
This is a repository copy of Control/Architecture co-design for cyber-physical systems.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/164758/

Version: Accepted Version

Book Section:

Chang, Wanli orcid.org/0000-0002-4053-8898, Zhang, Licong, Roy, Debayan et al. (1
more author) (2017) Control/Architecture co-design for cyber-physical systems. In: Ha,
Soonhoi and Teich, Jürgen, (eds.) Handbook of hardware/software codesign. Springer

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Control/Architecture Codesign for
Cyber-Physical Systems

Wanli Chang, Licong Zhang, Debayan Roy, and
Samarjit Chakraborty

Abstract

Control/architecture codesign has recently emerged as one popular research

focus in the context of cyber-physical systems. Many of the cyber-physical

systems pertaining to industrial applications are embedded control systems. With

the increasing size and complexity of such systems, the resource awareness in

the system design is becoming an important issue. Control/architecture codesign

methods integrate the design of controllers and the design of embedded platforms

to exploit the characteristics on both sides. This reduces the design conservative-

ness of the separate design paradigm while guaranteeing the correctness of the

system and thus helps to achieve more efficient design. In this chapter of the

handbook, we provide an overview on the control/architecture codesign in terms

of resource awareness and show three illustrative examples of state-of-the-art

approaches, targeting respectively at communication-aware, memory-aware, and

computation-aware design.

Contents

1 Introduction . 2

2 Embedded Control Systems . 6

2.1 Embedded Systems Architecture . 7

2.2 Feedback Control Systems . 8

3 Communication-Aware Control/Architecture Codesign . 11

3.1 Problem Setting . 12

3.2 The Codesign Approach . 15

3.3 Case Study . 21

4 Memory-Aware Control/Architecture Codesign . 23

W. Chang (�)

Singapore Institute of Technology, Singapore, Singapore

e-mail: wanli.chang@singaporetech.edu.sg

L. Zhang • D. Roy • S. Chakraborty

TU Munich, Munich, Germany

e-mail: licong.zhang@tum.de; debayan.roy@tum.de; samarjit@tum.de

© Springer Science+Business Media Dordrecht 2016

S. Ha, J. Teich (eds.), Handbook of Hardware/Software Codesign,

DOI 10.1007/978-94-017-7358-4_37-1

1

2 W. Chang et al.

4.1 Cache Analysis for Consecutive Executions of a Control Application 24

4.2 Control Parameter Derivation . 29

4.3 Case Study . 31

5 Computation-Aware Control/Architecture Codesign . 32

5.1 Time-Triggered Operating System . 32

5.2 Multirate Closed-Loop Dynamics . 34

5.3 Case Study . 37

6 Conclusion . 37

References . 39

Acronyms

CFG Control-Flow Graph

CPS Cyber-Physical System

DSE Design Space Exploration

ECU Electronic Control Unit

E/E Electric and Electronic

EMB Electro-Mechanical Brake

ET Event-Triggered

FTDMA Flexible Time Division Multiple Access

LCS Live Cache States

MILP Mixed Integer Linear Programming

OS Operating System

PSO Particle Swarm Optimization

RCS Reaching Cache States

RTOS Real-Time Operating System

TDMA Time-Division Multiple Access

TT Time-Triggered

WCET Worst-Case Execution Time

1 Introduction

Cyber-physical systems refer to systems where tight interaction between the

computational elements (cyber) and the physical entities (physical) is emphasized. A

typical example of a cyber-physical system is an embedded control system. In such

a system, software implementation of the controllers running on processing units

are used to control physical plants. As shown in Fig. 1, the processing units are con-

nected with sensors and actuators where the sensors measure the states of the plants,

the controllers compute the control input, and the actuators apply the control input

onto the physical plants. Today, cyber-physical systems have become commonplace

and can be found in the domains like automotive, avionics, industrial automation,

chemical engineering, etc. The automotive Electric and Electronic (E/E) system is

an example of such a system. In a modern vehicle, increasingly more functions are

realized by software mapped on the Electronic Control Unit (ECU). These include

Control/Architecture Codesign for Cyber-Physical Systems 3

Processor on-chip memory

Bus

Flash I/O Sensor

Actuator
Processing Unit

Fig. 1 A processing unit with a processor and on-chip memory for program execution. Instruc-

tions are stored in the flash memory. Programmable I/O peripherals are used for communication

with sensors, actuators, and other processing units. For instance, Infineon XC23xxB Series, which

is widely used in automotive systems, has a single processor with a minimum operating frequency

of 20MHz. It is typically equipped with a small size of on-chip SRAM memory and up to 256 kB

flash memory [7].

the functions for vehicle dynamics control, body components control (e.g., doors

and lights), infotainment, and advanced driver assistance systems (ADAS). Some of

these functions have stringent timing requirements, and some demand processing

and transport of intensive data amount. The characteristics and performance of the

cyber part, i.e., the electronics and software, strongly influence the performance

of the physical part. In the case of safety-critical control functions, the timing

properties of the software implementation of the controllers, e.g., the sampling

period and the sensor-to-actuator delay, play a vital role in the control performance.

Therefore, with the Cyber-Physical System (CPS)-oriented thinking, more attention

is necessary for the implementation of the controllers in an embedded platform and

interplay between the embedded platform design and the control design.

The hardware architecture of the computational part of a cyber-physical system

consists mainly of one or more processing units. In case of a multiprocessor

architecture, the processing units are commonly connected by a communication

network, where data between different processing units can be transmitted. Typical

communication networks in this context include the FlexRay [3], CAN [13],

LIN [4], and MOST [5] in the automotive domain; AFDX i̧teAFDX and AS6802 [6]

in the avionics domain; and Profibus, Profinet [33], and EtherCAT in the industrial

automation domain. chapter ⊲ “Networked Real-Time Embedded Systems” pro-

vides a more detailed study on some important real-time communication protocols.

These communication protocols implement different data transmission approaches

and are each suitable for a specific set of requirements. On each processing unit,

the computation is performed by tasks, each of which is typically implemented by

a piece of code. Multiple tasks can be grouped together to form an application,

where an independent function (e.g., a feedback control loop) is performed. In a

distributed application, where the tasks are mapped onto different processing units,

the data between the relevant tasks are transmitted over the communication network.

It is common that multiple tasks belonging to the same or different applications are

mapped on one processing unit. In this case, an operating system (e.g., OSEK [1],

eCos [18]) is sometimes used to coordinate task executions and allocate resources

for the tasks.

4 W. Chang et al.

In many embedded systems in the context of cyber-physical systems, the applica-

tions are control applications, where the software implementation of the controllers

controls physical plants [28]. The design of controllers for these applications from a

control-theoretical perspective are well established. The control design methods can

be drawn from a large pool of research and practical expertise and experience that

have been accumulated in the control community in the past few decades. However,

little attention has been paid to the actual implementation of the controllers in the

embedded platforms. In this case, not only the control theoretical aspect of the

design problem needs to be taken into account, e.g., type of controllers and control

gains, but also the characteristics of the underlying embedded platforms. The design

aspects on the embedded system side include, for example, the task partitioning and

mapping, the scheduling of tasks and communication, and the allocation of memory

and cache. There is a tight interconnection between the control and the embedded

platform design [16]. For example, the results of the embedded platform design can

strongly influence the control performance through properties like sampling period,

delay, and jitter. Reversely, the requirements from the control design side also

influence the platform design. Conventionally the control and embedded platform

design are done separately and then integrated afterward. In this case, the engineers

on both sides need to make assumptions of the other side. Since most control

applications are safety critical, such assumptions are inevitably quite conservative

to guarantee the safety of the control applications. Due to this conservativeness,

usually the resources on the embedded platform, e.g., computation, communication,

memory, and energy resources, are not optimally utilized. On the other hand, these

resources on an embedded platform are quite limited, constrained by the size and

cost reasons. In recent years, both the size and complexity of the embedded systems

in industrial domains have increased drastically. In the automotive domain, for

example, a modern premium passenger car can contain up to 100 million lines of

software code [17]. In such a computation and data-intensive platform, resource-

efficient design has become a quite important issue. Therefore, the CPS community

has become increasingly conscious that some systematic design methods will be

necessary for design of resource-aware embedded control systems.

The resources on an embedded platform can be divided into different categories,

e.g., computation, communication, memory, energy, and input/output interfaces.

In the context of this chapter, three of the most important resources, namely, the

computation resource, the communication resource, and the memory resource, are

considered. In the following paragraphs, each of the aforementioned resources will

be explained in detail.

Communication resources can generally be represented as the bandwidth of a

communication bus or a network link, which denotes the number of bits that can be

transmitted per second. Therefore, there is only a limited amount of data that can be

transmitted within a specific time frame. More precise characterization of the com-

munication resource, however, is protocol specific. The communication protocols

implement different data transmission approaches, which can be broadly divided

into two different categories, namely, the Time-Triggered (TT) paradigm and the

Event-Triggered (ET) paradigm. For example, a Time-Division Multiple Access

Control/Architecture Codesign for Cyber-Physical Systems 5

(TDMA) bus is a typical time-triggered bus communication. In this case, a period of

time is divided into multiple time slots, and the usage of the communication resource

can be represented directly by the number of utilized slots. In an industrial-sized

distributed embedded system, the communication resource is quite constrained. As

the size of the system increases, more processing units and data can be incrementally

mapped on to the communication bus or network. However, the bandwidth of a

communication protocol cannot be easily increased. Therefore, communication-

efficient design could enable the system to accommodate more applications or

enhance the performance of the applications. Related to this, in recent years,

there have been several works on integrated controller synthesis and task and

message scheduling of distributed embedded control systems, e.g., [20, 23, 34, 35].

However, most of these works, e.g., [20, 23, 34] only consider optimization of

control performance while satisfying communication constraints. In addition, there

have been several works, e.g., [29,39] on schedule optimization of distributed time-

triggered embedded systems where the objective is to minimize communication

bandwidth utilization while satisfying timing constraints. However, these works do

not consider control applications.

Memory resources mainly refer to the size of cache due to its high cost. Within a

processing unit, there are typically two levels of memory – cache and main memory.

In Fig. 1, the on-chip memory works as cache and the flash memory serves as

the main memory. The main memory has a large size and can thus store all the

application programs and data, but experiences high read/write latencies (hundreds

of processor cycles). The cache is faster (several processor cycles), but usually

limited in size. In this chapter, the focus is on instruction memory. It is assumed

that the access times of cache and main memory are tc and tm, respectively, where

tc � tm. When a processor executes an instruction, it checks the cache first. If

this instruction is located in the cache, it is a cache hit and the access time is tc .

If this instruction is not in the cache, the memory block containing it is fetched

from the main memory and then written into cache. This is called a cache miss

and the access time is tm. Afterward, when the same instruction is called again by

the processor, the access time is tc if it is still in the cache without being replaced.

Increasing the cache size and improving the cache reuse are two general methods to

reduce the execution time of a program. A program usually has different execution

paths resulting in different execution times, depending on the input. The Worst-Case

Execution Time (WCET) is defined to be the maximum length of time a program

takes to be executed. The WCET constrains the sampling period of a control

application, which is defined to be the duration between two consecutive executions

of a control program, and thus has significant impact on the control performance.

In resource-aware embedded control systems design, it is desirable to minimize the

cache size while satisfying the performance requirement or, equivalently, improve

the performance for a given memory. Therefore, on one hand, the cache reuse should

be maximized, and on the other hand, the controller must be suitably designed

to exploit the shortened sampling periods. There have been some works on cache

reuse maximization by employing code positioning during compile time [22,26,32]

and also during run time [11], but these cannot directly be applied to embedded

6 W. Chang et al.

control systems as code rearrangement would impact the timing properties, and this

is difficult to incorporate while designing the controllers.

Computation resources usually mean the available execution time of a processor,

when the processing speed is given. Considering multiple applications sharing

one single-core processing unit, each application is allocated a certain period of

execution time. In general, the performance of an application can be improved if it is

allowed to access the processor longer. On a processor sometimes runs an Operating

System (OS). For instance, ERCOSek [1,19] is a widely used time-triggered OS on

ECUs and only offers a limited set of predefined periods. It implies that the sampling

periods of control applications have to be taken from this set. Generally, a shorter

sampling period allows the controller to respond to its plant more frequently and

is thus potentially able to achieve better control performance with an appropriately

designed controller. The obvious downside is a higher processor utilization, which

is defined to be the WCET of an application divided by its sampling period. This

prevents more functions and applications from being integrated onto the processing

unit. Therefore, the controller should use the largest possible sampling period

that is able to fulfill the control performance requirement and satisfy the system

constraints. In most cases, the optimal sampling period is not directly realizable

on the OS. The conventional way to handle it is to use the largest sampling period

offered by the OS that is smaller than the optimal one. This is a straightforward

method, but leads to a waste of computational resources. Toward this, there have

been several works on state-feedback-based optimal resource allocation to the

control loops sharing the same processor, e.g., [14, 15, 21, 25, 30, 31]. All these

works focus on online assignment of sampling periods of the control loops based

on the system dynamics like plant states, disturbance, or error. However, an online

decision-making must be very fast to be effective, and therefore, there must be some

heuristics involved. Therefore, an offline schedule computation that guarantees

performance and reduces the processor utilization will be more desirable.

The rest of this chapter is organized as follows. In Sect. 2, the basics of feedback

control applications are briefly reviewed. In the three sections that follow, three

state-of-art approaches of different aspects in terms of resource-aware algorith-

m/architecture codesign are explained, namely, the communication-aware design

(Sect. 3), the memory-aware design (Sect. 4), and the computation-aware design

(Sect. 5). Finally, Sect. 6 contains the concluding remarks.

2 Embedded Control Systems

In this section, some background knowledge for the embedded control systems

considered in this chapter is provided. Firstly, a brief introduction in the embedded

systems architecture is provided. Then the basics of feedback control systems as

well as the control performance metrics and the method for optimal pole placement

are explained.

Control/Architecture Codesign for Cyber-Physical Systems 7

ECU1 ECU2 ECU3

FlexRay

τs,1 τs,2

τs,4

τs,5

τs,3τa,3

τa,5τc,5

ms,1 mc,1

τc,1

τc,4

τc,2

τc,3τa,4

τa,1 τa,2

Fig. 2 An example of a distributed architecture for the embedded control systems. This example

consists of 3 ECUs connected by a FlexRay bus. Five control applications are mapped on this

architecture, where �s;i , �c;i , and �a;i denote respectively the sensor task, controller task, and

actuator task of the i th control application. Two messages over the communication bus for first

control application as well as the data dependency are shown

2.1 Embedded Systems Architecture

The architecture considered in this chapter does not refer to the processor architec-

ture, but the design parameters for the underlying hardware and the communication

for the embedded controllers. The architecture can either be a single ECU, as

shown in Fig. 1, or a distributed system consisting of multiple ECUs connected

by a communication network, as shown in Fig. 2. An embedded controller mapped

on such an architecture is usually implemented with one or multiple tasks, where

each task is a piece of software code running on the processor. A controller can

be partitioned into the sensor task, the controller task, and the actuator task. The

sensor task measures the state of the physical plant, the controller task computes

the control input, and the actuator task applies the control input onto the physical

plant. In a single processor architecture, these tasks are executed on the same ECU,

while in a distributed architecture, the sensor, controller, and actuator tasks can also

be mapped on different ECUs and the data between the tasks are transferred over

the network as messages. It is also common that tasks of different controllers are

mapped on common ECUs, where the communication, computation, and memory

resources are shared between these control applications. Therefore, how to allocate

the resources for the software implementation of the controllers forms the problem

of architecture design. More specifically, these design parameters may include

the task partition and mapping, the task and network scheduling, the use of the

cache, etc. Towards the design of these parameters, chapter ⊲ “Hybrid Optimization

Techniques for System-Level Design Space Exploration” provides an overview

of successful approaches for system-level design space exploration for complex

embedded systems.

8 W. Chang et al.

2.2 Feedback Control Systems

Throughout this chapter, linear single-input single-output (SISO) control applica-

tions are considered. The dynamic behavior is modeled by a set of differential

equations,

Px.t/ D Ax.t/C Bu.t/; y.t/ D Cx.t/; (1)

where x.t/ 2 R
n is the system state, y.t/ is the system output, and u.t/ is the

control input. The number of system states is n. A, B , and C are system matrices

of appropriate dimensions. System poles are eigenvalues of A. In a state-feedback

control algorithm, u.t/ is computed utilizing x.t/ (feedback signals) and is then

applied to the plant, which is expected to achieve certain desired behavior. In an

embedded implementation platform, the operations (measure x.t/, compute u.t/,

and apply u.t/) of a control loop are performed only at discrete time instants. In the

case where the sensor-to-actuator delay d is ignored, the continuous-time system

in (1) can be transformed into a discrete-time system with the sampling period h

which can be represented as [10]

xŒk C 1� D AdxŒk�C BduŒk�; yŒk� D CdxŒk�; (2)

where sampling instants are t D tk (k D 1; 2; 3; � � �) and h D tkC1 � tk . xŒk� and

uŒk� are the values of x.t/ and u.t/ at t D tk and

Ad D eAh; Bd D

Z h

0

.eAtdt/ � B; Cd D C: (3)

A system is asymptotically stable if the steady-state impulse response is zero,

i.e., limk!1 yıŒk� D 0. Toward this, uŒk� needs to be designed utilizing the states

xŒk� in a state-feedback controller. The general representation is as follows:

uŒk� D Kd � xŒk�C Fd � r; (4)

where Kd is the feedback gain, Fd is the feedforward gain, and r is the reference

value. Then, the system dynamics in (2) becomes

xŒk C 1� D .Ad C BdKd /xŒk�C BdFd r; (5)

i.e., closed-loop dynamics. Different locations of closed-loop system poles, i.e.,

eigenvalues of .AdCBdKd /, result in different system behaviors. Pole locations can

be decided by the pole-placement technique, and then the following characteristics

equation of H can be constructed with these poles as roots:

H n C 1H
n�1 C 2H

n�2 C � � � C n D 0: (6)

Control/Architecture Codesign for Cyber-Physical Systems 9

Define

c.Ad / D And C 1A
n�1
d C 2A

n�2
d C � � � C nI; (7)

where I is the n-dimensional identity matrix. According to Ackermann’s for-

mula [8], the feedback gain to stabilize the system is calculated as

Kd D �Œ0 � � � 0 1� ��1 c.Ad /; (8)

where � represents the controllability matrix of the system and is given by

� D ŒBd AdBd : : : An�1
d Bd � (9)

The static feedforward gain F is designed to achieve yŒk� ! r as k ! 1 and can

be computed by

Fd D
1

Cd .I � Ad � BdKd /�1Bd
: (10)

However, in a realistic implementation of a control application, a non-negligible

sensor-to-actuator delay needs to be taken into account. In the case, where the delay

is smaller or equal to one sampling period, i.e., 0 � d � h, the discrete-time system

in (2) becomes a sampled-data system [12] as

xŒk C 1� D AdxŒk�C Bd1.d/uŒk � 1�C Bd0.d/uŒk�; (11)

where

Bd0.Dc/ D

Z h�d

0

eAtdt � B; Bd1.d/ D

Z h

h�d

eAtdt � B: (12)

In (11), it is assumed that uŒ�1� D 0 for k D 0. Notice that xŒk C 1� depends on

both uŒk� and uŒk�1�, since during the sensor-to-actuator delay, uŒk� is not available

and uŒk � 1� is applied to the plant. A new system state zŒk� D
�

xŒk� uŒk � 1�
�T

is

defined, and the transformed system becomes

zŒk C 1� D AaugzŒk�C BauguŒk�; yŒk� D CaugzŒk�; (13)

where

Aaug D

�

Ad Bd1.d/

0 0

�

; Baug D

�

Bd0.d/

I

�

; Caug D
�

Cd 0
�

: (14)

Next, apply the following input signal:

10 W. Chang et al.

uŒk� D Kaug � zŒk�C Faug � r: (15)

The closed-loop system is then

zŒk C 1� D .Aaug C BaugKaug/zŒk�C BaugFaugr: (16)

The feedback gain Kaug can then be calculated according to (8) by replacing Ad
with Aaug and also replacing Ad and Bd with Aaug and Baug while computing the

controllability matrix � in (9). Similarly, the feedforward gain Faug is computed

according to (10) by replacing Ad , Bd , Cd , and Kd with Aaug , Baug , Caug , and

Kaug , respectively.

2.2.1 Control Performance Metrics
There are different metrics to measure the performance of a control system. In this

chapter, two common metrics to measure the control performance are considered.

(i) The steady-state performance of a control application which can be commonly

measured by a cost function [35], which in the discrete case can be represented as

J D

n
X

kD0

Œ�uŒk�2 C .1 � �/�Œk�2�h; (17)

where � is a weight taking the value between 0 and 1, uŒk� is the control input and

�Œk� D jr � yŒk�j is the tracking error. (ii) The settling time, � , where � denotes the

time necessary for the system to reach and remain within 1% of the reference value

J D �: (18)

2.2.2 Optimal Pole Placement
For a control application, in order to design the controller which optimizes the

control performance for a given sampling period, an optimization problem for the

pole placement can be formulated. Decision variables are poles of the closed-loop

system. Therefore, the number of dimensions in the decision space is equal to the

number of states in the closed-loop system. The objective is to optimize the value

of the selected control performance metric. Absolute values of all poles have to be

less than unity to ensure system stability. The control input saturation needs to be

respected as well.

It is challenging to solve such a constrained non-convex optimization problem

with significant nonlinearity. Here, the Particle Swarm Optimization (PSO) tech-

nique, which is highly efficient and scalable [36], can be used. A group of particles

are randomly initialized in the decision space with positions and velocities. They

search for the optimum by iteratively updating their positions. The search is led by

two points. The first is the local best point that has been reached by a particle. Every

particle has its own local best point. The second is the global best point that has

been reached considering all particles. A point that respects all constraints is always

Control/Architecture Codesign for Cyber-Physical Systems 11

better than a point that violates at least one constraint, no matter what their objective

values are. When comparing two points that either respect all constraints or violate

at least one constraint, the point with a better objective value is better.

The velocity of a particle is determined by the following equation:

Vnew D ˛0Vcurrent C ˛1rand.0; 1/.Plbest � Pcurrent/

C ˛2rand.0; 1/.Pgbest � Pcurrent/;
(19)

where Vnew is the new velocity, Vcurrent is the current velocity, Pcurrent is the current

position, Plbest is the local best point of this particle, and Pgbest is the best point of

all particles. rand.0; 1/ is a random number with uniform distribution from the open

interval .0; 1/. ˛0, ˛1 and ˛2 are parameters that can be determined empirically. The

new position of this particle is

Pnew D Pcurrent C Vnew: (20)

The algorithm is terminated once all particles have converged or the maximum

number of iterations has been reached. The time complexity of PSO is clearly

polynomial.

3 Communication-Aware Control/Architecture Codesign

In this section, a codesign approach that synthesizes simultaneously controllers,

task, and communication schedules for a FlexRay-based ECU network will be

introduced. The approach consists mainly of two stages, namely, the control design

stage and the cooptimization stage. This separation is necessary because the problem

deals with a large design space combining the dimensions of both control and

platform design. Therefore, the whole space is partitioned into smaller subspaces

while considering all feasible regions in the design space by exploiting some

domain-specific characteristics. In the control design stage, an optimal controller

is synthesized at each possible sampling period for each control application. This

is done by using the pole-placement control design method and exploring the

design space for poles using heuristics. In the cooptimization stage, a bi-objective

optimization problem is formulated, and a customized method is employed to

generate a number of feasible design parameter sets, where each set represents a

Pareto point reflecting the trade-off between the objectives of control performance

and bus utilization. Here, we will first explain the problem setting and then discuss

in detail the state-of-the-art control-communication codesign technique applicable

to such a setting.

12 W. Chang et al.

3.1 Problem Setting

Distributed implementation: Consider a distributed architecture where a set of

ECUs represented by pi 2 P are connected through a FlexRay bus. A number of

control applications denoted by Ci 2 C are mapped on such an embedded platform.

Each control application Ci can be partitioned into three dependent application

tasks: (i) sensor task, �s;i , measures the system states (using sensors) of the physical

system if measurable; (ii) controller task, �c;i , computes the controller input based

on the measured system states; and (iii) actuator task, �a;i , applies the control input

(using actuators) to the physical system. Without loss of generality, assume that the

three tasks are mapped on different ECUs. Then the sensor values measured by �s;i
are sent on the bus through message fs;i , and the control input calculated by �c;i
is sent as message fc;i . The time between the start of sensor task and the end of

actuator task is defined as the sensor-to-actuator delay, denoted as d . As shown

in Fig. 3, this delay depends on the interplay between the task and communication

schedules.

ECU task model: Here, consider the case where time-triggered non-preemptive

scheduling scheme is exhibited by the Real-Time Operating System (RTOS) on

the ECUs. Each task of the control applications is considered to be periodic and

is defined by the tuple �x;i D fOx;i ; Px;i ; Ex;ig, where Ox;i , Px;i , and Ex;i denote

respectively the offset, the period, and the WCET of the task. Here, the subscript

x 2 fs; c; ag where s, c, or a respectively identifies sensor, controller, or actuator

task. The subscript i identifies the control application Ci it constitutes. Thus, if
Nt .�x;i ; k/ and Qt .�x;i ; k/ are defined as the starting and the latest finishing time of the

kth (k 2 Z
�) instance of task �i , then

Nt .�x;i ; k/ D Ox;i C kPx;i ; Qt .�x;i ; k/ D Ox;i C kPx;i CEx;i : (21)

A set of communication tasks are required besides the application tasks. The

communication task on the sending ECU writes the data produced by the application

tasks into the corresponding transmit buffers of the communication controller, and

on the receiving ECU, it reads the data from the corresponding receive buffers and

Fig. 3 Distributed embedded

control application ECU 1

ECU 2

ECU 3

Bus

sensor-to-actuator delay d

τs,i

τc,i

τa,i

fc,ifs,i

Control/Architecture Codesign for Cyber-Physical Systems 13

forwards them to the application tasks. The nature of these communication tasks

depends on the specific implementation. Here, consider that the execution time of

all communication tasks is bounded by �, and assume that a communication task is

scheduled directly after its corresponding application task at the sending side and

directly before the application task at the receiving side.

FlexRay communication: FlexRay [3] is an automotive communication protocol

usually applied for safety-critical applications. Although FlexRay communication

is discussed in detail in chapter ⊲ “Networked Real-Time Embedded Systems”,

few important points are reiterated here for better understanding of the problem

and the subsequent solution. Being a hybrid protocol, it offers both TT and ET

communication services. FlexRay is organized as a series of communication cycles,

the length of which is denoted as Tbus . Each communication cycle contains mainly

the static segment (ST) and optionally dynamic segment (DYN), where the TT

and ET communication services are implemented respectively. The static segment

applies the TDMA scheme and is split into a number of static slots of equal length

. Here, the slots on the static segment can be represented as SST D f1; 2; : : : ; Nsg,

where Ns is the number of static slots. Once a static slot is assigned, if no data is

sent in a specific communication cycle, the static slot will still be occupied. The

dynamic segment follows a Flexible Time Division Multiple Access (FTDMA)

approach, where the segment is divided into a number of mini-slots of equal length

ı. A dynamic slot is a logical entity, which can consist of one or more mini-

slots, depending on whether data is sent on the slot and how much data is sent.

Once a dynamic slot is assigned, if no data is sent in a communication cycle,

only one mini-slot is consumed. If data is to be sent, a number of mini-slots

are occupied to accommodate the data. The dynamic slots can be represented as

SDYN D fNs C 1; : : : ; Ns CNmsg, where Nms is the number of mini-slots.

The communication cycles are organized as sequences of 64 cycles. In a se-

quence, each communication cycle is indexed by a cycle counter which counts from

0 to 63 and is then set to 0. A FlexRay schedule corresponding to the message fx;i
can be defined as �x;i D .sx;i ; qx;i ; rx;i /, where sx;i represents the slot number, qx;i
represents the base cycle, and rx;i represents the repetition rate. Here, the subscript

x 2 fs; cg where s or c respectively identifies sensor or control message. The

subscript i identifies the control application Ci it constitutes. Here, the repetition

rate rx;i is the number of communication cycles that elapse between two consecutive

transmissions of the same frame and takes the value rx;i 2 f2njn 2 f0; : : : ; 6gg. The

base cycle qx;i is the offset of the cycle counter. The sequence of 64 communication

cycles and some examples of FlexRay schedules are shown in Fig. 4. Here, the

FlexRay Version 3.0.1 [3] is considered, where slot multiplexing among different

ECUs is allowed. It means that a particular slot s 2 SST [SDYN can be assigned

to different ECUs in different communication cycles. Further consider all messages

are sent over the static segment of the FlexRay bus, i.e., on the static slots. The

starting and ending time of the kth instance (k 2 Z
�) of the FlexRay schedule �i ,

which are denoted respectively as Nt .�i ; k/ and Qt .�i ; k/, can be defined as

14 W. Chang et al.

1 2 3 4 5 ...

......

......

......

......

......

0

1

2

3

63

..
.

Communication Cycle

Static Segment (ST) Dynamic Segment (DYN)

cy
cl

e
s

slots

........

Θs,1 Θc,1

Ns – 1 Ns + NmsNs

Fig. 4 An example of FlexRay schedules

Nt .�x;i ; k/ D qx;iTbus C krx;iTbus C .sx;i � 1/
;

Qt .�x;i ; k/ D qx;iTbus C krx;iTbus C sx;i
: (22)

For FlexRay time-triggered communication, the bus utilization can be defined as

the percentage of bandwidth of the static segment that is allocated to the control

applications. This can be represented as the percentage of static slots allocated to

the control applications in 64 consecutive communication cycles. In this case, the

smaller the value of U , the better is the resource efficiency as more number of slots

can be left vacant for use by other non-control applications. Now, let � denote

the set of all FlexRay schedules allocated to the control applications on the static

segment, where �x;i 2 � ; then the bus utilization U can be defined as

U D
100

64Ns

X

�x;i2�

64

rx;i
; (23)

where 64Ns is the total number of static slots in 64 consecutive communication

cycles. Here, rx;i represents the repetition rate of the message fx;i , and therefore, 64
rx;i

represents the number of static slot allocated to the message fx;i in 64 consecutive

communication cycles.

Control performance: Depending on the specific requirements of the control

application, one of the two performance metric discussed in Sect. 2.2.1 can be used.

For a specific control application Ci , Ji depends both on the sampling period hi
and the control gains Kaug;i and Faug;i . In both the performance metrics, smaller

value of J implies better control performance. In a system consisting of multiple

control applications with different plant models and performance metrics, it is

Control/Architecture Codesign for Cyber-Physical Systems 15

required to normalize the control performance in order to compare and combine

them. Each control systemCi with control performance Ji must satisfy some control

performance requirement J ri defined by the user. Thus, the control performance can

be normalized as follows:

J ni D
100 � Ji

J ri
(24)

and thus the overall control performance of a set of control applications C can be

represented as a weighted sum

Jo D
X

Ci2C

wiJ
n
i ; (25)

where wi stands for the weight and
P

i wi D 1.

Cooptimization problem: The cooptimization problem boils down to finding a set

of parameters for each Ci 2 C , which can be denoted as pari D f�s;i ; �c;i ; �a;i ; �s;i ;

�c;i ; hi ; Kaug;i ; Faug;i g, while optimizing the total FlexRay bus utilization and the

overall control performance given by Eqs. (23) and (25), respectively. Here, the

control parameters of Ci can be further defined as parci D fhi ; Kaug;i ; Faug;i g and

similarly the embedded platform parameters as par si D f�s;i ; �c;i ; �a;i ; �s;i ; �c;ig,

where pari D par si [parci . The parameter set of the whole system is represented

as P , where pari 2 P .

3.2 The Codesign Approach

3.2.1 Design Flow
Figure 5 shows the design flow of the codesign approach. The whole design process

is divided into two stages. In the first stage, for each control application, possible

controllers that optimize the control performance at different sampling periods are

synthesized and the results are recorded in a look-up table. In the second stage, the

cooptimization stage, both the control and the platform parameters are synthesized

based on the constraints, objectives, and the look-up tables obtained in the first stage.

Here, a bi-objective optimization problem is formulated, and a customized approach

is used to generate a Pareto front of the two objectives considered. In this stage, the

fact that the bus utilization objective U can only take selected discrete values is

exploited, and therefore, for each of those values, a nested two-layered optimization

technique is employed to find a feasible set of parameters that represents a Pareto

point and optimizes the control performance or to prove that a corresponding Pareto

point is not possible. Here, Layer 1 tries to find a set of values of sampling periods

corresponding to the set of control applications such that it can represent a Pareto

point and it optimizes the overall system control performance for a given value

of bus utilization. Then, Layer 2 tries to find a feasible schedule set (by solving

16 W. Chang et al.

Pareto Front

Generate

Pareto Point Candicate

IF all values of bus

utilization explored
YES

YES

Optimize

Control Performance

IF feasible, not

dominated

Find

Feasible Schedules

IF feasible

Valid Pareto Point

Add to Pareto Front

NO

NO
YES

Not Valid Pareto Point

NO

Return Pareto Front

Layer 2

Layer 1

Controller Design

Co-Optimization

User Selection

Constraints,

Plant Models,

Objectives

Control and Platform

Parameters

Stage 1

Stage 2

Control Performance

Look-up Table

Fig. 5 Design flow of the cooptimization approach

a constraint programming problem) and control gains (from the look-up tables)

corresponding to the sampling period values of the control applications determined

in Layer 1. The nested two-layered optimization technique is discussed in further

detail in Sect. 3.2.4. Based on the Pareto front thus obtained, the designer can select

one set of parameters that is the most suitable for the overall design requirements.

The control design stage and the cooptimization stage of this approach will be

explained in detail in the following sections.

3.2.2 Controller Design
Besides the control plant model, the performance Ji of the control application

Ci depends mainly on three factors: (i) the sampling period hi , (ii) the sensor-to-

actuator delay di , and (iii) the control gains Kaug;i and Faug;i . Depending on each

combination of the sampling period and delay, a set of optimal control gains needs

to be designed. Here, consider schedules for the control tasks and the messages

leading to the case where the delay equals to the sampling period, i.e., di D hi .

This would reduce the dimensions of the design space from all three factors (i)–

(iii) to only (i) and (iii), thus reducing the complexity and enhancing the scalability.

It should be noted that this approach can be easily adapted to other cases with a

fixed delay value (e.g., di D Di , where Di is a constant and Di � hi) or a delay

value proportional to the sampling period (e.g., di D hi , where � 1). With

di D hi , the closed-loop system experiences one sampling period delay, and the

Control/Architecture Codesign for Cyber-Physical Systems 17

pole-placement method reported in Sect. 2 can be used for such delayed system. To

the best of our knowledge, there is no standard closed-form optimal control design

framework that can be directly applied in such a delayed system. Therefore, the

PSO-based optimal pole-placement technique described in Sect. 2.2.2 is employed,

which can be quite computationally costly for higher-order control plants. However,

making use of the fact that the sampling period can only take discrete values, the

design space can be pruned. Since each control application Ci is implemented by

the tasks �s;i , �c;i , and �a;i and messages fs;i , fc;i , there is a dependency between

the sampling period hi and the repetition rate of the messages rs;i , rc;i , which can

be represented as

hi D rs;iTbus D rc;iTbus : (26)

Due to the fact that rs;i , rc;i can only take discrete values in f2kjk 2 f0; : : : ; 6gg, the

choice of hi is also constrained to the corresponding discrete values.

Denote the control performance as Ji D f .hi ; Kaug;i ; Faug;i /. Then the control

performance at each discrete value hki D 2kTbus of the sampling period can be

represented as Ji .h
k
i / D g.Kk

aug;i ; F
k
aug;i /. The purpose of the controller design step

is to determine the control gains for each possible value of the sampling period

that optimizes the control performance. Employing the optimal pole-placement

technique, determine the set of control gainsKk�
aug;i , F

k�
aug;i that optimizes the control

performance to Gk�
i at sampling period hki , then represent the optimal control

performance at hki as J �
i .h

k
i / D Gk�

i . The control design problem can be translated

into the problem of finding for each discrete value hki , a set of gains Kk�
aug;i , F

k�
aug;i

that optimizes the control performance Ji .h
k
i / to the value of Gk�

i .

After this stage, a look-up table for each control application Ci can be formulated

where for each of the possible sampling period hki an optimal control performance

Gk�
i corresponding to the control gains Kk�

aug;i , F
k�
aug;i can be assigned. In the

cooptimization stage, this set of tables will be used to formulate the objective of

overall control performance.

3.2.3 Optimization Problem Formulation
The system constraints for the FlexRay-based ECU system are well studied and

discussed in [23, 29, 35]. Here, we will state the majority of the constraints

formulated there.

(C1) Sampling period constraint: The tasks and messages of a control application

must have the same period of repetition which is also the sampling period of

the system. This constraint can be formulated as

8Ci 2 C ; x 2 fs; c; ag; y 2 fs; cg; Px;i D ry;iTbus D hi : (27)

(C2) Data-flow constraint: In a control application, all task executions and

message transmissions must be in correct temporal order, as illustrated in

Fig. 3. This can be formulated as set of constraints as

18 W. Chang et al.

8k 2 Z
�; Ci 2 C ; Qt .�s;i ; k/C � < Nt .�s;i ; k/;

8k 2 Z
�; Ci 2 C ; Qt .�s;i ; k/ < Nt.�c;i ; k/ � �;

8k 2 Z
�; Ci 2 C ; Qt .�c;i ; k/C � < Nt.�c;i ; k/;

8k 2 Z
�; Ci 2 C ; Qt .�c;i ; k/ < Nt .�a;i ; k/ � �:

(28)

(C3) Sensor-to-actuator delay constraint: The constraint stating that the sensor-

to-actuator delay for the control applications is equal to exactly one sampling

period can be formulated as

8k 2 Z
�; Ci 2 C ; Qt .�a;i ; k C 1/ � Nt .�s;i ; k/ D hi : (29)

(C4) Non-overlapping task constraint: In a time-triggered non-preemptive

scheduling scheme as considered in this paper, when more than one task

is mapped on an ECU, they must be scheduled in such a way that they do not

overlap. This can be formulated as a constraint as

8 Ci ; Cj 2 C ; x; y 2 fs; c; ag; pk 2 P

8 fm 2 Z
�j0 � m < lcm.Px;i ; Py;j /=Px;ig;

fn 2 Z
�j0 � n < lcm.Px;i ; Py;j /=Py;j g

if �x;i ; �y;j 2 Tpk then Qt .�x;i ; m/C � � 1.x 2 fs; cg/ < Nt .�y;j ; n/

� � � 1.y 2 fc; ag/

or Qt .�y;j ; n/C � � 1.y 2 fs; cg/ < Nt .�x;i ; m/ � � � 1.x 2 fc; ag/; (30)

where Tpk denotes the set of all tasks mapped on ECUEk . 1.:/ is the indicator

function and takes the value of 1 if the input is true and 0 if otherwise.

(C5) Nonoverlapping message constraint: FlexRay messages must be scheduled

in such a way that no two messages share the same slot in the same cycle. This

constraint can be established as

8 Ci ; Cj 2 C ; x; y 2 fs; cg

8fn 2 Z
�j0 � n < max.rx;i ; ry;j /=rx;ig;

fm 2 Z
�j0 � m < max.rx;i ; ry;j /=ry;j g;

if sx;i DD sy;j then qx;i C nrx;i ¤ qy;j Cmry;j : (31)

(C6) FlexRay scheduling constraint: Taking into consideration the scheduling

constraints imposed by the FlexRay protocol, it is required to constrain sx;i
and qx;i as

Control/Architecture Codesign for Cyber-Physical Systems 19

8 Ci 2 C ; x 2 fs; cg; 1 � sx;i � Ns

8 Ci 2 C ; x 2 fs; cg; 0 � qx;i < rx;i :
(32)

In addition, the bus utilization U is constrained by the total number of static

slots available in 64 communication cycles.

U � 100: (33)

(C7) ECU scheduling constraint: On ECUs, for task schedules, consider

8 Ci 2 C ; x 2 fs; c; ag; 0 � Ox;i CEx;i < Px;i : (34)

Moreover, the ECU load cannot be more than 100%.

8pk 2 P; x 2 fs; c; ag;
X

�x;i2Tpk

Ex;i C � C � � 1.x 2 fcg/

Px;i
� 1:; (35)

(C8) Performance constraint: For each control system Ci with sampling period

hi , user specifies a control performance requirement J ri . As mentioned in

Sect. 3.2.2, a look-up table for each control system is developed which

contains the performance of seven possible controllers corresponding to seven

possible sampling periods. Therefore, the domain of hi , denoted as domŒhi �

is constrained according to control performance requirement as

8k 2 f0; 1; : : : 6g; J �
i .h

k
i / � J ri ” hki 2 domŒhi �: (36)

Now, let Ji represent the control performance of Ci . Therefore,

hi DD 2kTbus ” Ji DD J �
i .h

k
i /: (37)

As the objectives for the optimization problem, the overall system control perfor-

mance and the bus utilization are considered.

(O1) Overall system control performance:

Jo D
X

Ci2C

wiJ
n
i D

X

Ci2C

wi
X

k

�i;kJ
n�
i .hki /; (38)

where �i;k are binary variables satisfying
P

k �i;k D 1 and J n�
i .hki /

represents the normalized optimal control performance of Ci at hki , which can

be formulated as

20 W. Chang et al.

J n�
i .hki / D

100J �
i .h

k
i /

J ri
: (39)

(O2) Bus utilization: The bus utilization in this case can be defined as

U D
100

64Ns

X

Ci2C

�

64

rs;i
C
64

rc;i

�

D
100

64Ns

X

Ci2C

128Tbus

hi
: (40)

The value of the bus utilization can only take certain discrete values and is

bounded by the upper and lower limit UC and U�, which can be expressed as

UC D
100

64Ns

X

Ci2C

128Tbus

max
hi2domŒhi �

.hi /
; U� D

100

64Ns

X

Ci2C

128Tbus

min
hi2domŒhi �

.hi /
:

(41)

3.2.4 Multi-objective Optimization
As discussed above, the control and system codesign of the setting considered can

be formulated as a constrained optimization problem with two objectives, namely,

the bus utilization and overall control performance. In this case, the two design

objectives are noticed to be often conflicting, and therefore, as discussed in chapter

⊲ “Optimization Strategies in Design Space Exploration”, a much more informative

and designer-friendly cooptimization approach is to first generate a Pareto front,

and let the designer explore the trade-off between the two objectives according to

his customized preference.

Chapters ⊲ “Optimization Strategies in Design Space Exploration”,

⊲ “Hybrid Optimization Techniques for System-Level Design Space Exploration”,

and ⊲ “Scenario-Based Design Space Exploration” have emphasized on hybrid

optimization techniques to solve such a Design Space Exploration (DSE) problem.

Such techniques depend heavily on problem characteristics, desired accuracy and

scalability, etc. Consequently, for this problem, a customized hybrid optimization

approach as shown in Fig. 5 is employed to obtain the desired Pareto front. Since

the objective on bus utilization U is discrete and only takes a limited number of

integers, first compute the maximum and minimum bus utilization UC and U�,

which bound the set of U . For each possible value of U from U� to UC, i.e., given

the equality constraint on U , solve the optimization problem with Jo as the single

objective and obtain a solution. The additional constraint is that Jo of this solution

has to be better than Jo of the last solution (Pareto criterion), in order to ensure that

all solutions are non-dominated. Therefore, the cooptimization problem with two

objectives is turned into a series of single-objective optimization problems, where

each may generate a Pareto point on the Pareto front.

Popular approaches like Mixed Integer Linear Programming (MILP) or meta-

heuristic methods cannot be applied directly to solve each of the single-objective

optimization problems. However, considering that some decision variables only

appear in constraints, but are not related to the objective, a nested two-layered

Control/Architecture Codesign for Cyber-Physical Systems 21

technique is employed to solve each of the problems. On Layer 1, the outer

layer, consider only constraint (C8) and an equality constraint on bus utilization

U translated from (O2), and optimize the (O1). Decision variables related to the

objectives, i.e., the sampling periods, are determined. On Layer 2, the inner layer,

the remaining decision variables are synthesized satisfying the constraints (C1)–

(C7) while substituting the values of sampling periods based on the results of Layer

1. This process is iterative in the way that if the synthesis fails in Layer 2, the

algorithm goes back to Layer 1 for the next best solution until Pareto criterion is

satisfied. This optimization technique ensures optimality and also efficiency.

3.3 Case Study

In the case study, five control applications denoted as C D fC1; C2; C3; C4; C5g

are considered. For each of the control applications, a plant model derived from

the automotive domain is used. C1 to C5 represent respectively the DC motor

speed control (DCM), servo motor position control (DCP), the electronic braking

control (EBC), the car suspension (CSS), and the adaptive cruise control (ACC).

The hardware platform consists of three ECUs fE1; E2; E3g connected by FlexRay

bus. Tables 1 and 2 show the task mappings and FlexRay bus configuration,

respectively.

Figure 6 shows the results of the normalized optimal control performance for

each control application as the sampling period increases. The thick red dashed

line in the plot shows the normalized required performance for all the control

applications (i.e., 100%). Only the points below the red line meet the design

requirement for performance, and only these points will be considered in the

following cooptimization stage. The Pareto front of the whole system in the case

Table 1 Task mapping ECUs Tasks

E1 �s;1, �c;2, �a;3,

�a;4, �c;5

E2 �a;1, �s;2, �c;3,

�s;4, �s;5

E3 �c;1, �a;2, �s;3,

�c;4, �a;5

Table 2 FlexRay bus

configuration
Bus parameters Values

Bus speed 10 Mbps

Tbus 5 ms

N 25

M 237

 100 ms

ı 10 ms

22 W. Chang et al.

Sampling Periods in log10 Scale [ms]

4

5 10 20 40 80 160 320

10

100

800

N
o
rm

a
liz

e
d
 C

o
n
tr

o
l
p
e
rf

o
rm

a
n
c
e
 J

in

in
 l
o
g

1
0
 S

c
a
le

 [
%

]

DCM

DCP

EBC

CSS

ACC

J
i
r,n

Fig. 6 Control performance

5 10 15 20 25 30 35 40

Bus Resource Utilization

[as a % of static slots utilized]

40

45

50

55

60

65

A
v
e
ra

g
e
 C

o
n
tr

o
l
P

e
rf

o
rm

a
n
c
e

[a
s
 a

 %
 o

f
re

q
u
ir
e
d
 p

e
rf

o
rm

a
n
c
e
]

Fig. 7 Pareto front

study obtained in the cooptimization stage is shown in Fig. 7. The value of the bus

utilization ranges from 5:25% to 40% of the bus bandwidth in the static segment.

The value of the control performance varies on an average from 42:92% to 62:54%

of the required value for each control application. It should be noted that for the

control performance defined here, the smaller the value, the better the performance.

It is obvious that there is a large freedom among these viable design points.

Control/Architecture Codesign for Cyber-Physical Systems 23

4 Memory-Aware Control/Architecture Codesign

While the memory-aware optimization of embedded software has been discussed

in chapter ⊲ “Memory-Aware Optimization of Embedded Software for Multiple

Objectives”, in this section, how to exploit the instruction cache reuse to improve

the control performance is shown. Given a collection of control applications (e.g.,

C1, C2, C3) on one processing unit, it is conventional to run the control loops of

them in a round-robin fashion (C1, C2, C3, C1, C2, C3, � � �). Since the programs for

different control applications are different, the cache in this process is frequently

refreshed. This results in poor cache reuse and long WCET. In order to address this

issue, a memory-aware sampling order for the control applications can be applied,

using which cache reuse is improved and the WCET of each application is reduced.

In particular, we study a nonuniform sampling scheme, where the control loop of

each application is consecutively run multiple times – in order to increase the cache

reuse – before moving on to the next application (e.g., C1, C1, C1, C2, C2, C2,

C3, C3, C3, � � �). As illustrated in Fig. 8, where Ci .j / denotes the j th execution

of the control application Ci , before the first execution Ci .1/, the cache is either

empty (i.e., cold cache) or filled with instructions from other applications that are

not used by Ci (equivalent to cold cache). The WCET of Ci .1/ can be computed by

a number of existing standard techniques [9, 37, 38]. Before the second execution

Ci .2/, the instructions in the cache are from the same application Ci and thus can

be reused. This results in more cache hits and hence shorter WCET. Depending on

which path the program takes, the amount of WCET reduction varies. Therefore,

a technique is required to compute the guaranteed WCET reduction of Ci .2/ and

Ci .3/, independent of the path taken, which will be presented later in this section.

Control parameters of the systems, such as sampling periods and sensor-to-actuator

delays, are derived from the WCET results. A controller must be tailored for

the memory-aware nonuniform sampling orders, in order to improve the control

performance. In summary, two main techniques are required and explained as

follows: (i) cache analysis to compute the guaranteed WCET reduction between two

START C1(3)

C2(3)

C1(1) C1(2)

C2(2) C2(1)

C3(3)C3(2)C3(1)

cold cache cache reuse cache reuse

cold cache

cache reusecache reuse

cold cache

cache reuse cache reuse

Fig. 8 An example memory-aware sampling order with three applications. Each application is

consecutively executed three times. After the first execution Ci .1/, some instructions in the cache

can be reused, and thus the WCETs of the following two executions are shortened

24 W. Chang et al.

consecutive executions of one program and (ii) controller design for the nonuniform

sampling.

4.1 Cache Analysis for Consecutive Executions of a Control
Application

As discussed in Sect. 1, a two-level memory hierarchy – cache and main memory

– is considered. More information about the memory architecture can be found in

chapter ⊲ “Memory Architectures”. There are Nc cache lines, denoted as CL D

fc0; c1; : : : ; cNc�1g, and the main memory has Nm blocks, denoted as M D

fm0; m1; : : : ; mNm�1g. Each memory block is mapped to a fixed cache line. An

example is shown in Fig. 9 for the illustration purpose, where there are four cache

lines and five memory blocks. A basic block is a straight-line sequence of code with

only one entry point and one exit point. This restriction makes a basic block highly

Entry

b1 :

Exit

c3

⊤

⊤

⊤ ⊤ ⊤ ⊤

⊤ ⊤ ⊤

⊤ ⊤ ⊤

m4

b3 : m4

m2

m2

m3

m3

m3

m
1,m2,m3

m2m1m0

m0

c3

c3

c2c1c0

c0 c1 c2 c3

m4

m0

m0 m1 m2

m2 m3

m3

m3

b2 : m2,m3

b0 : m0

m2m0

m0

c0

c0

c0

c0 c3c2c1

c1

c1

c1

c1c0

c2

c2

c2

c2

c3

c3

c3

m1

⊤

RCSIN
b0

RCSIN
b2

RCSIN
b3

RCSOUT
b2

RCSOUT
b3

RCSOUT
b1

RCSIN
b1

Fig. 9 A motivational example for cache analysis. Five memory blocks are mapped to four cache

lines. Memory blocks executed by each basic block are shown. RCS IN and RCSOUT in the

initialization phase are illustrated

Control/Architecture Codesign for Cyber-Physical Systems 25

amenable for program analysis. The presented Control-Flow Graph (CFG) in Fig. 9,

consisting of four basic blocks B D fb0; b1; b2; b3g, has all the three key elements

of a control program, i.e., sequential basic blocks, branches, and a loop. Therefore,

it is suitable for illustrating our cache analysis technique.

There are three key terms in cache analysis that are described as follows:

• Cache States: A cache state cs is described as a vector of Nc elements. Each

element csŒi �, where i 2 f0; 1; : : : ; Nc � 1g, represents the memory block in

the cache line ci . When the cache line ci holds the memory block mj , where

j 2 f0; 1; : : : ; Nm � 1g, csŒi � D mj . If ci is empty, it is denoted as csŒi � D ?. If

the memory block in ci is unknown, it is denoted as csŒi � D >. CS is the set of

all possible cache states.

• Reaching Cache States (RCS): RCS of a basic block bk , denoted as RCSbk , is

the set of all possible cache states when bk is reached via any incoming path.

• Live Cache States (LCS): LCS of a basic block bk , denoted as LCSbk , is the

set of all possible first memory references to cache lines at bk via any outgoing

path.

Since our focus is on WCET reduction between two consecutive executions of

Ci , it is necessary to compute RCS of the exit point in the first execution of

Ci and LCS of the entry point in the second execution of Ci . By comparing all

possible pairs of cache states, the guaranteed number of cache hits, and thus WCET

reduction can be calculated. In the following, computation of RCS and LCS is firstly

discussed.

In RCS computation, genbk is firstly defined as the cache state describing the last

executed memory block in every cache line for the basic block bk . Assuming that

b0 in Fig. 9 executes m0 and then m4, instead of only m0, the last executed memory

block in c0 is m4. Therefore, genb0 is Œm4;?;?;?�. For the example in Fig. 9,

genb0 D Œm0;?;?;?�; genb1 D Œ?; m1; m2; m3�;

genb2 D Œ?;?; m2; m3�; genb3 D Œm4;?;?;?�:
(42)

There are two equations involved in the RCS computation that calculateRCS IN and

RCSOUT , where RCS IN of a basic block bk is the RCS before bk is executed and

RCSOUT is the set of all possible cache states after bk is executed. First, RCSOUTbk

can be calculated from RCS INbk as

RCSOUTbk
D fT .bk ; cs/jcs 2 RCS INbk g; (43)

where T is a transfer function defined as follows: For any cache state cs 2 CS and

basic block bk 2 B , there is a cache state cs0 D T .bk ; cs/, where for any cache

line ci 2 CL and i 2 f0; 1; : : : ; Nc � 1g,

26 W. Chang et al.

Table 3 RCS computation for the motivational example

Basic block RCS IN RCSOUT

Initialization

b0 fŒ>;>;>;>�g fŒm0;>;>;>�g

b1 fŒm0;>;>;>�g fŒm0; m1; m2; m3�g

b2 fŒm0;>;>;>�g fŒm0;>; m2; m3�g

b3 fŒm0; m1; m2; m3�; Œm0;>; m2; m3�g fŒm4; m1; m2; m3�; Œm4;>; m2;

m3�g

Fixed-point

b0 fŒ>;>;>;>�g fŒm0;>;>;>�g

b1 fŒm0;>;>;>�; Œm0; m1; m2; m3�g fŒm0; m1; m2; m3�g

b2 fŒm0;>;>;>�g fŒm0;>; m2; m3�g

b3 fŒm0; m1; m2; m3�; Œm0;>; m2; m3�g fŒm4; m1; m2; m3�; Œm4;>; m2;

m3�g

cs0Œi � D

�

csŒi � W if genbk Œi � D ?I

genbk Œi � W otherwise:
(44)

RCS INbk can be calculated as

RCS INbk D
[

p2predecessor.bk/

RCSOUTp ; (45)

where predecessor.bk/ is the set of all immediate predecessors of bk .

The RCS computation is composed of two phases: initialization and fixed-point

computation. As illustrated with the example in Fig. 9, the initialization phase starts

from the entry basic block b0 with RCS INb0 D fŒ>;>;>;>�g. The element is >

since our analysis is independent of the program executed before b0. According

to (43),RCSOUTb0
is calculated to be fŒm0;>;>;>�g. Since b0 is the only immediate

predecessor of b2, RCS
IN
b2

is equal to RCSOUTb0
based on (45). Due to the self-

loop, b1 has both itself and b0 as immediate predecessors. However, sinceRCSOUTb1

has not been initialized yet, RCS INb1 is equal to RCSOUTb0
. In the same manner,

RCSOUTb1
, RCSOUTb2

, RCS INb3 , and RCSOUTb3
can be computed, following the

program flow as shown both in Fig. 9 and Table 3. The initialization phase is

completed once all basic blocks have been visited. The next phase is fixed-point

computation. RCS IN and RCSOUT of all basic blocks are computed iteratively

with (45) and (43). This phase is terminated once the fixed point is reached, i.e.,

RCS IN and RCSOUT of all basic blocks remain unchanged. Let the program RCS

be theRCSOUT of the exit basic block, i.e.,RCS D RCSOUTb3
. Results are reported

in Table 3.

The LCS computation can be done in a similar fashion. genbk is defined as

the cache state describing the first executed memory block in every cache line

for the basic block bk . Taking the same assumption when defining genbk for RCS

computation that b0 in Fig. 9 executes m0 and then m4, instead of only m0, the first

Control/Architecture Codesign for Cyber-Physical Systems 27

Table 4 LCS computation for the motivational example

Basic block LCS IN LCSOUT

Initialization

b3 fŒ>;>;>;>�g fŒm4;>;>;>�g

b2 fŒm4;>;>;>�g fŒm4;>; m2; m3�g

b1 fŒm4;>;>;>�g fŒm4; m1; m2; m3�g

b0 fŒm4; m1; m2; m3�; Œm4;>; m2; m3�g fŒm0; m1; m2; m3�; Œm0;>; m2;

m3�g

Fixed-point

b3 fŒ>;>;>;>�g fŒm4;>;>;>�g

b2 fŒm4;>;>;>�g fŒm4;>; m2; m3�g

b1 fŒm4;>;>;>�; Œm4; m1; m2; m3�g fŒm4; m1; m2; m3�g

b0 fŒm4; m1; m2; m3�; Œm4;>; m2; m3�g fŒm0; m1; m2; m3�; Œm0;>; m2;

m3�g

executed memory block in c0 is m0. Therefore, genb0 is Œm0;?;?;?�. LCS
IN of

a basic block bk is the LCS after bk is executed and can be derived from

LCS INbk D
[

s2successor.bk/

LCSOUTs ; (46)

where successor.bk/ is the set of all immediate successors of bk . LCSOUT of bk
is the LCS before bk is executed with

LCSOUTbk
D fT .bk ; cs/jcs 2 LCS INbk g: (47)

LCS computation also comprises two phases of initialization and fixed-point

computation. The only difference is that the initialization phase starts from the exit

basic block and ends in the entry basic block. Detailed results for the motivational

example are reported in Table 4. Let the program LCS be the LCSOUT of the

entry basic block, i.e., LCS D LCSOUTb0
. It is noted that since the presented cache

analysis technique is based on the fixed-point computation over the program CFG,

it inherently handles loop structures in the CFG.

Conceptually, the program RCS is the set of all possible cache states after the

program finishes execution by any execution path, and the program LCS is the set of

all cache states, where each cache state contains memory blocks that may be firstly

referenced after the program starts execution, for any execution path to follow. Both

RCS and LCS could contain multiple cache states. Each pair with one cache state

cs from the program RCS and one cache state cs0 from the program LCS represents

one possible execution path between the two consecutive executions. For any cache

line ci in a pair, if csŒi � is equal to cs0Œi � and they are not equal to >, then there

is certainly a hit and thus WCET reduction. Whether there is a hit for a particular

cache line can be determined by the function H defined as follows:

8cs 2 CS , cs0 2 CS and ci 2 CL, where i 2 f0; 1; : : : ; Nc � 1g,

28 W. Chang et al.

H .cs; cs0; ci / D

�

1 W if csŒi � D cs0Œi � ^ csŒi � ¤ ?I

0 W otherwise:
(48)

The number of hits can be counted with the function H T defined as

8cs 2 CS and cs0 2 CS ,

H T .cs; cs0/ D

Nc�1
X

iD0

H .cs; cs0; ci /: (49)

The guaranteed number of hits among all possibilities is calculated as

G .RCS;LCS/ D min
cs2RCS;cs02LCS

.H T .cs; cs0//: (50)

Given that the main memory access time and the cache access time are respectively

tm and tc , the guaranteed WCET reduction is computed as

NEg D G .RCS;LCS/ � .tm � tc/

� G .RCS;LCS/ � tm;
(51)

where the approximation can be taken if tc � tm.

For the motivational example, there are two cache states in RCS (RCSOUTb3
) and

two cache states in LCS (LCSOUTb0
). In total, there are four pairs, and the number of

hits is calculated to be 3, 2, 2, and 2 with (49). Taking one of them as an example,

H T .Œm4; m1; m2; m3�; Œm0; m1; m2; m3�/ D 3. Therefore, the guaranteed number

of hits is 2 according to (50), no matter which path the program takes. From (51),

the guaranteed WCET reduction is 2 � .tm � tc/, or approximately 2 � tm, when

tc � tm. It is noted that this result is obtained from the small example used for

illustration. More WCET reduction for larger realistic programs can be expected.

Note that the direct-mapped cache (i.e., one-way set-associative cache) is

assumed in Fig. 9. The presented technique can be adapted to handle set-associative

cache. For example, considering fully associative cache, when computingRCSOUTb3

from RCS INb3 , the memory block m4 can be loaded to any cache line, which

gives RCSOUTb3
five more cache states, i.e., Œm0; m4; m2; m3�, Œm0; m1; m4; m3�,

Œm0;>; m4; m3�, Œm0; m1; m2; m4�, and Œm0;>; m2; m4�. From this, it can be ob-

served that the number of cache states in RCS and LCS is larger for set-associative

cache, which means that the guaranteed WCET reduction could be smaller. Details

can be found in [27]. Using the cache analysis technique presented in this section,

together with standard WCET analysis approaches, the effective WCET of Ci .2/

and subsequent executions of Ci can be derived. Shorter WCET leads to smaller

sampling period of the control system, which will be shown next.

Control/Architecture Codesign for Cyber-Physical Systems 29

4.2 Control Parameter Derivation

We explore the relationship between WCET results and control parameters of two

example sampling schemes. S1 is the conventional memory-oblivious scheme and

summarized as follows:

C1.1/ ! C2.1/ ! C3.1/ ! C1.2/ ! C2.2/ !

C3.2/ ! C1.3/ ! C2.3/ ! C3.3/ ! � � � :
(52)

There is no cache reuse in S1 in the worst case, considering that different control

applications typically have different instructions to execute. In other words, when

Ci .j / starts execution, all instructions of Ci need to be brought into the cache from

the main memory. Therefore,

Ewc
i .1/ D Ewc

i .2/ D � � � D Ewc
i ; (53)

where Ewc
i .j / is the WCET of the j th execution for Ci . The WCET of the

application Ci is denoted by Ewc
i , since all executions of the same application have

equal WCET. Clearly, all control applications run with a uniform sampling period

of

h D
X

iD1;2;3

Ewc
i : (54)

Moreover, the sensor-to-actuator delay, which is defined to be the duration between

measuring the system state x.t/ and applying the control input u.t/, is given by

di D Ewc
i : (55)

It can be seen that a safe estimation of WCET, which can be done with standard

static analysis techniques [37], is very important. If the actual execution time is

longer than the computed WCET, the correct control input will not be ready when

the actuation is supposed to occur. The consequence could be severe degradation

of control performance. This is not acceptable especially for safety-critical control

applications.

S2 is an example of memory-aware sampling order as shown in Fig. 8:

C1.1/ ! C1.2/ ! C1.3/ ! C2.1/ ! C2.2/ !

C2.3/ ! C3.1/ ! C3.2/ ! C3.3/ ! � � � :
(56)

The effective WCET taking into account the cache reuse is denoted with NEwc
i .j /.

From the above discussion,

8i 2 f1; 2; 3g;

30 W. Chang et al.

NEwc
i .1/ D Ewc

i ; (57)

since there is no cache reuse for the first execution of every application Ci .1/.
NEwc
i .2/ and NEwc

i .3/ are shorter than NEwc
i .1/ due to cache reuse. The amounts of

cache reuse are the same for Ci .2/ and Ci .3/ in the worst case. Denoting the

guaranteed WCET reduction as NE
g
i ,

8i 2 f1; 2; 3g;

NEwc
i .2/ D NEwc

i .3/ D NEwc
i .1/ � NE

g
i : (58)

From these varying WCETs, the sampling periods of all three applications can be

calculated. Taking C1 as an example, there are three sampling periods h1.1/, h1.2/,

and h1.3/, which repeat themselves periodically:

h1.1/ D NEwc
1 .1/; h1.2/ D NEwc

1 .2/; h1.3/ D NEwc
1 .3/C
; (59)

where
 is computed as

 D
X

iD2;3

X

jD1;2;3

NEwc
i .j /: (60)

Similar derivation can be done for C2 and C3. The average sampling period of an

application havg is

havg D

P

iD1;2;3

P

jD1;2;3

NEwc
i .j /

3
< h: (61)

According to (57) and (58),

havg <

P

iD1;2;3

3 �Ewc
i

3
: (62)

From (54),

havg < h: (63)

Moreover, the corresponding sensor-to-actuator delay di .j / also varies with cache

reuse as

8i 2 f1; 2; 3g;

di .1/ D hi .1/ D NEwc
i .1/; di .2/ D hi .2/ D NEwc

i .2/; di .3/ D NEwc
i .3/: (64)

Control/Architecture Codesign for Cyber-Physical Systems 31

As all control parameters have been derived, it can be observed that the sampling

period hi .j / of a control application is nonuniform for the memory-aware scheme.

The average sampling period of S2 is shorter than the uniform sampling period

of S1 as shown in (61), due to WCET reduction resulting from cache reuse. The

sensor-to-actuator delay di .j / varies as shown in (64). The next task is to develop

a controller design method to exploit shortened nonuniform sampling periods and

achieve better control performance. For the uniform sampling scheme, the sensor-

to-actuator delay di is shorter than the sampling period h. Therefore, the technique

reported in Sect. 2 is used. Details of the controller design technique considering the

nonuniform sampling are reported in the next section.

4.3 Case Study

Here a commonly used processing unit, equipped with a processor, on-chip memory

as cache and flash as main memory is considered, shown in Fig. 1 More about

the flash memory has been discussed in chapter ⊲ “Emerging and Nonvolatile

Memory”. As a case study, three control applications are considered. C1 is position

control of a servo motor. C2 is speed control of a DC motor. C3 is control of

an electronic wedge brake system. All three control applications run on the same

processor. The processor clock frequency is 20MHz. The cache is set to have 128

cache lines and each cache line is 16 bytes. When there is a cache hit, it takes 1

clock cycle to fetch the instruction, and when there is a cache miss, it takes 100

clock cycles. WCET results are reported in Table 5. Sampling periods of the two

sampling orders S1 and S2 are shown in Table 6. Control performances of three

applications under S1 and S2 are presented in Table 7, where the settling time is

taken as the performance metric. As an example, the system output responses of

C1 under both S1 and S2 are presented in Fig. 10. The control task considered is

to change the system output (i.e., the angular position of the servo motor) from

0 to 0.3 rad. From the above experimental results, it can be clearly seen that the

memory-aware sampling order reduces the WCETs and sampling periods. With the

controller design method tailored for nonuniform sampling, control performances

are significantly improved.

Table 5 WCET results with and without cache reuse for all three control applications

Application WCET without cache reuse WCET with cache reuse Reduction percentage

C1 907:55�s 452:15�s 50:18%

C2 645:25�s 175:00�s 72:88%

C3 749:15�s 234:35�s 68:72%

32 W. Chang et al.

Table 6 Comparison of sampling periods between S1 and S2 for all three control applications.

The reduction percentage is computed according to the average sampling period

Application Sampling periods in S1 Sampling periods in S2 Reduction percentage

C1 2302�s 452�s – 452�s – 3121�s 42%

C2 2302�s 175�s – 175�s – 3675�s 42%

C3 2302�s 234�s – 234�s – 3557�s 42%

Table 7 Control performances for all three applications under S1 and S2

Application C1 C2 C3

Settling time for S1 31:2ms 26:8ms 25:2ms

Settling time for S2 21:5ms 21:1ms 20:4ms

Control performance improvement of S2 compared to S1 31:1% 21:3% 19:0%

0 1 1 2 2 3 3 4 4

·10−2

0.3

0.2

0.1

0

Time [s]

S
y

st
em

O
u

tp
u

t
y[
k]

 [
ra

d
]

Memory-Oblivious Sampling Order S1

Memory-Aware Sampling Order S2

Fig. 10 Control system output of C1 under S1 and S2

5 Computation-Aware Control/Architecture Codesign

In this section, we show how to use a multirate controller to reduce the processor

utilization of a control application, while still fulfilling the control performance

requirement and system constraints. More information about the application-

specific processors can be found in chapter ⊲ “Application-Specific Processors”.

5.1 Time-Triggered Operating System

As an example, ERCOSek with the OSEK/VDX standard [1] is considered, which

specifies the basic properties of an OS to be used in the automotive domain.

In general, as an OSEK/VDX OS, ERCOSek supports preemptive fixed-priority

scheduling. That is, priorities are assigned to applications, and at any point in time,

the task with the highest priority among all active ones is executed. On ERCOSek,

tasks can be triggered by events (e.g., interrupts, alarms, etc.) or by time. In the

time-triggered scheme, each application gets released and is allowed to access

the processor periodically. There are various periods of release times and each

Control/Architecture Codesign for Cyber-Physical Systems 33

Table 8 Example of an

ERCOSek time table
Time Release

0 ms Applications with periods of 2 ms/5 ms/10 ms

2 ms Applications with the period of 2 ms

4 ms Applications with the period of 2 ms

5 ms Applications with the period of 5 ms

6 ms Applications with the period of 2 ms

8 ms Applications with the period of 2 ms

10 ms Repeat actions at 0 ms

application is assigned one. Every time an application is released, its task gets the

chance to be executed. A time table containing all the periodic release times within

the alleged hyperperiod (i.e., the minimum common multiple of all periods) needs

to be configured. An example with a set of three periods 2, 5, and 10 ms is illustrated

in Table 8. The hyperperiod is equal to 10 ms and the time table repeats itself every

10 ms by resetting the timer. Independent of the triggering mode (i.e., be it event

or time triggered), the assigned priority will still determine the execution order of

tasks. In the time-triggered scheme, a higher priority is typically assigned to the

application released with a shorter period, since this generally results in a more

efficient use of the processor.

Assuming the set of available periods restricted by ERCOSek to be �, control

applications have to be sampled with one period or a combination of multiple

periods from �. In the latter case, switching between two sampling periods can only

occur at the common multiplier of them, as illustrated in Fig. 11, considering three

sampling periods 2, 5, and 10 ms. Often, the optimal sampling period for a control

application does not belong to the set �. The simple and straightforward method

used in practice is to select the largest sampling period in � that is smaller than

the optimal one. This results in a higher processor load, which is another important

design aspect. Denoting Ewc
i to be the WCET of a control application Ci , if the

uniform sampling period is T , the processor load for Ci is

Li D
Ewc
i

T
: (65)

The upper bound on the load of any processor is 1. Considering a single processor p,

X

fi jCi runs onpg

Li � 1: (66)

Clearly, increasing the sampling period of a control application decreases its

processor load and thus potentially enables more applications to be integrated on

the processor.

34 W. Chang et al.

5ms

Sampling

2ms

Sampling
0

0 5 10 15 20

0 10 20

2 4 6 8 10 12 14 16 18 20

...

...

...
ms

10ms

Sampling

Allowed switching among 2ms, 5ms and 10ms

Fig. 11 Allowed switching instants among multiple sampling periods

5.2 Multirate Closed-Loop Dynamics

We consider a multirate controller switching between multiple sampling periods in

�, toward achieving an average sampling period close to the optimal one. The cyclic

sequence of sampling periods for a control application defines a schedule S :

S D fT1; T2; T3; : : : ; TN g; (67)

where 8j 2 f1; 2; : : : ; N g; Tj 2 �. It implies the sequence of sampling periods as

T1 ! T2 ! � � � ! TN ! T1 ! T2 ! � � � ! TN ! repeat

Following the assumption in (65) that the WCET of Ci is Ewc
i , the processor load

for Ci over S is

Li D
NEwc

i

N
P

jD1

Tj

: (68)

Dictated by the schedule S , N systems switch cyclically in a deterministic fashion.

When the sampling period tkC1 � tk D Tk;j , the dynamics is

xŒk C 1� D Ad .Tk;j /xŒk�C Bd .Tk;j /KjxŒk�C Bd .Tk;j /Fj r: (69)

The controller design needs to be performance oriented, and the key is to compute

the feedback gain Kj for each system with pole placement, based on which the

static feedforward gain Fj can be derived with (10).

Referring to Fig. 12, after the first sampling interval of a switching cycle,

Control/Architecture Codesign for Cyber-Physical Systems 35

Repeat

A switching cycle

Tk,NTk,2Tk,1

tk tk+1 tk+2Sampling Instants:

Sampling Periods:

x[k+N − 1]

tk+N − 1 tk+N

Feedback State:

x[k+N]x[k]x[k]x[k]x[k]

x[k] x[k + 1] x[k + 2] x[k+N]

Feedback State:

(K1,F1)(KN,FN)(K3,F3)(K2,F2)(K1,F1)Controller Gain:

K̂2 K̂3 K̂N K̂1K̂1
Controller Gain:

Fig. 12 Cyclically switched linear systems

xŒk C 1� D Ad .Tk;1/xŒk�C Bd .Tk;1/ OK1xŒk�C Bd .Tk;1/F1r: (70)

It is noted that K1 is the feedback gain based on the most recent system state xŒk�

and used to compute the control input. OK1 is the equivalent feedback gain based

on the starting system state xŒk� of a switching cycle. In this case that only one

sampling period is considered, OK1 D K1. The feedforward gain F1, which is related

toK1, is also based on the most recent system state and used to compute the control

input. The closed-loop system matrix is denoted as Acl;1 and

Acl;1 D Ad .Tk;1/C Bd .Tk;1/ OK1: (71)

OK1 can be designed by pole placement. Poles to place are eigenvalues of Acl;1. F1
is computed as per (10).

After the second sampling interval,

xŒk C 2� D Ad .Tk;2/xŒk C 1�C Bd .Tk;2/K2xŒk C 1�C Bd .Tk;2/F2r: (72)

To consider the overall dynamics of the first two sampling periods, the relation

between xŒk C 2� and xŒk� can be derived as

xŒk C 2� D Ad .Tk;2/Acl;1xŒk�C Bd .Tk;2/K2Acl;1xŒk�

C .Ad .Tk;2/C Bd .Tk;2/K2/Bd .Tk;1/F1r C Bd .Tk;2/F2r:
(73)

Let

OK2 D K2Acl;1; (74)

and (73) becomes

36 W. Chang et al.

xŒk C 2� D Ad .Tk;2/Acl;1xŒk�C Bd .Tk;2/ OK2xŒk�

C .Ad .Tk;2/C Bd .Tk;2/K2/Bd .Tk;1/F1r C Bd .Tk;2/F2r:
(75)

Similar to (71),

Acl;2 D Ad .Tk;2/Acl;1 C Bd .Tk;2/ OK2: (76)

It is noted that (75) has the same form as (70). OK2 can be designed by pole placement

and K2 is derived with (74), as long as Acl;1 is non-singular. Poles to place are

eigenvalues of Acl;2. F2 is computed as per (10). Continuing the above analysis,

8j 2 f1; 2; : : : ; N g

Acl;j D Ad .Tk;j /Acl;j�1 C Bd .Tk;j / OKj ; (77)

and Acl;0 D I can be defined. OKj can be designed by pole placement. Poles to place

are eigenvalues of Acl;j . As long as Acl;j�1 is non-singular, Kj is derived by

Kj D OKjA
�1
cl;j�1: (78)

Fj is computed as per (10).

Here the sensor-to-actuator delay is approximately equal to the WCET of the

executed control program. Since the control law is computed during the design

phase, such a control program generally has a short WCET. The sensor-to-actuator

delay is often negligible compared to the sampling periods given by the OS. In

general, when the sensor-to-actuator delay of a control task is large compared to

the sampling periods (e.g., in the memory-aware controller design of Sect. 4, where

the sampling periods are directly constrained by WCETs), our proposed controller

design technique can be extended to consider the delayed control input with a

number of methods reported in the literature [24].

An optimization problem for the pole placement can be formulated as presented

in Sect. 2.2.2. The number of dimensions in the decision space is nN – the number

of states of the application multiplied by the number of sampling periods in the

schedule. The optimization objective is the settling time. Absolute values of all poles

have to be less than unity to ensure system stability and larger than 0 to make all

Acl;j non-singular.

Optimization strategies for design space exploration have been discussed in

chapter ⊲ “Optimization Strategies in Design Space Exploration”. In this section,

to solve one optimization problem, the PSO algorithm is run multiple times with the

same number of particles, and we do not set the limit on the number of iterations.

If the objective value variation of the solution points from these runs exceeds a

certain threshold (e.g., 1%), the number of particles is increased. Considering the

stochastic nature of PSO, it is very likely that the optimal point has been found

when multiple runs generate similar objective values. It is noted that if the number

of sampling periods in the schedule is very large, which makes the number of

Control/Architecture Codesign for Cyber-Physical Systems 37

Table 9 Settling times of three schedules

Schedule Settling time [ms] Requirement

S1 D f5 msg 253:69 Violated

S2 D f2 msg 110:44 Satisfied

S3 D f2 ms; 2 ms; 2 ms; 2 ms; 2 ms; 5 ms; 5 msg 128.6 ms Satisfied

dimensions in the decision space very large, this method aiming to ensure optimality

can be computationally expensive. In this case, the number of particles and iterations

has to be limited, resulting in a compromise in optimality.

5.3 Case Study

The presented multirate controller design technique is evaluated with an Electro-

Mechanical Brake (EMB) system used in automobiles. It can be modeled as (1)

with five system states. The control input is the voltage output of the onboard

battery and thus cannot exceed 12 V. Different controllers require different battery

voltage output profiles, and only those that respect the input constraint are possible

to implement. The constraint on the settling time is 150 ms. In the optimization,

the settling time is still treated as the objective to minimize and check the optimal

solution against this requirement. The WCET of the control program is 0.2 ms. The

control task is to change the system output (i.e., the position of the lever) from 0 to

2 mm. The set of available sampling periods offered by ERCOSek is

� D f1 ms; 2 ms; 5 ms; 10 ms; 20 ms; 50 ms; 100 ms; 200 ms; 500 ms; 1 sg: (79)

As shown in Table 9 and Fig. 13, the schedule S1 D f5msg cannot meet the settling

time requirement. The largest sampling period smaller than 5 ms in � is 2 ms. The

schedule S2 D f2 msg is able to fulfill all the requirements. According to (65), the

processor load of S2 is 0:1. Then a schedule switching between 2 ms and 5 ms

is considered, S3 D f2 ms; 2 ms; 2 ms; 2 ms; 2 ms; 5 ms; 5 msg. This sequence of

sampling periods satisfies the OS requirement. The multirate controller is designed

as discussed earlier in this section. The WCET (0.2 ms) is much shorter than the

sampling periods (2 ms, 5 ms), and thus we neglect the sensor-to-actuator delay.

S3 has a slightly longer settling time than S2, but still fulfills the requirement.

According to (68), the processor load is 0:07, achieving a 30% reduction compared

to S2.

6 Conclusion

In this chapter, a basic introduction into the subject of control/architecture codesign

in the context of cyber-physical systems is provided. The control/architecture

38 W. Chang et al.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

1

2

·10−3

Time [s]

S
y
st

em
O

u
tp

u
t

y[
k
]

[m
]

Schedule S1 = {5ms}

Schedule S2 = {2ms}

Schedule S3 = {2ms, 2ms, 2ms, 2ms, 2ms, 5ms, 5ms}

Fig. 13 System outputs of different schedules

codesign is an emerging field of research, where the design of control parameters

and embedded platform parameters are integrated in a holistic approach to reduce

conservativeness and achieve more efficient design of embedded control systems.

As the size and the complexity of the cyber-physical systems increase, resource-

efficient design has become one of the most important aspects in this context. In

this chapter, the motivation is firstly explained, and some basic concepts of the

control/architecture codesign are introduced. In addition, a brief summary on the

type of resources that can be considered in the codesign approaches is provided.

Then three examples of state-of-art codesign approaches, targeting respectively

at communication-aware design, memory-aware design, and computation-aware

design, are used to illustrate the basic thinking behind the control/architecture

codesign. In Sect. 3, a cooptimization framework is explained to codesign control

and platform parameters by solving a constraint-based multi-objective optimization

problem. This framework considers two objectives, namely, the resource utilization

and the overall control performance, and generates a Pareto front depicting the trade-

off options between the two objectives. In Sect. 4, how to exploit the instruction

cache reuse in a memory-aware sampling order to improve the control performance

is shown. Cache analysis is used to compute the guaranteed WCET reduction

between two consecutive executions of one control program. Control parameters

are derived based on the WCET results. The controller design is tailored for the

nonuniform sampling scheme. In Sect. 5, the OS constraint that only a limited

set of sampling periods are provided is considered. It is shown how a multirate

controller is used to reduce the processor utilization of a control application, while

still fulfilling the control performance requirement and system constraints. The

control/architecture codesign is, of course, a relatively new and open research field,

and thus the state-of-art approaches are certainly not limited to the ones shown in

this chapter. There are also some other research directions in this context that can be

explored. For example, power consumption is quite an important design factor, and

thus power-aware codesign methods could potentially lead to more power-efficient

designs. Furthermore, safety and fault tolerance are also important factors in cyber-

physical systems which can also be considered in codesign methods. In addition, the

Control/Architecture Codesign for Cyber-Physical Systems 39

three approaches shown in this chapter address individually a single resource. If the

complexity of the problem due to many design dimensions can be tackled, it would

be interesting to try to address simultaneous two or more resources in the codesign

and thus offer an even greater freedom for design trade-offs.

References

1. OSEK/VDX operating system specification 2.2.3 (2005)

2. 664P7-1 aircraft data network, part 7, avionics full-duplex switched Ethernet network (2009)

3. The FlexRay communications system protocol specification, Version 3.0.1 (2010)

4. LIN specification package revision 2.2A (2010)

5. MOST specification rev. 3.0 E2 (2010)

6. AS6802 (2011) Time-triggered Ethernet

7. Infineon Product Brief XC2300B – Series (Accessed 12 May 2016). http://www.infineon.com/

dgdl/Pb_XC2300B.pdf?fileId=db3a30432a7fedfc012ab3c3d7863706

8. Ackermann J, Utkin VI (1994) Sliding mode control design based on Ackermann’s formula.

In: Proceedings of the 33rd IEEE conference on decision and control, vol 4, Lake Buena Vista,

pp 3622–3627. doi:10.1109/CDC.1994.411715

9. Andalam S, Sinha R, Roop P, Girault A, Reineke J (2013) Precise timing analysis for

direct-mapped caches. In: 2013 50th ACM/EDAC/IEEE design automation conference (DAC),

Austin, pp 1–10. doi:10.1145/2463209.2488917

10. Astrom KJ, Murray RM (2008) Feedback systems: an introduction for scientists and engineers.

Princeton University Press, Princeton

11. Batcher KW, Walker RA (2008) Dynamic round-robin task scheduling to reduce cache misses

for embedded systems. In: 2008 Design, automation and test in Europe, Munich, pp 260–263.

doi:10.1109/DATE.2008.4484893

12. Bhave AY, Krogh BH (2008) Performance bounds on state-feedback controllers with network

delay. In: 47th IEEE conference on decision and control, CDC 2008, Cancun, pp 4608–4613.

doi:10.1109/CDC.2008.4739330

13. Bosch (1991) CAN Specification version 2.0. Stuttgart, Bosch

14. Castane R, Marti P, Velasco M, Cervin A, Henriksson D (2006) Resource management for

control tasks based on the transient dynamics of closed-loop systems. In: 18th Euromicro con-

ference on real-time systems (ECRTS’06), Dresden, pp 10, 182. doi:10.1109/ECRTS.2006.24

15. Cervin A, Velasco M, Marti P, Camacho A (2009) Optimal on-line sampling period assignment.

Research report, Lund University and Technical University of Catalonia

16. Chang W, Chakraborty S (2016) Resource-aware automotive control systems design: a cyber-

physical systems approach. Found Trends c Electron Design Autom 10(4):249–369. http://dx.

doi.org/10.1561/1000000045

17. Charette RN (2009) This car runs on code. IEEE Spectrum. http://spectrum.ieee.org/

transportation/systems/this-car-runs-on-code

18. eCos. http://ecos.sourceware.org

19. Feiler PH (2003) Real-time application development with OSEK: a review of the OSEK

standards. Technical report, Carnegie Mellon University

20. Gaid MEMB, Cela A, Hamam Y (2006) Optimal integrated control and scheduling of

networked control systems with communication constraints: application to a car suspension

system. IEEE Trans Control Syst Technol 14(4):776–787. doi:10.1109/TCST.2006.872504

21. Gaid MEMB, Cela A, Hamam Y, Ionete C (2006) Optimal scheduling of control tasks

with state feedback resource allocation. In: 2006 American control conference, Minneapolis,

pp 310–315. doi:10.1109/ACC.2006.1655373

22. Gloy N, Smith MD (1999) Procedure placement using temporal-ordering information. ACM

Trans Program Lang Syst 21(5):977–1027. doi:10.1145/330249.330254

23. Goswami D, Lukasiewycz M, Schneider R, Chakraborty S (2012) Time-triggered implemen-

tations of mixed-criticality automotive software. In: 2012 Design, automation test in Europe

conference exhibition (DATE), Dresden, pp 1227–1232. doi:10.1109/DATE.2012.6176680

40 W. Chang et al.

24. Goswami D, Schneider R, Chakraborty S (2014) Relaxing signal delay constraints in

distributed embedded controllers. IEEE Trans Control Syst Technol 22(6):2337–2345.

doi:10.1109/TCST.2014.2301795

25. Henriksson D, Cervin A (2005) Optimal on-line sampling period assignment for real-time

control tasks based on plant state information. In: Proceedings of the 44th IEEE conference on

decision and control, Seville, pp 4469–4474. doi:10.1109/CDC.2005.1582866

26. Kalamationos J, Kaeli DR (1998) Temporal-based procedure reordering for improved in-

struction cache performance. In: Proceedings of fourth international symposium on high-

performance computer architecture, Las Vegas, pp 244–253. doi:10.1109/HPCA.1998.650563

27. Kleinsorge JC, Falk H, Marwedel P (2011) A synergetic approach to accurate analysis of cache-

related preemption delay. In: 2011 Proceedings of the international conference on embedded

software (EMSOFT), Taipei, pp 329–338. doi:10.1145/2038642.2038693

28. Liu X, Chen X, Kong F (2015) Utilization control and optimization of real-time embedded

systems. Found Trends c Electron Design Autom 9(3):211–307. http://dx.doi.org/10.1561/

1000000042

29. Lukasiewycz M, GlaßM, Teich J, Milbredt P (2009) Flexray schedule optimization of the

static segment. In: Proceedings of the 7th IEEE/ACM international conference on hardware/-

software codesign and system synthesis, CODES+ISSS’09. ACM, New York, pp 363–372.

doi:10.1145/1629435.1629485

30. Marti P, Lin C, Brandt SA, Velasco M, Fuertes JM (2004) Optimal state feedback based

resource allocation for resource-constrained control tasks. In: Proceedings of 25th IEEE inter-

national on real-time systems symposium, Lisbon, pp 161–172. doi:10.1109/REAL.2004.39

31. Martí P, Lin C, Brandt SA, Velasco M, Fuertes JM (2009) Draco: efficient resource

management for resource-constrained control tasks. IEEE Trans Comput 58(1):90–105.

doi:10.1109/TC.2008.136

32. Pettis K, Hansen RC (1990) Profile guided code positioning. In: Proceedings of the ACM

SIGPLAN 1990 conference on programming language design and implementation, PLDI’90.

ACM, New York, pp 16–27. doi:10.1145/93542.93550

33. Pigan R, Metter M (2008) Automating with PROFINET, 2nd edn. Publicis Publishing,

Erlangen

34. Samii S, Cervin A, Eles P, Peng Z (2009) Integrated scheduling and synthesis of control

applications on distributed embedded systems. In: 2009 Design, automation test in Europe

conference exhibition, Nice, pp 57–62. doi:10.1109/DATE.2009.5090633

35. Schneider R, Goswami D, Zafar S, Lukasiewycz M, Chakraborty S (2011) Constraint-driven

synthesis and tool-support for flexray-based automotive control systems. In: Proceedings of the

seventh IEEE/ACM/IFIP international conference on hardware/software codesign and system

synthesis, CODES+ISSS’11. ACM, New York, pp 139–148. doi:10.1145/2039370.2039394

36. Sedighizadeh D, Masehian E (2009) Particle swarm optimization methods, taxonomy and

applications. Int J Comput Theory Eng 1(4):486–502

37. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C,

Heckmann R, Mitra T, Mueller F, Puaut I, Puschner P, Staschulat J, Stenström P (2008) The

worst-case execution-time problem – overview of methods and survey of tools. ACM Trans

Embed Comput Syst 7(3):36:1–36:53. doi:10.1145/1347375.1347389

38. Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Mem-

ory hierarchies, pipelines, and buses for future architectures in time-critical embedded

systems. IEEE Trans Comput Aided Des Integr Circuits Syst 28(7):966–978. doi:10.1109/T-

CAD.2009.2013287

39. Zeng H, Natale MD, Ghosal A, Sangiovanni-Vincentelli A (2011) Schedule optimization of

time-triggered systems communicating over the flexray static segment. IEEE Trans Ind Inf

7(1):1–17. doi:10.1109/TII.2010.2089465

	Control/Architecture Codesign for Cyber-Physical Systems
	Contents
	Acronyms
	1 Introduction
	2 Embedded Control Systems
	2.1 Embedded Systems Architecture
	2.2 Feedback Control Systems
	2.2.1 Control Performance Metrics
	2.2.2 Optimal Pole Placement

	3 Communication-Aware Control/Architecture Codesign
	3.1 Problem Setting
	3.2 The Codesign Approach
	3.2.1 Design Flow
	3.2.2 Controller Design
	3.2.3 Optimization Problem Formulation
	3.2.4 Multi-objective Optimization

	3.3 Case Study

	4 Memory-Aware Control/Architecture Codesign
	4.1 Cache Analysis for Consecutive Executions of a Control Application
	4.2 Control Parameter Derivation
	4.3 Case Study

	5 Computation-Aware Control/Architecture Codesign
	5.1 Time-Triggered Operating System
	5.2 Multirate Closed-Loop Dynamics
	5.3 Case Study

	6 Conclusion
	References

