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Abstract

In the sentence classification task, context

formed from sentences adjacent to the sen-

tence being classified can provide important

information for classification. This context is,

however, often ignored. Where methods do

make use of context, only small amounts are

considered, making it difficult to scale. We

present a new method for sentence classifica-

tion, Context-LSTM-CNN, that makes use of

potentially large contexts. The method also

utilizes long-range dependencies within the

sentence being classified, using an LSTM, and

short-span features, using a stacked CNN. Our

experiments demonstrate that this approach

consistently improves over previous methods

on two different datasets.

1 Introduction

Artificial neural networks (ANN) and especially

Deep Neural Networks (DNN) give state-of-the

art results for sentence classification tasks. Usu-

ally, sentences are treated as separate instances for

the task. However, in many situations the sen-

tence that is the focus of classification appears

in a context that can provide additional informa-

tion. For example, in the below sentences from the

IEMOCAP dataset, it is difficult to classify M02 as

showing excitement, without the prior context:

• M01: I got it. I got accepted to U.S.C..

• F01: Oh, for real?

• M02: Yes! I just found out today. I just got the letter.

Our work is motivated by sentence classifica-

tion in the text of medical records, in which com-

plex judgements may be made across several sen-

tences, each adding weight and nuance to a point.

We believe, however, that the techniqe is more

widely applicable. In order to test generalisability

and to allow reproducibility, we therefore present

an evaluation of the method with publicy avail-

able, non-medical corpora.

Previous work on using context for sentence

classification used LSTM and CNN network lay-

ers to encode the surrounding context, giving an

improvement in classification accuracy (Lee and

Dernoncourt, 2016). However, the use of CNN

and LSTM layers imposes a significant computa-

tional cost when training the network, especially

if the size of the context is large. For this reason,

the approach presented in (Lee and Dernoncourt,

2016) is explicitly intended for sequential, short-

text classification.

In many cases, however, the context available is

of significant size. We therefore introduce a new

method, Context-LSTM-CNN1, which is based

on the computationally efficient FOFE (Fixed Size

Ordinally Forgetting) method (Zhang et al., 2015),

and an architecture that combines an LSTM and

CNN for the focus sentence. The method consis-

tently improves over results obtained from either

LSTM alone, CNN alone, or these two combined,

with little increase in training time.

This paper makes three contributions: 1) a

demonstration of the importance of context in

some sentence classification tasks; 2) an adapta-

tion of existing datasets for such sentence classifi-

cation tasks, in order to support reproducibility of

evaluations; 3) a neural architecture for sentence

classification that outperforms previous methods,

and can include context of arbitrary size without

incurring a large computational cost.

2 Related work

Since their introduction (Collobert et al., 2011),

CNNs with word embedding language models

have become common for text classification tasks

(Kim, 2014; Conneau et al., 2017). One limi-

tation of the original CNN approach is the loss

1The code is publicly available at
https://github.com/deansong/contextLSTMCNN
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of long distance dependencies. In order to deal

with this in image and speech recognition tasks,

Xu et al. (2015); Sainath et al. (2015) combined

CNNs with a Recurrent Neural Network (RNN)

layer. Zhou et al. (2015) subsequently applied this

to text classification. However, the CNN-RNN

approach was originally devised for sequence la-

belling, is biased towards later words in the se-

quence, and does not perform better than CNN

alone. Huynh et al. (2016) suggested reversing

the architecture to first apply the RNN followed

by a CNN with pooling to obtain global features.

This gave results that improved over CNN-RNN,

but not over CNN alone. In this paper, we build

on Huynh et al. (2016)’s approach by replacing the

GRU-based RNN (Cho et al., 2014) with an LSTM

(Hochreiter and Schmidhuber, 1997) and by using

multiple kernel sizes and more features in the sub-

sequent CNN layer.

Lee and Dernoncourt (2016) showed that when

classifying short texts, accuracy can be boosted by

adding a CNN or LSTM derived vector representa-

tion of the surrounding context. For long contexts

(such as patient records which may include well

over 100 sentences), however, this will incur a sig-

nificant additional computational cost. In this pa-

per, we therefore apply an adaptation of the FOFE

encoding (Zhang et al., 2015) to encode context.

3 Model

The Context-LSTM-CNN model is shown in Fig-

ure 1. It is based on the following components:

1. Input layer using word embeddings to encode

the words of the focus sentence.

2. Bi-directional LSTM applied to the word em-

beddings of the focus sentence.

3. CNN on the outputs of the LSTM.

4. FOFE applied to word embeddings of both

left and right context.

5. A final output layer.

In brief, an LSTM layer is used to encode the

focus sentence. This is followed by convolutional

layers with small-size kernels and max-pooling to

extract local features at specific points from the

LSTM outputs. In addition to processing the fo-

cus sentence, we also encode the full left and right

contexts using an adaptation of FOFE applied to

our embeddings. This encodes any variable length

context into a fixed length embedding, thus allow-

ing us to include large contexts without rapidly in-

Right Embedding

Focus Embedding

Left Embedding

FOFE encoding

Bi-directional LSTM

CNN-2 ... CNN-6

Pool ... PoolDenseDense

Concatenate

Dense(Activation = Softmax/Sigmoid)

Output

FOFE encoding

Figure 1: Structure of the C-LSTM-CNN model

creasing the computational cost. The output of the

FOFE layers are then each passed through separate

fully connected layers, before being concatenated

and connected to output layer.

In detail, the full network takes three in-

puts. The first is the sequence of words X =
(x1, x2, ...xT ), where T is the length of the sen-

tence to be classified, and where each xi is a word

embedding for the respective word in this sen-

tence. Embeddings are pre-trained by Word2Vec

(Mikolov et al., 2013) on the corpus used for the

respective experiment. The embeddings are not

updated during the training of our network.

The second and third inputs are the left and

right context, which will connect to the FOFE en-

coders. Each context is a sequence of sentences

XC = (s1, s2, ...sN ), where each sentence is a se-

quence of word embeddings sn = (x1, x2, ...xU )
from the same embedding space as X .

The first component of the inputs, derived from

the focus sentence, is processed by a bi-directional

LSTM with one layer, in order to capture long-

distance dependencies within the sentence. Since

LSTMs impose a significant computational cost

for very long sequences we only use this layer for

the input representing the focus sentence, and not

for the left and right contexts.

The LSTM generates outputs hlstm =
(h1, h2..., hT ) which are passed on to the convolu-

tional layer (CNN) in order to learn local features

for different kernel sizes l from the history-aware

outputs of the LSTM. For each of several kernel

sizes, we generate f different features, to give

CNN outputs clcnn = (c1, c2, · · · , cT−l+1). For

each CNN output clcnn, we use max-overtime
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pooling to extract the most significant feature, and

dropout to make the learned features more robust.

We use an adapted version of FOFE to provide

information about the left and right contexts of the

focus. Instead of the original 1 of k FOFE repre-

sentation, we apply FOFE encoding to word2vec

embeddings. This gives a weighted sum of the

context word embeddings, with weights decreas-

ing exponentially with distance from the focus.

The embedding z for a sentence (x1, x2, ...xU )
is initialised to z1 = x1, and then calculated recur-

sively for u ∈ 2 · · ·U as zu = α · zu−1 + xu. The

parameter α is the forgetting factor, which con-

trols how fast the weights used for words farther

away from the start of the sentence diminish. This

method is fast and compactly encodes the words

of a sentence in a single embedding vector.

For our use of FOFE, we encode all sentences

in the document to left and right of the focus

sentence, in two hierarchical steps. First we en-

code each context sentence into a FOFE embed-

ding zsent, with a slowly-decreasing αsent. Fol-

lowing this, the left context FOFE encodings are

themselves encoded into a single context embed-

ding using a rapidly decreasing αcont. This is cal-

culated starting with zcont1 = zsent1 and is calcu-

lated for m ∈ 2 · · · |Cleft| as zcontm = αcont ·
zcontm−1 + zsentm . The right context FOFE encod-

ings are encoded in the same way, starting with

zcont|Cright|
= zsent|Cright|

and recursively applying the

same formula for m ∈ |Cright| · · · 2. This gives

a heavy bias towards sentences more local to the

focus sentence, but only slightly decreases the im-

portance of words within each sentence. The final

FOFE embeddings for the left and right contexts

are then put through a dense linear layer to ob-

tain the hidden layer outputs, which are combined

with the LSTM-CNN outputs. The concatenated

outputs from the dense FOFE layers and from the

CNN layer for all kernel sizes are then used as in-

put to a final softmax output layer.

4 Experiments

We compare the performance of four different

network architectures: 1) CNN only; 2) LSTM

only; 3) LSTM-CNN; 4) LSTM context encoded

LSTM-CNN (L-LSTM-CNN), in which the one

left and right context sentence are encoded by

LSTM; and 5) Context-LSTM-CNN (C-LSTM-

CNN). We use the following two datasets for eval-

uation:

Interactive Emotional Dyadic Motion Cap-

ture Database (Busso et al., 2008)2 (IEMO-

CAP). Originally created for the analysis of hu-

man emotions based on speech and video, a tran-

script of the speech component is available for

NLP research. Each sentence in the dialogue is

annotated with one of 10 types of emotion. There

is a class imbalance in the labelled data, and so

we follow the approach of (Chernykh et al., 2017),

and only use sentences classified with one of four

labels (‘Anger’, ‘Excitement’, ‘Neutral’ and ‘Sad-

ness’). For this dataset, instead of using left and

right contexts, we assign all sentences from one

person to one context and all sentences from the

other person to the other context. While only the

sentences with the four classes of interest are used

for classification, all sentences of the dialog are

used as the context. This results in a set of 4936 la-

belled sentences with average sentence length 14,

and average document length is 986.

Drug-related Adverse Effects (Gurulingappa

et al., 2012)3 (ADE). This dataset contains sen-

tences sampled from the abstracts of medical case

reports. For each sentence, the annotation indi-

cates whether adverse effects of a drug are be-

ing described (‘Positive’) or not (‘Negative’). The

original release of the data does not contain the

document context, which we reconstructed from

PubMed4. Sentences for which the full abstract

could not be found were removed, resulting in

20,040 labelled sentences, with average sentence

length 21 and average document length 129.

Model IEMOCAP ADE time(s)

CNN only 58.16 (0.78) 89.49 (0.75) 218
LSTM only 56.30 (2.16) 89.04 (0.75) 648
LSTM-CNN 59.43 (1.60) 89.86 (1.06) 1239
L-LSTM-CNN 63.84 (2.03) 90.22 (0.75) 1800
C-LSTM-CNN 71.49 (2.32) 90.85 (0.37) 1243

Table 1: Average test accuracy and training time.

Best values are marked as bold, standard devia-

tions in parentheses

In all experiments, five-fold cross validation

was used for evaluation (for comparison with

(Huynh et al., 2016)). For each fold, 50 epochs

were run for training using a minibatch size of 64

for each fold, and the Adamax optimization algo-

2http://sail.usc.edu/iemocap/iemocap_

release.htm
3https://sites.google.com/site/

adecorpus/home/document
4https://www.ncbi.nlm.nih.gov/pubmed/

http://sail.usc.edu/iemocap/iemocap_release.htm
http://sail.usc.edu/iemocap/iemocap_release.htm
https://sites.google.com/site/adecorpus/home/document
https://sites.google.com/site/adecorpus/home/document
https://www.ncbi.nlm.nih.gov/pubmed/


903

F-measure Anger (1,103) Sadness (1,084) Neutral (1,708) Excitement (1,041) Negative(14,854) Positive(5,186)

CNN only 67.44 (1.02) 56.92 (3.25) 54.93 (3.70) 53.93 (2.50) 80.59 (1.08) 92.28 (0.59)

LSTM only 65.07 (2.49) 54.21 (4.03) 55.12 (2.95) 49.75 (1.80) 80.25 (1.23) 92.24 (0.54)

LSTM-CNN 67.74 (1.11) 55.86 (6.56) 57.17 (3.27) 56.95 (4.06) 81.55 (0.99) 93.00 (0.87)

L-LSTM-CNN 72.83 (1.81) 60.35 (4.65) 61.67 (3.18) 61.30 (2.64) 82.29 (0.80) 93.24 (0.60)

C-LSTM-CNN 79.54(1.70) 66.07(4.65) 67.54(4.72) 73.11(4.09) 83.11(0.24) 93.72 (0.33)

Table 2: Average test F-measure for each class. Instance numbers in parentheses after class name. Best

values are marked as bold, standard deviations in parentheses

Figure 2: Context level (red line) and sentence level

(blue line) forgetting factor test

rithm. To deal with label imbalance in the data,

class weights wi for class i were set proportional

to max(fi)/fi where fi is the frequency of class i.

We used word2vec embeddings with 50 dimen-

sions (suggesed as sufficient by (Lai et al., 2016)).

For the LSTM, 64 hidden units were used. For the

CNN, layers for kernel sizes 2 to 6 were included

in the network, and 64 features were used for each.

4.1 Effect of Forgetting Factors

We examined the effect of the two context encoder

hyperparameters: αcont (context level forgetting

factor) and αw (sentence level forgetting factor)

on classification performance over the IEMOCAP

dataset. We tested both in the range of 0.1 to 1

with an incremental step of 0.1. Results are shown

in Figure 2. Accuracy improves as αcont increases,

but drops at αcont = 1, at which point all context

sentence are given equal weight. This may be be-

cause context closest to the focus sentence is more

important than distant context. Therefore, we se-

lect αcont = 0.9 in all experiments.

For αsent, performance always increases as

αsent increases, with best results at αsent = 1,

at which point all words in the sentence con-

tribute equally in the context code. This implies

that for individual sentences in the context, it is

more preferable to lose word order, than to down

weight any individual word. In all experiments,

we therefore set the sentence level forgetting fac-

tor to αsent = 1

4.2 Evaluation Results

Table 1 shows the mean and standard deviations

for accuracy over the cross validation folds, and

training time, for both data sets. CNN alone per-

forms better than LSTM alone in both tasks. The

combined LSTM-CNN network consistently im-

proves performance beyond both CNN alone and

LSTM alone. Both context based models (L-

LSTM-CNN and C-LSTM-CNN) perform better

than non context based models, but note that L-

LSTM-CNN increases training time by approxi-

mately 1.5x, whereas C-LSTM-CNN shows only

a marginal increase in training time, with a large

increase in accuracy on the IEMOCAP corpus.

Table 2 shows the F1-measure for each class

in the two datasets. Again, Context-LSTM-CNN

outperforms the other models on all classes for

all data sets. C-LSTM-CNN improves on average

by 6.28 over L-LSTM-CNN, 10.16 over LSTM-

CNN, 11.4 over CNN and 13.29 over LSTM.

We conducted a t-test between L-LSTM-CNN

and C-LSTM-CNN. On IEMOCAP, C-LSTM-

CNN is significantly better than L-LSTM-CNN

(p = 0.002). On ADE, C-LSTM-CNN is not sig-

nificantly better than L-LSTM-CNN (p = 0.128).

This may because ADE sentences are less context

dependent. Alternatively, as the ADE task is rela-

tively easy, with all models able to achieve about

90% accuracy, a context based approach might not

be able to further improve the accuracy.

5 Conclusion

In this paper we introduced a new ANN model,

Context-LSTM-CNN, that combines the strength

of LSTM and CNN with the lightweight context

encoding algorithm, FOFE. Our model shows a

consistent improvement over either a non-context

based model and a LSTM context encoded model,

for the sentence classification task.
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