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Quantum hypothesis testing is a central task in the entire field of quantum information theory.

Understanding its ultimate limits will give insight into a wide range of quantum protocols and applications,

from sensing to communication. Although the limits of hypothesis testing between quantum states have

been completely clarified by the pioneering works of Helstrom in the 1970s, the more difficult problem of

hypothesis testing with quantum channels, i.e., channel discrimination, is less understood. This is mainly

due to the complications coming from the use of input entanglement and the possibility of employing

adaptive strategies. In this Letter, we establish a lower limit for the ultimate error probability affecting the

discrimination of an arbitrary number of quantum channels. We also show that this lower bound is

achievable when the channels have certain symmetries. As an example, we apply our results to the problem

of channel position finding, where the goal is to identify the location of a target channel among multiple

background channels. In this general setting, we find that the use of entanglement offers a great advantage

over strategies without entanglement, with nontrivial implications for data readout, target detection, and

quantum spectroscopy.

DOI: 10.1103/PhysRevLett.125.080505

Hypothesis testing is a fundamental method of statistical

inference which plays a central role in both classical and

quantum information theory. Since the seminal works by

Helstrom [1], quantum hypothesis testing [1–4] has been

greatly advanced for the binary case, namely for the

statistical discrimination between two quantum states or

two quantum channels. Quantum channel discrimination

(QCD) [5–9] aims at discriminating between different

physical processes, modeled as quantum channels and

arbitrarily chosen from some known ensemble. Various

protocols have demonstrated the advantages of using

entanglement in binary QCD, for example quantum

illumination [10–14] and quantum reading [15]. It is also

known that all resources in any convex resource theory [16]

are useful in binary problems of QCD.

While it is clear that entanglement may give an

advantage in some scenarios, the ultimate limit of QCD

is far from being understood. The first difficulty results

from the fact that solving this limit requires a double

optimization, where both input states and output measure-

ments need to be optimized. The second complication

comes from the possibility of adaptive strategies, which

may strictly outperform nonadaptive ones [17]. So far only

special cases have been considered. For unitaries and

certain channels, a finite number of probings allow perfect

discrimination [18–20]. For binary discrimination of

channels with equal priors, the ultimate adaptive perform-

ance can also be found or bounded [21,22].

In this Letter, we are finally able to address the most

general scenario. We establish the ultimate limits for the

adaptive discrimination of an arbitrary number of finite-

dimensional quantum channels. More precisely, we provide

a general bound to the optimal error probability affecting

this general multiary discrimination problem, and we also

show relevant cases where this bound is achievable. In fact,

for a special class of channels with the property of joint

teleportation covariance (telecovariance) [9,22], our bound

is tight and achieved nonadaptively by using maximally

entangled inputs. Furthermore, when the ensemble of

channels possesses the geometric uniform symmetry

(GUS) [23], our formulas can be greatly simplified.

As an application, we study the ultimate minimum error

probability for the problem of channel position finding

(CPF), where the position of a target channel has to be

identified among an array of m cells, with the remaining

m − 1 cells containing copies of a background channel.

This basic problem has implications for various tasks of

quantum sensing as discussed in Ref. [24]. It is here studied

considering ensembles of quantum erasure channels

(QECs), quantum depolarizing channels (QDCs) and qubit

amplitude damping channels (QADCs). In particular, for
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QDCs, we show that the use of input entanglement strictly

outperforms nonentangled strategies.

Preliminaries.—Before addressing QCD, let us summarize

the case of state discrimination. The minimum “Helstrom”

error probability affecting the discrimination of m states

fρngm−1
n¼0

with priors fpngm−1
n¼0

is given by

PHðfρn; pngÞ ¼ 1 − max
P

n

Πn¼I

X

n

pnTrðρnΠnÞ; ð1Þ

where the positive-valued operator measure (POVM)

element Πn corresponds to the hypothesis that the state is

ρn. In the binary case with equal priors, it reduces to [1]

PH ¼ ð1 − kρ1 − ρ2k=2Þ=2, where kAk ¼ tr
ffiffiffiffiffiffiffiffiffi

A†A
p

is the

one-norm. Since evaluating PH is often challenging, we will

resort to various bounds [25–33]. To proceed with our study

of QCD, we give a continuity bound for PH as stated in the

following lemma (proof in [33]).

Lemma 1.—Consider a set of states fρ0ngm−1
n¼0

close

to fρngm−1
n¼0

in the sense that kρn − ρ0nk ≤ δn for

0 ≤ n ≤ m − 1. We lower bound the Helstrom limit as

PHðfρ0n; pngÞ ≥ PHðfρn; pngÞ −
1

2

X

pnδn: ð2Þ

Adaptive protocols, simulation, and stretching.—With

the continuity bound in hand, we now introduce the most

general protocol for QCD and its reduction to state

discrimination. A general u-round adaptive protocol

for multiple channel discrimination is depicted in

Fig. 1(a). The protocol is allowed to access an unknown

d-dimensional channel E for u times, where the unknown

channel E is fixed but chosen from the ensemble

fEn; pngm−1
n¼0

. The unlimited entanglement between all

systems involved allows one to push all measurements

to the final output ρE;u. In each round, a subsystem

Sk; 1 ≤ k ≤ u, is sent through the channel E and the output

S0k is collected. Our goal is to lower bound the ultimate error

probability Pu of the above protocol.

To simplify the structure of the protocol, we employ

channel simulation [37–39] and protocol stretching [38],

originally devised for quantum communications. As

depicted in Fig. 1(b), we consider an approximation EM

of the finite-dimensional channel E by applying a

universal (trace-preserving) teleportation operation T M to

M ≥ 1 copies of the Choi matrix ρE ¼ ðE ⊗ IÞζ,
where ζ ≔

P

d−1
l¼0

jl;li=
ffiffiffi

d
p

is a maximally entangled

state of dimension d. In general, T M can be chosen as

port-based teleportation (PBT) [40]. The precision of

channel simulation is quantified by ΔE;M ≔ kE − EMk
⋄

where kAk
⋄
¼ supρkA ⊗ IðρÞk is the diamond norm

[5,41]. For the simulation of an arbitrary finite-dimensional

channel via PBT, we may write [[21] Lemma 2]

ΔE;M ≤ δM;d ≔ 2dðd − 1ÞM−1; ð3Þ

which is valid for any number of portsM ≥ 1 and any input

dimension d ≥ 2 for the channel [42].

The error in the channel simulation propagates to the

output of the protocol. Using the triangle inequality, we can

bound the trace distance between the output state ρE;u of the

actual protocol and the output state ρ̃E;u of the simulated

protocol as follows

kρE;u − ρ̃E;uk ≤ uΔE;M: ð4Þ

The final step is protocol stretching [21,38]. As depicted in

Fig. 1(c), this is a reorganization of the simulated protocol

into an equivalent block protocol, so that the approximate

output state ρ̃E;u is decomposed as ρ̃E;u ¼ Λðρ⊗uM
E

Þ for a

trace-preserving quantum operation Λ. Combining this

with Eq. (4) we then write

kρE;u − Λðρ⊗uM
E

Þk ≤ uΔE;M: ð5Þ

Ultimate bounds.—Combining Lemma 1 with Eq. (5),

we derive the main result of our work (proof in [33]).

FIG. 1. Schematics of (a) a general adaptive protocol. The inputs S and I are quantum registers in an arbitrary state. In the (k − 1)th

round, a subsystem Sk−1 probes the channel E. A quantum operation Λk−1 is performed to process the received subsystem S0k−1 and

prepare the next probe subsystem Sk. After u uses, the final decision is made based on the measurement of the output state ρE;u.

(b) Channel simulation. A general protocol over channel E is replaced by a protocol over an approximate channel EM , consisting of a

teleportation operation T M applied to M copies of the Choi matrix ρE . (c) Protocol stretching. Starting from the simulated protocol in

(b), all the u copies of the resource state ρ⊗M
E

are stretched back in time and all the quantum operations (together with the registers

S and I) are collapsed into a single trace-preserving quantum operation Λ that produces ρ̃E;u. (d) Channel position finding with m ¼ 3

multichannels E0, E1, E2, each acting on three subsystems S0, S1, S2. Here Φ
ðTÞ and Φ

ðBÞ represent target and background channels,

respectively (see also Ref. [24]).
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Theorem 1.—Consider arbitrary m ≥ 2 d-dimensional

quantum channels fEngm−1
n¼0

with prior probabilities

fpngm−1
n¼0

. The minimum error probability Pu for their

u-round adaptive discrimination satisfies

Pu ≥ Pu;LB ≔ PHðfρ⊗uM
En

; pngÞ − uΔ̄M=2; ð6Þ

where the average simulation error Δ̄M ¼
P

n pnΔEn;M
can

be replaced by the uniform error δM;d of Eq. (3).

Since the bound is valid for anyM ≥ 1, its tightest value

is achieved by maximizing over M. Remarkably, the

difficult problem of adaptive multi-channel discrimination

has been reduced to the discrimination of an ensemble of

Choi matrices. However, in general, the computation of the

Helstrom limit PHðfρ⊗uM
En

; pngÞ may still be challenging

and, for this reason, we may resort to further bounds. In

particular, by using bounds from Bures’s fidelity

Fðρ; σÞ ≔ tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffi

ρ
p

σ
ffiffiffi

ρ
pp

, we can obtain a lower bound that

is easier to evaluate [33]

Pu ≥ PF
u;LB ¼

X

k0>k

pk0pkF
2uMðρEk0 ; ρEkÞ − uΔ̄M=2: ð7Þ

Below, we consider symmetric cases where the bound of

Theorem 1 can be greatly simplified.

Ensembles with symmetries.—The general problem of

adaptive multichannel discrimination can be further

simplified if the ensemble possesses certain symmetries.

The first to consider is joint telecovariance. A quantum

channel E is telecovariant [38] when, for any tele-

portation unitary U (e.g., Pauli operator), we may

write EðUρU†Þ ¼ VEðρÞV† for another generally different

unitary V (See [43–45] for general covariance.). Then, an

ensemble of channels fEkg is called jointly telecovariant

[9,22], when we may write the condition of telecovariance

for all the elements of the ensemble and the output unitary

V does not depend on the label k, i.e., it is universal for the
ensemble.

For an ensemble of jointly telecovariant channels, we may

rewrite the previous universal simulation by choosing T M as

the standard teleportation [46] applied to a single Choi

matrix (M ¼ 1). Furthermore, this simulation is perfect,

meaning that we have ΔE;1 ¼ 0 [38]. As a result, Theorem 1

reduces to Pu;LB ¼ PHðfρ⊗u
En

; pngÞ. Furthermore, this lower
bound is achievable (Pu ¼ Pu;LB) by probing the channels

with u copies of the maximally entangled state ζ, which

also means that adaptive strategies are not needed for

these channels. We have therefore automatically proved

the following, which is a generalization of Ref. [[22]

Theorem 3] from binary to multiary channel discrimination.

Corollary 1.—Consider arbitrary m ≥ 2 jointly

telecovariant channels fEngm−1
n¼0

with prior probabilities

fpngm−1
n¼0

. The minimum error probability for their

u-round adaptive discrimination equals the Helstrom limit

computed over their Choi matrices

Pu ¼ PHðfρ⊗u
En

; pngÞ: ð8Þ

This is achievable by a nonadaptive entanglement-based

strategy where u copies of a maximally entangled state ζ

are sent through the extended channel En ⊗ I .

Examples of jointly telecovariant channels are QECs and

all Pauli channels, therefore including QDCs. By contrast,

QADCs do not belong to this family.

We can perform another relevant simplification when

the ensemble possesses GUS [23]; i.e., it has equal priors

pn ¼ 1=m and the channels satisfy En ¼ SnE0S
†n, where

the unitary Sm equals identity. In this case, the Choi

matrices ρ⊗uM
En

also have GUS with extended symmetry

operators SuM ¼ S⊗uM. Then the optimal POVM fΠngm−1
n¼0

for discriminating a GUS ensemble of states has the same

type of symmetry, i.e., Πn ¼ SnuMΠ0S
†n
uM [23,47]. As a

result, the lower bound in Theorem 1 takes the form

Pu;LB ¼ 1 −
1

2
uΔE0;M

−max
Π0

Tr½Π0ρ
⊗uM
E0

�; ð9Þ

where the maximization is constrained by POVM

normalization condition. Finally, if the channel ensemble

has both the properties of GUS and joint telecovariance,

then we may write the ultimate achievable bound

Pu ¼ 1 −max
Π0

Tr½Π0ρ
⊗u
E0

�: ð10Þ

In the following, we consider CPF, which has the property

of GUS as a natural symmetry.

Channel position finding.—An important case where we

have GUS is the problem of CPF [see Fig. 1(d) for a

schematic]. Consider an array of m cells, each containing a

channel acting on a dS-dimensional subsystem Sk. The goal
is to find the position n of a target channel ΦðTÞ, knowing
that all the other cells contain copies of a background

channel ΦðBÞ. Formally, we consider equal-prior discrimi-

nation of m multichannels fEngm−1
n¼0

, each expressed by

En ¼ ð⊗k≠n Φ
ðBÞ
Sk

Þ ⊗ Φ
ðTÞ
Sn

: ð11Þ

By taking m maximally entangled states at the input ζ⊗m,

we define the global Choi matrix of the multichannel

above, which has the following form

ρEn ¼ ½⊗k≠n ðρΦðBÞÞSkIk � ⊗ ðρ
Φ

ðTÞÞSnIn : ð12Þ

From the multichannel En we can derive an M-port PBT

simulation EM
n by replacing each individual channel

Φ
ðB=TÞ with its M-port simulation. Correspondingly, the

simulation error affecting the multichannel is in terms of

the errors associated to the simulation of the individual

channels, i.e., ΔEn;M
¼ ðm − 1ÞΔ

Φ
ðBÞ;M þ Δ

Φ
ðTÞ;M [33].

Because this expression is the same for any n, the average
simulation error is simply Δ̄M ¼

P

n pnΔEn;M
¼ ΔE0;M

.
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Furthermore, from Eq. (3) we have Δ
Φ

ðlÞ;M ≤ δM;dS
,

and we can write the simpler upper bound Δ̄M ≤

mδM;dS
∼md2S=M. The simulation error of the CPF

problem can be used in previous equations. In particular,

we can use it in Eq. (7), which here takes the form

Pu ≥ PF
u;LB ¼ m − 1

2m
F4uM
Φ

ðBÞ;ΦðTÞ − uΔ̄M=2; ð13Þ

where F
Φ

ðBÞ;ΦðTÞ is the fidelity between the Choi matrices of

the target and background channels [48].

In order to show further applications of our theory, below

we consider three families of channels: QECs, QDCs, and

QADCs. The first two are jointly telecovariant, so that our

Corollary 1 and Eq. (10) can be applied.

Discrimination of erasure and depolarizing channels.—

Let us study the multiary discrimination of QECs and

QDCs. Recall that the d-dimensional QEC with erasure

probability q can be written as EqðρÞ ¼ qjeihej þ ð1 − qÞρ,
where ρ is the input state and jeihej is a state living

in an orthogonal space. The d-dimensional QDC

with depolarizing probability q takes instead the form

DqðρÞ ¼ qId þ ð1 − qÞρ, where Id ¼ d−1I is the fully

mixed state. These two types of channels can be treated

compactly by exploiting the formalism of the orthogonal

replacement channel. This is explained in detail in [33],

where we also show that, for the special case of binary

discrimination between QECs (or QDCs), we find exact

analytical solutions for the ultimate error probability.

Consider the multiary discrimination problem of CPF

specified in Eq. (11). Here the background channel ΦðBÞ

and the target channel Φ
ðTÞ are chosen to be QECs

(or QDCs) with probabilities qB and qT . For m channels

and u uses, we define the function

humðqB; qTÞ ≔ 1 −
1

m

X

x∈f0;1gum
½qw⋆

T ð1 − qTÞu−w
⋆

×q
kxk−w⋆

B ð1 − qBÞðm−1Þu−ðkxk−w⋆Þ�; ð14Þ

where w⋆ ¼ maxlkxlk for qT ≥ qB, while w
⋆ ¼ minlkxlk

[49] for qT < qB. Here xl (with 0 ≤ l ≤ m − 1) is the

ð1þ luÞth to ½ðlþ 1Þu�th components of the vector x.

Note that humðqB; qTÞ ¼ humð1 − qB; 1 − qTÞ. Using this

function, we compute Pu in Eq. (10) and, when u ¼ 1,

the summation can be simplified analytically [33].

For CPF with QECsΦðBÞ ¼ EqB
andΦðTÞ ¼ EqT

, we find

the ultimate error probability

PQEC
u ¼ humðqB; qTÞ: ð15Þ

In this case there is no entanglement advantage, since

we obtain the same performance by sending u copies

of an optimal pure state ϕ⊗m through En in a non-

adaptive fashion. For CPF with QDCs Φ
ðBÞ ¼ DqB

and

Φ
ðTÞ ¼ DqT

, we compute the ultimate error probability

P
QDC
u ¼ hum½ð1 − d−2ÞqT ; ð1 − d−2ÞqB�: ð16Þ

In this case, there is instead a clear advantage in using

entanglement, since the performance of an optimal

pure state ϕ⊗m is given by Eq. (16) with the replacement

d−2 → d−1 [33]. Figure 2 shows the gap between the

entangled and nonentangled strategy which widens as

the difference jqB − qT j increases, and as the number

of rounds u increases. For one-shot discrimination

(u ¼ 1) of a completely depolarizing channel qT ¼ 1

among identity channels (qB ¼ 0), we may write PQDC
1

¼
ðm − 1Þ=md2 [33].

Discrimination of amplitude damping channels.—A

QADC Aq with damping probability q has Kraus decomp-

osition AqðρÞ ¼
P

i¼0;1KiρK
†
i , with operators K0 ≔

j0ih0j þ ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p j1ih1j and K1 ≔

ffiffiffi

q
p j0ih1j. It is not

telecovariant and its PBT simulation has nonzero error

ΔAq;M
¼ ξM½ð1 − qÞ=2þ ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p �, where ξM is the

constant given in Ref. [[21] Eq. (11)]. While the binary

discrimination between two QADCs has been treated

in the literature [21] (see [33] for further results on

receiver designs and pretty-good measurement (PGM)

[25–27]), little is known in the setting of multiary

discrimination.

Consider the multi-ary discrimination problem of CPF

specified in Eq. (11), with background Φ
ðBÞ ¼ AqB

and

target Φ
ðTÞ ¼ AqT

. We compute the lower bound in

Eq. (13) here taking the form

Pu ≥ PF
u;LB ¼ m − 1

2m
F4uM − uΔ̄M=2; ð17Þ

where F ≔ ½1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − qBÞð1 − qTÞ
p

þ ffiffiffiffiffiffiffiffiffiffi

qBqT
p �=2 and

Δ̄M ¼ ðm − 1ÞΔAqB
;M þ ΔAqT

;M. By optimizing over M,

we derive its tightest form PF⋆
u;LB ¼ maxMP

F
u;LB. As a

comparison, we consider a nonadaptive scheme, where u
copies of the maximally entangled state ζ⊗m probe En.

Correspondingly, the Helstrom limit computed on the

ensemble of output Choi matrices fρ⊗u
En

g is bounded as [33]

FIG. 2. Channel position finding with QDCs ΦðBÞ ¼ DqB
and

Φ
ðTÞ ¼ DqT

. We consider m ¼ 5, d ¼ 100, and qB − qT ¼ 0.5,

0.9, 0.99, 0.999 from top to bottom. We compare the ultimate

(entanglement-based) performance PQDC
u of Eq. (16) (red curves)

with the optimal classical strategy based on unentangled inputs

(black curves). (a) u ¼ 1, (b) u ¼ 3. In all panels, the vertical

dashed lines are the maximum values that qT can take, because

for those values we have qB ¼ 1.
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m − 1

2m
F4u ≤ PHðfρ⊗u

En
; 1=mgÞ ≤ PPGM

E ; ð18Þ

where PPGM
E is the performance achievable via a PGM at the

output [25–27]. Figure 3 shows a gap between the ultimate

lower bound PF⋆
u;LB and the nonadaptive performance.

Further investigation is needed to establish if this gap is

effectively due to adaptiveness.

Conclusions.—In this work, we established the ultimate

limits for the minimum error probability affecting the

(generally adaptive) statistical discrimination of an arbi-

trary m ≥ 2 number of finite-dimensional quantum

channels. We find remarkable simplifications in the

presence of symmetries, with our bound becoming exactly

achievable when the channel ensemble is jointly tele-

covariant. Our theory allows us to find the ultimate

performances achievable in the fundamental m-ary

discrimination problem of CPF, considering various types

of channels. In particular, for CPF with depolarizing

channels, we show that the use of entanglement greatly

outperforms the performance of any classical strategy.

Note that CPF can be translated into various applica-

tions, including readout of memories, radar scanning and

absorbance spectroscopy. For instance, CPF may model the

readout process from a digital memory where information

is encoded in the position of a target cell within a block. In

the frequency domain, this is equivalent to finding the

absorbance line within a spectrum. A possible future

direction is developing our theory in the setting of

unambiguous hypothesis testing, suitably extending

Refs. [4,50–53] to m-ary channel discrimination.
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