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RESEARCH ARTICLE

Machine learning discriminates a movement disorder

in a zebrafish model of Parkinson’s disease
Gideon L. Hughes1, Michael A. Lones2, Matthew Bedder1,5, Peter D. Currie3, Stephen L. Smith4,5 and
Mary Elizabeth Pownall1,4,*

ABSTRACT

Animal models of human disease provide an in vivo system that can

reveal molecular mechanisms by which mutations cause pathology,

and, moreover, have the potential to provide a valuable tool for drug

development. Here, we have developed a zebrafish model of

Parkinson’s disease (PD) together with a novel method to screen

for movement disorders in adult fish, pioneering amore efficient drug-

testing route. Mutation of the PARK7 gene (which encodes DJ-1) is

known to cause monogenic autosomal recessive PD in humans, and,

using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-

function zebrafish with molecular hallmarks of PD. To establish

whether there is a human-relevant parkinsonian phenotype in our

model, we adapted proven tools used to diagnose PD in clinics and

developed a novel and unbiased computational method to classify

movement disorders in adult zebrafish. Using high-resolution video

capture and machine learning, we extracted novel features of

movement from continuous data streams and used an evolutionary

algorithm to classify parkinsonian fish. This method will be widely

applicable for assessing zebrafish models of human motor diseases

and provide a valuable asset for the therapeutics pipeline. In addition,

interrogation of RNA-seq data indicate metabolic reprogramming of

brains in the absence of Dj-1, adding to growing evidence that

disruption of bioenergetics is a key feature of neurodegeneration.

This article has an associated First Person interview with the first

author of the paper.

KEY WORDS: DJ-1, PARK7, Artificial intelligence, Gene targeting,
Video capture, Parkinson’s disease

INTRODUCTION

Parkinson’s disease (PD) is common, affecting about 1% of the

population over 60 (Tysnes and Storstein, 2017), and it has no cure.

The incidence of PD increases with age; therefore, this statistic is

likely to become worse owing to an ageing population. Most cases

of PD are not inherited, arising sporadically; however, several

monogenic forms of PD have been identified (reviewed in

Hernandez et al., 2016). Studying the genes disrupted in patients

with inherited forms of PD has been instrumental for progress in

understanding the molecular basis of the disease (Clark et al., 2006;

Clements et al., 2006; Shimura et al., 2000).

A valuable approach to understanding mechanisms by which gene

mutations can result in human pathogenesis relies on in vivo experiments

using animal models. Invertebrate models such as Caenorhabditis

elegans (Ved et al., 2005) andDrosophila (Lu andVogel, 2009) provide

important platforms for studying neurodegenerative diseases in the

context of a complete nervous system; however, the genetically tractable

vertebrate Danio rerio shares more features of neuroanatomy with

humans. Retrograde tracing has been used to identify dopaminergic

(DA) neurons in zebrafish that project from the ventral diencephalon to

the ventral telencephalon (Rink and Wullimann, 2001). These

neurons are sensitive to the neurotoxin 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) (known to induce PD in

humans) and considered analogous to the ascending midbrain

DA neurons of the mammalian nigrostriatal pathway. In addition

to anatomical similarities, vertebrate genomes share a high level of

conservation such that orthologues of PD genes have been

identified and manipulated in zebrafish (Anichtchik et al., 2008;

Bretaud et al., 2007; Flinn et al., 2009; Keatinge et al., 2015; Zhao

et al., 2012). However, most of the zebrafish models of PD have

used transient post-transcriptional gene inhibition protocols

focusing on the analysis of larval DA neurons (Bretaud et al.,

2007; Flinn et al., 2009; Zhao et al., 2012) and swimming behaviour

(Flinn et al., 2009; Zhao et al., 2012). In this study, we have

developed an adult zebrafish model of PD that presents movement

disorders typical of human patients.

Loss-of-function mutations in PARK7 cause a rare form of early-

onset PD (Bonifati et al., 2003). PARK7 codes for the protein DJ-1,

which has multiple roles in protecting cells from toxic protein

aggregation and oxidative stress, and loss of these functions

contributes to the presentation of parkinsonian pathology. DJ-1

protein is a member of a deeply conserved DJ-1/ThiJ/PfpI

superfamily that includes related proteins from human to bacteria

and archae (Bandyopadhyay and Cookson, 2004). Although these

homologues share a core structure, their diverse functions include

acting as kinases, proteases and chaperones. In humans, DJ-1 has

been found to prevent the aggregation of α-synuclein (Zondler et al.,

2014), regulate transcription of oxidative stress response genes (Xu

et al., 2005) and maintain mitochondrial function (Thomas et al.,

2011;Winklhofer and Haass, 2010). High levels of oxidative stress in

DA neurons are characteristic of PD patients, so it is interesting that

DJ-1 itself is activated by the oxidation of a specific cysteine residue

(C106) that is essential for its translocation to the mitochondria and

neuroprotective function (Canet-Avilés et al., 2004; Wilson, 2011).

Structural biology (reviewed in Cookson, 2003) and Drosophila

genetics (Oswald et al., 2018) have been particularly informative
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about the biochemistry and function of DJ-1, as a stable homodimer

that acts as a redox sensor in neurons.

The advent of simple and effective gene editing in vertebrates

means that it is feasible to disrupt orthologues of known disease genes

to model human disease; to this end we have created a null mutation

in dj-1 (also known as park7) in zebrafish. In order to assess whether

this mutant provides a good animal model of human disease, we

have developed a novel method to discern recognisable traits of the

condition, which will ultimately facilitate its use in developing

treatments for improvement of symptoms. Neurodegeneration in PD

is characterised by bradykinesia, resting tremor, rigidity and postural

instability (Jankovic, 2008); of these, bradykinesia is a key indicative

feature (Postuma et al., 2015). Recently, medical diagnosis of

bradykinesia has been facilitated with a system called PD-Monitor

that employs an evolutionary algorithm (EA) (a form of artificial

intelligence or machine learning) to optimise predictive models

capable of recognising bradykinesia from finger-tapping tasks (Gao

et al., 2018). EAs can diagnose PD in humans with high accuracy

from data collected using tracking sensors on the thumb and finger

to extract movement data from a finger-tapping exercise performed

by PD patients and healthy age-matched controls. The movement

data were used to train an EA that evolved classifiers with

diagnostic accuracies of 80-90% (Lones et al., 2013). Here, we

report how we have adapted these methods to assess movement in

a zebrafish model of PD using a simple video setup and a

computational platform that could be widely used for assessing

motor impairment phenotypes in zebrafish.

We have harnessed two powerful tools: gene editing to disrupt

dj-1, generating an adult model of PD in zebrafish, and machine

learning to evolve classifiers that discriminate movement data from

our model. We find that training EAs with a continuous data stream

mitigates bias, allows the computation of more wide-ranging

features and can discriminate PD models from control zebrafish.

We report a bradykinesia-like movement disorder in this model of

PD, as well as an RNA-sequencing (RNA-seq) analysis that

indicates metabolic reprogramming in the absence of DJ-1. This

novel and simple platform for discerning movement phenotypes has

the potential to make important contributions to future drug

development for movement disorders.

RESULTS

Gene targeting of dj-1 results in a null allele and loss of DA

neurons

A BLAST search was used to identify any orthologues of PARK7

(DJ-1) in the zebrafish and to compare the amino acid

sequences of the encoded proteins. A single DJ-1 orthologue,

containing six exons, was identified in zebrafish on chromosome 11

(ENSDARG00000116835). The 189-amino acid protein encoded

by dj-1 in zebrafish shared 83% sequence identity with human DJ-1.

Heterozygous dj-1mutants were identified in the F1 generation with

a 2 bp deletion followed by a 19 bp insertion in exon 2 at position

200 in dj-1 (NM_001005938; chr11:41459837) (Fig. 1A). This

resulted in a frameshift and a premature stop codon at nucleotide

position 227. The predicted Dj-1 protein translated from the mutant

transcript would be 56 amino acids in length, missing the essential

C106 residue (Fig. 1B). The heterozygous dj-1 zebrafish carrying

this mutation were in-crossed to create progeny (F2 generation),

with 25% of the animals homozygous for the mutation. At maturity

(16 weeks), western blot analysis using an antibody known to

recognise zebrafish Dj-1 (Bai et al., 2006) revealed a complete loss

of the∼20 kDa Dj-1 protein that is detectable in wild-type but not in

dj-1−/− mutant brains (Fig. 1C). Quantitative reverse transcription

PCR (qRT-PCR) analysis was carried out on RNA extracted from

the brains of five dj-1−/− mutants and three wild-type siblings for

gene expression analyses. qRT-PCR showed a 95% loss of dj-1

expression in the dj-1−/− brains, indicating nonsense-mediated

Fig. 1. The zebrafish dj-1−/− mutation is a genetic null. (A) Wild-type dj-1 target sequence in the zebrafish genome (top). The 20 bp target sequence

(blue) is directly upstream of a 3 bp protospacer adjacent motif (PAM) site (red). A 2 bp deletion (ΔCC) followed by a 19 bp insertion in the target sequence causes

a frameshift mutation in dj-1 (bottom). (B) Comparison of the protein structure for wild-type Dj-1 (top), with essential residue C106 indicated, and the predicted

mutant protein truncated at residue 57 (bottom). (C) Western blot analysis of Dj-1 protein expression in the brains of wild-type adult zebrafish (lanes 1-4) and

their dj-1−/− mutant siblings (lanes 5-7). Gapdh was used as a loading control. (D) qRT-PCR analysis (single replicate) comparing gene expression in brains

extracted fromwild-type adult zebrafish (n=3, biological replicates) and their dj-1−/−mutant siblings (n=5) at 16 weeks post-fertilisation (wpf ). Target gene dj-1was

analysed alongside DA neuron markers dopamine transporter (dat), tyrosine hydroxylase (th) and pituitary homeobox 3 (pitx3); synapsin IIa (syn2a)

acted as a general synapse marker. Student’s t-tests (two-tailed, unpaired) were used to compare the dCt values for dj-1−/− and wild-type samples. Data are

mean±s.e.m., *P<0.05; ns, not significant.
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decay of the transcript (Fig. 1D). Genes known to be expressed in

(DA) neurons – dopamine transporter (dat; also known as slc6a3),

tyrosine hydroxylase (th) and paired-like homeodomain 3 ( pitx3) –

were also found to be downregulated in dj-1−/− mutant brains

compared to their wild-type siblings. dat and th expression were

assessed as both are markers of DA neurons; dat is specific to DA

neurons, whereas th is expressed in all catecholaminergic neurons

(Holzschuh et al., 2001). pitx3 is a transcription factor involved in

the development and maintenance of DA neurons (Filippi et al.,

2007).We conclude that our targeting of dj-1 has resulted in a line of

a genetic null zebrafish.

A PTEN-induced kinase 1 null (pink1−/−) mutant line was

generated by CRISPR/Cas9 targeting of the PINK1 orthologue in

zebrafish with two guide RNAs (gRNAs) producing a 101 bp

deletion in exon 2 of pink1 (at position 591 of NM_001008628)

(Fig. 2H). The predicted Pink1 protein translated from the mutant

transcript would be 183 amino acids in length, losing the majority of

the kinase domain, and qRT-PCR analysis of RNA extracted from

pink1−/− (n=4) and wild-type sibling (n=3) adult brains revealed a

∼90% loss of pink1 expression, indicative of nonsense-mediated

decay of the mRNA. An immunohistochemical analysis was used to

detect DA neurons (Fig. 2); three brains were dissected from wild-

type, dj-1−/− and pink1−/− zebrafish at 12 months post-fertilisation

(mpf), and 100 µm sections were cut with a vibratome through the

posterior tuberculum (pT) in the diencephalon. In zebrafish, the pT

includes a subset of DA neurons that project to the subpallium; these

cells are considered homologous to the anterior-most ascending

mesodiencephalic DA neurons in mammals (groups A8-A10),

which are affected in PD (Rink and Wullimann, 2002, 2001). To

investigate whether these cells are impacted in our zebrafish models

Fig. 2. Reduction of dopaminergic neurons in the posterior tuberculum of PD zebrafish. Immunohistochemical detection of Tyrosine hydroxylase

(Th) in dj-1−/− and pink1−/− brains. A section through the posterior tuberculum (pT) was identified based on the shape of the brain according to Wulliman et al.

(1996). The large pear-shaped Th-positive cells located next to the ventricle in the pT have previously been identified as part of the zebrafish dopaminergic system

projecting to the striatum (Rink and Wullimann, 2001). Therefore, the pear-shaped Th-positive cells identified in the periventricular pT location were counted.

(A) Lateral view of the adult zebrafish brain (left) and cross-section through the adult zebrafish brain (right). Highlighted in red is the pT. (B-G,I-K)

Immunofluorescently labelled Th-positive cells (green) in the pT of wild-type, dj-1−/− and pink1−/− zebrafish (n=3 biological replicates) at 12 months post-

fertilisation (mpf). Hoechst staining of nuclei is in blue. Arrows indicate the cell bodies of the paraventricular DA neurons. (B) Th-positive cells in a section through

the pT (red box) of a wild-type brain. (C) A close-up of the Th-positive cells in the pT from A. (D) Th-positive cells in a section through the pT (red box) of a dj-1−/−

brain. (E) A close-up of the Th-positive cells in the pT fromD. (F,G) Close-ups of Th-positive cells in the pT of two further dj-1−/− brains. (H)(i) CRISPR/Cas9 target

sequences (blue), PAM sites (red) and the 101 bp deletion generated in exon 2 of pink1 (at position 591 of NM_001008628). (ii) Wild-type Pink1 (above)

and the truncated Pink1 protein (below) predicted in the pink1 mutant. (iii) qRT-PCR analysis comparing pink1 expression in brains extracted from pink1−/−

zebrafish (n=4, biological replicates) and their wild-type siblings (n=3) at 16 wpf. Student’s t-tests (two-tailed, unpaired) were used to compare the dCt values for

pink1−/− and wild-type samples. Data are mean±s.e.m., ***P<0.001. (I) Th-positive cells in a section through the pT (red box) of a pink1−/− brain. (J) A close-up of

the Th-positive in the pT from I. (K) A close-up of the Th-positive cells in the pT of a further pink1−/− brain. (L) Counts of Th-positive cell bodies seen

in the pT (single 100 µm section) for wild-type, dj-1−/− and pink1−/− zebrafish (n=3 biological replicates) at 12 mpf.
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of PD, we used immunofluorescence to detect the protein Tyrosine

hydroxylase (Th), an enzyme required to produce catecholamines

including dopamine. Our method is informed by the work of Matsui

and Sugie (2017) and Rink and Wullimann (2001) to identify and

count these neurons in zebrafish. The brains were fixed and

embedded in agarose blocks for vibratome sectioning before

processing by immunohistochemistry for Th immunoreactivity

and imaging by confocal microscopy. Cell bodies in the pT positive

for Th that have a pear-shaped appearance and a periventricular

position were identified as pT DA neurons and counted in each of

the sections (Fig. 2B-G,I-K). Fig. 2L indicates the mean number of

pT DA neurons identified for each genotype. In the wild-type brain,

a range of four to five of these cells was identified, consistent with

the retrograde tracing study by Rink and Wullimann (2001), while

the number of pT DA neurons identified in the dj-1−/− and pink1−/−

brains ranged from one to three and one to five, respectively,

suggesting a reduction of these neurons in these genotypes, as

shown previously for pink1 −/− (Flinn et al., 2013).

A simple and effective method for measuring micro-

movement in zebrafish

A progressive loss of DA neurons is characteristic of PD in humans

(Damier et al., 1999); however, to establish whether our dj-1−/− null

zebrafish provide a bone fide animal model of PD we wanted to test

whether the fish share a dyskinesia phenotype. To do this, we

developed a new and simple method to measure features of

movement. In contrast to other fish-tracking programs, our analysis

extracts movement data from the adult tail bending along its whole

axis while accelerating, decelerating and turning. These data are

collected as a continuous feed and converted by bespoke software

into data suitable for use with novel computational methods to test

whether our zebrafish model shows micro-movement features

identified in human patients with PD.

We established filming methods using a specially designed tank

and camera setup that allows consistent video recordings free of

reflections and shadows (Fig. 3A). We also wrote a computer

program (ShadowFish) to generate a minimal set of data to

characterise fish movement; this greatly reduces the

dimensionality of the data, which is essential for input into

computational analyses. ShadowFish software and tank design are

freely available (github.com/ghughesyork/ShadowFish). The

position of the fish spine is approximated in each frame of an

input video clip, and then the flexion or bending angle is measured

at five equidistant positions along the spine (Fig. 3B). Seven x,y

coordinates were also measured along the spine for each frame.

Simplifying the video data in this way facilitates our subsequent

classification analyses using EAs. Forty-six dj-1−/− mutant

zebrafish (12 weeks old) and the same number of age-matched

wild-type controls were recorded swimming for 5 min following an

acclimation time of 10 min after moving into the ShadowFish tank.

Using dj-1−/− and wild-type fish from multiple different breedings

reduced the chances of evolving a classifier that recognised a pattern

Fig. 3. Analysis of extracted features
reveals distinct movement in dj-1−/−

zebrafish. (A) A photograph of the

frustum insert designed to fit an

Aquatics Habitat mating tank with a

GoPro camera attached (left), providing

a simple system for accurate, high-

resolution video capture of adult

zebrafish movement. A diagram of the

fish inside the frustrum insert, recorded

from above using the GoPro camera

(right). (B) A diagram of the angles

measured along the zebrafish trace, at

the five vertices (red dots), when there

is a bend in the tail. x and y coordinates

were measured for the vertices and

endpoints. Measurements were

recorded at 100 frames/s from the video

input, allowing analysis of selected

features of movement. (C-H) The

features of movement compared

between dj-1−/− and wild type (WT) at

12 wpf including distance travelled (C),

velocity (D), percentage of time spent

moving (E), mean duration of a

swimming episode (F), tail beat

frequency at low, medium and high

swimming speeds (G), and tail bend

amplitude at low, medium and high

swimming speeds (H) (single replicate).

The number of replicates (n) is shown

for each graph. Student’s t-tests (two-

tailed, unpaired) were used to compare

features that followed a normal

distribution; the Mann–Whitney U-test

(two-tailed) was used to compare non-

parametric features. Data are mean±

s.e.m., *P<0.05, **P<0.01, ***P<0.001;

ns, not significant.
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occurring in a single progeny. The increased generality of the

evolved classifier improves classification accuracy when used to

discriminate future dj-1−/−mutants. Then, 30-s video clips, filmed at

100 frames/s, were processed from recordings. Two 30-s clips from

each recording were processed using the ShadowFish software; these

were visually assessed to ensure that we removed any video with a

reflection or a shadow or where the fish was not in view. The 30-s

clips were also processed using the ShadowFish software to collect

movement data in the same way from two other genotypes, pink1−/−

and dmdta222a/+.

Extracting features of movement

Initial analyses were undertaken using MATLAB to calculate

selected features of movement including distance travelled

(Fig. 3C), velocity (Fig. 3D), time spent moving (Fig. 3E) and

swimming episode duration (Fig. 3F). Over a 30-s period, dj-1−/−

zebrafish covered significantly less distance at a slower velocity

compared to wild-type fish. While wild-type fish spent 96% of their

time moving, dj-1−/− mutants were moving only 83% of the time.

Additionally, the mean swimming episode duration by a dj-1−/−was

17 s, compared to 25 s for the wild type. Tail beat frequency

(Fig. 3G) and mean tail bend amplitude (Fig. 3H) were analysed at

low, medium and high speeds of movement (Keatinge et al., 2015).

It was hypothesised that mutant fish might need to work harder to

achieve higher speeds through more tail beats; however, only the

tail beat frequency at low speed was significantly affected and

reduced in the dj-1−/− mutant. A trend was seen in the wild-type

zebrafish for the tail bend amplitude to decrease with an increase

in swimming speed, suggesting that momentum allows fish to

coast once higher speeds have been reached, reducing tail bend

amplitude and energy expenditure (McHenry and Lauder, 2005).

In contrast, the mean tail bend amplitude is significantly less in

the dj-1−/− zebrafish at low speeds but significantly greater at

high speeds, and a greater tail bend amplitude was observed in

the Dj-1-deficient zebrafish at high speeds compared to the wild

type (Fig. 3H). As the dj-1–/– mutant fish stop more frequently

(Fig. 3F), the resulting inertia might impede them from gaining

the momentum required for coasting. Alternatively, the dj-1−/−

zebrafish could lack the fine motor control required to moderate

their swimming at speed. This is similar to the hypothesis that

PD patients fail to appropriately scale the size of their

movements to complete a given task (Mazzoni et al., 2012). In

contrast to the differences in movement seen at 12 weeks post-

fertilisation (wpf ), we found that, in younger zebrafish (8 wpf ),

most features of movement of dj-1 mutants were not

significantly different from those of age-matched controls

(Fig. S1). This progressive impairment of movement in dj-1−/−

mutant fish is consistent with the progressive loss of motor

control seen in PD patients (Greffard, et al., 2006).

Evolving classifiers using extracted features of movement

Machine learning has proved successful in analysing highly

complex, non-linear data in human PD patients (Lones et al.,

2013), and we have adapted the methods from our previous study to

this zebrafish model of PD. Automated analyses of the digitised

swimming data were used to measure selected features of movement

in the mutant and wild-type fish, with the aim to distinguish any

combination of features that characterises the movement of the

dj-1−/− zebrafish. In addition, we included data extracted from

another parkinsonian model, the pink1−/− mutant zebrafish, and

from zebrafish heterozygous for sapje (dmdta222a/+) (Bassett et al.,

2003). sapje is a recessive mutation that is lethal when homozygous

and a model for muscular dystrophy, another human disease in

which movement is disrupted. The dmdta222a allele is recessive so in

a heterozygote condition there is no expected phenotype or expected

change in movement, thus providing a negative control for evolving

classifiers.

We describe here an objective method, using machine learning, to

identify any movement phenotype that can distinguish mutants from

the wild type with a defined level of accuracy. Machine learning can

automatically analyse large datasets and ‘learn’ to recognise

differences between the classes of data (Alpaydin, 2016). We use

a form of ‘supervised learning’, where a supervisor provides the

desired output for every input when generating an optimised

classifier (Ayodele, 2010). In this instance, the input is all the

features of movement extracted from the recording of a fish and the

desired output is the class of fish, either mutant or wild type. An EA

is a population-based process designed to optimise the solution to a

defined problem; by evaluating a population of candidate solutions

using a ‘fitness function’ (an objective mathematical measure that

determines the most effective solution) and subsequently spawning

a new population of candidate solutions for the next generation. The

EA goes through multiple generations and the candidate solution

becomes increasingly optimised with each round of evolution. This

culminates in an effective solution being produced and expressed as

a discrete mathematical equation that describes the solution (Smith

et al., 2015). Moreover, EAs are one of the few ‘white box’ forms of

machine learning for which the functions that make up the classifier

can be inspected (Lones et al., 2013); this is a useful characteristic to

allow discovery of any movement phenotype characteristic of a

zebrafish model of PD.

Using selected features of movement, an EA was used to train

classifiers labelling fish as either dj-1−/− or wild type. Forty-six

dj-1−/− and 46 age-matched control zebrafish were recorded

swimming for a period of 5 min. Two separate 30-s clips were

processed from each 5-min recording, generating 92 comma-

separated value (CSV) files containing raw movement data for each

class of fish. After visual quality checks, 30 recordings of dj-1−/− and

an equal number from age-matched wild-type controls were used to

evolve classifiers. The type of EA used was a Cartesian genetic

programming (CGP) algorithm, in which programs are represented as

directed graphs with two-dimensional grids of computational nodes

(Miller, 2011). CGP was selected as it is a white box machine

learning algorithm that is suitable for relatively small sample sizes

and can provide insight into the contribution of respective features in

the resulting classifier, as demonstrated in previous work in analysing

human movement disorders (Lones et al., 2013). Here, we use 30

recordings, and 60 data points were obtained for each class, which,

according to the methods of Bland and Altman (2007), provides a

95% confidence interval of ±0.44 standard deviations. The CGP

network for classifying dj-1−/− fish that achieved the highest test

score on a fold of datasets is shown in Fig. 4A. Velocity, mean tail

beat frequency and time spent moving were the extracted features of

movement used in the highest-scoring dj-1−/− classifier. These data

reveal these features of movement as the most useful for

discriminating the dj-1−/− mutants from wild type. The mean test

score of classifiers evolved using the 20 folds of datasets was 70%,

indicating that an equation could distinguish dj-1−/− fish by their

features of movement 70% of the time. Similar analyses were carried

out to classify extracted features of movement from pink1−/− (another

PD model) and dmdta222a/+ (a negative control) and are presented in

Fig. 4B,C. The EAwas unable to compute an equation to distinguish

these genotypes from controls using extracted features of movement

(test scores were 51.6% and 43.5%, respectively).
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Evolving sliding window classifiers from rawmovement data

For an unbiased classification we used the raw data extracted from

the videos, without selection of any particular features of

movement, for input into an EA. To do this, we processed the

movement data using principal component analysis (PCA) to

condense the data into principal components (PCs) by linear

combination of the tail bend angles in each frame (Fig. S2). This

reduced the dimensionality of the tail bend angles, transforming

the multivariate time series into a univariate time series, while

retaining the inherent variation of the data. PC2 was used to evolve

classifiers as it retained the high frequency movement and subtle

variation important for characterising a movement phenotype

(Lones et al., 2013).

Sliding window classifiers, encoded using CGP, were evolved to

classify the mutants using the PC2 time series as input data. The

mathematical equations generated describe local patterns in the

movement data that can be used for discrimination (Lones et al.,

2013). The window in a sliding window classifier contains the data

from a specific range in a time series, which become the input data

for the evolved algorithm. The raw movement data extracted from

36 clips of dj-1−/− mutants and 64 clips of age-matched control

zebrafish with visually assessed, high-quality tracking were used to

evolve sliding window classifiers. Here, 20 PC2 values (extracted

from 20 frames of a recording) were used as the input data for a

window. The algorithm applies pre-defined functions to the input

data and produces a continuous value between 0 and 1 (Lones et al.,

2013). Subsequently, the window slides along one position in the

time series to get the next overlapping range of data points. The

algorithm is applied to the new input data and produces a further

output value; the process is repeated until the sliding window has

reached the end of the time series. The final classifier output (the

mean of all the output values) labels the data as belonging to one of

two classes depending on a threshold value. Similar analyses were

carried out on the pink1−/− homozygous mutants and dmdta222a/+

heterozygote zebrafish.

One of the aims of this work was to confidently classify zebrafish

using a protocol that is effective and practical, by acquiring short

5-min videos for analysis. Two 30-s clips were determined

Fig. 4. Machine learning evolves classifiers frommovement data and discriminates dj-1−/− zebrafish as distinct from controls. (i)(A-C) An analysis using

an evolutionary algorithm to discriminate a classifier by analysing extracted features of movement. (A) The mean training and test scores for classifiers evolved to

recognise dj-1−/− zebrafish (n=30) at 12 wpf over 20 folds of datasets containing extracted features of movement. The CGP network of the highest scoring dj-1−/−

classifier evolved using the extracted features is depicted as a flow diagram. (B) The mean training and test scores for classifiers evolved to recognise pink1 −/−

zebrafish (n=37) at 14 wpf over 20 folds of dataset containing extracted features of movement. The CGP network of the highest-scoring pink1 −/− classifier evolved

using the extracted features is depicted as a flow diagram. (C) The mean training and test scores for classifiers evolved to recognise dmdta222a/+ zebrafish (n=25)

at 12 wpf over 20 folds of dataset containing extracted features of movement. The CGP network of the highest-scoring dmdta222a/+ classifier evolved using the

extracted features is depicted as a flow diagram. (ii)(D,E) A separate analysis of the rawmovement data using sliding window classifiers trained with the PC2 time

series data to generate symbolic mathematical expressions that describe discriminatory local patterns of movement within the data. (D) The training and test

accuracies for the classifier evolved to recognise dj-1−/− zebrafish at 12 wpf. Mean plots of the PC2 time series data in the 20 windows most useful for

discriminating dj-1−/− mutants (n=36) (red) and age-matched controls (n=64) (black) in the test dataset. (E) The training and test accuracies for the classifier

evolved to recognise pink1 −/− zebrafish at 14 wpf. Mean plots of the PC2 time series data in the 20 windows most useful for discriminating pink1 −/− mutants

(n=39) (red) and age-matched controls (n=44) (black) in the test dataset.
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empirically to provide sufficient data to identify differences in

movement that allow classification of both the dj-1−/− and pink1−/−

mutants from control fish. For the dj-1−/− and pink1−/− datasets, the

sliding window classifiers were able to discriminate mutant fish

around 80% of the time (Fig. 4D,E). The classifiers evolved using

the raw movement data were more effective than classifiers evolved

using select features. This is likely due to the objectivity that is

possible using a continuous stream of data as well as the increased

amount of data analysed from each recording. In addition, each

selected feature was calculated to a single value summarising the

movement in a video clip and reducing the data available to the EA.

To visualise local patterns in the movement data characteristic of

each class of fish [mutant (red) or wild type (black)] a mean plot of

the 20 windows that were most useful for discriminating mutants is

shown for dj-1−/− (Fig. 4D) and pink1−/− (Fig. 4E) mutant

zebrafish. This same set of computational analyses was

undertaken using heterozygous dmdta222a/+ zebrafish and a useful

classifier could not be evolved. Fig. S3 reports the training and test

areas under the curves (AUCs) for 20 runs, showing a mean of 0.78

for train and 0.43 for test. This shows that classifiers are evolved that

over-fit the training data, but these models cannot generalise or

classify any meaningful differences between the movement of

dmdta222a/+ and the wild-type zebrafish. Together, these data

indicate that machine learning can discriminate movement

phenotypes when present, as is the case with the zebrafish models

of PD, but not in the heterozygous carrier of the muscular dystrophy

gene dmdta222a/+ that has no phenotype; this was expected given the

recessive inheritance of the disease. One limitation of our study is

that we did not treat adult animals with drugs; for instance, MPTP

treatment mimics PD, which would be a useful addition to our

protocols. Moreover, the ability of artificial intelligence to identify

PD fish presents the possibility (indeed the next step) of treating the

fish with known or potential therapeutics and then re-assessing the

same fish. We are currently working with collaborators to develop

these further protocols.

Molecular signatures consistent with parkinsonian

pathology characterise dj-1−/− brains

Animal models can provide important insight into the molecular

basis of genetic disease. To investigate any global changes in gene

expression associated with a loss of Dj-1, RNA-seq was carried out

on RNA extracted from adult zebrafish brains using dj-1−/−mutants

and three wild-type siblings at 16 wpf. An overview of these effects

is shown as a volcano plot (Fig. 5A) and a short list of affected genes

was curated using the criteria of fold change ≥1.2 (up- or

downregulated) and false discovery rate (FDR)-adjusted P-value

≤0.05. The list is depicted as a heatmap illustrating the relative

expression of 22 transcripts that were found to have significantly

altered expression in the dj-1−/−mutant brains (Fig. 5B). Validation

of a set of these targets by qRT-PCR analysis confirmed the changes

in expression for some genes of interest (Fig. 5C). These data have

been deposited in NCBI’s Gene Expression Omnibus (GEO) (Edgar

et al., 2002), under accession number GSE135271 (https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135271). A list of all

differential transcripts with q<0.05 is provided in Table S2A,B.

Genes significantly affected by loss of DJ-1 include those with

cell functions known to be disrupted in PD. VAMP3, part of a

SNARE complex, found on the vesicle membrane and required for

vesicular transport from early, recycling endosomes to the trans

Golgi network was found downregulated in HeLa cells (Mallard

et al., 2001). DA neurons in the substantia nigra pars compacta

(SNc) have increased vulnerability to dysfunctional intracellular

trafficking, as vesicles transport cargo great lengths and to a high

number of synapses due to their extensive axonal arborisation

(Bolam and Pissadaki, 2012; Giguer̀e et al., 2019). Mitochondrial

dysfunction is accepted as central to PD pathophysiology (Hu and

Wang, 2016). Here, we find that glycine amidinotransferase (gatm),

encoding a mitochondrial enzyme involved in creatine synthesis

(Sandell et al., 2003), is significantly downregulated in dj-1−/−

brains. As well as an energy store, creatine has an antioxidative

function, scavenging for reactive oxygen species (ROS) (Allen,

2012; Gabriel et al., 2013). In addition, glutathione peroxidase 3

(gpx3), encoding an enzyme that reduces hydrogen peroxide,

thereby protecting the cell from oxidative stress, also has reduced

expression in the brains of dj-1−/− zebrafish. Interestingly, the

human GPX3 gene contains a peroxisome proliferator response

element (PPRE) that is activated by PPARγ (Chung et al., 2009), a

signalling pathway found activated downstream of DJ-1 (Han et al.,

2018). pyruvate kinase M1/2a (pkma), a key regulator of aerobic

glycolysis (Sun et al., 2011), is also downregulated, suggesting

dysregulated metabolism in dj-1−/− brains.

In order to take a broader view of the classes of genes sensitive to

loss of DJ-1, we used gene set enrichment analysis (GSEA) to

analyse our RNA-seq data (Subramanian et al., 2007, 2005) and

found enrichment profiles consistent with disrupted metabolism and

cell cycle regulation. This method uses pre-defined sets of genes

that have been categorised based on interactions in a common

pathway or a related biological function. The data from the RNA-seq

analysis were processed and a normalised enrichment score (NES)

calculated to determine whether genes affected are over-represented

in any molecular signature database. The NES reflects the degree to

which the genes in a gene set are over-represented at the top or

bottom of a gene list ordered by association with a genotype. Our

results revealed that dj-1−/− brains have over-representation of the

gene sets presented in Table S3. As would be predicted from several

previous reports (Kim et al., 2005; Lan et al., 2017), we find

enrichment of gene sets associated with PI3K/AKT/mTOR and

mTORC1 signalling (Fig. 5D; Table S3). This is consistent with

increased levels of mTOR in mouse models of PD (Wills et al.,

2012) and the finding that DJ-1 negatively regulates the tumour

suppressor PTEN, which is part of the PI3K/AKT signal

transduction pathway (Kim et al., 2005).

Our GSEA also indicates an upregulation of genes associated

with oxidative phosphorylation in the absence of Dj-1. Metabolic

regulation in neurons is crucial given the high and dynamic energy

demands of the vertebrate brain (Yellen, 2018); moreover, SNc DA

neurons in particular have high metabolic needs (Giguer̀e et al.,

2019). Our results show that some genes coding for players in

glycolysis (Fig. 5C) are downregulated, while the gene set for

oxidative phosphorylation is over-represented (Fig. 5D; Table S3).

We also find the enrichment of the G2 to M transition gene set and

targets of E2F transcription factors (Fig. 5D), as well as other cell

cycle-related genes sets (Table S3) in the brains of dj-1−/− zebrafish.

Interestingly, entering the cell cycle has been linked to cell death in

neurons (Herrup et al., 2004; Herrup and Yang, 2007), and,

moreover, Höglinger et al. (2007) found that the pRb/E2F pathway

caused neuronal cell death in a chemical model of PD, consistent

with the over-representation of mitotic gene sets in dj-1−/− brains,

reflecting their neurodegenerative pathology.

DISCUSSION

Age-dependent neurodegeneration is difficult to model in

organisms with short lifespans, and, moreover, motor disorders

are not always apparent and can be difficult to measure (Lee et al.,
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Fig. 5. Differential gene expression in the dj-1 −/− mutant brain. (A) A volcano plot representing the global changes in gene expression observed by

RNA-seq analysis, comparing RNA from the brains of dj-1−/− mutants (n=3, biological replicates) and their wild-type siblings (n=3) at 16 wpf. The fold change

(log2) of each transcript was plotted against the P-value (−log10). Transcripts in red are down/upregulated less than 2-fold. Transcripts in orange that appear

above the dotted line are differentially expressed with a P-value of <0.05 and down/upregulated more than 2-fold. Transcripts in blue have a P-value of ≥0.05.

(B) A heatmap showing select genes differentially expressed with an FDR q-value of <0.05. Relative expression is represented on a colour scale from blue (low) to

orange (high). (C) qRT-PCR analysis validating the results seen in the RNA-seq using RNA extracted from the brains of dj-1−/− and wild-type siblings

at 16 wpf (n=3 for all but n=5 for kcnk analysis, biological replicates). Student’s t-tests (two-tailed, unpaired) were used to compare the dCt values for dj-1−/− and

wild-type samples. Data are mean±s.e.m., *P<0.05, **P<0.01, ***P<0.001. (D) GSEA enrichment plots for Hallmark gene sets: G2M checkpoint, oxidative

phosphorylation, E2F transcription factors and PI3K/AKT/mTOR signalling. FDR, false discovery rate-adjusted P-value; NES, normalised enrichment score;

P, nominal P-value. Data have been deposited in GEO, accession number GSE135271.
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2017; Rousseaux et al., 2012). There has been some success

modelling PD using neurotoxin-based models in the mouse;

however, these present a rapid loss of DA neurons, which does

not align with the progressive neurodegeneration of PD in humans

(Jackson-Lewis and Przedborski, 2007). Genetic approaches for

modelling PD in mice have had less success in reproducing the

neurodegeneration. The loss of Pink1, Prkn, Dj-1 or Fbxo7 in the

mouse does not reduce the number of nigrostriatal DA neurons or

locomotor ability (Gispert et al., 2009; Kim et al., 2005; Perez and

Palmiter, 2005; Vingill et al., 2016). A further triple knockout of

Pink1, Prkn and Dj-1 in the mouse still failed to produce a

phenotype with recognisable aspects of PD (Kitada et al., 2009). In

contrast, transgenic expression of genes associated with autosomal

dominant PD in humans, LRRK2 (G2019S) and SNCA, was shown

to cause a loss of nigrostriatal DA neurons and locomotor defects in

the mouse (Ramonet et al., 2011; Janezic et al., 2013). In addition,

aggregates of α-synuclein forming in the motor neurons of

transgenic mice overexpressing α-synuclein has been reported,

which could impact the movement phenotype (van der Putten et al.,

2000). Rats may prove a better mammalian model for PD; Dave

et al. (2014) reported a loss of DA neurons and locomotor defects in

rats lacking Dj-1 and Pink1, but not Prkn. Overexpression of

LRRK2 (G2019S) and SNCA in the rat brain has been able to cause

a loss of the nigrostriatal DA neurons in some cases (Dusonchet

et al., 2011; Lo Bianco et al., 2002). Nonetheless, compared to a

mouse or rat models, there are advantages to using zebrafish in drug

screens. Zebrafish are smaller, have lower maintenance costs and

produce much larger broods for generating large numbers of

animals for analyses; there is also the simplicity of administering

candidate drugs in their water. Although the method described here

uses adults and is not suitable for the high-throughput drug screens

used on zebrafish larvae (Gallardo et al., 2015), it may provide a

valuable addition to current drug screening protocols targeted at

genetic diseases that have no larval phenotype but present a later

movement disorder, as part of a multifaceted approach (Volpatti

et al., 2020).

An unbiased method to discriminate movement disorders in

zebrafish

Here, we have used an EA to classify data obtained from recordings

of zebrafish movement by measuring the bending of the spine.

Previous tracking software has analysed location coordinates as fish

swim; this is done in larvae and adults and informs only on the

location or locomotor activity of individuals or groups of fish

(Stewart et al., 2015; Cronin and Grealy, 2017). In contrast, we have

measured the tail bend angle along the back of individual adults, to

inform on muscle movement and assess dyskinesia. Using this

approach, machine learning discriminates a parkinsonian phenotype

in zebrafish deficient in dj-1/park7, a gene that causes a recessive

form of early onset PD in humans. Off-target effects are a worry of

any experimental program that relies on gene targeting. Back

crossing to the wild-type strain for several generations can remove

any potential modifiers linked to the targeted gene, and extending

our study in this way would ensure that the movement phenotypes

distinguished in our analyses tracked with the mutant allele. It is also

important that the fish are genetically similar, except for the allele of

interest, making it difficult to compare across different generations;

therefore, the fish compared were always cousins of the same

generation. In addition, raising fish in separate tanks and the

emergence of traits from unrelated homozygous mutations resulting

from in-crossing wild-type fish are potential caveats to our

interpretations. Nonetheless, machine learning was able to

distinguish dj1−/− and pink1−/− mutants from wild-type cousins,

but could not evolve an equation to discriminate between our control

line, dmdta222a/+ heterozygotes, from wild-type fish, which were

also raised in separate tanks.

Machine learning has also been used to classify mouse models of

PD generated by injection of neurotoxins directly into the brain; the

pronounced movement phenotype is measured using the well-

established Noldus Catwalk gait analysis and discriminated with an

accuracy of 96% (Frohlich et al., 2018). Similarly, the extraction of

movement data and evolution of classifiers to diagnose PD in

humans has been refined to reach accuracies of up to 95% (Lones

et al., 2013). Our novel ShadowFish tracking software extracts data

suitable for analysis by EAs and results in classifiers with ∼80%

accuracy. The ability of our new method to evolve algorithms that

discriminate movement of zebrafish carrying two different PD, but

not that of zebrafish carrying a heterozygous mutation in dmd,

indicates that our method has the potential to reach higher

classification accuracies and provide a valuable new method to

detect movement disorders in a non-mammalian vertebrate model.

Clinical diagnosis of PD is challenging, with an accuracy of

∼80% (Hughes et al., 1992; Rizzo et al., 2016). More accurate, less

subjective diagnosis of PD using EAs has improved diagnostics and

is able to describe the bradykinesia characteristic of PD in a finger-

tapping exercise (Lones et al., 2013), allowing early diagnosis of PD

distinct from other neurodegenerative diseases. Our adaptation of

this technology to evolve classifiers that identify mutant zebrafish

based on movement data will provide a method to screen for drugs

that improve the movement phenotype. We have found that Dj-1-

deficient zebrafish display an overall loss of movement measured as

a reduction in distance travelled, velocity, time spent moving and

duration of a swimming episode; comparable to the bradykinesia

observed in PD patients (Jankovic, 2008). Furthermore, the shorter

duration of swimming episodes indicated more frequent periods of

inactivity, akin to the freezing episodes observed in PD (Chee et al.,

2009). There is, however, a great deal of subjectivity when studying

features selected based on conventional movement measures. In

comparison, the sliding window classifier is much more objective,

automatically extracting features based on minute differences in

movement that are undiscernible to the human eye, rather than the

general features of movement. On examination of the input video

data, we find that the discriminating classifiers often use data from

when the fish turns. This suggests that the movement phenotype in

parkinsonian zebrafish is similar to that found in PD patients, in

whom bradykinesia is particularly evident when turning around

(e.g. Chou and Lee, 2013). A further consideration to take into

account is that a muscle disorder might be contributing to the

movement phenotype, as loss of dj-1 has been found to affect

metabolic respiration in skeletal muscle cells and result in overall

reduced body mass (Edson et al., 2019).

Molecular signature of a PD brain: increased oxidative

phosphorylation and cell cycle re-entry

Confirmation of a valid parkinsonian model was provided by GSEA

(Subramanian et al., 2005), which revealed molecular signatures

described in other genetic models of PD. The DJ-1 protein is

sensitive to ROS (Canet-Avilés et al., 2004;Mitsumoto et al., 2001),

acting as a neuroprotector by quenching excess ROS at the

mitochondrial membrane (Taira et al., 2004) and is also required

for the subcellular localisation of hexokinase (HK1) to the

mitochondria (Hauser et al., 2017). This links DJ-1 activity

directly to mitochondrial function, alongside other notable

autosomal recessive PD genes PINK1 and PRKN that monitor and
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maintain mitochondrial function. Mitochondrial dysfunction is

accepted to be a major factor in the pathology of PD (reviewed in

Cookson, 2012), although it is puzzling how defective mitochondria,

organelles that are essential in all cells, leads to the specific depletion

of SNc DA neurons. One explanation is that the high number of

synapses associated with these neurons results in extraordinarily high

energy demands (reviewed in Bolam and Pissadaki, 2012); indeed,

there is a higher basal rate of mitochondrial oxidative

phosphorylation in SNc DAs compared to DA neurons of the

ventral tegmental area (Pacelli et al., 2015). Recently, good evidence

for this hypothesis has been provided by the Trudeau laboratory,

when they showed that a mouse engineered with increased axonal

arborisation of SNc DA neurons is more vulnerable to PD-causative

neurotoxins (Giguer̀e et al., 2019). Our findings that genes associated

with oxidative phosphorylation are altered in the dj-1−/− zebrafish is

consistent with the notion that disruption of bioenergetics is a key

feature of a neurodegenerative brain.

Upregulation of genes associated with oxidative phosphorylation

in a mouse Prkn−/− model (Giguer̀e et al., 2018) and a zebrafish

dj-1−/− model of PD has been described (Edson et al., 2019), while

dysregulation of genes associated with metabolism is consistent

with a neurodegenerative state in PD (Giguer̀e et al., 2018; Shi et al.,

2015) as well as Alzheimer’s disease (Demetrius et al., 2015). One

interpretation (Yellen, 2018) is that the high energy demands in

neurons requires the uncoupling of glycolysis and oxidative

phosphorylation, and it may be that DJ-1 is required for this

switch. Another interpretation is that neurodegeneration results from

an ‘inverse Warburg effect’; this has been proposed as a cause of

sporadic Alzheimer’s disease, in which oxidative phosphorylation

is upregulated in ageing or otherwise impaired neurons as a

compensatory response to meet energy needs (Demetrius et al.,

2015), an idea supported by our data that oxidative phosphorylation

genes are enriched in the absence of Dj-1.

GSEA also reveals that in zebrafish brains lacking Dj-1, there is

an enrichment of genes associated with mitosis, such as those

regulating the G2/M checkpoint, E2F target genes, as well as the

cancer-related gene sets associated with epithelial mesenchymal

transition, Myc targets and the mitotic spindles. This might seem

surprising, because DJ-1 was first identified by its interaction with

Myc and indeed can transform 3T3 cells when co-expressed with

Myc or Ras (Nagakubo et al., 1997). However, PD genes have been

implicated in cell cycle control (reviewed in West et al., 2005) and

the re-activation of cell cycle proteins (including the E2F factors)

has been detected in tissue from PD patients (Höglinger et al.,

2007). Post-mitotic neurons have mechanisms in place that prevent

cell cycle progression, and re-entering the cell cycle can lead to

apoptosis; this may be a mechanism underlying neurodegeneration

(reviewed in Folch et al., 2012; Herrup et al., 2004; Herrup and

Yang, 2007). We conclude that the over-representation of mitotic

gene sets, together with those indicative of altered metabolism,

reflects the neurodegenerative state of dj-1−/− zebrafish brains.

Machine learning can contribute to drug development

To date, most zebrafish models of PD have been transient models in

larvae, generated using neurotoxins such as MPTP, which cause a

rapid loss of the DA neurons (Bretaud et al., 2004; Feng et al.,

2014), or by morpholino knockdown of PD-associated genes

(Bretaud et al., 2007; Flinn et al., 2009; Zhao et al., 2011); in

addition, an adult pink1−/− mutant zebrafish has been described

(Flinn et al., 2013). A few studies have tested potential therapies on

zebrafish models of PD by measuring the distance travelled and

velocity of larvae (Cronin and Grealy, 2017; Sheng et al., 2010). PD

in humans is both age related in nature and characterised by a

movement phenotype of bradykinesia (slowing of movement),

resting tremor and muscle rigidity (Jankovic, 2008). Given the

progressive loss of DA neurons, an adult model of PD is intuitively

more suitable, and evolving classifiers using tail bend data

provides a more comprehensive, unbiased assessment of the

movement phenotype. The novel use of machine learning

described here has the potential to accelerate the drug discovery

pipeline (Lam and Peterson, 2019) by allowing more

comprehensive screening using non-mammalian vertebrate

models of movement disorders.

MATERIALS AND METHODS

gRNA design

A synthetic gRNAwas designed to target Cas9 cleavage in dj-1 upstream of

the codon for residue C106, in order to produce an early stop codon and loss

of C106 from the translated protein. This cysteine is critical for the oxidative

stress response of DJ-1 (Wilson, 2011). The online CRISPR design tool

ChopChop (https://chopchop.cbu.uib.no) was used to identify a target

sequence near the start of the dj-1 coding sequence. A 20 bp target sequence

(5′-GCCGGTTCAGTGCAGCCGTG-3′) in exon 2 of dj-1was selected and

incorporated into the forward primer for gRNA production. A promoter

sequence for increasing transcription efficiency with T7 RNA polymerase

was added to the 5′ end of the forward primer along with an additional G

nucleotide necessary for the T7 polymerase to work (Nakayama et al.,

2014). This resulted in the following forward primer sequence: 5′-GCAG-

CTAATACGACTCACTATAGGCCGGTTCAGTGCAGCCGTGGTTT-

TAGAGCTAGAAATAGCAAG-3′. pink1 was disrupted using the same

approach, with the modification of two gRNAs designed 100 bp apart:

pink1(1) 5′-GCAGCTAATACGACTCACTATAGGGTGAAGCAGAAA-

GTCGAAGGTTTTAGAGCTAGAAATAGCAAG-3′ and pink1(2) 5′-

GCAGCTAATACGACTCACTATAGCGCAGCTG-TTTATGAGGCTG-

GTTTTAGAGCTAGAAATAGCAAG-3′. The reverse primer used for

gRNA synthesis is common to all gRNAs: 5′-AAAAGCACCGACTCG-

GTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACT-

TGCTATTTCTAGCTCTAAAAC-3′ (Nakayama et al., 2014). For

genotyping, the primers to amplify the dj-1 genomic region were as

follows: For, 5′-GGCTCTGGCCATCATTACTAT-3′; Rev, 5′-GTAAA-

GTCAGACCTGTTTGTGTG-3′. Primers to amplify the pink1 genomic

region were as follows: For, 5′-GGCTGTATTTAGAAAGAAGAAGTT-

TCAG-3′; Rev, 5′-GCAGCACAGTACAATTGTCAACTATAAA-3′.

Generating mutant lines

The strain of zebrafish used was London Wild Type (LWT) and both males

and females between 8 wpf and 14 wpf were analysed for movement

phenotypes. Transcriptomic analyses were carried out on the brains of

zebrafish at 16 wpf and the immunohistochemical analysis was carried out

on the brains of zebrafish at 12 mpf. This study was carried out using

procedures authorised by the UK Home Office in accordance with the

Animals Scientific Procedures Act (1986) and approved by the Animal

Welfare and Ethical Review Body at the University of York and the UK

Home Office.

Cas9 protein was co-injected with dj-1-targeting single-guide RNA into

single-cell embryos from the LWT zebrafish strain to produce the F0 fish

that were outcrossed with wild type to generate heterozygous F1 mutants.

Genotyping of the F1s revealed a male and female carrying the same

mutation in dj-1; these heterozygotes were in-crossed to produce the F2

generation. F2 zebrafish homozygous for dj-1 were out-crossed with wild

type to generate a stock of heterozygous fish (F3); these were in-crossed and

the offspring raised together (F4), genotyped, and used for molecular

analysis and generating stocks of homozygous and wild-type fish for

movement analysis. Genotyping the dj-1 locus in zebrafish was carried out

by PCR of the target region followed by BbvI restriction digest assay;

digestion of wild-type dj-1 amplicon results in products of 214 bp and 55 bp

in length. The BbvI restriction site is lost in the mutated dj-1 so the PCR

product remains 286 bp in length. pink1 was disrupted using two gRNAs

designed 100 bp apart, resulting in a 101 bp deletion detectable by gel
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electrophoresis following PCR of the target region. The breeding strategy

was the same as described above.

Western blotting

Zebrafish brains were dissected from adults and flash frozen in liquid

nitrogen before storing at−80°C. Frozen brains were homogenised in 100 μl

lysis buffer consisting of 50 mM Tris-HCl (pH 7.4), 10 mM sodium

glycerophosphate, 10 mM sodium pyrophosphate, 150 mM NaCl, 5 mM

MgCl2, 1 mM EDTA, 1 mM DTT, 1% Triton X-100, 10% glycerol, 1 mM

sodium orthovanadate and cOmplete™Mini EDTA-free Protease Inhibitor

Cocktail (Roche). The lysate was centrifuged at 21,000 g for 10 min prior to

running on a 12% SDS-PAGE gel. After transfer to a PVDF membrane,

immunodetection used the anti-Dj-1 polyclonal antibody (PA5-72638,

Invitrogen) and anti-Gapdh monoclonal antibody (G8795, Sigma-Aldrich),

both at a dilution of 1:50,000. Horseradish peroxidase (HRP)-linked anti-

rabbit IgG (7074, Cell Signaling Technology) and HRP-linked anti-mouse

IgG (62-650, Invitrogen) were used at concentrations of 1:2000 and 1:4000,

respectively.

qRT-PCR

Zebrafish brains were dissected out of adults before homogenising in 1 ml

TRIzol reagent (Sigma-Aldrich) for RNA extraction. Following

centrifugation at 4°C for 10 min at 21,000 g, RNA was purified from the

upper aqueous phase using the RNA Clean & Concentrator Kit (ZYMO)

following the manufacturer’s instructions. Complementary DNA (cDNA)

was synthesised from 1 μg RNA by reverse transcription using Superscript

IV Reverse Transcriptase (Thermo Fisher Scientific) following the

manufacturer’s instructions with random hexamer primers. Primers were

designed to amplify a product of 50-150 bp with one primer in each pair

crossing an exon junction (Table S1). Each quantitative PCR analysis was

carried out with a minimum of three biological replicates and three technical

repeats. The mean cycle threshold (Ct) value was normalised to the Ct of

reference gene ef1ɑ (also known as eef1a1l1), generating a delta-Ct (dCt)

value for genes of interest. Delta-delta-Ct (ddCt) values were then calculated

by subtracting the dCt values of wild-type siblings from mutants and the

relative fold change was equal to 2(−ddCt). Student’s t-tests were carried out

comparing the dCt values of mutants and wild-type siblings for each gene.

GraphPad Prism5 was used to generate graphs showing the relative fold

change with error bars representing s.e.m.

Immunofluorescence

Adult zebrafish were euthanised at 12 mpf, and whole brains were extracted

and fixed overnight at 4°C in a 4% paraformaldehyde/PBS solution. Brains

were washed twice in PBS for 10 min. Brains were then sectioned

transversely in 3% agarose/PBS by vibratome at a thickness of 100 μM.

Based on the protocol by Matsui and Sugie (2017), brains were incubated in

10 mM sodium citrate buffer (pH 8.5) for 2 h at 80°C. Sections werewashed

twice in PBS with 1% Triton X-100 (PBS/1% Tx) for 15 min. Sections were

then blocked in 2% bovine serum albumin (BSA)/PBS/1% Tx for 30 min.

After blocking, sections were incubated overnight at 4°C with a 1:500

dilution of mouse anti-Th (22941, Immunostar) in 2% BSA/PBS/1% Tx.

Sections were then washed four times in PBS/1% Tx for 30 min. Sections

were incubated overnight at 4°C with a 1:500 dilution of goat anti-mouse

IgG1 conjugated to Alexa Fluor 488 (A21121, Invitrogen) in 2% BSA/PBS/

1% Tx. Sections were then washed four times in PBS/1% Tx for 30 min.

Staining for nuclei was carried out by incubating the sections in 1 μg/ml

Hoechst 33342 in PBS/1% Tx for 10 min. Sections were then washed four

times in PBS/1% Tx for 30 min. Sections were mounted on 15 mm cavity

microscope slides before imaging.

RNA-seq

RNAwas extracted and purified as described above from the brains of three

dj-1−/− mutants and three wild-type siblings at 16 wpf. A NanoDrop ND-

1000 Spectrophotometer was used to quantify each RNA sample and the

RNA integrity was measured using an Agilent 2100 Bioanalyzer. The

NEBNext® Poly(A) mRNA Magnetic Isolation Module was used to isolate

mRNAs from the total RNA before preparing cDNA libraries using the

NEBNext® Ultra RNA Library Prep Kit for Illumina® following the

manufacturer’s instructions. Unique adaptor sequences were added to the

fragments in each cDNA library before pooling them together. The pooled

cDNA libraries were then sequenced using 2×150 bp paired end reads on one

lane of an Illumina® HiSeq 3000 system. Cutadapt 1.16 was used to trim the

adaptor sequences from each read. The fastq files generated were then aligned

to the genome assembly GRCz11, the transcriptome was annotated using

RefSeq (NCBI) and transcript abundance was quantified using Salmon

0.10.2. Differential expression analysis was then carried out on the aligned

transcripts using Sleuth 0.30.0. The likelihood ratio test was used to calculate

statistical significance and the Wald test was used to calculate the beta values

of transcripts, analogous to fold change. A volcano plot of −log10(pval)

against log2(fold change) was generated using MATLAB, and a heatmap

representing the changes in expression of a curated set of these transcripts was

created by uploading the transcripts per million (TPM) values to https://

software.broadinstitute.org/morpheus/.

GSEA

AGSEAwas performed using the GSEA 4.0.0 (Broad Institute) software on

the RNA-seq data. All of the genes from the RNA-seq data were used in the

GSEA to identify gene sets enriched in a certain phenotypic class.

Permutations of the phenotype or genotype labels are used to calculate the

statistical significance of a gene set enrichment score (Subramanian et al.,

2005). Following instructions on the Broad Institute website

(software.broadinstitute.org/gsea) an expression dataset file (.gct) was

created containing the TPM values for each transcript, and a phenotype

labels file (.cls) was created to label the phenotype of each sample. The

Zebrafish.chip file was used to translate zebrafish transcript names to Human

Genome Organisation (HUGO) gene symbols. GSEAwas then performed to

detect enriched HALLMARK gene sets from the Molecular Signature

Database (Broad Institute). Gene set permutation was used to assess statistical

significance of the enrichment scores as the number of samples in a phenotype

was less than 7 (software.broadinstitute.org/gsea). Gene sets with a normalised

enrichment score (NES)≥1.5, FDR q-value≤0.05 and nominal P-value≤0.05

were considered statistically significant.

Video capture

An Aquatics Habitat breeding tank was modified to record zebrafish

swimming while keeping the fish in frame and eliminating any reflection

and shadow. To achieve this, a white plastic insert of 145 mm×90 mm was

designed to fit the bottom of the tank, and a hollow square frustum with

openings at the top and bottom was created with a camera fitted above

(Fig. 3A). The insert allowed for background subtraction and the frustum

kept the fish in frame and reduced reflections and shadows. A raised

platform on the lid positions the camera so that the fish remain in frame at all

times. Following an acclimation time of 10 min, zebrafish were recorded for

5 min. Recordings were carried out between the hours of 14:00 and 17:00

using a GoPro Hero 3 (GoPro, San Mateo, CA, USA) at 100 frames/s at a

resolution of 1280×720 pixels.

Extracting data

The computational processing resources required to analyse a full 5-min

recording are prohibitive, and previous work on assessing movement

disorders in humans found that 30-s samples were sufficient (Lones et al.,

2013). Consequently, two 30-s clips were selected for processing from the

first and second halves of the 5-min recording using bespoke ShadowFish

tracking software. Inspired by methods used for larval fish (Budick and

O’Malley, 2000), this software was written to identify a fish using

background subtraction and trace its midline, dividing it into six parts of

equal length (Fig. 3B). For each frame of recording, the absolute x and y

coordinates of the two end points and five vertices along the spine are

extracted, in addition to the angle at each vertex. This produces five bend

angles and seven x,y coordinates from each frame. ShadowFish

automatically determines the lateral orientation of fish by the direction

of movement and therefore the normalised bending angle can be

determined accordingly. Each processed video clip was visually

assessed before being used to calculate the features of movement or
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evolve a classifier. Any clip in which the fish was out of the field of view,

or the ShadowFish tracking software misidentified a reflection or shadow

of the zebrafish for the fish itself, was removed. The extracted movement

data are written to a CSV file.

Calculating features of movement

MATLAB (MathWorks, Natick, MA, USA) was used to calculate features

of movement, inspired by previous studies (Table S4), from the extracted

raw movement data. The distance travelled by a zebrafish in a recording was

determined by taking the absolute coordinates of the fish every 100 frames

and using the Pythagoras theorem to work out the distance covered in

between. It was necessary to establish when a fish was stationary so data

points at those times were not included in certain calculations of features.

When a fish travelled less than 5 mm over a 1-s period it was classed as

stationary for that second. The time spent moving was the number of

seconds in a clip that the fish travelled over 5 mm out of the total 30 s,

displayed as a percentage. The mean velocity was calculated by dividing the

distance travelled by the number of seconds spent moving. Swimming

episode duration was how long a fish was classed as moving before a

stationary period. To study the tail beat frequency of a zebrafish in a

recording, the sum of the five angles along the spine was plotted over time.

A five-frame moving average was also used to help reduce any noise in the

angles from the raw data. The points of maximum tail bend were identified

as the peaks on the plot. Only peaks with a minimum prominence of five

degrees and a minimum separation of five frames were identified, to leave

out spikes in the data that were unlikely to be full tail bends. Tail bend

amplitudes were the angles identified at the peaks of the plot. Tail beat

frequencies and tail bend amplitudes were also calculated at different

speeds, in case a difference in movement phenotype was more apparent at a

certain speed. Low-speed movement was defined as 0.5≤X<2 cm/s.

Medium-speed movement was defined as 2≤X<4 cm/s and high-speed

movement was ≥4 cm/s.

Methodology and statistics of movement data analyses

Multiple features of movement were extracted from the mutant and wild-

type fish and all parameters that were measured have been reported. In order

to raise and film the numbers of fish required for movement analyses, two or

more in-crossings of F4 homozygous mutants or homozygous wild-type

siblings were carried out. Statistical analysis of the comparison of movement

in wild-type and mutant fish produced the P-values quoted, derived from

either a Student’s t-test, if the data were found to be normally distributed, or

aMann–WhitneyU-test, if the datawere non-parametric. Statistical analyses

were carried out using GraphPad Prism5 to assess differences in the features

of movement for mutant zebrafish and age-matched controls. Any features

extracted that contained no numerical value were removed prior to analysis.

For example, if a fish only travelled at low and medium speed in a clip then

the high-speed tail beat frequency extracted would contain no numerical

value and would therefore be left out of future analyses. The features

containing numerical values were then examined using the Shapiro-Wilk

test to see whether they followed a normal distribution. If the data followed a

normal distribution, the interquartile range (IQR) was used to identify

suspected outliers. Any values at least 1.5×IQR below the lower quartile or

greater than the upper quartile were identified as outliers and removed prior

to statistical analysis. This criterion for excluding outliers was established to

remove fish that failed to swim in a clip; without swimming a fish

contributes no real movement data to the analysis. Features were compared

between classes using a Student’s t-test if the data were normally distributed

or a Mann–WhitneyU-test if the data were non-parametric. The investigator

was not blinded to the genotype of zebrafish during video capture; however,

when evolving classifiers, the extracted features, or PC values, fish were

randomly organised into the three datasets – training, validation and test –

and so the investigator was blinded to the genotype of fish when evolving a

classifier.

Training classification models

PCAwas used to transform the multivariate time series of bend angles into a

univariate time series suitable for classification. A type of EA called implicit

context representation CGP has been effective at classifying PD movement

in humans (Lones et al., 2017) by finding mathematical expressions that

describe patterns of movement indicative of dyskinesia. This approach was

used to train classifiers to discriminate the features of movement from PC2

time series data of dj-1−/− fish from those of wild-type controls. Sliding

window classifiers trained using the PC2 time series data generate symbolic

mathematical expressions that describe discriminatory local patterns of

movement within the data. The classifiers were trained using a stochastic

optimisation algorithm and this was repeated multiple times (20) to generate

multiple models. The features of movement and PC2 time series data from

each recording were organised into three datasets: training, validation and

test. To train classifiers with the features of movement, 60% of the

recordings went into the training set, used to evaluate the effectiveness of

classifiers during training. The remaining 40% of recordings were split

equally between the validation and test sets. This split of the dataset proved

the most effective to classify extracted features of movement. With a lower

number of overall recordings used to train the CGP classifier, it made more

sense to have a higher number in the training dataset. Aiming for a high

number of clips to train the classifier allows it to recognise a common

movement pattern. Whereas classifiers trained with the PC2 time series data

had 50% of the recordings in the training set, 25% in the validation set and

25% in the test set, the sliding window classifier was evolved with a higher

number of clips so more of the clips could go in the validation and test sets.

This split of data was found best for evolving the most effective sliding

window classifier. The validation set was used both for early stopping (i.e. to

stop training when a model began to over-fit the data) and to select the most

general classifier from the multiple models generated during training. The

test set was used to get an unbiased measure of the selected model’s

discriminatory power. The tracking data were visually assessed to make sure

they were of a high quality and the number of clips used in each class are

shown in Tables S5 and S6. The sliding window classifiers were evolved

using the AUC as a measure of fitness that is not sensitive to class

imbalances.
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