Bluetree architecture

supports memory isolation, potentially simplifying software

or OS (operating system) development for multi-core systems,

and provides sufficient flexibility for mixed-criticality systems

with diverse memory bandwidth and latency requirements.

The challenge is how to analyse the timing behaviour of the

memory access to bound the worst-case latency, which is

particularly important for the real-time applications and will

be provided in the next section.

V. PREDICTABLE TIMING ANALYSIS

Real-time systems must guarantee the response within the

specified timing constraints. Multi-core architectures are typi-

cally designed for good average-case performance, where soft-

ware components contend for the shared hardware resources.

Memory accesses over the distributed tree-based interconnect

cause contention to both the overlapped data paths and the

shared root memory modules. In this section, we present the

predictability analysis of the Meshed Bluetree architecture.

Our method defines the general analytical flow to the multi-

core architectures with locally arbitrated interconnects, and

can be extended to other architectural configurations than the

Meshed Bluetree.

A. Timing Behaviour

Our analysis aims to compute and bound the memory access

latencies across the Meshed Bluetree architecture. In general,

the latency t of the memory access ω consists of three parts,

the request path latency tRQ, the root memory latency tD, and

the response path latency tRS ,

t(ω) = tRQ(ω) + tD + tRS(ω). (4)

When there is no contention, i.e., in the best case, it takes

1 clock cycle to cross each pipelined stage, along both the

request and response paths. Therefore, the best-case request

path latency tBC
RQ(ω) and the best-case response path latency

tBC
RS (ω) are both equal to NR+Nβ . The root memory latency

tD is taken as constant. The best-case overall latency tBC of

the memory access ω is then,

tBC(ω) = tBC
RQ(ω) + tD + tBC

RS (ω)

= 2× (NR +Nβ) + tD.
(5)

The best-case latency tBC(ω) gives the minimum latency

that a memory access experiences across the Meshed Bluetree

architecture. It is based on the assumption of no contention,

i.e., every pipelined stage is always in the idle status, ready to

accept the request and the response without any delay. When

there is resource contention to either the data path or the shared

root memory, the request or the response may be blocked,

which leads to increasing path latency tRQ(ω) or tRS(ω), and

consequently the total latency t(ω).
Blocking whitin the Meshed Bluetree architecture can be

classified as inter-path blocking and intra-path blocking. The

inter-path blocking occurs when a request or response crosses

an arbiter stage and gets blocked by the other local path.

Therefore, the inter-path blocking is affected by the local

arbitration scheme. On the other hand, the intra-path blocking

occurs when a request or response is blocked by any other

request or response ahead of it, from either the same client

or the other clients. In addition, the interaction between

the inter-path blocking and intra-path blocking needs to be

considered. For example, when a request ω1 experiences inter-

path blocking from ω2, ω2 might overtake ω1 and get ahead

in the same data path, which potentially leads to additional

intra-path blocking.

Based on the above blocking analysis, the memory access

across the Meshed Bluetree architecture exhibits predictable

behaviour. If the exact memory access profiles are known,

the detailed status of the memory flow and the local arbiter

at every pipelined stage can be derived. Hence, the accurate

timing can be computed. It is to be noted that such exact

analysis becomes more complicated as the router depth NR

or the Bluetree depth Nβ increases, due to the following

reasons. First, a larger number of pipelined buffers in the data

path potentially leads to more intra-path blocking. Second,

the inter-path blocking could increase with the the number

of arbiters. Third, there is interference between the pipelined

stages. As the nature of tree-based architectures, if there is any

blocking in the stage close to the root, the entire tree will be

affected. For example, if the Bluetree root stage is blocked,

the request flow within this Bluetree-based architecture stalls.

Similarly, with more inter-path blocking close to the Bluetree

leaf stage, there will be more consequent intra-path blocking

in the overlapped paths.

In practice, there is often uncertainty with the memory

access profiles, such as on the number of memory requests

and the memory issuing time instants. In this case, the exact

timing analysis is not valid. Below, we will provide the worst-

case latency analysis on the memory access across the Meshed

Bluetree architecture.

B. The Worst-Case Memory Access Latency

Similar to the analysis in Section V-A, the calculation on the

worst-case latency tWC of the memory access ω also consists

of the worst-case request path latency tWC
RQ (ω), the worst-case

response path latency tWC
RS (ω), and the constant root memory

latency tD,

tWC(ω) = tWC
RQ (ω) + tD + tWC

RS (ω). (6)

Along both the request and response paths occur the inter-path

blocking and intra-path blocking.

1) The Worst-Case Request Path Latency: Each blocking

that the request ω experiences in the request path induces

an amount of path latency proportional to the root memory

latency tD within the corresponding Bluetree-based architec-

ture. Essentially, the request flow stalls until the memory is

idle again to accept the next request. This latency caused by

waiting for the root memory masks the path latency across the

pipelined stages. Therefore, the maximum blocking number

denoted as NWC
RQ (ω), which the request ω experiences across



WANG et al.: MESHED BLUETREE 7

the corresponding request path P(i,j), can be used to calculate

the worst-case request path latency tWC
RQ (ω),

tWC
RQ (ω) = NWC

RQ (ω)× tD. (7)

For the request path within the router network R, the

memory request ω can only be stalled due to the intra-path

blocking. With the router depth NR, the maximum blocking

number in the router request path is equal to NR, under the

assumption that all the buffers are occupied at every pipelined

stage. These blockings within the router network aggravate the

inter-path blocking in the overlapped Bluetree request paths,

which gets more severe closer to the root memory modules.

For the request path within the corresponding Bluetree

interconnect Bj , the blocking analysis complicates, involving

both the inter-path blocking and the intra-path blocking. The

term priority path is introduced here to analyse the maximum

blocking number. It is used to track the local priority at each

Bluetree stage βk across the request path, where k is the stage

index. Referring to the interconnect in Figure 3, the priority

path P(1,1) for the client µ1 to the memory module D1 can

be P(1,1) = {L,H,H}, for example, where L is for the local

low-priority and H for the local high-priority. Therefore, the

path P(1,1) within the Bluetree interconnect B1 is across the

local low-priority path at the Bluetree stage β2, the local high-

priority path at β1, and the local high-priority path at the

Bluetree root stage β0, eventually to the memory module D1.

The related local priority can be expressed as P(1,1)(β2) = L,

P(1,1)(β1) = H , and P(1,1)(β0) = H .

By tracking the local priority, the calculation of the max-

imum blocking number NWC
RQ (ω) across the corresponding

Bluetree request path is iterative, based on the calculation

of the maximum blocking number at each Bluetree stage

βk. Intuitively, the blocking number at any given Bluetree

stage βk is dependent on (i) the amount of blocking that has

occurred at previous stages along the request path, and (ii)

the amount of blocking that can occur at the current stage,

which is dependent on the local blocking factor α. Following

this idea, NWC
RQ (βk) is defined as the iterative blocking up to

and including the Bluetree stage βk, and the maximum arbiter

blocking number NWC
α (βk) is to represent the blocking at

the Bluetree stage βk only. The iterative calculation can be

expressed as,

NWC
RQ (βk) = NWC

RQ (βk+1) +NWC
α (βk) + 1, (8)

where +1 indicates that the local buffer is occupied. At

the Bluetree leave stage, NWC
RQ (βk+1) = NR, which is the

amount of blocking that has accumulated in the router network,

according to our previous analysis.

The maximum arbiter blocking number NWC
α (βk) is locally

decided by the blocking factor α at the corresponding Bluetree

stage βk. With the local arbitration scheme discussed earlier

in Section III, every α requests from the local high-priority

path can be blocked by at most one request from the local

low-priority path, and every single request from the local low-

priority path can be blocked by up to α requests from the

local high-priority path. Given NWC
RQ (βk+1), N

WC
α (βk) can

be calculated with the local priority P(i,j)(βk),

NWC
α (βk) =

{

⌈
(NWC

RQ (βk+1)+1)

α
⌉ H

(NWC
RQ (βk+1) + 1)× α L

, (9)

where +1 is to include the request ω and determine the total

amount of requests to cross the local arbiter at this Bluetree

stage.

Taking the local high-priority path as an example, if there

are NWC
RQ (βk+1)+1 (the number of requests accumulated till

the upper stage plus the request under study itself) requests

going through the high-priority path, the maximum blocking

from the low-priority path is this number divided by α and

then applied a ceiling function. Other types of arbitration may

be applied as well and our interconnect makes no specific

requirement.

To summarise the above analysis, the maximum blocking

number up to and including any given Bluetree stage βk

can be computed with (8) and (9). The maximum blocking

number that the request ω experiences across the request path

NWC
RQ (ω) can be calculated iteratively, starting with the value

NR from the router network R to the Bluetree root stage β0

within the interconnect Bj . Finally, the maximum blocking

number in the request path NWC
RQ (ω) is

NWC
RQ (ω) = NWC

RQ (β0), (10)

and the worst-case request path latency tWC
RQ (ω) can be calcu-

lated with (7). The worst-case assumption is that the request

path gets flooded by interfering requests — (i) all pipelined

buffers across the data path are occupied, and (ii) the local

arbiter always harms the request flow.

With the increasing Bluetree blocking factor α, the maxi-

mum blocking number in the request path NWC
RQ (ω) decreases

with more local high-priority tracks. According to the Bluetree

arbitration design in Section III, when the blocking factor

α = 1, Bluetree can be considered as distributed tree stages

with the local round-robin scheme and provides fair accesses

for all requests regardless of the client index. This design is

implemented in our experiments.

2) The Worst-Case Response Path Latency: The analysis

for the blocking in the response path is different from that

for the request path discussed above. According to our de-

sign of the Meshed Bluetree architecture in Section IV, the

consecutive memory responses are separated by certain time

intervals, depending on the responding speed of the memory

modules. Therefore, a response path will not be flooded by

interfering responses. The maximum blocking that the memory

access ω experiences in the response path is much less than

that in the request path. In general, the response path is non-

blocking within a Bluetree interconnect Bj , and the memory

response can experience blocking in the router network R. The

blocking analysis within the router network varies, depending

on whether the root memory modules have homogeneous

latency.

If all the paralleled memory modules have the identical

root memory latency tD, there will be no blocking within

the router network R. The memory requests from the same



8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE

client are always issued successively. Therefore, there is only

one response arriving at each arbitration stage at a time,

hence no inter-path blocking. If the root memory latency tD
varies on different memory modules in the paralleled Bluetree-

based architectures, the inter-path blocking occurs in the router

network R. One response may stall in each pipelined stage for

at most 1 clock cycle due to one contending response from

the other local path. Referring to our analysis in Section IV,

the Bluetree router could locally employ either the round-

robin arbitration scheme or the static priority-based arbitration

scheme. Below we analyse the maximum blocking number

with both schemes. The worst case occurs when the local

arbiter along the response path always harms the response

flow.

With the round-robin scheme at each router stage, one re-

sponse can be blocked by at most one other response from the

other local path. Considering the response intervals from the

memory modules and the basic pipelined data path latencies

(crossing routers and multiplexers without blocking), such

inter-path blocking will not lead to any intra-path blocking

of the responses behind. Therefore, the maximum blocking

number in the response path is determined by the router depth

NR as NWC
RS (ω) = NR. The worst-case response path latency

tWC
RS (ω) can be calculated as the sum of the basic pipelined

path latencies (through the router network and the Bluetree

interconnect) plus blocking,

tWC
RS (ω) = Nβ +NR +NWC

RS (ω)

= Nβ +NR +NR

= Nβ + 2×NR.

(11)

The local static priority-based arbitration could lead to more

inter-path blocking. With the static priority at each router

stage, the internal arbiter will always allow memory responses

from one local path with higher priority to block the other local

path. Following the architectural characteristics, the responses

in one path are separated with intervals, and one response

experiences the basic pipelined data path latencies. Therefore,

one response will not be stalled at a local router stage for

long. The inter-path blocking does not cause any intra-path

blocking to the memory responses behind in the same path, as

the clients process responses immediately, unlike the memory

modules that take tD to process requests.

When a response ω crosses the leaf stage of the router

network, there will be only one interfering response from the

other local path considering the memory responding intervals.

Then the response ω experiences more inter-path blocking at

the subsequent router stages closer to the client. The maximum

blocking number in the response path can be bounded as

NWC
RS (ω) = ND, with the assumption that the response flow is

always interfered. Based on the above analysis, the worst-case

response path latency tWC
RS (ω) can be calculated as,

tWC
RS (ω) = Nβ +NR +ND. (12)

3) The Worst-Case Memory Access latency: Below we

summarise the worst-case memory access latency analysis and

calculation for our proposed Meshed Bluetree configurations.

The round-robin arbitration is deployed for the Bluetree multi-

plexers and the static priority-based arbitration for the Bluetree

routers in the implementation. The worst-case latency tWC of

the memory access ω can be computed from the worst-case

latency across the request path tWC
RQ (ω) and the response path

tWC
RS (ω). The worst-case request path latency can be calculated

with (8), (9), and (10), where the local blocking factor α is set

to 1 as in the implementation. The worst-case response path

latency with local static priority can be calculated using (12).

The overall equation for the worst-case memory access latency

is,

tWC(ω) = tWC
RQ (ω) + tD + tWC

RS (ω)

= NWC
RQ (β0)× tD + tD + tWC

RS (ω)

= (NWC
RQ (β0) + 1)× tD +NB +NR +ND.

(13)

We illustrate the above calculation with an example, on

the 8×4 Meshed Bluetree architecture shown in Figure 3.

The router network R has two stages and hence its depth

is NR = 2, which is equal to the maximum blocking

number along the router request path, based on our analysis.

A Bluetree architecture Bj has three stages and hence its

depth is Nβ = 3. The maximum blocking number along the

request path within the Bluetree interconnect can be computed

iteratively with (8), as discussed before. At the Bluetree leaf

stage β2, NWC
RQ (β2) = NWC

RQ (β3) + NWC
α (β2) + 1, where

NWC
RQ (β3) = NR = 2. In this example, we assume α

to be 1, which is effectively a local round-robin arbitration

scheme, where every request from one path can be blocked

by at most one request from the other path. The maximum

arbiter blocking number can then be calculated following (9)

as NWC
α (βk) = (NWC

RQ (βk+1) + 1) × 1. Therefore, at the

Bluetree stage β2, NWC
α (β2) = (NWC

RQ (β3) + 1) × 1 =
(2+1)× 1 = 3. The maximum blocking number at this stage

is then NWC
RQ (β2) = 2 + 3 + 1 = 6.

Similar calculation can be performed for the Bluetree stage

β1 and the Bluetree root stage β0. Finally, the maximum

blocking number along the request path is NWC
RQ (ω) =

NWC
RQ (β0) = 30. The worst-case memory access latency can

be calculated using (13) as tWC(ω) = (NWC
RQ (β0)+1)×tD+

NB +NR+ND = (30+1)×20+3+2+4 = 629, where the

root memory latency is assumed as constant tD = 20 and the

local static priority-based arbitration is employed in the router

along the response path.

Our method presented in this section defines the general

analytical flow to bound the worst case of the locally ar-

bitrated platform. It can be extended to other architectural

configurations than the Meshed Bluetree, which may require

modification to the analysis of the local arbitration scheme.

It is to be noted that the worst-case analysis may produce

pessimistic bounds as the results, which potentially leads to

conservative system design and resource dimensioning, as the

memory access latency is the main part forming the overall

program execution time. If the exact memory access profiles

can be provided, the accurate memory access latency with no

pessimism can be determined as discussed at the beginning

of this section, based on the detailed status of the memory

flow and the local arbiter at every pipelined stage. Without

such exact memory access profiles, which is often the case in

reality, the worst-case analysis reported in this section must



WANG et al.: MESHED BLUETREE 9

1

2

4

8

16

0

1000

2000

3000

4 8 16 32 64 128

3 7 15 31 63 127
6 14 30 62 126 254

12 28 60 124 252
50824 56 120 248

504
1016

48 112 240
496

1008

2032

M
em

o
ry

 M
o

d
u

le
s

Clients

(a) Bluetree Multiplexer

1

2

4

8

16

0

1000

2000

3000

4 8 16 32 64 128

0 0 0 0 0 0

4 8 16 32 64 128
12 24 48 96 192 384

28 56 112 224
448

896
60 120 240

480
960

1920

M
em

o
ry

 M
o

d
u

le
s

Clients

(b) Bluetree Router

1

2

4

8

16

0

2500

5000

7500

4 8 16 32 64 128

7 15 31 63 127 255
18 38 78 158 318 638

40 84 172 348 700
140484 176 360 728

1464

2936
172 360 736

1488

2992

6000

M
em

o
ry

 M
o

d
u

le
s

Clients

(c) Bluetree Wire

Fig. 6. Hardware consumption.

be deployed for real-time applications. The bound provided

can also be tightened in future work, e.g., by restricting

the demand from processors. Evaluation on the tightness is

also important, and requires sufficiently representative memory

workload patterns to be fair.

Compared to the conventional Bluetree-based architecture,

a single memory access across the Meshed Bluetree expe-

riences higher delay with the longer pipelined data path.

However, simultaneous memory accesses can be processed by

the paralleled memory modules concurrently, which reduces

the contention and increases bandwidth, hence improving the

overall system performance. To summarise, our Meshed Blue-

tree provides good average-case performance and guarantees

the worst-case memory latency, the latter being particularly

important for the real-time applications.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate our proposed Meshed Bluetree

architecture on FPGA with both synthetic memory work-

loads and real-world benchmarks under various system con-

figurations. Our experiment is conducted on Virtex-7 FPGA

VC709 [20] with 100MHz of clock frequency. Two kinds of

single-port memory modules are employed. An FPGA BRAM

module [21] is reconfigurable from 4KB to 256MB, and gives

immediate response to a memory request. A VC709 DDR3

DRAM module [22] is of 4GB in size and responds with

approximately 30 clock cycles (when the FPGA system is

with 100MHz of clock frequency and the DDR3 DRAM

module is with 400MHz). Below, we first report the hardware

consumption of the interconnect.

A. Hardware Consumption

The numbers of components required to construct the

Meshed Bluetree interconnect, including multiplexers, routers,

and wires, are reported in Figure 6, with the system cardinality

increasing from 4× 1 to 128× 16. According to the analysis

in Section IV, the results are calculated using (1), (2) and (3),

which covers the entire interconnect. As shown in the graph,

the number of components is proportional to the number of

clients and memory modules, respectively.

The hardware consumption of the Bluetree multiplexer

and the Bluetree router at the register-transfer level (RTL)

is reported in Table I, in terms of look-up tables (LUTs),

registers, and BRAMs, which are the basic logic units on

TABLE I
HARDWARE CONSUMPTION AT THE RTL LEVEL.

Component LUT Register BRAM

Bluetree Multiplexer 105 269 0
Bluetree Router 88 251 0

FPGA. Gate-level consumption, which depends on the fabrica-

tion technology, may be evaluated in the future, where more

detailed information such as the width and length of wires,

as well as the exact amount of area, is available. Our current

design employs the round-robin arbitration within the Bluetree

multiplexers (i.e., the local blocking factor α = 1) and the

static priority-based arbitration within the Bluetree routers.

The entire Meshed Bluetree architecture is implemented with

Bluespec System Verilog [23][24] and synthesised with Xilinx

Vivado [25][26].

As shown in Table I, one single Bluetree router consumes

slightly fewer resources than a Bluetree multiplexer, and their

difference is mainly on the internal arbiter design. The BRAM

consumption is 0 with the selected arbitration schemes. It is

to be noted that this resource consumption is obtained from

the Vivado synthesis report, and will be much lower after

optimisation. Based on Figure 6 and Table I, the hardware

consumption of the Meshed Bluetree interconnect increases

linearly over the system cardinality.

B. Synthetic Memory Workloads

This section evaluates memory access latencies across the

8-client Meshed Bluetree architecture with various configura-

tions. We deploy traffic generators as clients, which simulate

memory requests without processing any data. The memory

workload parameters include the path outstanding request

number and the request interval. The traffic generator suc-

cessively issues memory requests with randomised varying

request intervals in between, until the path outstanding request

number is reached, and then stalls. After a memory response

returns, this traffic generator starts to issue memory requests

again. Such synthetic memory workloads provide traffic pat-

terns close to practical applications and facilitate behaviour

observation.

In the experiments, we limit the outstanding request num-

ber for each client to be 2. The varying memory request

interval is randomly produced from [1, 64]. This refers to

the practical applications with memory requests distributed



10 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE

16021

8242

5343

0

5000

10000

15000

20000
T

o
ta

l 
L

at
en

cy
 (

C
L

K
)

System Cardinality

8×1

8×2

8×4

Fig. 7. Total latency with multiple homogeneous memory modules.

0

100

200

300

400

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

System Cardinality

8×1

8×2

8×4

Fig. 8. Average latency with multiple homogeneous memory modules.

over time. Two sets of experiments on multiple homogeneous

memory modules and mixed memory modules, respectively,

are performed and analysed below, each with a total of 100

memory requests. As write buffers are commonly employed

to expedite the memory writes, we focus on single-mode

memory reads with randomly generated addresses, which take

considerable latencies.

1) Multiple Homogeneous Memory Modules: This exper-

iment evaluates latencies across the Meshed Bluetree archi-

tecture with multiple homogeneous memory modules, under

the system cardinalities 8 × 1, 8 × 2, and 8 × 4. It is to

be noted that the 8 × 1 Meshed Bluetree architecture is the

same as the conventional 8-client Bluetree-based architecture.

The memory module is implemented based on FPGA BRAM

with an additional delay of 20 clock cycles (as there are

only 2 DDR DRAM modules on VC709). The accesses are

partitioned among these paralleled memory modules following

the uniform distribution.

Figure 7 shows that the total latency, reflecting the overall

system performance, is roughly reduced by half as the number

of memory modules doubles. The reduction is not exactly

by half (slightly less than), as according to our previous

analysis, memory accesses experience longer data path delays

across the meshed interconnect. Although some path delays

can be masked by the waiting for the root memory module,

the latency of a single memory access increases. In addition,

following a randomised process, the memory accesses are not

evenly partitioned to the paralleled architecture, neither the

target memory modules nor the issuing time instants. The

contention over the heavier shared memory module increases

the latency.

Figure 8 examines every single memory access, showing

the average latency and the highest observed latency, the latter

23247

18346

11779

0

5000

10000

15000

20000

25000

30000

T
o

ta
l 

L
at

en
cy

 (
C

L
K

)

BRAM Accesses

10%

30%

50%

Fig. 9. Total latency with mixed memory modules.

0

100

200

300

400

500

600

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

BRAM Accesses

10%

30%

50%

Fig. 10. Average latency with mixed memory modules.

being the cap line. Although the blocking due to the shared

resources still occurs, the simultaneous memory requests are

partitioned into multiple memory modules in parallel through

the Meshed Bluetree interconnect, which effectively alleviates

the contention to a single memory module, and thus reduces

the average memory access latency as well as the highest

observed latency.

2) Mixed Memory Modules: This experiment evaluates

latencies across the Meshed Bluetree architecture with mixed

memory modules, under the system cardinality of 8×2, using

an FPGA BRAM module and a VC709 DDR3 DRAM module.

In the experiment, the percentage of memory accesses to the

BRAM module varies from 10%, 30%, to 50%, as the faster

memory module tends to be of smaller size and memory

address range.

Figure 9 shows that the total latency is reduced with the

increasing BRAM access percentage. When this percentage

changes from 10% to 30%, the total latency is reduced by

about 21% due to the much faster response from BRAM.

When this percentage further increases from 30% to 50%,

the total latency drops even faster by 36%. Therefore, if the

architecture scales with faster memory modules in parallel, the

system could have more noticeable performance improvement.

Figure 10 examines every single memory access, showing

that the average latency gets reasonably reduced with more

accesses to the faster memory module. However, the highest

observed latency remains unchanged. As the memory accesses

are randomly partitioned between BRAM and DRAM, the

traffic generator can quickly issue the next memory requests

to the DRAM module after receiving the very fast response

from the BRAM module. In this case, the contention to the

shared DRAM module is not alleviated, which thus does not

improve the highest observed latency.



WANG et al.: MESHED BLUETREE 11

13494508

6748045

3372759

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(a) cnt

8×1

8×2

8×4

1589913

795051

397678

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(b) cover

8×1

8×2

8×4

9636655

4817766

2409877

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(c) jfdctint

8×1

8×2

8×4

4598288

2298877

1149914

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(d) qsort-exam

8×1

8×2

8×4

Fig. 11. Performance with multiple homogeneous memory modules.

13494508 13270811 13307199

3281634

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(a) cnt

single DDR

dual DDR

data BRAM

instr BRAM

1589913 1533707 1532799

384627

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(b) cover

single DDR

dual DDR

data BRAM

instr BRAM

9636655 9472546 9497919

2343375

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(c) jfdctint

single DDR

dual DDR

data BRAM

instr BRAM

4598288 4544373 4560639

1119824

A
v

er
ag

e 
L

at
en

cy
 (

C
L

K
)

(d) qsort-exam

single DDR

dual DDR

data BRAM

instr BRAM

Fig. 12. Performance with separate instruction and data memory modules.

C. Benchmarks

This section evaluates the average-case performance of the

Meshed Bluetree using Mälardalen benchmarks [27]. The ex-

periments are based on the 8-Microblaze [28] system running

8 calculation-intensive benchmarks of different functionality.

Each core executes one benchmark. It is to be noted that

there is no local memory deployed, which makes the root

memory modules under heavy pressure. The memory accesses

are evenly partitioned to the shared memory modules. The

results are averaged over 1000 repeated runs. Due to the space

limit, four benchmarks, cnt, cover, jfdctint, and qsort-exam are

shown in two sets of experiments.
1) Multiple Homogeneous Memory Modules: This exper-

iment evaluates the performance of the Meshed Bluetree

architecture with multiple homogeneous memory modules,

under the system cardinalities 8× 1, 8× 2, and 8× 4, on the

benchmarks. The memory module is implemented based on

FPGA BRAM with an additional delay of 20 clock cycles (as

there are only 2 DDR DRAM modules on VC709). Figure 11

shows that the average latency is reduced roughly by half as

the number of memory modules in parallel doubles, for all the

benchmarks.
2) Separate Instruction and Data Memory Modules: This

experiment evaluates the performance of the Meshed Blue-

tree architecture with separate instruction and data memory

modules, using FPGA BRAM module and VC709 DDR3

DRAM. The system is configured as 8 × 1 with a single

DRAM, 8× 2 with dual DRAM, and 8× 2 with DRAM and

BRAM. In the last case, the memory accesses are partitioned

as instruction DRAM and data BRAM, or instruction BRAM

and data DRAM.

Figure 12 shows the experimental results. Compared with

a single DRAM configuration (denoted as single DDR in

the graph), the average latency with the separate instruction

DRAM and data DRAM configuration (denoted as dual DDR

in the graph) only slightly drops. Similar observations are

made with the instruction DRAM and data BRAM configura-

tion (denoted as data BRAM in the graph), where the average

latency in Figure 12 (c) jfdctint even increases compared

with the dual DRAM configuration. The reason is that, as

the benchmarks are instruction-intensive, faster data BRAM

accesses lead to more frequent instruction requests to the

slower DRAM and aggravate the congestion, which increases

the average latency. When the system is configured with

instruction BRAM and data DRAM (denoted as instr BRAM

in the graph), the average latency drops by approximately

75%. In all these experiments of this section, no local memory,

such as cache, gets deployed, which is a factor to reduce the

memory access latency.

VII. CONCLUDING REMARKS

This paper introduces the first time-predicable distributed

memory interconnect — Meshed Bluetree — that supports

multi-core architectures with multiple parallel memory mod-

ules. We first present the design of the Meshed Bluetree

architecture, which is constructed by coupling a distributed

router network with multiple conventional Bluetree-based

architectures in parallel. This allows simultaneous memory

accesses to be processed by the parallel memory modules

concurrently, which increases the bandwidth and alleviates the

contention over one shared memory module. We also report

the predictable timing analysis with the static calculations to

bound the worst case across the Meshed Bluetree architec-

ture. The evaluation with synthetic memory workloads and

real-world benchmarks demonstrates the effectiveness of our

design. That is, as the number of memory modules increases,

the latency is reduced with the same scale.

One promising direction for future work is to investigate

hardware/software co-design strategies that map (or divide)

tasks to the memory modules in the Meshed Bluetree or similar

architectures, aiming to improve the performance, including

the execution time, power consumption, and reliability. In

addition, more benchmarks, e.g., with more intensive demands

or of mixed types, can be taken to evaluate the proposed

interconnect, and finer analysis can also be performed on more

specific memory workload patterns.



12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, ESWEEK-TCAD SPECIAL ISSUE

REFERENCES

[1] ARM, AMBA 5 AHB Protocol Specification, 2015.
[2] Xilinx, AXI Interconnect, 2017.
[3] W. J. Dally and B. Towles, “Route packets, not wires: On-chip intecon-

nection networks,” in Proceedings of the 38th Annual Design Automation

Conference, ser. DAC ’01. New York, NY, USA: ACM, 2001, pp. 684–
689.

[4] L. Benini and G. De Micheli, “Networks on chips: A new soc paradigm,”
Computer -IEEE Computer Society-, vol. 35, no. 1, pp. 70–78, Jan 2002.

[5] J. H. Rutgers, M. J. G. Bekooij, and G. J. M. Smit, “Evaluation of a
connectionless noc for a real-time distributed shared memory many-core
system,” in 2012 15th Euromicro Conference on Digital System Design,
Sep. 2012, pp. 727–730.

[6] ARM, AMBA AXI and ACE Protocol Specification, 2011.
[7] G. Plumbridge, J. Whitham, and N. Audsley, “Blueshell: A platform for

rapid prototyping of multiprocessor nocs and accelerators,” SIGARCH

Comput. Archit. News, vol. 41, no. 5, pp. 107–117, Jun. 2014.
[8] M. Schoeberl, S. Abbaspour, B. Akesson, N. Audsley, R. Capasso,

J. Garside, K. Goossens, S. Goossens, S. Hansen, R. Heckmann,
S. Hepp, B. Huber, A. Jordan, E. Kasapaki, J. Knoop, Y. Li, D. Prokesch,
W. Puffitsch, P. Puschner, and A. Tocchi, “T-crest: Time-predictable
multi-core architecture for embedded systems,” Journal of Systems

Architecture, vol. 61, 04 2015.
[9] H. Wang, N. C. Audsley, and W. Chang, “Addressing resource contention

and timing predictability for multi-core architectures with shared mem-
ory interconnects,” in 2020 IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2020, pp. 70–81.
[10] M. Schoeberl, D. V. Chong, W. Puffitsch, and J. Sparsø, “A Time-

Predictable Memory Network-on-Chip,” in 14th International Workshop

on Worst-Case Execution Time Analysis, ser. OpenAccess Series in
Informatics (OASIcs), vol. 39. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2014, pp. 53–62.

[11] M. Dev Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens,
“A generic, scalable and globally arbitrated memory tree for shared dram
access in real-time systems,” in 2015 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2015, pp. 193–198.
[12] M. D. Gomony, J. Garside, B. Akesson, N. Audsley, and K. Goossens,

“A globally arbitrated memory tree for mixed-time-criticality systems,”
IEEE Transactions on Computers, vol. 66, no. 2, pp. 212–225, Feb 2017.

[13] G. F. Pfister and V. A. Norton, “Hot spot contention and combining in
multistage interconnection networks,” IEEE Transactions on Computers,
vol. C-34, no. 10, pp. 943–948, Oct 1985.

[14] N. Kavaldjiev, G. J. M. Smit, and P. G. Jansen, “A virtual channel
router for on-chip networks,” in IEEE International SOC Conference,

2004. Proceedings., Sep. 2004, pp. 289–293.
[15] A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual channels

in networks on chip: Implementation and evaluation on hermes noc,” in
2005 18th Symposium on Integrated Circuits and Systems Design, Sep.
2005, pp. 178–183.

[16] N. Audsley, “Memory architecturesfor noc-based real-time mixed criti-
cality systems,” Proc. WMC, RTSS, pp. 37–42, 2013.

[17] A. DeHon and R. Rubin, “Design of fpga interconnect for multilevel
metallization,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 12, no. 10, pp. 1038–1050, 2004.
[18] A. O. Balkan, G. Qu, and U. Vishkin, “A mesh-of-trees interconnection

network for single-chip parallel processing,” in IEEE 17th International

Conference on Application-specific Systems, Architectures and Proces-

sors (ASAP’06), Sept 2006, pp. 73–80.
[19] A. Rahimi, I. Loi, M. R. Kakoee, and L. Benini, “A fully-synthesizable

single-cycle interconnection network for shared-l1 processor clusters,”
in 2011 Design, Automation Test in Europe, March 2011, pp. 1–6.

[20] VC709, https://www.xilinx.com/products/boards-and-kits/
dk-v7-vc709-g.html, [accessed 31 October 2019].

[21] Xilinx 7 Series FPGAs Memory Resources, 2017.
[22] Xilinx 7 Series FPGAs Memory Interface Solutions, 2017.
[23] Bluespec, https://bluespec.com/, [accessed 31 October 2019].
[24] Bluespec System Verilog Reference Guide, 2014.
[25] Xilinx, https://www.xilinx.com, [accessed 31 October 2019].
[26] Vivado, https://www.xilinx.com/products/design-tools/vivado.html, [ac-

cessed 31 October 2019].
[27] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen

WCET benchmarks – past, present and future,” in WCET2010, B. Lisper,
Ed. Brussels, Belgium: OCG, Jul. 2010, pp. 137–147.

[28] Xilinx, MicroBlaze Processor Reference Guide, 2019.


