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We study the instability of a Bénard layer subject

to a vertical uniform magnetic field, in which the

fluid obeys the Maxwell-Cattaneo (MC) heat flux-

temperature relation. We extend the work of Bissell

(Proc. R. Soc. A 472: 20160649, 2016) to non-zero

values of the magnetic Prandtl number pm. With

non-zero pm, the order of the dispersion relation is

increased, leading to considerably richer behaviour.

An asymptotic analysis at large values of the

Chandrasekhar number Q confirms that the MC effect

becomes important when CQ1/2 is O(1), where C

is the Maxwell-Cattaneo number. In this regime, we

derive a scaled system that is independent of Q.

When CQ1/2 is large, the results are consistent with

those derived from the governing equations in the

limit of Prandtl number p→∞ with pm finite; here

we identify a new mode of instability, which is due

neither to inertial nor induction effects. In the large pm
regime, we show how a transition can occur between

oscillatory modes of different horizontal scale. For

Q≫ 1 and small values of p, we show that the critical

Rayleigh number is non-monotonic in p provided that

C > 1/6. While the analysis of this paper is performed

for stress-free boundaries, it can be shown that other

types of mechanical boundary conditions give the

same leading order results.
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1. Introduction

The recent interest in the dynamics of Maxwell-Cattaneo (or non-Fourier) fluids is motivated by

a variety of practical applications for which the Fourier law of heat flux is inadequate. Maxwell

[1], in his study of the theory of gases, proposed that the relation between the heat flux and the

temperature gradient should not be instantaneous (as indeed is disallowed by relativity theory),

but instead must involve a finite relaxation time. Cattaneo [2] proposed a similar relation for

solids, which was developed further by Oldroyd [3]. Other important contributions were made

later, by, for example, Fox [4] and Carrassi & Morro [5].

The idea of a finite relaxation time is incorporated into the Maxwell-Cattaneo (MC) relation

between the heat flux q and the temperature T , which takes the form

τr
Dq

Dt
=−q −K∇T, (1.1)

in which τr is the relaxation time and K is the thermal conductivity. The introduction of a finite

relaxation time changes the fundamental nature of the parabolic heat equation of Fourier fluids, in

which heat diffuses with infinite speed, to a hyperbolic heat equation with the solution of a heat

wave that propagates with finite speed [6,7]. When τr = 0, we recover the Fourier law, with an

instantaneous flux-gradient relation. The importance of the thermal relaxation term is typically

expressed via the Maxwell-Cattaneo coefficient C, which is defined as the ratio of the thermal

relaxation time to twice the thermal diffusion time; i.e. C = τrK/(2ρcpd
2), where ρ is the density,

cp is the specific heat at constant pressure and d is a representative length scale. For later use, the

thermal diffusivity κ is defined as κ=K/(ρcp). Thus the classical Fourier law has C = 0.

The Maxwell-Cattaneo heat transport effect has been studied in a wide variety of different

physical contexts: for example, in solids [8], in fluids [9–15], in porous media [16,17], in nanofluids

and nanomaterials [18,19], in liquid helium [20,21], in biological tissues [22,23], and, in the context

of double diffusive convection, in stellar interiors [24–27].

The problem of (non-magnetic) convection incorporating MC heat transport has received

considerable attention [9,11–15]. Whereas standard Rayleigh-Bénard convection is susceptible

only to steady (direct) instability (so-called ‘exchange of stabilities’) [28], the MC effect can also

lead to instability occurring in an oscillatory manner; indeed, this is the preferred mode if C

is sufficiently large. The accuracy of the Fourier law for experiments involving simple classical

fluids suggests that τr is usually very small, as shown in [5], where it is suggested that τr can

be as small as 10−9s for gases; this leads to very small values of C. However, for more complex

fluids, τr , and hence C, can be much larger. For example, Neuhauser [29], in her investigation

of thermal relaxation in superfluid Helium-3, found that τr has values in the range 30s – 400s;

Mohammadein [30], in his study of the thermal relaxation time in two-phase bubbly flow, found

that the relaxation time varied between 10−3s and 3s. It is though important to bear in mind

that even though C may be extremely small, passing from C = 0 to C ≪ 1 represents a singular

perturbation, in which the extra effect can permit new types of solution that involve C in an

essential way.

Motivated by astrophysical applications, in this paper we consider in detail the effect of the MC

effect on the onset of convection in an imposed vertical magnetic field (magnetoconvection). In the

classical (C = 0) problem, instability can occur either as a steady or oscillatory mode, depending

on the values of the various governing parameters [31]. It is therefore of interest to understand

how the stability properties of oscillatory modes are influenced by the MC effect, which itself

leads to oscillations being preferred. Also, as we shall explain in detail below, very high magnetic

field strengths, as can occur astrophysically, can lead to the MC term having a significant effect

on the dynamics even when C is tiny.

The linear stability problem for magnetoconvection with the MC effect has been analysed by

Bissell [32], who, however, considered only the case of zero magnetic Prandtl number (pm = ν/η,

where ν is the kinematic viscosity and η the magnetic diffusivity; compare the Prandtl number

p= ν/κ, where κ is the thermal conductivity). While this is appropriate for terrestrial situations,
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in which pm is very small, in astrophysical situations, pm can be O(1) (stellar interiors) or larger

(interstellar medium). Indeed, even for the classical magnetoconvection problem (C = 0), much of

the interesting dynamics arises only for pm > p. The extension to non-zero pm is non-trivial, since,

whereas for the pm = 0 case the linear system is governed by a third order dispersion relation, as

is the classical problem of magnetoconvection, finite pm introduces a new mode, with a fourth

order dispersion relation. For general parameter values, the stability problem must be solved

numerically. However, it is possible to make analytical progress in a number of limiting cases;

in particular, in the case where the Chandrasekhar number Q, a measure of the strength of the

imposed magnetic field, is large; in an astrophysical context, this is an important and well-studied

regime for the classical problem. Here we are able to show, via a precise asymptotic ordering, that

the influence of the MC effect is felt strongly (i.e. at leading order) for very small values of C, with

C =O(Q−1/2).

The layout of the paper is as follows. Section 2 contains the mathematical formulation of

the problem. The main stability results are contained in § 3; in § 3(a) we derive the governing

dispersion relation; the instability criteria are derived in § 3(b); numerical results for various

limiting cases are contained in § 3(c). Section 4 considers the role of pm in determining the

preferred behaviour. Section 5 considers the large Q regime, and the paper concludes with a

discussion in § 6 of the astrophysical implications.

2. Formulation of the problem

We consider a horizontal layer of an incompressible (Boussinesq) viscous Maxwell-Cattaneo fluid,

initially at rest, contained between two planes a distance d apart. A uniform vertical magnetic

field B =B0ẑ is imposed. The lower plane (z = 0) and the upper plane (z = d) are maintained

at uniform temperatures TB , TT , respectively, with TB >TT , so that the layer is heated from

below, giving rise to a uniform adverse temperature gradient β̂. This basic state is given a small

disturbance, giving rise to perturbations in velocity u, pressure p, temperature θ, density ρ,

magnetic field b and heat flux q. On introducing characteristic units of distance, time, velocity,

heat flux, temperature, magnetic field and pressure by d, d2/κ, κ/d, β̂K, β̂d, B0η/ν and ρ0νκ/d
2,

the dimensionless linearised perturbation equations can be written as

1

p

∂u

∂t
=−∇Π +Rθẑ + pQ

∂b

∂z
+∇2

u, (2.1)

∂θ

∂t
=u · ẑ − F, (2.2)

2C
∂F

∂t
+ F +∇2θ= 0, (2.3)

pm
∂b

∂t
=

∂u

∂z
+ p∇2

b, (2.4)

∇ · u=∇ · b= 0, (2.5)

where Π is the total pressure (gas + magnetic) and

F =∇ · q. (2.6)

The Rayleigh number R, Chandrasekhar number Q, Maxwell-Cattaneo coefficient C, Prandtl

number p and magnetic Prandtl number pm are defined as

R=
gα̂β̂d4

κν
, Q=

B2
0d

2

µ0ρ0ην
, C =

τrκ

2d2
, p=

ν

κ
, pm =

ν

η
, (2.7)

where τr is the thermal relaxation time, η is the magnetic diffusivity, ρ0 is the reference density,

µ0 is the permeability and α̂ is the coefficient of thermal expansion. Note that the scaling of the

magnetic field has been chosen in order that the limit of pm → 0 is straightforward. The equations

can also be formulated using ζ = η/κ rather than pm (see, for example, [31]).
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Equations (2.1) – (2.6) are solved subject to boundary conditions depending on the thermal,

dynamical and electrical properties of the boundaries. We define a Cartesian coordinate system

(x, y, z) with the fluid confined to the (dimensionless) region 0< z < 1. All variables are periodic

in the horizontal directions. The horizontal boundaries are perfectly thermally conducting, hence

θ= 0 at z = 0, 1. (2.8)

We assume that the horizontal boundaries are impermeable and stress-free, leading to the

conditions

uz =
∂ux
∂z

=
∂uy
∂z

= 0 at z = 0, 1, (2.9)

where u= (ux, uy, uz). We discuss other mechanical boundary conditions in § 6

The magnetic boundary conditions are more complicated, since they depend on the electrical

conductivity and magnetic permeability of the boundaries (see, e.g., [33,34]). However, studies

of similar problems have shown that the general stability properties are qualitatively similar for

different conditions [35]. For simplicity, here we follow the counsel of Weiss and Proctor [31] and

adopt the most mathematically tractable conditions, namely

bx = by =
∂bz
∂z

= 0 at z = 0, 1, (2.10)

where b= (bx, by, bz).

3. Stability analysis

(a) The dispersion relation

It is convenient to decompose the solenoidal fields u and b into their poloidal and toroidal parts

by writing

u=uP + uT , uP =∇×∇× Pẑ, uT =∇× T ẑ, (3.1)

b= bP + bT , bP =∇×∇× Sẑ, bT =∇× U ẑ. (3.2)

As in the classical magnetoconvection problem (see, for example, [31]), the equations for T and

U describe decaying Alfvén waves, which are not coupled to the convection. Thus we need

concentrate only on the equations for P and S. The governing equations are therefore

1

p

∂

∂t

(

∇2P
)

=−Rθ + pQ
∂

∂z

(

∇2S
)

+∇4P, (3.3)

(

2C
∂

∂t
+ 1

)(

∂θ

∂t
+∇2

HP
)

=∇2θ, (3.4)

pm
∂S
∂t

=
∂P
∂z

+ p∇2S, (3.5)

where ∇2
H is the horizontal Laplacian. Equation (3.3) is derived from the z-component of the curl

of the curl of the momentum equation (2.1); equation (3.4) comes from combining equations (2.2)

and (2.3); equation (3.5) is derived from the z-component of the induction equation (2.4).

As in the classical problem, for the boundary conditions given by (2.8) – (2.10), we seek normal

modes with

θ∝P ∝ f(x, y) sinπz est, S ∝ f(x, y) cosπz est, (3.6)

where the planform function f(x, y) satisfies

∇2
Hf =−k2f. (3.7)

Substituting from (3.6) into equations (3.3) – (3.5) leads to the dispersion relation

β2
(

s(2Cs+ 1) + β2
)

(s+ pβ2)(pms+ pβ2)− pRk2(2Cs+ 1)(pms+ pβ2)

+ p2Qπ2β2
(

s(2Cs+ 1) + β2
)

= 0, (3.8)
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where β2 = k2 + π2. This expression reduces, as it must, to expression (3.26) in [31] when C = 0,

and to expression (4.3) in [15] when Q= 0. It is convenient to remove all factors of π2 by the

substitution

k= πk̃, β = πβ̃, s= π2s̃, C = C̃/π2, R= π4R̃, Q= π2Q̃. (3.9)

On dropping the tildes, (3.8) then becomes

β2
(

s(2Cs+ 1) + β2
)

(s+ pβ2)(pms+ pβ2)− pRk2(2Cs+ 1)(pms+ pβ2)

+ p2Qβ2
(

s(2Cs+ 1) + β2
)

= 0, (3.10)

where now β2 = k2 + 1. This is a quartic polynomial in s:

a4s
4 + a3s

3 + a2s
2 + a1s+ a0 = 0, (3.11)

with

a4 = 2Cpm, (3.12)

a3 = pm + 2Cp(1 + pm)β2, (3.13)

a2 = (p+ pm + ppm)β2 + 2Cp2(β4 +Q)− 2CppmRk2/β2, (3.14)

a1 = (p+ p2 + ppm)β4 + p2Q− ppmRk2/β2 − 2Cp2Rk2, (3.15)

a0 = p2(β6 +Qβ2 −Rk2). (3.16)

(b) Bifurcations to instability

Bifurcations to instability can occur in either a steady or oscillatory fashion. Steady bifurcations

occur when s= 0, with the value of R given by

R=R(s) =
β6 +Qβ2

k2
. (3.17)

It is important to note that there is no dependence of R(s) on p (provided that it is non-zero),

pm or, particularly, C. Thus the MC effect has no influence on the onset of steady convection;

criterion (3.17) is simply that of the classical problem [28,31]. It can be seen from (3.17) that R(s)

is minimised at a finite value of k2, k2sc, say; we denote this minimum value of R(s) by R
(s)
c .

To determine the occurrence of oscillatory bifurcations, we set s= iω, with ω real. Taking the

real and imaginary parts of the dispersion relation (3.11) leads to the equations:

a4ω
4 − a2ω

2 + a0 = 0, ω2 = a1/a3, (3.18)

which yield two expressions for ω2 and R, where ω2 must be positive at a point of bifurcation.

Eliminating R leads to a quadratic expression for ω2, whereas eliminating ω2 leads to a quadratic

expression for R; both turn out to be useful. The equation for ω2 is

b4ω
4 + b2ω

2 + b0 = 0, (3.19)

where

b4 = 4C2pp2m, (3.20)

b2 = p2m(1 + p− 2Cpβ2) + 4C2p3(β4 +Q), (3.21)

b0 = p2(1 + p)β4 + p2(p− pm)Q− 2Cp3(β4 +Q)β2. (3.22)

The equation for R is

c2R
2 + c1R+ c0 = 0, (3.23)

where

c2 = 4C2p2p2m(pm + 2Cpβ2), (3.24)
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c1 =−
(

8C3p4(1 + pm)

(

β8

k2
+Q

β4

k2

)

+ 4C2p2pm

(

(2ppm + p+ p2m + pm)
β6

k2
+Qp(1 + 2pm)

β2

k2

)

+2Cpp2m(1 + p+ ppm)
β4

k2
+ p3m(1 + p)

β2

k2

)

, (3.25)

c0 = (1 + pm)

(

4C2p4(Q+ β4)2
β4

k4
+ 2CQp2(ppm + p− 2pm)

β6

k4
+

2C(p3(1 + pm) + p2(1 + p2m))
β10

k4
+ p2pmQ

β4

k4
+ pm(1 + p)(pm + p)

β8

k4

)

. (3.26)

We denote the smallest value of R given by (3.23), with ω2 > 0, by R(o) (equivalently this can

be calculated from either of the expressions in (3.18) once ω2 > 0 has been determined). There

are two possibilities: either R(o)(k2) has a true minimum R
(o)
c , with the corresponding value

of k2 denoted by k2oc and the corresponding value of ω2 by ω2
c > 0; or the smallest value of R(o)

occurs when ω= 0 and the oscillatory branch joins the steady branch. The overall critical Rayleigh

number at the onset of instability, which we denote by Rc, is then given by the minimum value

of R
(s)
c and R

(o)
c ; we denote the value of k2 at R=Rc by k2c .

(c) Limiting cases

It is instructive first to recover the special simpler cases of C = 0, Q= 0 or pm = 0, all of which

have been studied previously [15,31,32].

(i)C = 0

If C = 0, the coefficient b4 becomes zero; the system then reduces to classical magnetoconvection;

there is only one possible mode of oscillation, with

ω2 =
p2

p2m

(

Q(pm − p)

1 + p
− β4

)

. (3.27)

Noting that β2 > 1, we see that for ω2 > 0 we must necessarily have

pm > p and Q>
1 + p

pm − p
. (3.28)

In this case, the Rayleigh number for the onset of oscillatory instability is given by

R=R(o) =
(p+ pm)(1 + pm)

p2m

β6

k2
+

p2(1 + pm)

p2m(1 + p)
Q
β2

k2
. (3.29)

If inequalities (3.28) are satisfied, then oscillatory instability will be preferred if R
(o)
c , the minimum

of R(o) over all wavenumbers, is less than R
(s)
c ; this is discussed in more detail in [31].

(ii)pm = 0

Similarly, if pm = 0, then b4 again vanishes, and we recover the system studied in detail in [32],

with

ω2 =
β2

2C
−

(

pQ+ (1 + p)β4
)

4C2p(Q+ β4)
. (3.30)

It is easy to see from (3.30) that ω2 is positive for sufficiently large β2, so oscillations are always

possible (for any finite C) — though may not be preferred. Depending on the values of p, Q and

C, ω2 may be positive for all values of β2, or there may be a range of excluded wavenumbers,

which does not necessarily include β2 = 1. We shall explore further the case of pm = 0 in § 4.
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(iii)Q= 0

For Q= 0, there is a stable root with s=−pβ2/pm (most readily seen from expression (3.10)). The

relation (3.11) then becomes a cubic in s and we recover the hydrodynamic Maxwell-Cattaneo

problem (see, for example, [12,15]). In this case,

ω2 =
2Cpβ2 − (1 + p)

4C2p
, (3.31)

with ω2 > 0 if

β2 >
1 + p

2Cp
. (3.32)

The Rayleigh number for the onset of oscillatory instability is then given by

R(o) =
1

2C

β4

k2
+

(1 + p)

4C2p2
β2

k2
, (3.33)

which is minimised when

k2 = k2oc =

(

1 +
(1 + p)

2Cp2

)1/2

. (3.34)

As noted in [15], there is considerable simplification when this expression for k2 is substituted

into the expression for R(o), giving

R
(o)
c =

1

2C

(

1 +

[

1 +
(1 + p)

2Cp2

]1/2
)2

. (3.35)

Various limiting values of C and p can be explored analytically. As C →∞,

R
(o)
c → 2

C
, (3.36)

with k2oc = 1 +O(C−1). Thus, for large C, oscillatory convection is preferred since, in this

hydrodynamic case, R
(s)
c = 27/4, independent of the value of C.

As C → 0, there is no minimum on the oscillatory branch; the smallest value of R(o) comes from

setting ω= 0. Rather than (3.35), this gives, in the limit C → 0,

R
(o)
c → (1 + p)2

4C2p2
, (3.37)

which is the corrected version of expression (4.12a) in [15]. Clearly, steady convection is preferred

in the limit of small C.

As p→∞, k2oc = 1 +O(p−1), and hence, from (3.31).

ω2 → 4C − 1

4C2
. (3.38)

Thus the R(o) curve has a minimum only for C > 1/4. In this case,

R
(o)
c → 2

C
. (3.39)

Oscillations are therefore preferred only if

R
(o)
c <R

(s)
c = 27/4, i.e., C > 8/27. (3.40)

For 1/4<C < 8/27, the oscillation curve has a minimum but R
(o)
c >R

(s)
c ; for C < 1/4 the

oscillation curve has no minimum.

As p→ 0, the optimal value of k2 → 1/(
√
2Cp), which leads to ω2 > 0 provided that C > 1/2, and
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gives

R
(o)
c → 1

4C2p2
. (3.41)

For C < 1/2, R(o) is minimised for the smallest k2 that allows a positive ω2, i.e. k2 ≈ 1/(2Cp). At

leading order this again yields the estimate (3.41). Clearly, regardless of the value of C, steady

convection is preferred as p→ 0.

In each of these three limiting cases, the dispersion relation (3.11) reduces to a cubic, so there

can be at most one mode of oscillation for any values of the parameters. In the general case,

however, for any given set of parameters, it is not immediately obvious whether there can be

more than one mode of oscillation — in other words, whether equation (3.19) can have two roots

both with ω2 > 0. This would require satisfaction of the two conditions

b0 > 0, b2 <−
√

4b0b4. (3.42)

Given the complicated form of the coefficients bj , it is not possible to make enormous analytical

progress in determining whether inequalities (3.42) are satisfied. However, we have conducted an

extensive search over the full (C,Q, p, pm, β2) parameter space, and have not found any values

satisfying the criterion (3.42). Thus there can be no more than one mode of oscillation for any

combination of values of the parameters. As long as the parameters remain finite, the oscillatory

branch can end only on the stability branch, where the frequency tends to zero.

4. The role of p
m

We now proceed to identify the dependence of the critical (preferred) mode of convection on the

governing parameters, paying particular attention to the role of non-zero pm, thereby extending

the results of [32]. For any given values of the parameters, the Rayleigh number for the onset of

steady convection, R(s), given by (3.17), exists for all values of β2, with a well-defined minimum.

The Rayleigh number for the onset of oscillatory convection, R(o), exists for at least some range

of β2; interestingly, for the magnetoconvection problem (C = 0), this is guaranteed for sufficiently

small β, provided that conditions (3.28) are satisfied, whereas for any C > 0, oscillations are

guaranteed for sufficiently large β2. Extensive computations have been carried out to identify

the critical mode in the four-dimensional parameter space (p, pm, C,Q).

In general, the stationary mode is preferred when the parameters pm, C, Q are small.

However, when any of these parameters is sufficiently large, the preferred mode at onset becomes

oscillatory. The salient features of the critical mode are summarised in the regime diagram in

figure 1, which exhibits the regions of preference for stationary and oscillatory modes in the (p, C)

plane for different values of pm and Q (for Q= 0, the value of pm is of course irrelevant). For

Q= 0, the stationary mode is preferred in regions with small values of C, while the oscillatory

mode is preferred for larger values of C. The value of C that marks the transition between

steady and oscillatory modes has C → 1/(3
√
3p) for p→ 0 and C → 8/27 for p→∞; both of these

regimes are captured in figure 1a. For small values of Q, this picture is essentially unchanged,

for any O(1) values of pm. As can be seen in in figures 1b–d, for any fixed Q> 0, the region of

preference for the stationary mode shrinks as pm increases; i.e., increasing the magnetic Prandtl

number promotes oscillatory instability. When pm is kept fixed and Q is increased, the region of

preference of the stationary mode is also diminished; indeed, for sufficiently small p, oscillatory

modes can be preferred for all values of C. The change in the preferred mode from stationary

to oscillatory is typically accompanied by sudden changes in the wavenumber and frequency; by

definition, the critical Rayleigh number curve remains continuous, although its slope may change.

Before exploring the effects of non-zero pm in detail, it is helpful to revisit the case of pm = 0

[32]. Figure 2 presents examples of the change of critical mode from stationary to oscillatory as Q

is increased, for C = 0.2, for three different values of p. Recall that the onset of the steady mode is

independent of both pm and p. Both k2c (for steady and oscillatory modes) and ω2
c are increasing

functions of Q. The overall critical Rayleigh number Rc is also an increasing function of Q, with
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Figure 1. Regime diagrams showing the regions of preference of the steady mode (below the curves) and the oscillatory

mode (above the curves) in the (p, C) plane for (a) Q= 0, (b) Q= 1, (c) Q= 10, (d) Q= 50 at various marked values

of pm. In (a), with Q= 0, the value of pm is irrelevant; in (b), the curves for pm = 0.1, 0.2 and 0.5 are essentially

coincident.

this being more pronounced for the steady mode. At sufficiently large Q, oscillatory convection is

preferred, with the value of Q at the transition decreasing with increasing p. The transition value

does however become independent of p for p sufficiently large. Assuming that k2c , R and s are

O(1) as p→∞, as may be verified ex post facto, the fourth order dispersion relation (3.11) reduces

to the quadratic equation

2C(β4 +Q)s2 +
(

(β4 +Q)− 2CRk2
)

s+ β2(β4 +Q)−Rk2 = 0. (4.1)

The other two roots of (3.11) have large negative real parts. It should also be noted that in this

large p limit, expression (4.1) holds not just for pm = 0, but is in fact valid for any O(1) value of

pm. Bifurcation to oscillatory convection occurs when

R(o) =
β4 +Q

2Ck2
with ω2 =

β2

2C
− 1

4C2
. (4.2)

Minimising R(o) with respect to k2 gives

R
(o)
c =

1 + (1 +Q)1/2

C
with k2c = (1 +Q)1/2 and ω2

c =
1 + (1 +Q)1/2

2C
− 1

4C2
. (4.3)

Although these results are derived in the limit of p→∞, they are remarkably accurate even for

values as low as p= 5, as can be seen from figure 2.

In many problems of this type, it is very challenging to find any analytical result determining

the transition between two modes with unrelated wavenumbers. In the present case, however, we
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Figure 2. Rc, k2
c

and ω2
c

as functions of Q for pm = 0 and C = 0.2, with p= 0.5 (blue), p= 1 (red), p= 5 (green).

Bifurcation to oscillatory convection is shown as solid lines; the onset of steady convection, which is independent of p, is

depicted by a dashed black line. The magenta dashed lines show the asymptotic results (4.3) for large p.

have a formula, albeit implicit, for R
(s)
c [31],

Q=R
(s)
c − 3

(

R
(s)
c

2

)2/3

. (4.4)

For p≫ 1 we also have an explicit relation for R(o), given by (4.3). At the transition between

steady and oscillatory modes, R
(s)
c =R

(o)
c , leading to the following implicit expression for Q in

terms of C:

Q=
1 + (1 +Q)1/2

C
− 3

(

1 + (1 +Q)1/2

2C

)2/3

. (4.5)

Note that at Q= 0, C = 8/27, consistent with (3.40). Hence, for C > 8/27, and sufficiently large p,

oscillatory convection is preferred for all values of Q. We note also from (4.5) that for Q≫ 1, the

transition value of C is very small, C =O(Q−1/2); we shall discuss this regime in detail in the

following section.

We now turn our attention to the case of finite pm. The important new feature arises that for

p. pm, the transition from steady to oscillatory onset as Q is increased occurs with a decrease

in wavenumber. This is illustrated in figure 3, which shows a typical transition for p/pm small,

unity and large. For small p we can make analytical progress in describing the transition, using

methods similar to those employed above for large p. From equations (3.19) and (3.18), we obtain,

at leading order,

ω2 =
p2

p2m

(

pmQ− β4
)

, R(o) =

(

1 + pm
pm

)

β6

k2
. (4.6)
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Figure 3. Rayleigh numbers R at the onset of instability as a function of k2, for steady convection (red) and oscillatory

convection (blue) at the value of Q for which the minima of the steady and oscillatory curves are equal: C = 0.2, pm = 0.5

in all plots, with (a) p= 0.1, Q= 7.1; (b) p= 0.5, Q= 11.9; (c) p= 5, Q= 5.9.

Minimising R(o) over k2 gives the values

k2 =
1

2
, ω2 =

p2

p2m

(

pmQ− 9

4

)

, R(o) =
27

4

(

1 + pm
pm

)

. (4.7)

Although the expression for R(o) does not contain Q, it should be noted that oscillations are

possible only if ω2 > 0 for some β, i.e. Q> 1/pm. Combining expression (4.4) with (4.7) shows

that oscillations are preferred when

Q>
27

4

(

1 + pm
pm

)2/3
[

(

1 + pm
pm

)1/3

− 1

]

. (4.8)

It is interesting to note that this is independent of C. From (4.7) it can be seen that for ω2 to be

positive at the transition we must have Q> 9/(4pm); this is always the case when (4.8) is satisfied.

Figure 4 shows examples of the change of critical mode from stationary to oscillatory as Q

is increased, for pm = 0.5, again with C = 0.2 and with the three values of p shown in figure 3.

We have also shown the asymptotic results (4.7) for small p; these are extremely accurate even

for p= 0.1. It is interesting to note that the fact that the wavelength of the preferred oscillatory

mode may be less than or greater than that of the steady mode, as illustrated by figure 3, leads

to complicated dependence of the transition on p. In particular, for the parameter values adopted

in figure 4, the transition value of Q for p= pm is larger than that for both small and large values

of p. As already noted, the large p behaviour is independent of pm, and so the p= 5 results in

figure 4 are essentially identical to those in figure 2.

Finally, in this section, we consider the regime with pm ≫ 1. Oscillatory solutions are favoured

at onset. On defining Λ=Q/pm, expression (3.19) becomes, at leading order,

4C2pω4 + ω2(1 + p− 2pCβ2)− p2Λ= 0. (4.9)

It is instructive to consider the case of Λ≪ 1; given that we are also considering the regime pm ≫
1, this is not too restrictive an assumption — the small Λ regime still encompasses large values of

Q. For small Λ, the two roots of equation (4.9) are given, at leading order, by

ω2 =
p2Λ

1 + p− 2pCβ2
and ω2 =

−(1 + p− 2pCβ2)

4C2p
. (4.10)

The smaller (O(Λ)) root for ω2 leads to

R(o) =
β6

k2
, which is minimised when k2 =

1

2
, giving R(o) =

27

4
; (4.11)
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Figure 4. Rc, k2
c

and ω2
c

as functions of Q for pm = 0.5 and C = 0.2, with p= 0.1 (blue), p= 0.5 (red), p= 5 (green).

Bifurcation to oscillatory convection is shown as solid lines; the onset of steady convection, which is independent of p,

is depicted by a dashed black line. The magenta dashed lines show the asymptotic results (4.3) for large p; the orange

dashed lines show the asymptotic results (4.7) for small p.

this can occur only when C < (1 + p)/3p. Note that when Q=Λ= 0, the mode with k2 = 1/2,

R= 27/4 is steady, with two of the roots of the dispersion relation being s= 0 and s=−pβ2/pm;

as Q is increased, the oscillatory roots arise from the merger and splitting of these two roots.

The larger (O(1)) root, which is that found when Q= 0, is given at leading order by

R(o) =
1

4C2p2

(

(1 + p)
β2

k2
+ 2Cp2

β4

k2

)

, which is minimised when k2 =

√

1 +
1 + p

2Cp2
.

(4.12)

The condition that ω2 > 0 at this value of k2 leads to the condition C > (1 + p)/(2 + 4p). Thus

there are two minima of R(o) for values of C in the range

1 + p

2(1 + 2p)
<C <

1 + p

3p
; (4.13)

outside this range there is only one minimum. Figure 5 shows R(o) versus k2 for three values

of C in the range (4.13) for Q= 107, Λ= 0.1, showing cases where either the small or large k2

mode is preferred, together with the transition value of C where the two minima are equal. Also

plotted is ω2 versus k2 for one of the cases (all three have very similar frequencies), together with

the small Λ asymptotic results (4.10); it can be seen that except for a small range of k2 (where

β2 ≈ (1 + p)/2Cp), the asymptotic results produce excellent agreement with the full system.
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Figure 5. (a) R(o) versus k2 for pm = 108, Q= 107, p= 0.1, with C = 2.4 (blue), C = 2.515 (red), C = 2.6

(magenta). (b) ω2 versus k2 for the case of C = 2.4 (solid line), together with the asymptotic results (4.10) (dashed

lines).

5. Q≫ 1

The case of very strong imposed fields (Q≫ 1) is of particular interest since it highlights how

little Maxwell-Cattaneo effect is needed in order to bring about a qualitative change in the nature

of the stability problem. It is, furthermore, a regime that allows analytical progress, thereby

complementing the numerical approach, which, for general parameter values, is unavoidable.

As already noted, the onset of steady convection is given by expression (3.17), for all values of

C. For the case of Q≫ 1, R(s) is minimised when, at leading order,

k2 =

(

Q

2

)1/3

, with R
(s)
c =Q. (5.1)

When C = 0, the problem reduces to that of classical magnetoconvection [31]. In this case, if

p > pm then the onset of instability can occur only via a steady bifurcation, and hence Rc =R
(s)
c .

However, if p < pm, then, for Q≫ 1, the onset of oscillatory instability occurs with the critical

wavenumber and critical Rayleigh number given, at leading order, by

k2 =

(

p2

(1 + p)(pm + p)

)1/3 (
Q

2

)1/3

, R
(o)
c =

p2(1 + pm)

p2m(1 + p)
Q. (5.2)

It follows, from consideration of expressions (5.1) and (5.2), that if p < pm then R
(o)
c <R

(s)
c ; i.e.,

oscillatory instability is always favoured in the regime of sufficiently large Q.

We might then ask, for Q≫ 1, how large does C need to be to influence the results at leading

order? As already noted, finite values of C have no influence on the onset of steady convection;

it is thus only the oscillatory modes that we need to consider. Inspection of the coefficients in the

dispersion relation (3.11) — for example, expression (3.14) for a2 — suggests that C will come

into play when CQ∼ β2, i.e. when C ∼Q−2/3. However, this is misleading; instead, one should

consider expression (3.19) for the frequency at the onset of instability. When k2 ∼ β2 ∼Q1/3 and

C ∼Q−2/3, the leading order terms in (3.19) give rise to the expression:

4C2pp2mω4 + p2m(1 + p)ω2 + p2(p− pm)Q= 0. (5.3)

The C = 0 root for ω2 is unchanged at this order, while the other root has ω2 < 0; thus with C =

O(Q−2/3) there is no leading-order influence of C on the frequency of the marginal mode. The

higher-order corrections to ω2 and Rc, which are both O(Q2/3), can be calculated after some

algebra, but their expressions are not particularly revealing.

The MC effect enters at leading order when C =O(Q−1/2), leading to a set of scalings that

differ from those of classical magnetoconvection. In this new regime, k2 ∼ β2 ∼Q1/2 and the
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coefficients in expression (3.19) for the marginal frequency have magnitudes: b4 =O(Q−1), b2 =

O(1), b0 =O(Q). Hence ω2 =O(Q) for both roots of (3.19), although only one root is meaningful

with ω2 > 0. In this regime it becomes possible to scale the growth rate s so as to remove all of the

Q dependence. On writing

s=Q1/2s0, C =Q−1/2C0, k
2 = k20Q

1/2, β2 = β2
0Q

1/2, R=R0Q, (5.4)

the coefficients of the quartic dispersion relation become, at leading order,

a4 = 2C0pm, (5.5)

a3 = pm + 2C0p(1 + pm)k20, (5.6)

a2 = (p+ pm + ppm)k20 + 2C0p
2(k40 + 1)− 2C0ppmR0, (5.7)

a1 = (p+ p2 + ppm)k40 + p2 − ppmR0 − 2C0p
2R0k

2
0, (5.8)

a0 = p2(k60 + k20 −R0k
2
0). (5.9)

Note that we have almost recovered the full problem, described by (3.11) – (3.16), with Q= 1, but

where we have now identified k2 and β2. It is thus straightforward, numerically, to explore the

regime of Q≫ 1, C =C0Q
−1/2, C0 =O(1) through solution of a dispersion relation with O(1)

coefficients.

Figure 6. Rayleigh numbers R0 at the onset of instability as a function of k20 , for steady convection (red) and oscillatory

convection (blue); p= 1, pm = 0.1, with (a) C0 = 0.2, (b) C0 = 1.1, (c) C0 = 1.5.

We should first note, from (5.9), that the critical value for a steady state bifurcation is given by

R
(s)
0 = 1 + k40. (5.10)

The minimum value of R0 is R0 = 1, obtained when k0 = 0; this is entirely consistent with the

unscaled result (5.1), which shows that the minimum value of R is obtained when k2 =O(Q1/3),

outside the present scaling.

Figures 6 and 7 display the steady branch, together with possible different manifestations of

the oscillatory branch as the parameters are varied. Figure 6 shows R
(s)
0 and R

(o)
0 as functions of

k20 for the fixed values p= 1, pm = 0.1, for three values of C0. For sufficiently small C0 (illustrated

by C0 = 0.2), the oscillatory branch appears at large wavenumber and increases with k20 ; here the

overall stability boundary is determined by the steady branch. As C0 is increased (illustrated by

C0 = 1.1), the oscillatory branch develops a minimum, but this is still above the critical value for

steady convection. A further increase in C0 (illustrated by C0 = 1.5) leads to the minimum of the

oscillatory branch lying below R0 = 1 and thus convection sets in as oscillations as R0 is increased.

Further structure can be identified by careful choices of pm and C0, as shown in figure 7, in which
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Figure 7. Rayleigh numbers R0 at the onset of instability as a function of k20 , for steady convection (red) and oscillatory

convection (blue); p= 1 for all plots; (a) pm = 0.95, C0 = 0.51; (b) pm = 0.95, C0 = 0.6; (c) pm = 1.1, C0 = 0.6.

we again fix p= 1. In figure 7a, with pm = 0.95 and C0 = 0.51, there is an isolated small region

of wavenumbers where oscillations are possible, distinct from the branch at larger wavenumbers.

For the example shown, the minimum of the oscillatory branch lies below the steady branch, and

so defines the preferred mode, though it is possible to find parameter values for which this is

not the case. On increasing C0 slightly, to C0 = 0.6 (figure 7b), the two oscillatory branches merge;

topologically this is the same as that shown in figure 6c. On increasing pm to a value greater than p

(figure 7c shows the case of pm = 1.1), the oscillatory branch lies wholly below the steady branch.

Figure 8 shows the critical values of R0, k20 and ω2
0 as functions of C0 for p= 1 and

pm = 0.1, 1, 10. When pm < p, the preferred mode is steady for C0 sufficiently small, but

oscillatory for larger values. As pm increases, the range of C0 for which the preferred mode is

steady diminishes, vanishing when pm = p. For pm > p, the preferred mode is oscillatory for all

C0. It can be seen that on the oscillatory branches, for sufficiently large C0, R0c and ω2
0c decrease

with C0, whereas there is a gradual increase in k20 .

The trends shown in figure 8 are consistent with the analysis of the critical curves for large C0,

i.e. large values of CQ1/2. For such values of C, the preferred wavenumber continues to scale as

k2 ∼Q1/2, with the coefficients of (3.19) given, at leading order, by

b4 = 4C2pp2m, b2 = 4C2p3(k4 +Q), b0 =−2Cp3(k4 +Q)k2. (5.11)

One root has ω2 < 0. The other, meaningful, root is given, at leading order, by

ω2
c =

k2

2C
=

Q1/2

2C
, (5.12)

with

Rc =
Q1/2

C
. (5.13)

It is interesting to note that one can never escape the influence of the magnetic field if Q≫ 1,

however large the value of C. The horizontal scale of the preferred mode is determined solely by

Q, and hence is small; thus one can never recover the non-magnetic behaviour. This is a new mode

of instability — which may be classified as an MHD MC mode — for which both a strong magnetic

field and the MC effect are vital. It is the dependence of k2c on Q that leads to the dependence of

ω2
c and Rc on Q, shown in equations (5.12) and (5.13).

The simplicity of expression (5.12) leads us to ask whether this result could be obtained by

making simplifying assumptions to the governing equations (3.3)–(3.5). Given the absence of the

Prandtl number p in (5.12) and (5.13), we are led to consider the limit of p→∞. On making the
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Figure 8. R0c, k20c and ω2
0c governed by the scaling (5.4). Here p= 1, with pm = 0.1 (blue), pm = 1 (red), pm = 10

(green). Bifurcation to oscillatory (steady) convection is shown as a solid (dashed) line.

substitution S̃ = pS and letting p→∞ with pm finite, equation (3.3) becomes

0 =−Rθ +Q
∂

∂z

(

∇2S̃
)

+∇4P, (5.14)

and equation (3.5) becomes

0 =
∂P
∂z

+∇2S̃. (5.15)

Equation (3.4) is unchanged. We note that in (5.14) the inertial term has been removed, and in

(5.15) the induction term no longer appears, equivalent to the limit of small magnetic Reynolds

number. Elimination of S̃ between (5.14) and (5.15) leads to coupled equations for P and θ, with

time derivatives appearing only in equation (3.4). This yields the dispersion relation (4.1), with,

as already noted,

R(o) =
β4 +Q

2Ck2
with ω2 =

β2(β4 +Q)−Rk2

2C(β4 +Q)
=

β2

2C
− 1

4C2
. (5.16)

We note that these expressions hold for all values of Q. For Q≫ 1, R(o) is minimised when k2 =

Q1/2, with R
(o)
c =Q1/2/C. The requirement that ω2 > 0 implies that 2Ck2 = 2CQ1/2 > 1. For

large values of CQ1/2, expression (5.16) reduces to (5.12). We have thus identified the instability

mechanism at large C as one in which inertia and magnetic induction are unimportant.

Finally, in this section, we note, from inspection of the coefficients (3.14) – (3.16), that the regime

of large Q implicitly means the regime of large p2Q; if p is sufficiently small such that p2Q is not

large, then the picture is quite different. As already noted in (4.6), in the limit of p→ 0, oscillatory
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modes are preferred for Q sufficiently large, with

Rc =R
(o)
c =

27

4

(1 + pm)

pm
. (5.17)

We note that there is no dependence on C, nor any explicit dependence on Q. For the problem

of classical magnetoconvection (C = 0), as p is increased, Rc first increases monotonically while

Rc =R
(o)
c , before levelling off to its p-independent value once Rc is determined by R

(s)
c . For non-

zero C, however, the picture can be quite different. If we suppose that p≪ 1, but with Γ = p2Q =

O(1), and assuming k2 =O(1), R(o) may be approximated from equations (3.23) – (3.26) as

R(o) =
(1 + pm)

p3m

(

4C2Γ 2 β
2

k2
− 4CpmΓ

β4

k2
+ pmΓ

β2

k2
+ p2m

β6

k2

)

. (5.18)

Figure 9 plots Rc (which here is given by R(o)) as a function of Γ , computed from the full

Figure 9. Rc as a function of Γ = p2Q for pm = 0.5, Q= 106, and for (a) C = 0.1, (b) C = 1. The blue line is

calculated from the full system; the red dashed line is calculated from the small p result (5.18).

system and also from the asymptotic result (5.18); the latter eventually fails once Γ is no longer

O(1). As illustrated in Figure 9a, for small values of C, Rc increases monotonically with Γ , as in

classical magnetoconvection. However, as shown in Figure 9b, for larger values of C, there is a

local minimum in Rc at a finite value of Γ . Pleasingly, and somewhat surprisingly, it is possible

to pin down the transition value of C analytically.

We first note that on defining Γ = pmγ, inspection of (5.18) reveals that the transition value of

C is independent of pm. To simplify the notation, we define r= pmR(o)/(1 + pm); equation (5.18)

then takes the form:

k2r= β2(∆2 + γ), where ∆= β2 − 2Cγ. (5.19)

We wish to minimise r over both γ and k2. First,

∂r

∂γ
= 0 =⇒ ∆=

1

4C
, (5.20)

whereas
∂r

∂k2
= 0 =⇒ ∆2 + γ = 2β2(β2 − 1)∆. (5.21)

Eliminating ∆ between (5.20) and (5.21) gives

1 + 16C2γ = 8Cβ2(β2 − 1). (5.22)

Eliminating γ, using the expression in (5.19), together with (5.20), leads to the expression

8Cβ4 − 16Cβ2 + 1= 0 or, equivalently, k4 = 1− 1

8C
. (5.23)
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Thus there is a solution only if C > 1/8. Finally, eliminating the wavenumber between (5.22) and

(5.23) gives

γ =
1

2C

(

1 +

√

1− 1

8C
− 1

4C

)

. (5.24)

For γ > 0 we must therefore have
√

1− 1

8C
>

1

4C
− 1, which reduces to C >

1

6
. (5.25)

Thus for C > 1/6, Rc is minimised at a finite value of Γ .

6. Discussion

The linear stability of a horizontal layer of viscous fluid permeated by a uniform vertical magnetic

field has been studied in the presence of a uniform adverse temperature gradient. The heat flux-

temperature relation is of non-Fourier type and in the linear regime takes the form discussed

by [1,2]. The onset of instability is studied for the full range of Prandtl number p, magnetic

Prandtl number pm, Chandrasekhar number Q, and Maxwell-Cattaneo number C. While the

onset of steady-state instability is unaffected by the Maxwell-Cattaneo (MC) effect, the new

term in the heat equation makes a significant difference to the onset of oscillatory convection,

particularly when Q≫ 1. This difference is manifested both in the critical Rayleigh number Rc for

the onset of convection and in the preferred wavenumber at which this critical value is attained.

Furthermore, oscillatory convection may be found even when p > pm, which is forbidden in

classical magnetoconvection.

The calculations are most tractable (and informative) when Q≫ 1. It can be shown that the

influence of the MC effect becomes significant when C ∼Q−1/2, and indeed a reduced system

of equations may be constructed in this distinguished limit that captures the effects of non-

zero C for its entire range, for the stress-free boundary case considered here. Crucially, the

preferred wavenumber scales as Q1/4, whereas if C = 0 the preferred wavenumber is O(Q1/6).

This means that the Takens-Bogdanov bifurcation, where the oscillatory branch and the steady

branch coincide, can be accommodated in the same scaling. Increasing C in this regime at fixed Q

leads to a decrease in the critical value of R, which eventually scales like Q1/2/C, while the critical

wavenumber becomes independent of C. Interestingly, there can be up to three intersections of

the steady and oscillatory branches. All possibilities can be found by varying the values of the

parameters, as shown in figures 6, 7. At large values of pm, R(o) can have two minima in k2 for

the range of C given by (4.13), with a transition of the preferred mode as C is varied. For p≪ 1,

Q≫ 1, with Γ = p2Q=O(1), the critical Rayleigh number has a non-monotonic dependence on

Γ — in contrast to classical magnetoconvection — provided that C > 1/6.

It is important to discuss the astrophysical implications of the balance C ∼Q−1/2, at which

MC and magnetic effects both come into play. In terms of the lengthscale d at which this balance

is achieved, this relation may be expressed as

d∼ τrp
1/2
m vA
p

, (6.1)

where vA =B/
√
µ0ρ is the Alfvén speed. In the solar tachocline, for example, where pm =

O(10−1), p=O(10−6), vA =O(103m2s−1), estimate (6.1) yields scales of the order of one metre.

It is certainly conceivable that in astrophysical bodies in which convection occurs in the presence

of very strong magnetic fields, as postulated, for example, in the dynamo phase of proto-neutron

stars [36], the MC effect will be of importance over a much wider range of lengthscales.

The results in this paper have been obtained with the simple stress-free mechanical boundary

conditions and fixed boundary temperatures. What is the effect of varying the boundary

conditions? The magnetic field conditions, while complicated in general, become unimportant

in the large Q case, since the reduced equations contain the magnetic field only through the
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quantity ∇2S, which may thus be eliminated without differentiation. The thermal and mechanical

boundary conditions will yield order unity differences in the critical values of the parameters. A

detailed analysis shows, however, that when Q is large, the dominant terms in the interior give

the same solutions as in the stress-free, fixed temperature case, and the new boundary conditions

have to be accommodated by boundary layers; in the case of small C (C ≪Q−2/3) there are

Hartmann layers, of thickness O(Q−1/2), and viscous and thermal layers with thicknesses

O(Q−1/4) and O(Q−1/6) respectively, the latter reflecting the size of the critical wavelength.

These layers act to adjust the mainstream functions to the boundary conditions, but are passive at

leading order, offering no change to the stress-free critical values. For larger C (C ≥Q−1/2), the

critical wavenumber increases to O(Q1/4) and so there are only two boundary layers, but they

are still passive. Clearly, though, the higher order corrections to the critical values (not calculated

here) will depend on the boundary conditions.

The calculations described in this paper could be developed in a variety of ways. Including

nonlinear effects would enable us to see if the preferred form of oscillations would be stationary

or travelling waves (in one horizontal dimension), or which of the many possible nonlinear

modes could occur in the fully three-dimensional case. Such questions have been extensively

investigated in the C = 0 case by [31]. The influence of MC effects on other double diffusive type

problems (such as rotating convection or thermosolutal convection) have the potential to uncover

new phenomena; indeed a paper on the latter problem is in preparation [27].
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