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Spin wave excitations in exchange biased IrMn/CoFe bilayers

Sarah Jenkins,1, ∗ Roy. W. Chantrell,1 and Richard F. L. Evans1, †

1Department of Physics, University of York, York, YO10 5DD, UK

Using an atomistic spin model we have simulated spin wave injection and propagation into antiferromag-

netic IrMn from an exchange coupled CoFe layer. The spectral characteristics of the exited spin waves have a

complex beating behaviour arising from the non-collinear nature of the antiferromagnetic order. We find that

the frequency response of the system depends strongly on the strength and frequency of oscillating field excita-

tions. We also find that the strength of excited spin waves strongly decays away from the interfacial layer with a

frequency dependent attenuation. Our findings suggest that spin waves generated by coupled ferromagnets are

too weak to reverse IrMn in their entirety even with resonant excitation of a coupled ferromagnet. However,

efficient spin wave injection into the antiferromagnet is possible due to the non-collinear nature of the IrMn spin

ordering.

INTRODUCTION

Spin wave propagation could potentially be used in the next

generation of spintronic devices to transport and process in-

formation [1]. These new technologies could massively out

perform current devices using electric currents as spin wave

propagation occurs at very high frequencies and has a very

low energy dissipation. One of the most important issues stop-

ping the development of such devices is tuning the ferromag-

netic resonance (FMR) frequency [2].

Ferromagnetic resonance was first predicted by Kittel in

1947[3]. The resonance frequency is experimentally mea-

sured by placing the magnetic material in a constant field

with strength (B0) and then applying an oscillating field with

strength Bdr exp(iωt) with an angle of 90◦ between the fields.

When the driving frequency equals the natural precession fre-

quency of the magnetic material the magnetic material will

absorb a large amount of energy from the applied oscillating

field giving a large precession and a much higher measurable

magnetisation. The resonance frequency ω0 for a bulk-like

sample is given analytically by

ω0 =
γ

2π

√

B0(B0 +Bani), (1)

where Bani is the anisotropy field of the material and γ =
1.76 T−1s−1 is the gyro-magnetic ratio of the electron. In

the thin film geometry or elongated nanoparticles this expres-

sion is modified to include the shape anisotropy arising from

the long range dipole-dipole fields.

The FMR frequencies necessary in magnonic devices are

beyond 5GHz, meaning that the FMR has to be increased

from the natural resonance state of a material. The FMR fre-

quency can naturally be increased by increasing the uniaxial

anisotropy of the material. It has also been shown experimen-

tally that coupling a FM to an AFM increases the anisotropy

via the exchange bias effect causing the FMR frequency to in-

crease by up to 10GHz [4]. Although this shift in resonance

frequency has been well known for a number of years, the un-

derlying physical causes and effect on the FM are still poorly

understood [5]. Exchange bias occurs when a FM is coupled

to an AFM, causing a shift in the magnetic hysteresis loop.

The shift is proportional to the interface exchange field of the

AFM and caused by a statistical imbalance in the number of

spins in each magnetic sublattice[6]. This natural bias field

plays the same physical role as anisotropy, while its strength

can be manipulated by electrical means [7, 8].

Another aspect of exchange biased systems is the possibil-

ity to excite antiferromagnetic spin-wave modes using exter-

nal magnetic fields. For sufficiently strong coupling the oscil-

lation of the ferromagnet should excite a dynamic response

in the antiferromagnet, possibly inducing higher frequency

modes of oscillation. Antiferromagentic materials have a nat-

urally high resonance frequency, typically in the THz range,

and so the FM is not resonating at the natural resonance fre-

quency of the AFM. The nature of the resonant coupling and

ability to excite spin wave propagation into an antiferromag-

net is poorly studied, and of significant practical interest.

In the following paper, atomistic simulations of IrMn/CoFe

bilayers is used to study the dynamic response of an exchange

biased system to an oscillating magnetic field. The exchange

bias is found to increase the magnetic resonance frequency of

CoFe by about 8GHz. From this the change in the magneti-

sation dynamics of CoFe can be observed and the underlying

physical mechanisms understood.

METHODOLOGY

We simulate the system dynamics using an atomistic spin

model where the energy of the system is defined using the

spin Hamiltonian:

H =−∑
i< j

Ji jSi ·S j −
kN

2

z

∑
i6= j

(Si · ei j)
2 −µs ∑

i

B(t) ·Si (2)

where Si is a unit vector describing the spin direction on

CoFe/Mn sites i, kN is the Néel pair anisotropy constant and

ei j is a unit vector from site i to site j, z is the number of

nearest neighbours and Ji j is the exchange interaction. The

effective exchange interactions (Ji j) were limited to nearest

and next nearest neighbours for the antiferromagnet [9, 10],

and nearest neighbours for the ferromagnet. The interfacial

exchange is set to a quarter of the bulk exchange in the an-

tiferromagnet guided by first principles calculations [11, 12].
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Quantity Material Symbol Value Units

NN Exchange IrMn Jnn
i j −6.4×10−21 J

NNN Exchange IrMn Jnnn
i j 5.1×10−21 J

Interlayer Exchange - Ji j 1.5×10−21 J

NN Exchange CoFe Ji j 4.6×10−21 J

Neel pair anisotropy IrMn kN −4.2×10−22 J

Anisotropy constant CoFe ku 0 J

Magnetic Moment IrMn µS 2.6 µB

Magnetic Moment CoFe µS 2.5 µB

Gilbert damping Both λ 0.05 -

TABLE I. Parameters used in the atomistic spin model. where NN is

short for nearest neighbour and NNN is short of next nearest neigh-

bour.

These parameters are outlined in Table 1. We note that we

omitted the dipole contribution to the Hamiltonian in our sim-

ulations for reasons of computational efficiency. In addition,

given the small size and cubic shape of our system the dipole

field contribution to the spin wave excitations would be negli-

gible.

We simulate the dynamic behaviour using the stochastic

Landau–Lifshitz-Gilbert (sLLG) equation applied at the atom-

istic level [13, 14] and given by

∂Si

∂ t
=−

γ

1+λ 2
[Si ×Beff +λSi × (Si ×Beff)] , (3)

where λ is the Gilbert damping constant and |γ| is the gy-

romagnetic ratio. The effective field Beff is calculated from

the derivative of the spin Hamiltonian with respect to the lo-

cal spin moment (Beff =−µS
−1∂H /∂Si +Bi

th) where Bi
th =

Γ(t)
√

2λkBT
γµS∆t

and Γ is a 3D random Gaussian distribution.

The sLLG equation is integrated using a second order pre-

dictor corrector Heun scheme [13]. All simulations were con-

ducted at T = 0 K to eliminate thermal noise. The calculations

have been carried out using the VAMPIRE software package

[13, 15].

The system is oriented with the (111) crystal direction per-

pendicular to the plane as is common in exchange biased de-

vices, shown schematically in Fig. 1(a). Each of the different

coloured spheres represents a different atomic site of the four

total in the FCC base crystal unit cell. For the disordered γ-

IrMn3 phase the Ir atoms are randomly allocated to each of

the sites (not shown). Periodic boundary conditions are ap-

plied along the x,y directions of the system to avoid missing

exchange and Néel pair anisotropy bonds at the edges. To set

the exchange bias we use an algorithmic setting procedure to

determine the orientations of each magnetic sublattice for a

given bias direction and pick the configuration with the low-

est energy. To verify that the exchange bias is set correctly we

perform a slow hysteresis loop with critical damping (λ = 1)

and find a shift of -0.15 T at T = 0K with unconditional sta-

bility at zero external applied field, as shown in Fig. 1(b). The

exchange bias in our model comes from a statistical imbalance
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FIG. 1. (Color Online) (a) Schematic diagram of (111) oriented

CoFe/γIrMn3 bilayer. (b) Simulated ground state magnetic struc-

ture of γ - IrMn3 (c) Simulated hysteresis loop showing exchange

bias field arising from an imbalance of sublattice spins at the

interface.[16]

in the number of spins in each magnetic sublattice leading to

a small and realistic exchange bias field in comparison with

experiments [17, 18]. Our model also correctly reproduces

the tetrahedral (3Q) and triangular (T1) ground states for the

disordered and ordered IrMn3 phases respectively [9], shown

schematically in Fig. 1(b).

To explore the dynamics of a coupled ferromagnet and an-

tiferromagnet we model a single grain of γIrMn3 coupled to

an effective ferromagnet with magnetic properties similar to

Co40Fe60 with zero magnetocrystalline anisotropy similar to

bulk CoFe alloy [19]. At this composition the CoFe alloy has

an isotropic point which is useful for magnetic sensors using

an exchange biased system to avoid an anisotropic bias in the

magnetic orientation of the film. To determine the response of

the IrMn/CoFe system to spin wave excitations we simulated a

ferromagnetic-resonance type experiment by applying an os-

cillating magnetic field Bt along the y-direction perpendicu-

lar to the exchange bias direction [20] set along x. Note that

here we mostly consider a zero static-field resonance where

the external field is set to zero. The time-dependent applied

magnetic field is given by

B(t) = B0 +Bfmr sin(2πωt) (4)

where ω is the driving frequency varied in the range ω = 0.1−
100 GHz.

In our simulations, we consider only a small sample of

a large continuous film, and also include periodic boundary

conditions. While we naturally include the exchange bias ef-

fect at the single grain level, the small system size means that
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spin waves are naturally limited to an 8 nm wavelength, there-

fore excluding long wavelength excitations. In general such

excitations are important and are driven by inhomogeneities

in the magnetic properties in the film, leading to incoherent

spin wave excitations. In a polygranular exchange biased sys-

tem we would expect that the distribution of exchange bias

in the film will lead to the appearance of lower energy long-

wavelength modes, which are neglected in our present simu-

lations. Such simulations are computationally expensive due

to the atomistic nature of our model, and so here we focus on

the intrinsic coherent mode excitations in an exchange biased

system.

FERROMAGNETIC RESONANCE IN EXCHANGE BIASED

SYSTEMS

Initially, we consider the frequency response of CoFe with-

out coupling it to an AFM. We approximate the exchange bias

field as a 0.1 T static field along y, B0 = µ0Hex. We chose this

value because it matches the exchange bias calculate in our

IrMn/CoFe bilayer. We consider the response of only a single

FM spin of CoFe, where the exchange interactions and dipole

fields are not included. An oscillating field was applied along

the x direction with strength 0.01T and a driving frequency

of 10 GHz. We can predict the resonance frequency for our

FM using equation 1 giving ω0 = 2.8 GHz. The response of

the ferromagnet is shown in Fig. 2(a). The response shows a

sinusoidal oscillation with a single frequency. Unlike in the

non-zero field FMR experiment, the resonance monotonically

decreases with driving frequency, since low frequencies give

sufficient time for the ferromagnetic magnetization to com-

pletely align with the field direction. At a 10 GHz driving

frequency the ferromagnetic layer shows a relatively weak re-

sponse perpendicular to the driving field.

The simulated resonance peak is shown in Fig. 2(b), with

a large peak at 2.8GHz as expected. The spectrum can be

exactly fitted by a Lorentzian curve

L(ω) =
A

π

0.5 f

(ω −ω0)2 +(0.5 f )2
(5)

where f represents the width of the curve and A its amplitude

[20]. Our results for an isolated CoFe layer agree with known

analytical results demonstrating the basic correctness of our

numerical model. This result would also be representative of a

simple micromagnetic calculation, with no simulated degrees

of freedom from the antiferromagnet and a simple fixed mag-

netic field.

We next consider a more realistic situation coupling the

CoFe layer to an antiferromagnet with a resulting exchange

bias field. Here the simulation is slightly modified, removing

the 0.1 T external field (representing the exchange bias) but

the oscillating field remained the same with a fixed driving fre-

quency of ω = 10 GHz. The time dependent response of the

x-component of the magnetization of the ferromagnetic layer

as a function of different oscillating field strengths is shown
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FIG. 2. Ferromagnetic resonance for an isolated layer of CoFe (a)

showing a sinusoidal variation of the magnetization components in

time. (b) The frequency dependent resonance curve gives a peak

with a driving frequency of 2.8GHz as predicted from equation 1,

and a fit to a Lorentzian curve given by Eq. 5.

in Fig 3 (left) and the associated Fourier transform (right).

The coupling of the ferromagnetic layer to the γ-IrMn3 film

leads to a much richer time dependent behaviour in the case of

strong excitations, and large excursions of the magnetization.

The Fourier transforms clearly show the evolution of a sin-

gle main frequency component in Fig 3(a) to a larger 10Ghz

frequency response with a superimposed high frequency com-

ponent in Fig 3(b) to a complex multi-frequency response in

Fig 3(c). The complex response of the system to different

excitation field strengths suggests that the response of a ex-

change biased system is not at all trivial. Indeed, for the

strongest excitation field of Bfmr = 0.1 T shown in Fig 3(c),

a beating-like behaviour of the magnetization is observed.

At this point it is useful to consider the atomic origin of

the exchange bias effect in CoFe/IrMn systems, caused by

a natural imbalance in the number of interface spins in one

of the four magnetic sublattices. When these interface spins

are coupled to a neighbouring ferromagnet by the exchange

interaction the ferromagnet develops a strong preference for

aligning with the net interface magnetization, which is also

strongly exchange coupled to the bulk of the antiferromagnet.

While the exchange bias effect on the ferromagnet is well un-

derstood, the reciprocal effect on the antiferromagnet is often

neglected. However, the static evolution of the reversible and

irreversible components of the interfacial spins is known to
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FIG. 3. Response of the ferromagnetic layer to a 10 GHz driving

field frequency with an applied field strength of (a) Bfmr = 0.01 T,

(b) Bfmr = 0.05 T (c) and Bfmr = 0.1 T. The time data is offset by

t = 50 ns after the simulation is started to remove transient effects.

follow the orientation of the ferromagnet [17]. Given the dif-

ferent atomic environment of the interfacial spins, it is rea-

sonable to assume that the natural resonance frequency of

those spins is quite different from the bulk of the ferromag-

netic layer, and also from the bulk antiferromagnet. We can

then consider our exchange bias system as a system of cou-

pled oscillators with different natural frequencies. This nat-

urally explains the appearance of complex beating and also

its semi-chaotic behaviour in time. The natural frequency of

optical excitations of antiferromagnets is in the THz range,

and so here we only excite coherent (acoustic) modes in the

antiferromagnet, where the 3Q ground state is rotated coher-

ently in space, equivalent to rotation of a ferromagnet in an

anisotropy field. Of course, the differing properties of the

interface and bulk of the antiferromagnetic layer mean that

the response of the antiferromagnet is not entirely coherent,

contributing to the broad frequency response in the strongly

excited case. There may also be contributions to the beating

behaviour due to the finite size of the simulated grain, leading

to standing spin waves in the system. However, this would be

peculiar to non-collinear antiferromagnets as no such effects

are seen in ferromagnets where strong exchange interactions
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FIG. 4. Response of the ferromagnetic layer to a 0.05T oscillating

field with a driving frequencies of (a) 10GHz, (b) 1GHz and (c) 5,25

and 50GHz. The power is calculated from a Fourier transform of the

time dependent magnetization after 50 ns, plotted on a logarithmic

scale to accentuate the different excited frequencies.

give a uniform response. Further optical FMR measurements

may yield observations of more complex frequency responses

in the case of high frequency excitations [21]. We note that

chaotic-like dynamic behaviour has also been observed before

in purely ferromagnetic systems [22] under certain excitation

conditions. Under the excitation conditions simulated here

this never appears for the purely ferromagnetic case, and so

the complex dynamics are a clear result of the coupling to the

antiferromagnet.

We now consider the frequency dependence of the response

of the ferromagnet for a fixed driving field strength of |Bfmr|=
0.05 T, shown in Fig. 4. As with the field strength depen-

dent response, there is a complex frequency dependence of
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FIG. 5. Comparative plot of the peak power spectral density for the

FM and for the AFM interface (0nm from the interface) as a function

of different input driving frequencies for CoFe/γ-IrMn3 with 0.05 T

driving field.

the power. For a driving frequency ω = 10 GHz close to reso-

nance, the frequency response is extremely broad, with mod-

erate excitations at all frequencies, and a broad peak around

10 GHz. In contrast, an off-resonant excitation at ω = 1 GHz

shows a clearer spectral character, with a principle peak at the

driving frequency, and an exponential decrease in the power

at harmonic frequencies at 2, 3, 4 and 5 GHz. The presence

of harmonics gives a square-wave character to the time se-

ries, but the logarithmic decay of the power of the higher har-

monics makes this a weak effect giving a small asymmetry to

the single frequency sine wave. There is an additional weak

frequency component in the 10-14 GHz range close to the

natural resonance which is not visually apparent but shows

weak excitation of the antiferromagnet at the 1 GHz driv-

ing frequency. For higher frequency driving fields at 5-50

GHz, the harmonic components persist at integer multiples of

the driving frequency, with the same logarithmic drop-off of

the power with increasing harmonics, characteristic of a near-

undetectable asymmetry in the mx(t) response. Overall our

data suggests that the complex frequency response and beat-

ing effects only occur when the driving frequency is only close

to the resonance frequency of around 10 GHz.

The frequency dependence of the peak power (principal

peak) as a function of the driving frequency is shown in

Fig. 5 for both the FM and AFM at the interface, showing the

strength of the principal excitation as well as the transmission

of power into the interfacial layer of the AFM. The power in

the FM shows a broad peak in the vicinity of the resonance fre-

quency around 10 GHz, but with a much larger linewidth than

seen for the isolated layer in Fig. 2. The increase in line width

is indicative of an increase in damping, as previously seen in

exchange biased systems [23]. The excitation peak power in

the interfacial AFM layer follows a similar trend to the FM,

though with a much broader peak, indicating the propagation

of spin waves into the AFM across the sub-20 GHz range of

excitation frequencies.

In exchange-biased systems the exchange bias field is de-

 0
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FIG. 6. Thickness dependence of the excited spin wave spectrum

for a 0.05T oscillating field at a driving frequency of 10 GHz. With

increasing film thickness the spin wave spectrum develops a pure

spectral character to to the decreased strength of the coupling.

pendent on the thickness of the FM layer, as the effect is

purely interfacial origin, at least for thin films where exchange

coupling dominates and the FM behaves coherently. In Fig. 6

we present the calculated power spectrum for a 0.05T oscil-

lating field at a driving frequency of 10 GHz for different fer-

romagnet thicknesses. As expected, there is a strong peak at

the driving frequency of ω = 10 Ghz. However, the complex

character of the frequency response of the FM for the 2 nm

thick film is strongly suppressed. As the exchange bias field

is reduced with increasing FM thickness, this leads to weaker

coupled excitations. The principal peak at 10 GHz system-

atically decreases in height and increases in breadth with in-

creasing film thickness, and becomes spectrally cleaner at in-

termediate off-resonant frequencies, showing an absence of

significant beating. In addition a weak secondary peak ap-

pears at 3.3 Ghz and 4.5 Ghz for 3 nm and 4 nm thicknesses

respectively that is clearly thickness dependent, which could

indicate a shift of the natural resonance of the system. Over-

all this suggests that with increasing thickness the coupling

between the FM and AFM reduces the strength of excitations

and with it a less complex coupled excitation.

EXCITATION OF SPIN WAVES IN THE

ANTI-FERROMAGNET

The coupling of the ferromagnet to the antiferromagnet nat-

urally leads to the propagation of spin waves into the IrMn

layer, known as evanescent AFM spin wave modes [24]. The

interfacial nature of exchange bias coupling naturally leads to

a stronger excitation at the interfacial layer, while the strong

magnetic anisotropy in IrMn reduces the strength of excita-

tions away from the interface. The time-dependent response

of the dominant magnetic sublattice at the interface (respon-

sible for the exchange bias) and bottom of the IrMn layer is

shown in Fig. 7. The data show a similar characteristic beating
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FIG. 7. Time dependent sublattice magnetizations of the dominant

antiferromagnetic sublattice (responsible for the exchange bias) at

the interface (top) and bottom of the IrMn layer (bottom) for a driving

frequency of 10 GHz. The time data is offset by t = 50 ns after the

simulation is started to remove transient effects. Color Online.

behaviour but much weaker than observed for the ferromag-

net, even at the interfacial layer in direct contact with it. This

suggests that the coupling between the antiferromagnet and

ferromagnet is far from rigid despite the strong exchange bias

field and unidirectional coupling, and it seems that high fre-

quency excitations allow for large excursions of the ferromag-

net from the biasing antiferromagnet. Naturally the IrMn mo-

ments are highly stable due to their high magnetic anisotropy.

To further explore the spectral characteristics of the re-

sponse of the antiferromagnet we computed a Fourier trans-

form of the equilibrated signal taken over a period of 100 ns

and shown in Fig. 8 for the dominant IrMn magnetic sublat-

tice at (0 nm) and far away (3.6 nm) from the interface. The

spectral characteristics of the antiferromagnetic sublattice at

the different locations are very similar, exhibiting a principal

peak at the 10 GHz driving frequency, but also with signifi-

cant peaks with significant bandwidth. In particular there are

strong oscillations in the 100 GHz range characteristic of the

naturally fast dynamics of antiferromagnetic materials. In the

vicinity of the driving frequency at 10 GHz, the spectral power

density is approximately half as strong for the bottom IrMn

layer compared to the interface, while in the 100 GHz region

this is reduced to approximately 1/3. This suggests a natural

frequency dependence of the attenuation of spin waves prop-

agating in the antiferromagnet, with higher frequency modes
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FIG. 8. The frequency spectra for the AFM at the interface (0.0nm

from the interface) and at the edge (3.6nm from the interface) ob-

tained from the Fourier transform of the FMR data. Color Online.
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FIG. 9. Layerwise response of IrMn. The maximum response of

a sublattice for each layer of the AFM. The highest amplitude fre-

quency response occurs at zero distance from the interface. As the

distance from the interface increases the amplitude decreases. This

happens for all input frequencies. Color Online.

being dissipated more strongly. Interestingly the data show

a significant coupling of spin waves between the ferromagnet

and antiferromagnet, and similar behaviour has been observed

in recent experiments for the FeMn/Py system [25] with broad

implications for tuning the dynamic response of materials in

the 5-200 GHz frequency range.

Although the excited spin waves in the antiferromagnet

have an intrinsic frequency dependent transmission coeffi-

cient, the coupled system itself also has a natural resonance at

around 10GHz. Thus, at the couple resonance frequency the

interfacial spins are strongly excited, leading to larger excita-

tions in the antiferromagnet. To investigate the propagation

of spin waves into the antiferromagnet, we have computed the

strength of excitation as a function of different driving fre-

quencies. The decay of the spin wave magnitude as a func-

tion of distance from the interface and driving frequency is

shown in Fig. 9. The magnitude of the excitations shows an

exponential-like decay away from the interface but with a slow

tail suggesting that spin waves excited in the antiferromagnet

will propagate a significant distance before decaying to an un-
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Frequency Decay length (nm)

(GHz) b1 b2

1 0.356 ± 0.016 10.673 ± 1.812

10 0.333 ± 0.013 5.115 ± 0.263

100 0.179 ± 0.094 1.089 ± 0.237

TABLE II. Fitted frequency decay lengths in the antiferromagnet

from Eq. 6 for different excitation frequencies.

detectable level, perhaps up to tens of nanometres. To char-

acterise the frequency dependence of the decay of spin waves

in the antiferromagnet we fit a general two-term exponential

function of the form

f (x) = A1exp(−b1x)+A2exp(−b2x) (6)

where A1,A2,b1 and b2 are fitting parameters. The fitted char-

acteristic decay lengths are shown in Tab. II. The decays are

poorly fitted with a single exponential, indicating two impor-

tant length scales associated with the decay of the spin waves.

The strongest excitation is clearly in the 10 frequency GHz

region, while 1 GHz and 100 GHz are both weaker being off-

resonant. From the fitted values it is clear the near interface

decay is extremely rapid in all three cases, with a character-

istic length scale of around 3 Å, or approximately one atom.

In contrast the long-distance decay is more strongly depen-

dent on the the driving frequency, showing a systematic re-

duction of the propagation distance with increasing driving

frequency. These two characteristic lengthscales can then be

associated with two different physical phenomena. The short-

range decay is due to the interfacial atomic layer where there

is a large reduction of magnetic anisotropy in the IrMn due

to the missing exchange and pair-anisotropy bonds. This al-

lows for relatively large excursions of the coupled interfacial

spins under ferromagnetic resonance, as well as spins in the

IrMn sublayer that are directly exchange coupled to the inter-

face spins. The second characteristic decay is then due to the

propagation of excitations into the bulk of the antiferromag-

net, where the exchange coupling and magnetic anisotropy are

both large. Here, the excitations are coherent in nature, excit-

ing collective (acoustic) oscillations of the antiferromagnetic

ground state structure. Here lower frequency excitations are

preferred since the response of the antiferromagnet becomes

quasi-static, while at higher driving frequencies the antiferro-

magnet is less able to respond to the higher frequency oscil-

lations. This explains the much longer decay length for the

off-resonant excitation at 1 GHz, even though the response of

the the ferromagnet is weaker. This supports the idea that the

frequency overlap of the ferromagnet and antiferromagnet re-

sponse is essential in correctly propagating spin waves into a

coupled antiferromagnet [25]. The resonance in the 10 GHz

range is close to reported experimental values for a similar

material system [26].

CONCLUSIONS

In conclusion, we have performed atomistic modelling of

spin wave injection and propagation into IrMn from an ex-

change biased CoFe-bilayer. We have found that the spectral

characteristics of the exited spin waves have a complex be-

haviour and systematic beating arising from the non-collinear

nature of the antiferromagnetic order, behaving as coupled

oscillators when strongly excited. The strength of excited

evanescent spin waves decays strongly away from the interfa-

cial layer but with a slow tail, and high frequency waves in the

100 GHz range are more strongly attenuated. Our results sug-

gest that efficient spin wave injection into IrMn is possible and

that the combined resonance frequency is significantly higher

than for the isolated ferromagnetic layer. Furthermore, the

non-collinear nature of the antiferromagnetic order enables

the efficient excitation of antiferromagnetic spin waves in the

1-20 GHz frequency range which may enable new applica-

tions and devices with a tunable frequency response. Here we

neglect the role of long-range dipole-dipole interactions on

the computed spin wave spectra, instead focusing on the fun-

damental small-scale interactions in an exchange biased sys-

tem. For extended systems the dipole-dipole interactions are

expected to make an important contribution and will be neces-

sary for a detailed comparison with experimental data. Future

work will consider the effects of temperature, long-distance

decay of the generated spin waves and additional composition

and ordering effects.
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