
This is a repository copy of Specification, verification and design of evolving automotive
software.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164759/

Version: Accepted Version

Proceedings Paper:
Ramesh, S, Vogel-Heuser, Birgit, Chang, Wanli orcid.org/0000-0002-4053-8898 et al. (2
more authors) (2017) Specification, verification and design of evolving automotive
software. In: Design Automation Conference (DAC). IEEE

https://doi.org/10.1145/3061639.3072946

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

INVITED: Specification, Verification and Design
of Evolving Automotive Software

S. Ramesh
General Motors R&D

Warren, Michigan, USA
ramesh.s@gm.com

Birgit Vogel-Heuser
Technical University of Munich

Munich, Germany
vogel-heuser@tum.de

Wanli Chang
Singapore Institute of Technology

Singapore, Singapore
wanli.chang@singaporetech.edu.sg

Debayan Roy
Technical University of Munich

Munich, Germany
debayan.roy@tum.de

Licong Zhang
Technical University of Munich

Munich, Germany
licong.zhang@tum.de

Samarjit Chakraborty
Technical University of Munich

Munich, Germany
samarjit@tum.de

ABSTRACT
Modern automotive systems consist of hundreds of functionalities
implemented in software. Moreover, these functionalities are con-
stantly evolving with increasing demand for automation, industry
competition and changing sensor and actuator capabilities. Corre-
spondingly, it is important to adapt the engineering and software
development processes for such systems to consider fast manage-
ment of this evolution at minimum cost. Towards this, in this paper,
we outline three different problems in the context of evolving auto-
motive software and discuss potential solutions for each of them.
First, we outline a framework that can accommodate variability in
specifications while developing software for automotive product
lines. Secondly, a technique is illustrated to addresses after-sales
addition of new features in existing systems by studying correspond-
ing acceptable performance degradation of existing functionalities.
Finally, we discuss how an inconsistency management framework
and regression verification can ensure consistent evolution of engi-
neering processes for automotive mechatronic systems.

KEYWORDS
Formal Specification and Verification, Inconsistency management,
Regression verification, Feedback control systems, Model predictive
control, Evolving automotive systems

ACM Reference format:
S. Ramesh, Birgit Vogel-Heuser, Wanli Chang, Debayan Roy, Licong Zhang,
and Samarjit Chakraborty. 2017. INVITED: Specification, Verification and
Design of Evolving Automotive Software. In Proceedings of DAC ’17, Austin,
TX, USA, June 18-22, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3061639.3072946

1 INTRODUCTION
A typical modern passenger vehicle has hundreds of features im-
plemented in software using several components. The software
realizes the control of several functions of the vehicle ranging from
traditional engine control to active and passive safety systems,
brake systems, and adaptive cruise control. Moreover, these fea-
tures and functionalities are constantly evolving with increasing
demand for automation, industry competition and changing sensor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’17, Austin, TX, USA
© 2017 ACM. 978-1-4503-4927-7/17/06. . . $15.00
DOI: http://dx.doi.org/10.1145/3061639.3072946

and actuator capabilities. Until recently, proprietary standards and
processes were followed by vehicle manufacturers (OEMs) for the
development of automotive software. The increased complexity and
safety demands on these systems have led to new open standards
such as AUTOSAR [7] and ISO 26262 [11]. AUTOSAR standard
defines a layered component-based software architecture for auto-
motive software development to tackle the complexity issue while
ISO 26262 is a functional safety standard defining different safety
integrity levels and recommends rigorous verification and valida-
tion methods for higher integrity levels (ASIL C and D). In addition,
it is also important to adapt the engineering and software develop-
ment processes for such systems to consider fast management of
evolution at minimum cost. Towards this, one can have different
perspectives of evolution and approach the problem accordingly.

For example, automotive software systems are always developed
as product lines in order to realize a whole variety of functional-
ities and platforms. Correspondingly, it may be said that design
specification evolves across different generation of products and
also across different models in the same generation. In such an
evolution, the features and subsystems reuse common core sets
of functionality but have variability which are configured late in
design cycle to produce a specific software for a particular vehicle
class. The specification, design and verification of these features
contain variability which make the problem of their development
and analysis very complex.

Furthermore, towards evolving automotive software, one can
also consider the case where new software modules are added onto
an existing system. This scenario stems from the fact that new
automotive applications, like in the domains of Advanced Driver
Assistance Systems (ADAS) and autonomous driving, are becoming
available at shorter time spans as compared to the lifetime of a
car. Correspondingly, there is an increasing emphasis on after-
sales integration of new software modules onto existing systems.
However, addition of new modules is not trivial as they may impact
the performance of existing functionalities and may also jeopardize
the safety of the system.

Another important aspect in the context of evolution is the in-
consistency management across different disciplines involved in the
development of automotive systems. As automotive systems can be
regarded as complex mechatronic systems with tight integration of
mechanical, electrical/electronic and software systems, change in
design specification of one influence the others. Correspondingly,
it may be said that addition of new features into the system not
only requires addition of software modules but may also need to
install new electrical/electronic sensing devices and/or mechani-
cal actuators. Therefore, it is important to consider the problem
of evolution management from a more holistic perspective where

consistency among different heterogeneous models across different
engineering disciplines and design phases must be verified.
In this paper, we consider each of the three aforementioned prob-
lems and discuss potential solutions for them. First, we outline
a framework that can accommodate variability in specifications
and accordingly design and verify systems from their state transi-
tion models (Sec. 2). Second, we describe a technique to add new
applications onto existing systems that allows changes in certain
parameters of existing applications to the point such that the resul-
tant systems still satisfy requirement specification (Sec. 3). Next, we
discuss how an inconsistency management framework and regres-
sion verification can ensure consistent evolution in the engineering
processes for mechatronic products (Sec. 4). Finally, we conclude
in Sec. 5 by emphasizing the need for more work in this area.

2 FORMAL MODELING AND VERIFICATION
OF AUTOMOTIVE PRODUCT LINES

In this section, we propose a rigorous approach to the specification
and analysis of requirements and design of evolving automotive
software product lines. This approach employs rigorous state tran-
sition models for precisely capturing the system behavior which
can be subjected to automated analysis. Our modeling and analysis
framework is designed to take into account the evolutionary nature
and product line structure of automotive systems. The require-
ment specification framework enables incremental development
which can be interleaved with analysis steps. The underlying state
transition systems are equipped with a variability specification
mechanism that helps in evolving and refining the specification
over the development cycle.

In the rest of this section, we will summarize our framework
highlighting the different features of incremental development of
requirements and the product line verification scheme. For more de-
tails, the readers are referred to [16, 18]. Our focus in this paper will
be on the discrete control aspects, though the proposed approach
has been extended to continuous and hybrid frameworks [14].

2.1 Evolutionary Requirements Framework
The proposed framework, as the name suggests, caters to evolving
systems or features for which the goals are fully understood but the
system is in its early stages of development. Here, many aspects
of the underlying technology not fully understood and are still
evolving, as in the case of autonomous vehicles and ADAS features.
Three main features associated with the development of evolv-
ing systems are: loose semantics, compositionality and integrated
simulation and/or analysis capability. The loose semantics allows
underspecification which can be "filled in" as the (understanding of)
the system evolves. The analysis and simulation capability enables
identification of new behaviors or refinement/removal of existing
behaviors. It should be easy to add/remove existing behaviors to
the requirements for an evolving system.

2.1.1 Structured Transition Systems. The framework employs
a formalism called Structured Transitions Systems (STS) which is
based upon the well-known Mealy Machines; mealy machines are
finite state machines with transitions labeled with input and output
events. STS is a declarative formalism specifying a set of mealy state
machines described in terms of properties of states and transitions.
A simple example of a STS specification is given below:
INPUT fail,reset;

OUTPUT notify,eps;

TYPE Mode:{MANUAL,AUTOMATIC};

TYPE Status:{DISABLES,OFF,ENGAGED,FAILED};

VAR mode: Mode; VAR status: Status;

INIT (status==OFF);

TRANSITION true<fail/notify> (status==FAILED);

TRANSITION true<reset/eps>(status==OFF);

The specification defines the inputs, outputs, state variables
defining the system states and the transitions between the states.
mode and status are state variables which take different values in
different states. INIT clause defines the initial states of the system
and the two TRANSITION clauses constrain the possible transitions
between the states. For instance, the second TRANSITION clause
states that any state transition to a state in which the status variable
assumes the value OFF under a reset input event.

Note that the above description defines not a single concrete
state machine but a whole family of machines constrained by the
various clauses in the specification. New clauses can be added to
further constrain or modify the set of machines implied by the spec-
ifications. For instance, one can introduce the following additional
input clause to the above description:

INPUT set_auto,set_manual

which introduces a whole lot of state machines that have new
transitions labeled with the new input events. Similarly, one can
add new clauses of other kinds, e.g., transitions which can constrain
the set of allowed transitions. This capability of STS is very useful
and fundamental to building evolutionary requirements.

There are two main operations, zoom and focus provided to
construct complex STS specifications from simpler ones. As the
name suggests, zoom defines a superstate that identifies a subset of
states in which additional constraints may be placed. For instance,
the following clause
ZOOM (status == FAILED)

{

CONSTANT mode ON set_auto,set_manual WITH eps

}

specifies a superstate that consists of all those states in which the
state variable status is FAILED and that constrains the transitions
labeled with input events set_auto or set_manual among these
states to keep the state variable mode unchanged, as indicated by
the keyword CONSTANT.

In contrast, focus operation performs an abstraction of the state
space by projecting it onto a subset of state variables and specifying
additional (constraints on the) behaviors. Consider the example
FOCUS mode[fail,reset/notify,eps]

{

MACHINE

{

STATE s1[mode==MANUAL];

STATE s2[mode==AUTOMATIC];

s1<fail,reset/?> s1

s2<fail,reset/?>s2

}

}

The above specification essentially restricts the transitions under
the input events fail and reset not to change themode component
of the state.This is done by focussing the attention on the ‘mode’
component of the states and specifying the type of transitions
between them. The above example also illustrates another construct
MACHINE which allows explicit specification of a mealy machine.

Another construct available in the STS formalisms is Simulate.
The following clause that can be added to an STS specification is
an interesting example of the usage of the construct.

!SIMULATE (status==DISABLED)<fail/?><reset/?> (status ==OFF);

This when included as a clause in our example, excludes a run
that takes the state from DISABLED to OFF via a sequence of

inputs fail;reset. The negation symbol ! is used for specifying
the absence of the indicated behavior.

For a more detailed discussion on the syntax and semantics of
STS, the reader is referred to [18].

2.1.2 Analysis. The declarative framework of the formalism
enables rigorous analysis of the specifications. Besides the standard
consistency and ambiguity analysis, three kinds of analysis can be
performed on specifications using the operators provided in the
framework:

• Abstraction of a transition system focusing on a subset of
state variables and construct an abstract state transition
system based upon this subset. This analysis can be directly
realized by using the FOCUS operation.

• State Space Restriction derives a transition system whose
states satisfy a list of predicates which can be achieved by
using the zoom operator.

• Finally, the simulation operator is used to generate sce-
narios from the specification which can be analysed for
inclusion or removal.

The formalism was applied to develop requirements for many
in-house systems in GM. A novel active safety feature was specified
using the formalism by an engineer not trained in formal methods.
The original specification of this feature is a 50-page document
in natural language which was converted into the STS formalism
which consists of 9 state variables, 20 input/output signals and
around 120 clauses. During the analysis of this specification, a few
new corner case scenarios were found and this led to the improve-
ment of the requirements specification.

2.2 Product Line Modeling and Veri�cation
As discussed in Sec. 1, automotive features and subsystems are
developed as a product line that share a common core set of func-
tionality. A central feature of product lines is variability, which
requires careful attention in all the stages of development, includ-
ing requirements. One challenging aspect of automotive systems
that we encountered is their evolutionary nature, which extends
even to variability. As the features and systems evolve, new varia-
tion points and variability may be introduced. We have extended
the STS formalism to include the specification of variability.

2.2.1 Variable State Transition Systems. A variable STS is an
STS enhanced with a set of special configuration variables which
assume finitely many values. Each valuation of these variables
define a variant. The difference between a state variable and a
configuration variable is that the transitions do not change the
values of the configuration variables. Another difference is that the
values of configuration variables decide whether a transition is to
be included or not in the specification of a variant.

As a simple example, consider the transition system described
graphically in Figure 1. This captures the behavior of a simple Door
lock feature. There are three configuration variables in this state
machine which are given along with their possible values in the
upper box in the figure. The lower box defines a constraint over
the possible valuations of these variables; this constraint states that
whenever the variable Transmissiondl assumes the valueManual ,
DL_User_Pre f takes the value Speed . There are six allowed config-
urations and hence variants defined by this machine. Each transi-
tion label is prefixed with a constraint involving the configuration
variable that determines whether a transition is to be included
in a variant or not. For instance, the transition label prefix Speed
indicates that this transition is included in the description of the be-
havior of only those variants for which the variableDL_User_Pre f

assumes the value Speed . A transition with no prefix is allowed in
all the variants.

DL_Enable: {Enable,Disable}

Transmissiondl: {Auto,Manual}

DL_User_Pref: {Speed, Park}

Manual�Speed

Disable: *

Unlock
Lock

Figure 1: Variable STS for Door lock Feature

All the analysis operations defined in the previous section extend
to variable STS as well and this helps in consistency and ambiguity
analysis to be carried out across an entire product line. Also, the
formalism supports evolution of product line requirements by way
of introduction or revision of configuration variables. Further, the
operations focus and zoom can be used to ‘focus’ and ‘zoom’ into
a specific product variant or a subset of variants to specify variant
specific behaviors.

A special operation called instantiation is defined for variable STS
which is useful for product line requirements. Given a variable STS,
the instantiation helps in extracting the requirements applicable
to a specific variant or a subset of variants. This helps in isolating
variant specific requirements and then analyzing them or revising
them. This also helps in inserting variant specific requirements to
the existing requirements. One specific use case is that new product
variants can be introduced that leads to the evolution of the product
line structure.

2.2.2 Design Verification. Formal specification of requirements
helps not only in removing ambiguities and inconsistencies early
in the development cycle, but helps in validating the designs and
their implementations. The design step involves refining the high
level behaviors specified in the requirements into lower abstraction
levels that are realized on a computational platform. For example,
the state variables and the operations on these variables are realized
using appropriate data structures available in the implementation
machine. In the automotive domain, the implementation often con-
tains multiple variants which are configured late at the deployment
time to a specific variant. To facilitate late configuration, the im-
plementation uses calibration parameters to specify variability and
they can be easily set to specific values to get a specific variant.

In order to verify that an implementation specifies an STS re-
quirement, we propose modeling the implementation also as a
variable STS and define a formal notion of refinement of variable
STS specifications. Given a variable STS A, we define Conf iд(A)
to be the set of all variant STS defined by A, by instantiating the
configuration variables of A to valid values. Further, we associate a
behavior for a standard STS B (the one without any configuration
variable), denoted by Beh(B), to be the set of all possible input-
output sequences allowed by B. Then we can define for a pair of
variable STS A,A′ a notion of refinement, denoted by re f , as fol-
lows: A re f A′ if for every variant B in Conf iд(A), there exists a
variant B′ in Conf iд(A′) such that Beh(B) ⊆ Beh(B′).

We have developed e�cient methods for checking refinement
using standard model checking techniques and the readers are re-
ferred to [16] for more details. To illustrate the notion of refinement,
consider the variable STS given in Figure 2. This STS can be shown
to be an implementation of the STS introduced earlier in Figure 1.
Let us denote these two STSs by Desdl and Reqdl respectively. The
structure of Desdl is similar to Reqdl except that the top elliptical

shaped state in Figure 1 is split into two states (the top and the
bottom elliptical shaped states) in Figure 2. The top state is for auto-
transmission whereas the bottom one is for manual transmission
as can be seen from the configuration labels of the two transitions
going from the initial state. Two configuration variables Cp1 and
Cp2 are used inDesdl . The box in Figure 2 depicts the set of possible
values of these. Cp1 = Auto corresponds to the configuration in
which the transmission is Auto whereas Cp1 = Mof f corresponds
to either the manual transmission or the case whenCp1 is disabled;
similarly, Cp2 = Speed means that the user preference is set on
Speed , whileCp2 = Pof f means either Park or the case whenCp2
is disabled. It can be shown that Desdl refines Reqdl .

Cp1:{Moff, Auto}

Cp2:{Poff, Speed}

MoffΛPoff:*

Lock

Lock

S
p

e
e

d
>

n

M
o

ff
:U

n
lo

ck

Poff:

ShiftOutOfPark

Figure 2: Desdl : Door lock Implementation STS

3 EVOLVING AUTOMOTIVE CONTROL
SOFTWARE DESIGN

When new control software modules are implemented on auto-
motive platforms, it is desirable that the existing pre-tested and
verified code is not changed. Taking this into consideration, we
discuss a design method for evolving automotive control software
systems design. Here, as new control tasks are added, only the sam-
pling periods of the existing tasks need to be reconfigured. As will
be explained later in this section, the sampling period is an input
parameter to the control software, and correspondingly, the code
can be kept unchanged. We illustrate the technique with feedback
control applications.

3.1 Basics of Feedback Control Applications
Plant dynamics: The dynamic behavior of a linear time-invariant
(LTI) single-input-single-output (SISO) plant can be modeled by a
set of differential equations,

�x (t) = Ax (t) + Bu(t),

y(t) = Cx (t),
(1)

where x(t) ∈ Rl is the system state, y(t) is the system output, and
u(t) is the control input. The matricesA, B andC represent physical
properties of the plant. Here, the control inputu(t) is computed and
applied to the plant to achieve certain desired control performance.

In automotive systems, the controller is implemented in a digital
fashion. Therefore, the system states must be sampled when mea-
sured by the sensors. Assuming the sampling period to be h, the
sampled system state and output can be represented as

x [k] = x (tk), y[k] = y(tk), tk = kh, k = 0, 1, 2, 3, · · · . (2)

The control input is denoted as u[k], and is given by

u[k] = u(t), tk ≤ t < tk+1 . (3)

Correspondingly, the discretized dynamics of (1) is

x [k + 1] = Adx [k] + Bdu[k],

y[k] = Cx [k], where

Ad = e
Ah

, Bd =

∫
h

0
(eAτ

′
dτ ′)B .

(4)

Control performance: A popular performance metric in the con-
trol context is the quadratic cost function, which is given by

J =

N−1∑
k=0

(xT [k]Qx [k] + uT [k]Ru[k]) + xT [N]Sx [N], (5)

assuming that the system state x[k] is expected to stabilize at 0. Q
is a positive semi-definite weight matrix, R is a positive definite
weight matrix, and S is a positive semi-definite matrix. Since SISO

applications are considered, uT [k] = u[k]. To optimize the control

performance, J is minimized. Among the three terms, xT [k]Qx[k]

penalizes the transient state deviation, uT [k]Ru[k] penalizes the

control effort, and xT [N]Sx[N] penalizes the finite state deviation.

Model Predictive Control: The goal is to find a sequence of con-
trol inputs u[0],u[1], . . . ,u[N − 1] that minimizes the quadratic
cost function J , where N is the horizon. Assuming that S = Q and
bringing (4) into (5), we have

J =
1

2
UTHU + xT [0]FU + xT [0]Yx [0], (6)

whereU = [u[0],u[1], . . . ,u[N −1]]T . The matricesH , F , andY are
dependent on Ad , Bd , Q , and R. Details can be found in [6]. Corre-
spondingly, there is a large number of algorithms reported to solve
this optimization problem in model predictive control (MPC) [17].
Clearly, the sampling period h is an input parameter to the software,
and therefore, the code remains unchanged, if we reconfigure the
sampling periods.

3.2 Automotive Operating Systems and
Sampling Periods

Automotive control software is typically implemented on operating
systems such as OSEK/VDX that support a limited set of predefined
sampling periods [8]. An example set is

ϕ = {1ms, 2ms, 5ms, 10ms, 20ms, 50ms, 100ms}. (7)

Denoting ei and h to be the worst-case execution time (WCET)
and sampling period of a control application, Ci , respectively, the
processor load for Ci is

Li =
ei

h
. (8)

The upper bound on the load of a processor is denoted as Bu . Con-
sidering a single processor p,∑

{i |Ci runs onp }

Li ≤ Bu . (9)

Here, the value of Bu depends on the scheduling policy. For uniform
sampling, Bu is equal to 1. A variety of tools, such as Inchron [1],
Timing Architects [3], and SymtaVision [2], are used in the industry
for more general schedulability analysis.

3.3 An Illustrative Example
In order to illustrate the evolving automotive control software
design technique, we consider a five-state electronic wedge brake
(EWB), which is a brake-by-wire solution developed by Siemens [12].
MPC is used as the control algorithm and the horizon N is set to be

1 5 10 15
450

500

550

Sampling Period [ms]

Q
u
ad
ra
ti
c
C
o
st

Figure 3: The relationship between the control performance
and the sampling period for the EWB

4. The quadratic cost function in (5) is the control performance met-
ric and the requirement is 500. The relationship between the control
performance and the sampling period is reported in Figure 3.

We assume that there are initially three applications running on
the processor. For the sake of better and simple illustration, all the
applications are taken as identical to the EWB. The WCET of each
application is 0.6ms . Considering the set ϕ, the shortest sampling
period that can be assigned to all the three applications, without
violating the processor load constraint, is 2ms . The total processor
load is then 0.6/2 × 3 = 0.9 ≤ 1. The control performance is 463.

When a new control application, which is also taken as identical
to the EWB, is to be added, it is not possible to schedule all the
four applications on the processor with the sampling period of 2ms ,
since the total processor load would be 1.2, larger than 1. Therefore,
we reconfigure the sampling period to be 5ms . The processor load
then becomes 0.6/5 × 4 = 0.48. The control performance becomes
468, which is slightly deteriorated, yet still satisfies the control
performance requirement. In fact, this change of sampling period
enables the addition of more control applications. This evolving
process of automotive control software only requires a change of
the sampling period, which can be determined during the design
phase, while keeping the program code unchanged. When there are
different applications with different or even non-uniform sampling
periods, a more sophisticated schedulability analysis is required.

4 CONSISTENT EVOLUTION IN DESIGN
PROCESSES FOR MECHATRONICS

Automotive systems can be regarded as complex mechatronic sys-
tems or even cyber-physical systems (CPS) due to the tight inte-
gration of mechanical, electrical/electronic and software systems.
Heterogeneous models are adopted in different design phases to
show different abstraction levels and different viewpoints of the
automotive system. The rapid changes in technology and customer
needs results in evolution of these models, and therefore, it is essen-
tial to maintain consistency among interacting mechatronic models
and software versions [22]. In this section, we study automotive
systems from the point of view of cross-disciplinary engineering
process and address the consistent evolution of such systems con-
cerning different design layers: from high-level models to software.

4.1 Focusing on the engineering process
In the development of automotive systems, heterogeneous models
are involved, e.g., user requirements, object-oriented mechatronic
models, dynamic simulation models, manufacturing plans, and test
cases. During the engineering process, an e�cient and effective
collaboration between individual research departments is a crucial
factor for the overall success [13]. When some models in the system
need to be changed (e.g., updating electrical interfaces) or refined
(e.g., adding a dynamical property to a motor), inconsistencies may

Ver.n

Ver.2

Automotive CPS

System model
SW

MEEE

Ver.1

(i)

(ii)
Requirementequqqq e

Controlling

Figure 4: Inconsistencymanagement over themodelswithin
a version (i) and over the versions (ii)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

1 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

T
im

e
 t

o
 i
d
e
n
ti
fy

 a
 s

in
g
le

 i
n
c
o
n
s
is

te
n
c
y
 [
m

s
]

Number of model instances [−]

Query 1 Query 2 Query 3 Query 4 Query 5 Query 6

Figure 5: Time to identify a single structural inconsistency
depending on the number of model instances. Each model
instance represents a single model of a CPS with 100 inputs
and outputs [10].

occur between domain-specific models that are associated with the
changed/refined parts. The associated model may be deployed in
a different phase of the engineering life-cycle. In order to capture
the model dependencies and maintain the overall consistency, an
inconsistency management framework is proposed, which consists
of two parts: cross-disciplinary model representation and deriva-
tion of model interaction [9]. Semantic Web technologies prove
to be promising to identify and manage inconsistencies in this
framework. In addition, a central graphical modeling language is
put forward as an essential part of the inconsistency management
approach [10]. By means of such a modeling language, inconsis-
tencies can be flexibly specified, diagnosed and handled. In this
work, inconsistencies are defined in the level of the meta-model,
where interconnections among models are specified by rules based
on triple graph patterns [10]. They serve as an engineer-friendly
graphical tool to reduce manual efforts.

Concrete applications of the proposed approaches can be:

• Model checking, considering structural compatibility, e.g.,
representingmodels in SystemsModeling Language (SysML)
and checking entity constraints with the Object Constraint
Language (OCL).

• Global inconsistency checking and resolving among inter-
disciplinary engineering models (Fig.4-i), e.g., representing
different models in a common knowledge base with the
Web Ontology Language (OWL) and checking the same
object in different models with query languages.

• Time-spanning consistency checking along the engineer-
ing life cycle (Fig.4-ii), e.g., continuously checking updated
requirements and test cases by querying respective at-
tributes when the whole system evolves.

The proposed inconsistency management framework shows
good scalability in the first evaluation. As an use case, we can
consider that an electrical part is replaced by a new version. Corre-
spondingly, it is required to analyze for potential inconsistencies in
mechanical or software parts, e.g., whether the newly integrated
device provides the necessary interface or whether an upper bound
is respected. For the evaluation, 800 SysML model instances are
used with 100 inputs and outputs in each model (Fig. 5). Different
queries are conducted for the inconsistency check, e.g., query 4
checks whether an analog output is provided and query 5 checks
whether the current of all related components is limited. In this case,
the processing time varies from 2 to 16 sec 1, which is acceptable
for engineers.

However, the above mentioned inconsistency management is
feasible only when commonly accepted vocabularies, i.e., semantics,
are explicitly defined. In CPS design, one potential enabler to imple-
ment a cross-disciplinary applicable concept is to use a multitude
of triple stores that support Semantic Web technologies, which can
provide higher flexibility than traditional relational databases.

4.2 Focusing on the product model
Additionally, the detection of behavioral inconsistencies in the
components’ interface require analysis using rich interface specifi-
cations using [5, 15] or combined simulation (MATLAB/Simulink)
and model checking approaches for specific constraints [23]. Using
formal verification, correctness of a system can be proved rather
than only identifying faults. Simulation shows the exact time be-
havior of a system. A key challenge to combine both approaches is
to identify an appropriate level of abstraction of both models.

Moreover, modifications on the system may introduce unwanted
behavior, so called ‘regression’. Undetected regressions may cause
severe consequences. Especially for automotive systems which
are one of the most safe-critical systems, this might be the most
important engineering consideration since a car is supposed to
interact directly with humans, and correspondingly, unexpected
regressions may cause catastrophic accidents.

Although formal verification is well known for its power to prove
the behavior of the system by exhaustively exploring all reachable
states, it is not realistic to derive functional or behavioral speci-
fication for industrial size programs, like in automotive system.
This is a big barrier towards applying formal methods. Regression
verification [19] is an approach that attempts to ensure absence of
regression with formal verification techniques without the over-
all system specification and this was successfully integrated on
mechanical systems in [4, 21]. Recently, a verification-supported
evolution methodology was introduced in [20] which uses regres-
sion verification. Moreover, new behaviors are verified using delta
verification.

5 CONCLUDING REMARKS
Due to increasing demand for automation, industry competition
and changing sensor and actuator capabilities, automotive systems
are evolving at different scales. Correspondingly, in this paper, we
have considered three problems in the context of evolving automo-
tive software and discussed potential solutions for them. First, we
have outlined a framework which allows the designer to specify
requirements corresponding to different vehicle variants to address
evolution across vehicle product lines. Second, we have illustrated
that in order to accommodate new applications, one can exploit the

1For the implementation, Fuseki was used, which is part of the Apache Jena Framework.
Evaluations were run on a standard o�ce PC (Windows 7 x64 platform, 16 GB RAM, 4
cores, 3.6 GHz).

fact that change in certain parameters of existing control applica-
tions does not result in violation of acceptable performance bounds.
Finally, we have emphasized on the importance of inconsistency
management frameworks and regression verification to ensure
consistent evolution in of engineering process for mechatronic
products such as automotive systems. Although rapid evolution
of automotive systems is well-acknowledged, there have not been
enough efforts to address fast management of evolution cycles in a
comprehensive way in this domain. Different aspects of evolving
automotive systems have been studied separately; however, in the
future, it may be necessary to integrate these aspects into a single
holistic framework.

REFERENCES
[1] 2017. Inchron GmbH. https://www.inchron.de/. (2017).
[2] 2017. Symtavision GmbH. https://www.symtavision.com/. (2017).
[3] 2017. Timing Architects. http://www.timing-architects.com/. (2017).
[4] B. Beckert, M. Ulbrich, B. Vogel-Heuser, and A.Weigl. 2015. Regression Veri�cation

for Programmable Logic Controller Software. Springer International Publishing,
Cham, 234–251. DOI:https://doi.org/10.1007/978-3-319-25423-4_15

[5] M. Broy and K. Stølen. 2001. Speci�cation and Development of Interactive Systems:
Focus on Streams, Interfaces, and Re�nement. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

[6] W. Chang and S. Chakraborty. 2016. Resource-aware Automotive Control Sys-
tems Design: A Cyber-Physical Systems Approach. Foundations and Trends® in
Electronic Design Automation 10, 4 (2016), 249–369.

[7] AUTOSAR Consortium. 2015. AUTOSAR Specification R4.2.2. (2015). http:
//www.autosar.org/standards/classic-platform/release-42/

[8] OSEK/VDX Consortium. 2005. OSEK/VDX operating system specification Ver-
sion 2.2.3. (2005).

[9] S. Feldmann, S. J. I. Herzig, K. Kernschmidt, T. Wolfenstetter, D. Kammerl, A.
Qamar, U. Lindemann, H. Krcmar, C. J. J. Paredis, and B. Vogel-Heuser. 2015.
Towards Effective Management of Inconsistencies in Model-Based Engineering
of Automated Production Systems. IFAC-PapersOnLine 48, 3 (2015), 916 – 923.

[10] S. Feldmann, M. Wimmer, K. Kernschmidt, and B. Vogel-Heuser. 2016. A com-
prehensive approach for managing inter-model inconsistencies in automated
production systems engineering. In Proc. of 2016 IEEE International Conference
on Automation Science and Engineering (CASE). Fort Worth, TX.

[11] International Organization for Standardization (ISO). 2011. ISO 26262 Standard
Specification. (2011). http://www.iso.org/iso/catalogue_detail?csnumber=43464

[12] J. Fox, R. Roberts, C. Baier-Welt, L. Ho, L. Lacraru, and B. Gombert. 2007. Modeling
and Control of a Single Motor Electronic Wedge Brake. Technical Report. SAE.

[13] A. Kohn, J. Reif, T. Wolfenstetter, K. Kernschmidt, S. Goswami, H. Krcmar, F.
Brodbeck, B. Vogel-Heuser, U. Lindemann, and M. Maurer. 2013. Improving
Common Model Understanding Within Collaborative Engineering Design Research
Projects. Springer India, India, 643–654.

[14] S. N. Krishna, G. K. Narwane, S. Ramesh, and A. Trivedi. 2015. Compositional
Modeling and Analysis of Automotive Feature Product Lines. In Proc. of 2015
52nd ACM/EDAC/IEEE Design Automation Conference. San Francisco, CA.

[15] C. Legat, J. Mund, A. Campetelli, G. Hackenberg, J. Folmer, D. Schütz, M. Broy, and
B. Vogel-Heuser. 2014. Interface behavior modeling for automatic verification of
industrial automation systems’ functional conformance. Automatisierungstechnik
62, 11 (2014), 815–825.

[16] J.-V. Millo, S. Ramesh, S. N. Krishna, and G. K. Narwane. 2013. Compositional Ver-
ification of Software Product Lines. In Proc. of 10th Inernational Conf. Integrated
Formal Methods. Turku, Finland.

[17] J. Rawlings and D. Mayne. 2009. Model Predictive Control: Theory and Design.
Nob Hill Publishing.

[18] P. Sampath, S. Arora, and S. Ramesh. 2011. Evolving Specifications Formally. In
Proc. of 2011 IEEE 19th Conf. on Requirement Engineering. Trento, Italy.

[19] O. Strichman and B. Godlin. 2008. Regression Veri�cation - A Practical Way to
Verify Programs. Springer Berlin Heidelberg, Berlin, Heidelberg, 496–501.

[20] S. Ulewicz, M. Ulbrich, A. Weigl, M. Kirsten, F. Wiebe, B. Beckert, and B. Vogel-
Heuser. 2016. A verification-supported evolution approach to assist software
application engineers in industrial factory automation. In Proc. of 2016 IEEE
International Symposium on Assembly and Manufacturing (ISAM). Fort Worth,
TX.

[21] S. Ulewicz, B. Vogel-Heuser, M. Ulbrich, A. Weigl, and B. Beckert. 2015. Proving
equivalence between control software variants for Programmable Logic Con-
trollers. In Proc. of 2015 IEEE 20th Conference on Emerging Technologies & Factory
Automation (ETFA). Luxembourg.

[22] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy. 2015. Evolution of software in
automated production systems: Challenges and research directions. Journal of
Systems and Software 110 (2015), 54 – 84.

[23] B. Vogel-Heuser, J. Folmer, T. Aicher, J. Mund, and S. Rehberger. 2015. Coupling
simulation and model checking to examine selected mechanical constraints of
automated production systems. In Proc. of 2015 IEEE International Conference on
Industrial Informatics (INDIN). Cambridge.

