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Abstract1

We determine crustal shear-wave velocity structure and crustal thickness at recently deployed seismic stations2

across West Antarctica, using a joint inversion of receiver functions and fundamental mode Rayleigh wave3

phase velocity dispersion. The stations are from both the UK Antarctic Network (UKANET) and Polar Earth4

Observing Network/Antarctic Network (POLENET/ANET). The former include, for the first time, 4 stations5

along the spine of the Antarctic Peninsula, 3 in the Ellsworth Land and 5 stations in the vicinity of the Pine6

Island Rift. Within the West Antarctic Rift System (WARS) we model a crustal thickness range of 18-28 km,7

and show that the thinnest crust (∼18 km) is in the vicinity of the Byrd Subglacial Basin and Bentley Subglacial8

Trench. In these regions we also find the highest ratio of fast (Vs = 4.0-4.3 km/s) (likely mafic) lower crust to9

felsic/intermediate upper crust. The thickest mafic lower crust we model is in Ellsworth Land, a critical area10

for constraining the eastern limits of the WARS. Although we find thinner crust in this region (∼30 km) than in11

the neighbouring Antarctic Peninsula and Haag-Ellsworth Whitmore block (HEW), the Ellsworth Land crust12

has not undergone as much extension as the central WARS. This suggests that the WARS does not link with13

the Weddell Sea Rift System through Ellsworth Land, and instead has progressed during its formation towards14

the Bellingshausen and Amundsen Sea Embayments. We also find that the thin WARS crust extends towards15

the Pine Island Rift, suggesting that the boundary between the WARS and the Thurston Island block lies in16

this region, ∼200 km north of its previously accepted position. The thickest crust (38-40 km) we model in this17

study is in the Ellsworth Mountain section of the HEW block. We find thinner crust (30-33 km) in the Whitmore18

Mountains and Haag Nunatak sectors of the HEW, consistent with the composite nature of the block. In the19

Antarctic Peninsula we find a crustal thickness range of 30-38 km and a likely dominantly felsic/intermediate20

crustal composition. By forward modelling high frequency receiver functions we also assess if any thick, low21

velocity subglacial sediment accumulations are present, and find a 0.1-0.8 km thick layer at 10 stations within22

the WARS, Thurston Island and Ellsworth Land. We suggest that these units of subglacial sediment could23

provide a source region for the soft basal till layers found beneath numerous outlet glaciers, and may act to24

accelerate ice flow.25
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1 Introduction30

West Antarctica has an enigmatic tectonic history, and is host to one of the largest continental rift systems31

on Earth - The West Antarctic Rift System (WARS) (Dalziel and Elliot, 1982). The size and total amount32

of extension encompassed by the WARS is still unclear due to the overlying West Antarctic Ice Sheet; this33

uncertainty has implications for accurately achieving global plate circuit closure in tectonic reconstructions.34

The WARS features deep bedrock elevations (Fretwell et al., 2013) and thin crust (Chaput et al., 2014), formed35

as a result of late Mesozoic and Cenozoic extension between East and West Antarctica (e.g. Fitzgerald, 2002,36

and references therein). The possible eastern progression of the WARS through Ellsworth Land is seismically37

poorly constrained; studies suggest that it variably extends into both the Bellingshausen and Amundsen Sea38

embayments (e.g. Gohl et al., 2015; Kalberg et al., 2015) and as far as the George VI Sound (Eagles et al.,39

2009). It is also unclear if there is a linkage between the WARS and the neighbouring Weddell Sea Rift System,40

a broad extensional province spanning the boundary between East and West Antarctica (Jordan et al., 2017).41

In addition to the WARS, West Antarctica is comprised of a mosaic of antecedent crustal blocks separated42

by the rift system, each with a distinct tectonic history. These are the Antarctic Peninsula, Thurston Island,43

Haag-Ellsworth Whitmore (HEW) and Marie Byrd Land blocks (Fig. 1).44

In this study we use a joint inversion of receiver function and Rayleigh wave phase velocity dispersion data45

from UKANET and POLENET/ANET seismic stations across West Antarctica. The UKANET deployment46

includes stations in the southern Antarctic Peninsula and Ellsworth Land for the first time. These stations47

will provide valuable insight into the eastern termination of the WARS, and whether there is a connection48

between the WARS and the Weddell Sea Rift System. Additionally we include stations from the UKANET -49

POLENET/ANET Mini Array traverse which straddle the Thurston Island-WARS boundary, which will allow50

for a better delineation of the northern edge of the WARS and its progression towards the Amundsen Sea51

Embayment. By recovering a shear wave velocity-depth profile at each station we aim to constrain both crustal52

thickness as well as the relative proportions of likely felsic/intermediate to mafic crust. We consider the crustal53

structure we model at each station relative to its respective crustal block, then evaluate the overall tectonic54

framework with regards to global analogues.55

Another feature we aim to model is the presence of low seismic velocity subglacial sediment accumulations56

beneath the West Antarctic Ice Sheet. The basal environment of the ice sheet plays a key role in its future57

stability; two important controls on ice sheet models are basal heat flow and friction. Sediment accumulations58

can provide a source region for basal till generation, which in turn has been proposed to be necessary for59

the initiation of fast ice flow (Blankenship et al., 2001). As such, the location of thick subglacial sediment60
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accumulation can give an indication of likely or unlikely areas of fast ice flow. Subglacial sediment has been61

inferred beneath sections of the West Antarctic Ice Sheet by previous receiver function studies (Winberry and62

Anandakrishnan, 2004; Chaput et al., 2014), with estimates of sediment thickness up to 0.6 km in the Bentley63

Subglacial Trench and 0.3 km in the Byrd Subglacial Basin. With the recently collected data used in this study64

we aim to determine the distribution of major subglacial sediment accumulations across West Antarctica.65

2 Tectonic Setting66

Antarctica can be broadly divided into two tectonic domains divided by the Transantarctic Mountains (TAM).67

East Antarctica features a thick Archean-Proterozoic cratonic crust, whilst West Antarctica consists of a mosaic68

of crustal blocks with a varied history (e.g. Dalziel, 1992). The Antarctic Peninsula, Thurston Island and69

Marie-Byrd Land are Paleozoic - Mesozoic accreted terranes which formed along the paleo-Pacific Gondwanan70

margin, abutting East Antarctica (Dalziel and Elliot, 1982). The Jurassic breakup of Gondwana led to the71

development of the Weddell Sea Rift System (e.g. Jordan et al., 2017), and subsequent Cretaceous-to-Cenozoic72

extension between East Antarctica and Marie Byrd Land produced the WARS. In addition the HEW block,73

which is considered a composite fragment of cratonic Gondwanan crust, was translated and rotated into its74

current position following the break up of Gondwana.75

2.1 Haag-Ellsworth Whitmore block76

The HEW is a composite block consisting of the Haag-Nunataks, Ellsworth Mountains and Whitmore Moun-77

tains. The block features atypical stratigraphy and crustal structure with respect to its surroundings, and is78

proposed to be a remnant of Gondwanan lithosphere. The northwest-southeast structural trend within the HEW79

is perpendicular to the neighbouring Thiel Mountains, which are part of the TAM (Storey and Dalziel, 1987),80

suggesting that it has undergone significant rotation (Dalziel and Elliot, 1982). The HEW predominantly con-81

sists of clastic metasedimentary rock with isolated igneous intrusions. Models of how the HEW arrived at82

its current position are contentious. Paleomagnetic and geological interpretations (Schopf, 1969; Randall and83

Mac Niocaill, 2004) include a 90° anticlockwise rotation and ∼1500 km of translation from a pre-rift position84

between South Africa and East Antarctica. A more recent geophysical study of the Weddell Sea by Jordan et al.85

(2017) proposes a ‘less travelled’ model, whereby the HEW was originally located in the Weddell Sea region86

before Jurassic extension. The model of Jordan et al. (2017) only accounts for a ∼30° rotation, but they suggest87

that deformation associated with the Permian Gondwanide Orogen may have provided the additional rotation88

required to reconcile with previous observations.89
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2.2 Antarctic Peninsula and Thurston Island90

The Antarctic Peninsula and Thurston Island evolved via sustained back arc magmatism and accretion due to the91

subduction of the Phoenix plate beneath the Antarctic plate, before experiencing Cenozoic and Mesozoic uplift92

(Birkenmajer et al., 1986; Grunow et al., 1991; Machado et al., 2005). To restore the Antarctic Peninsula to its93

pre-Gondwanan break up position it must be rotated anticlockwise with respect to East Antarctica, eventually94

aligning with the southern tip of South America (Fitzgerald, 2002). Modelling of radiogenic heat flux suggests95

that the more silicic south and east of the Antarctic Peninsula have a higher heat flux (∼81 mW m−2) than the96

north and west (∼67 mW m−2) (Burton-Johnson et al., 2017).97

2.3 West Antarctic Rift System (WARS)98

The WARS is an asymmetric rift system 750-1000 km in width and 3000 km in length (Behrendt et al., 1991).99

The WARS developed as a consequence of predominately Cretaceous extension as the Antarctic Peninsula,100

Thurston Island and Marie Byrd Land moved away from East Antarctica. It has been proposed that extension101

occurred in two pulses; the major phase being a well documented period of broad extension across the whole102

WARS in the Jurassic-Cretaceous (Luyendyk, 1995; Siddoway et al., 2004). A second pulse of extension103

in the Neogene has been inferred in the sedimentary basins of the Ross Sea (e.g. Behrendt, 1999; Wilson104

and Luyendyk, 2006), although to what extent the entire WARS was impacted is unclear. Although Neogene105

extension appears to be preferentially concentrated along the East-West Antarctic boundary (e.g. Harry et al.,106

2018), some geophysical studies have inferred concurrent extension in central and eastern portions of the WARS107

(e.g. Damiani et al., 2014; Jordan et al., 2010; Winberry and Anandakrishnan, 2004). Lloyd et al. (2015) also108

interpreted reduced seismic wavespeeds in the uppermost mantle beneath the WARS as the remnant thermal109

signal of localised Neogene rifting. It has been proposed that WARS extension slowed at ca. 17 Ma (Granot110

et al., 2013). The lack of recent significant seismicity in the region (e.g. Reading, 2007) combined with the very111

low rates of tectonic intra-plate deformation (Donnellan and Luyendyk, 2004; Barletta et al., 2018), suggest that112

the WARS is currently nearly inactive.113

Given the ambiguity over the timing of extension and the substantial ice cover, estimates of total extension114

encompassed by the WARS are poorly constrained. In the Ross Sea one-layer crustal stretching models assum-115

ing a ∼35 km initial thickness compared to the presently estimated 17-27 km thick crust suggest ∼400 km of116

extension (e.g. Behrendt and Cooper, 1991), whilst paleomagnetic modelling (DiVenere et al., 1994) indicates117

a range from 440-1820 km. Paleomagnetic studies in this region are hampered by uncertainties in the amount118

of rotation between West Antarctica’s crustal blocks, and a lack of Cretaceous correlative poles. Improving119

estimates of crustal thickness within the WARS will allow for more accurate modelling of the total extension.120
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2.4 Recent geophysical investigation of crustal structure in West Antarctica121

Thanks to the gradual improvement in data coverage over the past 20 years, gravity studies have provided122

valuable insight into Antarctica’s tectonic structure (e.g. von Frese et al., 1999; Llubes et al., 2003; Block et al.,123

2009; Jordan et al., 2010; O’Donnell and Nyblade, 2014). By inverting GRACE satellite gravity data Block124

et al. (2009) modelled crust up to 46 km thick in East Antarctica and ∼30 km in the centre of the WARS.125

O’Donnell and Nyblade (2014) followed this study using an inversion of GOCO03S satellite gravity data,126

finding a mean crustal thickness of 40 km in East Antarctica, and 24 km in West Antarctica. Aerogravity has127

been used in more localised studies to image shorter wavelength structure. Jordan et al. (2010) focused on the128

Pine Island Glacier region and model crust as thin as 19 km, suggesting that the region has been subject to129

enhanced crustal thinning.130

Since the deployment of POLENET/ANET, a number of studies have used the network to investigate crustal131

structure across West Antarctica. Chaput et al. (2014) produced P-wave receiver functions from the POLENET/ANET132

deployment and inverted them for crustal structure using a Markov Chain Monte Carlo approach. They found133

20-25 km thick crust in the central WARS, surrounded by thicker adjacent crustal blocks: ∼35 km in the HEW134

block, ∼30 km in Marie Byrd Land, and up to 45 km in the TAM. Additionally Chaput et al. (2014) inferred135

a layer of low velocity subglacial sediment at many stations, with a thickness of up to ∼0.4 km within the136

Bentley Subglacial Trench. The presence of subglacial sediment in the region had previously been suggested137

by Anandakrishnan and Winberry (2004), who inferred a ∼0.6 km thick layer in the vicinity of the Bentley138

Subglacial Trench.139

To avoid the complex near surface reverberation present in P-wave receiver functions for stations on thick140

ice sheets, Ramirez et al. (2016) used S-to-P receiver functions at POLENET/ANET stations across West141

Antarctica. They found crustal thickness to be in general agreement with Chaput et al. (2014), varying from142

19-29 km across the WARS. Ramirez et al. (2017) built upon this study by using a joint inversion of Rayleigh143

wave phase velocities and P-wave receiver functions to image crustal structure at bedrock stations in West144

Antarctica. They reported average crustal thicknesses of ∼37 km in the HEW, ∼30 km in Marie Byrd Land, 35145

km at station MECK in the southern Antarctic Peninsula, and 38 km at THUR on the Thurston Island block.146

Crustal thickness from Ramirez et al. (2017) generally agree with Chaput et al. (2014), however they estimated147

the crust to be ∼10 km thicker at stations MECK and THUR, which they attributed to the presence of a 10-20148

km thick mafic lower crust.149

Shen et al. (2018) combined fundamental mode Rayleigh wave phase and group velocity dispersion and150

receiver functions in a Bayesian Monte Carlo algorithm to construct a 3-D shear velocity model of the crust and151
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uppermost mantle across Antarctica. In the WARS they find crustal thickness to range from 20-30 km, which is152

consistent with aforementioned studies. Additionally Shen et al. (2018) image thinner crust and upper mantle153

low velocity anomalies in the Amundsen Sea Embayment and Byrd Subglacial Basin, suggesting that these154

regions have experienced recent extension. O’Donnell et al. (2019a) and O’Donnell et al. (2019b) modelled155

fundamental mode Rayleigh wave phase velocities at periods 7-143 s across West Antarctica using seismic156

ambient noise and earthquake data recorded on the UKANET and POLENET/ANET stations. O’Donnell et al.157

(2019a) find ∼22 km thick extended crust in the Ross and Amundsen Sea Embayments, and suggest that the158

Cenozoic evolution of the WARS shows along strike variability. In addition O’Donnell et al. (2019a) model159

crust to be ∼32-35 km thick in the southern Antarctic Peninsula and ∼30-40 km thick in the HEW.160

3 Data and Methods161

3.1 Stations162

The data used in this study were recorded on 33 stations (see Supplementary Table 1) distributed across the163

eastern WARS, Thurston Island, HEW and southern Antarctic Peninsula from the UKANET (2016-2018) and164

POLENET/ANET (2008-) seismic networks (Fig. 1). The stations are situated on ice as well as on bedrock,165

with rock sites typically on the flanks of nunataks. POLENET/ANET consists of long term backbone stations166

distributed across West Antarctica, which feature a mixture of cold-rated Guralp CMG-3T 120 s and Nanomet-167

rics Trillium 240 s sensors, sampling at 1 and 40 samples per second (sps). The UKANET (2016-2018) and168

POLENET-ANET mini-array (2015-2017) were denser but shorter term deployments, with the former featuring169

Guralp CMG-3T 120 s seismometers which sampled at 1 and 100 sps, and the latter Nanometrics 120 s PH170

sensors.171

3.2 Receiver functions172

P-wave receiver function analysis is a powerful tool for estimating depths to significant seismic impedance173

contrasts beneath the receiver, and are produced at each station via a deconvolution of the vertical from the174

radial component for teleseismic earthquakes (e.g. Langston, 1979). For receiver function analysis, we use175

teleseismic earthquakes in the epicentral distance range of 30° to 90° with magnitude Mw ≥ 5.8 from 2008-176

2018. Prior to deconvolution we cut each seismogram from 10 s before to 120 s after the theoretical P-wave177

arrival according to the IASP91 global model (Kennett and Engdahl, 1991), and then de-trend, taper and high178

pass filter at 0.05 Hz. We rotate the east and north components of the seismogram to the great circle path to179

produce radial and transverse components, then compute receiver functions using the Extended Multi-Taper180

Receiver Function (ETMTRF) method of Helffrich (2006). ETMTRF has successfully been applied at noisy181
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stations, such as in ocean island studies (Lodge and Helffrich, 2009) where the noise conditions are similar to182

the Antarctic Peninsula (Anthony et al., 2015).183

We produce receiver functions at three maximum frequencies: 0.5 Hz, 2 Hz, and 4 Hz. The 0.5 Hz and 2 Hz184

maximum frequency receiver functions are used in the joint inversion, whilst the 4 Hz receiver functions are185

used in forward modelling for subglacial sediment. The 0.5 Hz maximum frequency receiver functions will im-186

prove our observation of deeper structure, whilst the higher frequency receiver functions offer better resolution187

of the near surface ice/sediment (e.g. Piana Agostinetti and Malinverno, 2018). Strong multiple reverberations188

(Fig. 2) complicate the time series and arise when thin low velocity layers, such as ice and sediment, are present189

beneath the seismic station. These ice/sediment reverberations can interfere with important crustal phases from190

the Moho (e.g. PsMoho). Fig. 2 shows 2 Hz receiver functions generated from 2016-18 at UKANET station191

PIG1 binned by slowness and back azimuth. The early portion of the receiver function is influenced by the192

P-wave reverberation in the ice/subglacial sediment layers, contaminating the expected arrival of crustal phases193

e.g. PsMoho. For a 30 km thick crust the PsMoho phase would be expected to arrive at 3-4 s, whilst the often-194

high amplitude reflected phases from the base of the ice sheet could arrive at roughly the same time depending195

on ice thickness.196

3.3 Forward modelling to infer subglacial sediment197

We forward model high frequency receiver functions to detect if any subglacial sediment is present at each198

station. Ice thickness is constrained to less than ±100 m by BEDMAP2 (Fretwell et al., 2013) at most stations,199

and is treated as a uniform layer in the forward modelling. Ice velocity is fixed at Vp = 3.87 km/s, Vs =1.9 km/s200

and density at ρ = 0.9 g/cm3 based on seismic studies of polar ice (Kohnen, 1974).201

We use the grid search forward modelling approach of Anandakrishnan and Winberry (2004) to characterize202

any potential subglacial sediment (Fig. 3). We allow subglacial sediment thickness to vary from 0-1 km, and203

Vs from 0.2-2.0 km/s; Vp and ρ are calculated using the empirical relations defined by Brocher (2005). A204

synthetic receiver function is generated, having been preprocessed and deconvolved with the same parameters205

as the data at a maximum frequency of 4 Hz. To analyse model fit we compute the L2 norm residual between206

the synthetic and observed stacked 4 Hz receiver function over the first 4 s. By analysing misfit over the first 4207

s we aim to exploit the shift in the relative timing of the ice conversions (Psice) and reverberations (PpPsice)208

introduced by the addition of a subglacial sediment layer.209

To obtain 95% confidence intervals for the grid search result we use a bootstrap resampling scheme (Fig.210

3c). We produce 5000 randomly sampled receiver function stacks from the data and then compute the misfit211
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with respect to the best fitting synthetic receiver function produced by the forward modelling. Assuming a212

normal Gaussian distribution of misfit we then extract 95% confidence limits. Subglacial sediment thickness213

is generally reasonably well constrained to within ±0.2 km, whilst sediment Vs is less so, varying from ±0.2214

km/s to ±1.0 km/s at different stations (see Supplementary Table 1).215

3.4 Joint inversion for crustal structure216

Given that receiver functions are a time series, conversion of a time interval to depth requires knowledge of the217

corresponding velocity structure. Rayleigh wave phase velocity dispersion data is sensitive to average shear218

wave velocity structure, therefore it is often advantageous to use a joint inversion of Rayleigh wave dispersion219

curves and receiver functions when aiming to constrain crustal structure. To estimate crustal thickness and220

obtain a crustal shear wave velocity model at each station, we use the method of Julia et al. (2000) for jointly221

inverting receiver functions and Rayleigh wave phase velocity dispersion data. The method produces a lay-222

ered shear velocity-depth profile by solving a linearised damped least-squares joint inversion. This inversion223

technique also allows for the inclusion of a priori information on layer depths and velocities.224

In the initial model at each station the crust is parameterised as 2.5 km thick layers with a gradually increasing225

shear wave velocity from 3.4-4.0 km/s and an overall crustal thickness of 35 km. The crust overlies a uniform226

upper mantle with a Vs of 4.5 km/s. At each station we include the best fitting near surface subglacial sediment227

identified in the forward modelling, and ice thickness from BEDMAP2 (Fretwell et al., 2013). Including the228

ice layer in the initial model allows the additional complexity in the receiver function to be accounted for in229

the joint inversion process. A similar approach was taken by Shen et al. (2018), who find the incorporation of230

receiver functions provides additional constraints on crustal structure than inverting surface wave data alone.231

The subglacial sediment layer thickness is fixed, but Vs is allowed to change in the inversion process, as the232

absolute shear wave velocity is loosely constrained in the forward modelling step. Layer thickness is fixed at233

2.5 km from the base of the ice/sediment to 50 km, and at 5 km from 50 km to 80 km.234

At each station we use a Rayleigh wave phase velocity dispersion curve in the 8-50 s period range modelled235

in the O’Donnell et al. (2019a) and O’Donnell et al. (2019b) studies. The dispersion curves are constrained to236

within ±0.05 km/s at all periods. For more information on the generation of the Rayleigh wave phase velocity237

dispersion curves and the associated uncertainty please see O’Donnell et al. (2019a) and O’Donnell et al.238

(2019b). We then jointly invert this with receiver functions stacked into narrow ray parameter bins of 0.040-239

0.049, 0.050-0.059, 0.060-0.069 and >0.070 s km−1 at two maximum frequencies, 0.5 Hz and 2 Hz (Fig. 4).240

As described in Julia et al. (2000) we equalize the number of data points and physical units in both data sets,241

allowing us to give each equal weight in the joint inversion. The ±0.05 km/s uncertainty in the Rayleigh wave242
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phase velocity dispersion data was included as part of the inversion process.243

To evaluate uncertainty in the final Vs models arising from the stacked receiver functions, we use a boot-244

strapping procedure which involves repeating the inversion process 500 times each with randomly resampled245

receiver function stacks (e.g. Bao et al., 2015; Emry et al., 2015). Each bootstrap receiver function stack was246

produced by randomly selecting receiver functions from the dataset with replacement and then stacking. To247

determine the corresponding uncertainty for our crustal thickness value, we inspect the bootstrap shear wave248

velocity limits of layers neighbouring the interpreted Moho from the full ensemble of bootstrap models. We249

find that the error in our velocity models is constrained to ±0.15 km/s and the Moho depth to ±2.5-5 km at250

most stations. These uncertainty constraints are comparable to other studies of crustal thickness in the region251

(e.g. Chaput et al., 2014; Ramirez et al., 2017). Additional uncertainty in the joint inversion results arises due to252

the Vp/Vs ratio remaining fixed in the inversion. After testing the joint inversion with a range of crustal Vp/Vs253

ratios (1.7-1.8), we find that the uncertainty arising from the Vp/Vs ratio is within the bootstrap error bounds,254

and the interpreted Moho would remain the same (see supplementary material).255

3.5 Interpreting final shear wave velocity-depth models256

The output from the joint inversion is a shear velocity-depth profile (Fig. 4), which requires interpretation to257

determine the crustal thickness at each station. We interpret the Moho in each final model to be the depth at258

which there is a >0.25 km/s shear wave velocity increase in the 4.0-4.3 km/s range, or when the shear wave259

velocity exceeds 4.3 km/s following Ramirez et al. (2017). As stated in Ramirez et al. (2017) lower crustal260

shear wave velocities derived from Vp/Vs ratios from experimental data (e.g. Christensen and Mooney, 1995;261

Christensen, 1996; Holbrook et al., 1992) rarely exceed 4.3 km/s. Shear wave velocities at or above 4.3 km/s262

are therefore more likely to represent upper mantle than crustal lithologies. Whilst a shear wave velocity of 4.3263

km/s is not globally characteristic of the upper mantle, the expectation of an instantaneous jump in Vs to values264

exceeding 4.5 km/s as indicated by global velocity models may not always be reasonable. Lebedev et al. (2009)265

suggest that upper mantle velocities increase with depth from the Moho to a maximum before decreasing again266

due to the spinel peridotite-garnet peridotite transition. When interpreting the Moho we therefore seek a rapid267

increase or jump in shear wave velocity from likely crustal values to values exceeding 4.3 km/s range, rather268

than when 4.5 km/s is reached.269

Our method for interpreting the Moho depth in the final shear wave velocity models follows other similar270

studies of crustal thickness in the same region (O’Donnell et al., 2019a; Ramirez et al., 2017). Despite this,271

a sharp jump from typical lower crustal to upper mantle shear wave velocities is not present at all stations.272

This is likely due to the PsMoho phase being masked by the reverberations from shallow low velocity structure,273
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such as the ice layer, in the receiver function. Our modelled crustal thickness at stations where this is the case274

are therefore predominantly controlled by the Rayleigh Wave dispersion data, and have a higher associated275

uncertainty.276

To further characterise the composition and nature of the crust at each station, we divide the crust into277

likely sedimentary, felsic/intermediate upper crust, and mafic lower crustal layers based on the modelled shear278

wave velocity structure. Studies of crustal structure and composition (e.g. Rudnick and Fountain, 1995) have279

suggested that felsic-to-intermediate crust tends to have a shear wave velocity of <3.9 km/s, whilst common280

lower crustal mafic lithologies tend to have shear wave velocity of >3.9 km/s. We suggest that crustal layers281

with a Vs <3.2 km/s likely represents sediments, Vs of 3.2-4.0 km/s represent likely felsic to intermediate282

crust, whilst a Vs of 4.0-4.3 km/s indicate likely mafic lower crust.283

4 Results284

At each station we have produced models of crustal thickness and shear wave velocity structure (Fig. 5). The285

Antarctic Peninsula and HEW blocks host the thickest crust we interpret in this study, with crustal thickness286

ranges of 30-38 km and 30-40 km respectively. In both these blocks we also find the largest relative abundance287

of likely felsic-to-intermediate crust with a Vs from 3.2-3.9 km/s. The thinnest crust we interpret is within288

the WARS, with a thickness range of 18-28 km. Within the WARS we also model the overall highest relative289

proportion of high velocity, likely mafic lower crust to likely felsic/intermediate crust (Fig. 5).290

Within the HEW block we find the thickest crust at stations HOWD, WILS and UNGL, at 40, 38, and 38±5291

km respectively. All three stations are located within the Ellsworth Mountain section of the block, whilst292

stations within the Whitmore Mountain and Haag Nunatak sections of the block feature a thinner crust at ∼33293

km. Given that most stations within the HEW and Antarctic Peninsula are situated on the flanks of nunataks294

and on bedrock, no subglacial sediment was identified within these blocks.295

Stations ELSW and KEAL are located close to the northern edge of the HEW block in Ellsworth Land, and296

feature fundamentally different crust to that seen within the interior of the HEW. We observe a shallower Moho297

at 30±2.5 km with a seemingly two layer crust. A slow upper crust of ∼3.4 km/s overlies a fast and relatively298

uniform middle and lower crust with an average Vs of 4.0 km/s. The internal crustal structure at these stations299

is similar to those in the centre of the WARS, however both feature a deeper Moho. Additionally we identify300

subglacial sediment at both stations with a thickness of 0.1-0.2 km and Vs of ∼1.0 km/s.301
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In the center of the WARS we find slow upper crustal layers Vs <3.2 km/s, underlain by 10-15 km of likely302

felsic crust and a 5-10 km thick likely mafic lower crust with a Vs >4.0 km/s. The thinnest crust imaged in this303

study at 18-20 km come from stations MA07, MA08 and UPTW, all of which lie in the vicinity of either the304

Byrd Subglacial Basin or Bentley Subglacial Trench.305

Subglacial low velocity sediment identified in the forward modelling is present at 10 stations within the306

WARS and Thurston Island and Ellsworth Land with a range of thicknesses from 0.1-0.8 km. Shear wave307

velocity in these layers varies from 0.4-1.6 km/s (see supplementary material). At stations MA09 and MA10308

our best fitting model features a 0.1-0.3 km thick subglacial layer with a Vs of ∼1.9 km/s which is close to that309

of ice (Kohnen, 1974), indicating that at these stations there may be thicker ice than indicated by BEDMAP2.310

At station UPTW we use the subglacial sediment thickness and Vs from Chaput et al. (2014) to parameterise311

the initial model, as our forward modelling did not produce a stable solution at this station.312

5 Discussion313

To build on our current knowledge of West Antarctica’s crustal framework, we consider our estimates of crustal314

thickness and shear wave velocity structure in the context of the regional tectonics. Improving our grasp on315

West Antarctica’s tectonic framework is essential for building a comprehensive understanding of the region’s316

evolution. By inspecting the broad crustal structure of each crustal block, we can contrast West Antarctica’s317

tectonic mosaic with analogous regions worldwide.318

Our crustal thickness estimates from West Antarctica are compatible with other seismic and gravity studies319

conducted in the region, as summarised by Table 1. In the West Antarctic Rift System our crustal thickness320

range of 18-28 km is in good agreement with seismic (Winberry and Anandakrishnan, 2004; Baranov and321

Morelli, 2013; Chaput et al., 2014; Ramirez et al., 2016; Shen et al., 2018) and gravity derived crustal thickness322

estimates (Jordan et al., 2010; O’Donnell and Nyblade, 2014). Stations BYRD, DNTW, UPTW and WAIS are323

featured in previous receiver function (Chaput et al., 2014) and S-wave receiver function (Ramirez et al., 2016)324

studies. Our crustal thickness estimates agree within uncertainty bounds with Chaput et al. (2014) at all four325

stations, but we find 10 km thinner crust at UPTW than Ramirez et al. (2016).326

5.1 Tectonic interpretation of Vs profiles327

Fig. 6 shows our crustal thickness estimates plotted alongside the ambient seismic noise derived crustal thick-328

ness model of O’Donnell et al. (2019a). Given the similar input dispersion datasets we see a good general329

agreement between crustal thickness estimates (see Supplementary Table 1), however the inclusion of receiver330
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functions in this study improves resolution of crustal structure and discontinuities at each station. Our mini-331

mum crustal thickness comes from the Byrd Subglacial Basin, and is ∼5 km thinner than that of O’Donnell332

et al. (2019a). Given that the spatial resolution of the ambient noise crustal model of O’Donnell et al. (2019a)333

is on the order of ∼300 km it is likely that these narrow rifts are not fully resolved. As such, the combination334

of both the crustal thickness model of O’Donnell et al. (2019a) and the joint inversion results from this study335

can provide an enhanced image of West Antarctica’s crustal mosaic.336

We find the thinnest crust in this study in the centre of the West Antarctic Rift System; an area which also337

hosts the Byrd Subglacial Basin and Bentley Subglacial Trench. In addition in this area we find the highest pro-338

portion of fast, likely mafic lower crust as shown by Fig. 5. The isostatic impact of the potentially high relative339

abundance of dense mafic crust may be a contributing factor in the region’s extremely low observed bedrock340

elevation (Fretwell et al., 2013), in combination with the isostatic adjustment of the thick ice overburden. We341

model a thinner crust and higher proportion of mafic lower crust in comparison to the Mesozoic/Cenozoic ex-342

tensional type section of Rudnick and Fountain (1995); our WARS models are more in line with the active rifts343

that Rudnick and Fountain (1995) analyse. We therefore suggest that the thin crust with a thick mafic lower344

crustal layer we model in the vicinity of the Byrd Subglacial Basin and Bentley Subglacial Trench is supportive345

of additional Neogene rifting impacting the central and eastern WARS (e.g. Jordan et al., 2010). A compara-346

ble rift system to the WARS in terms of scale (but not elevation) is the Cenozoic Basin and Range province,347

which features crust ranging from 30-35 km thick (Zandt et al., 1995). The thinner WARS crust supports the348

suggestion that it has undergone enhanced localised thinning relative to the Basin and Range. The highly mafic349

lower crust we model, in combination with the localised deep subglacial basins of the Byrd Subglacial Basin350

and Bentley Subglacial Trench, is comparable to the southern section of the Kenya Rift Zone and Baikal Rift351

Zone (Thybo and Artemieva, 2013). In these regions the presence of mafic underplating and sills in the lower352

crust has lead to magma compensated crustal thinning, and a deep rift graben forming above.353

Within the Antarctic Peninsula we find an average crustal thickness of 35 km with ∼ 75% of the crust being354

composed of lower velocity likely felsic to intermediate material (Fig. 5). As such, the crustal thickness and355

velocity structure that we see in the Antarctic Peninsula is consistent with an arc tectonic environment (e.g.356

Christensen and Mooney, 1995). Models of subglacial heat flux on the Antarctic Peninsula have suggested357

that the southern and eastern sections of the Peninsula have a high flux, up to 100 mWm−2 in places (Burton-358

Johnson et al., 2017). Areas of elevated heat flux on the Antarctic Peninsula coincide with UKANET stations359

ATOL, BREN and WELC, all of which show relatively slow upper and mid crustal average shear wave veloc-360

ities and a thin mafic lower crust with respect to the total crustal thickness (Fig. 5). A predominantly felsic to361

intermediate crustal composition in this region would provide capacity for high radiogenic heat production as362
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suggested by Burton-Johnson et al. (2017).363

We find along strike variability in crustal thickness within the HEW block, from the Haag Nunatak section364

through the Ellsworth Mountains and into the Whitmore Mountains. We find the thickest crust in this study365

in the Ellsworth Mountain section of the HEW block at 38-40 km at stations HOWD, UNGL and WILS.366

Stations within the Whitmore Mountain section of the HEW block image a thinner (30-33 km), and more367

felsic-like crust than the Ellsworth Mountain section of the block (Fig. 5). This spatial variability of crustal368

thickness and structure within the HEW block has previously been noted by other seismic and aerogravity369

studies (Jordan et al., 2010; Chaput et al., 2014; Heeszel et al., 2016; Ramirez et al., 2017; O’Donnell et al.,370

2019a). The UKANET station FOWL is the first to be deployed in the Haag Nunatak section of the HEW block,371

and here we infer ∼7.5 km thinner crust (33±2.5 km), and a contrasting crustal structure to the neighbouring372

POLENET/ANET stations in the Ellsworth Mountains (HOWD, UNGL, WILS). The fast upper crust we infer373

at FOWL may be indicative of additional potentially mafic intrusions in the upper crust relative to surrounding374

stations in Ellsworth Land and the HEW. The basement exposure of the Haag Nunataks is among the oldest375

sampled in West Antarctica at ∼1 Ga (Millar and Pankhurst, 1987), and the crustal thickness we model is ∼10376

km thinner than the characteristic seismically imaged Proterozoic crust of Durrheim and Mooney (1991). The377

Proterozoic crust studied in Durrheim and Mooney (1991) also includes a thick high velocity layer at the base378

of the crust which is attributed to basaltic underplating, and at FOWL we infer a 7.5 km thick likely mafic379

lower crust. A possible explanation for the reduced crustal thickness we model at FOWL relative to other380

characteristic Proterozoic crust is through lower crustal flow into neighbouring tectonic blocks. Lower crustal381

flow from the Haag Nunataks into the Weddell Sea Rift System in the Jurassic has previously been proposed382

by Jordan et al. (2017), which would have acted to enhance Weddell Sea Rift System extension.383

5.2 Refining the bounds of the West Antarctic Rift System384

According to the crustal block boundaries of Dalziel and Elliot (1982), the tectonic block in which UKANET385

stations ELSW and KEAL are situated is indeterminate. This region is crucial for revealing any possible386

connectivity with the Weddell Sea Rift System. The overall crustal thickness at the Ellsworth Land stations387

( 30 ± 5 km) is comparable to the neighbouring Haag Nunataks, yet the internal crustal structure features a388

thicker (10-20 km thick) high-velocity likely mafic lower crust. As previously noted, the potential abundance389

of dense mafic lower crust may be responsible for the deep bedrock elevations in the region, whilst the overall390

thicker crust suggests that Ellsworth Land has undergone less extension than the central WARS. The presence391

of extensive mafic underplating in the neighbouring Weddell Sea Rift System has been attributed to plume392

related Jurassic magmatism by Jordan et al. (2017); a similar mechanism may have been responsible for the393
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thick mafic lower crust which we model in Ellsworth Land. An alternative interpretation is that lower crustal394

flow from the Haag Nunataks transferred mafic material not only to the Weddell Sea Rift System but also395

into Ellsworth Land. Were this to be the case then a lateral pressure gradient in the lower crust would have396

to have been present to facilitate upper crustal extension, suggesting that the region has been subject to some397

stretching. The disparity in both crustal thickness and structure with regards to the central WARS suggests that398

the rift system did not substantially propagate into Ellsworth Land. We therefore suggest that there is not a399

direct linkage between the WARS and Weddell Sea Rift System, and that the WARS instead propagated in the400

direction of the Bellingshausen and Amundsen Sea embayments.401

The UKANET - POLENET Mini Array traverse (PIG1 - MA06) crosses from Thurston Island into the West402

Antarctic Rift System, and as such can be utilised to better constrain the northern boundary of the WARS. Fig.403

7 shows the shear wave velocity-depth profiles from the Pine Island Glacier station traverse. At stations in the404

centre of the West Antarctic Rift System (PIG3 - MA05) we find crust with a consistent thickness of 23-25 km,405

whilst at Thurston Island stations (THUR - PIG2) we find a thicker crust of 28-30 km. Our findings therefore406

support the suggestion that the WARS - Thurston Island block boundary lies in the vicinity of the Pine Island407

Rift. A number of previous studies have proposed that the Pine Island Rift is a branch of the WARS (Damiani408

et al., 2014; Gohl et al., 2007; Gohl, 2012; Jordan et al., 2010), and that the region between the Pine Island409

Rift and the Byrd Subglacial Basin is a transitional crustal boundary zone (Diehl, 2008). The gradual decrease410

in crustal thickness that we model from PIG2 to MA01 is supportive of this region being a transitional area411

from Thurston Island to WARS crust. The transition from WARS to Thurston Island crust is more subtle than412

on the opposing flank of the rift system. The sharp change in crustal character and bedrock elevation between413

the WARS and HEW block suggests that this boundary may instead be more fault controlled than the Thurston414

Island-WARS flank.415

Gohl (2012) and Bingham et al. (2012) both suggest that major ice streams in West Antarctica exploit tectonic416

lineaments created by rifting. Our estimates of crustal thickness support the suggestion that Pine Island Glacier417

could be steered by WARS rift structures. Were the Thurston Island-WARS boundary to be in the vicinity of418

the Pine Island Rift then that would imply a ∼200 km shift from its previously accepted position in Dalziel419

and Elliot (1982). If the WARS is indeed 200 km wider, then there are implications for modelling plate circuit420

closure and for the total amount of extension encompassed by the WARS. The new boundary we propose also421

suggests that the WARS extends further towards both the Amundsen Sea and Bellingshausen Sea embayments422

than previously thought (Fig. 6).423
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5.3 Estimating subglacial sediment thickness424

Fig. 6 features a map of all stations at which we identify low velocity subglacial layers in the forward mod-425

elling. Subglacial layers of this thickness (0.1-0.8 km) and shear wave velocity (0.4-1.6 km/s) are indicative of426

unlithified, soft and possibly saturated sediment (Winberry and Anandakrishnan, 2004). We find low velocity427

subglacial layers at 10 stations within the WARS, Thurston Island and Ellsworth Land, with the majority at sta-428

tions in the vicinity of the Byrd Subglacial Basin and Bentley Subglacial Trench. These deep subglacial basins429

could provide ample accommodation space for the accumulation of relatively thick subglacial sediment, which430

in turn may have provided the basal till to accelerate regional ice flow. The abundance of soft unlithified sedi-431

ment in the central portion of the WARS could well have been a contributing factor for the fast flow observed432

in the Thwaites Glacier region (Rignot et al., 2011). Soft deforming till layers have been identified in the upper433

reaches of Thwaites Glacier using seismic reflection (Muto et al., 2019), much of which may have been sourced434

from the thick subglacial sediment accumulations we model in the Byrd Subglacial Basin. Subglacial sediment435

has also been identified within the deep basins of the central WARS by Pourpoint et al. (2019), who used a436

joint inversion of receiver functions, Rayleigh and Love dispersion, and Rayleigh wave horizontal-to-vertical437

amplitude ratio. Pourpoint et al. (2019) modelled sediment to be 1.5 km thick beneath station MA08, and >0.5438

km thick at stations DNTW, UPTW, MA06 and MA07.439

In addition we find 0.1-0.2 km thick subglacial sediment present in the vicinity of Pine Island Glacier at PIG2440

and PIG4, another region of fast ice flow. Large-scale sedimentary deposits have previously been identified441

using seismic reflection (Brisbourne et al., 2017), and aerogravity models indicate there could be ∼0.8 km442

thick sediments near the glacier’s grounding line (Muto et al., 2016).443

Another region in which we infer the presence of low velocity subglacial sediment is at stations ELSW and444

KEAL (Fig. 6), both of which lie upstream of the Rutford Ice Stream and Evans Ice Stream. The Rutford Ice445

Stream flows at a velocity up to ∼400 m a−1 (Gudmundsson, 2006), yet it has a gentle surface slope relative446

to other fast flowing West Antarctic ice streams suggesting that the basal driving stress is low (e.g. MacAyeal447

et al., 1995). To accommodate such a high velocity with a low basal driving stress the basal friction must also448

be low, implying that soft sediment must be present. A number of studies have confirmed the presence of large449

scale sedimentary bedforms beneath the Rutford Ice Stream, using both seismic surveying and ice penetrating450

radar (King et al., 2007; Smith and Murray, 2009). In the Evans Ice Stream, Vaughan et al. (2003) measured451

acoustic impedance to reveal that the entire bed of the ice stream consists of dilated sediment. The 0.1-0.3452

km thick low velocity sedimentary layer that we model at ELSW and KEAL could have provided an upstream453

source for the subglacial sediments identified beneath the Rutford Ice Stream and Evans Ice Stream, which has454

subsequently acted to accelerate flow.455
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6 Conclusions456

Through a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion data, we image457

crustal shear velocity structure at 33 seismic stations across West Antarctica. The thinnest surveyed crust in458

our study lies within the West Antarctic Rift System (18-28 km), bounded by thicker crust in the neighbouring459

Haag-Ellsworth Whitmore (30-40 km), Antarctic Peninsula (30-38 km) and Thurston Island (28-30 km) blocks.460

We find the highest relative proportion of likely mafic lower crust to potential felsic/intermediate crust in the461

West Antarctic Rift System, and especially in the neighbouring Ellsworth Land. By contrasting the crustal462

structure at Thurston Island and the West Antarctic Rift System, we suggest that the boundary between the463

two blocks lies in the vicinity of the Pine Island Rift, ∼200 km north of its previously inferred position from464

Dalziel and Elliot (1982). In addition, from high frequency receiver functions we infer that 0.1-0.8 km thick465

low seismic velocity subglacial sediment is present beneath 10 stations within the West Antarctic Rift System,466

Thurston Island and Ellsworth Land. Thick subglacial sediment accumulations of this type could have acted as467

a source for the soft sediment layers identified beneath many fast flowing West Antarctic ice streams, reducing468

basal friction.469
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Tables698

Table 1: Crustal thickness estimates from present and previous studies.

Crustal thickness range (km)

Crustal Block This study Other studies Reference

West Antarctic Rift System 18-28

21-31 Winberry & Anandakrishnan (2004)

20-25 Jordan et al. (2010)

20-28 Baranov & Morelli (2013) and references therein

25-28 O’Donnell & Nyblade (2014)

21-28 Chaput et al. (2014)

19-29 Ramirez et al. (2016)

20-30 Shen et al. (2018)

Thurston Island 28-30

24-26 Jordan et al. (2010)

24-28 Baranov & Morelli (2013) and references therein

∼25 O’Donnell & Nyblade (2014)

28-35 Shen et al. (2018)

Haag-Ellsworth Whitmore 30-40

30-40 Baranov & Morelli (2013) and references therein

28-36 O’Donnell & Nyblade (2014)

30-37 Chaput et al. (2014)

35-38 Ramirez et al. (2017)

30-43 Shen et al. (2018)

Antarctic Peninsula 30-38
34-44 Baranov & Morelli (2013) and references therein

29-34 O’Donnell & Nyblade (2014)
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Figures699

Figure 1: Maps of our study area in West Antarctica. A) BEDMAP2 bedrock topography (Fretwell et al.,

2013) with the crustal block boundaries of Dalziel and Elliot (1982) displayed with black dashed lines. The

crustal blocks are as follows: Antarctic Peninsula (AP), Thurston Island (TI), Marie Byrd Land (MBL), Haag-

Ellsworth Whitmore block (HEW). Also included are West Antarctic Rift System (WARS), Weddell Sea Rift

System (WSRS), Ellsworth Land (EWL), Amundsen Sea Embayment (ASE) and Bellingshausen Sea Embay-

ment (BSE). Major regional structures shown with white dashed lines are the Byrd Subglacial Basin (BSB),

Bentley Subglacial Trench (BST) and Pine Island Rift (PIR). B) A map highlighting the stations used in this

study. The UKANET seismic network (2016-2018) is shown in green triangles, the POLENET/ANET Mini

Array (2015-2017) in orange and POLENET/ANET longer term (2008 -) stations in red.

27



Figure 2: 2 Hz maximum frequency radial receiver functions recorded from 2016-2018 at station PIG1 (Figure

1) binned by backazimuth every 10° and slowness every 0.001 s/km. A stacked trace containing 134 individ-

ual receiver functions after quality control is displayed above. PIG1 has 1.2 km of underlying ice (Fretwell

et al., 2013), as a result the relative signal contribution in the first 6 s from the crustal PsMoho phase and ice

reverberation is difficult to constrain.
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Figure 3: (a) Subglacial sediment forward modelling results for station PIG4 (Figure 1). The best fitting

model is denoted by a white star, and 95% confidence bounds are shown as dashed white line. (b) Best fitting

forward modelled receiver functions. The stacked receiver function is shown as a solid black line, and synthetic

receiver functions from within the 95% confidence bounds are shown in grey. (c) Bootstrap analysis to estimate

uncertainty of subglacial sediment forward modelling following the method of Chaput et al. (2014). We produce

5000 bootstrapped receiver functions from the data and compute misfit with respect to the best fitting models

from part (a). Assuming the misfit has a normal Gaussian distribution we can then estimate 95% confidence

bounds.
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Figure 4: Joint inversion results from station PIG4. (a) Receiver functions with corresponding model results

(red) stacked into narrow ray parameter (p) bins at two maximum frequencies (0.5 Hz and 2 Hz). Stacked input

receiver functions are in black and the resulting inverted receiver functions are in red.(b) Rayleigh wave phase

velocity dispersion curve inversion results. The input Rayleigh wave phase velocity dispersion curve is in black

and the inversion result in red, showing a good fit within the ±0.05 km/s uncertainty limits. (c) The shear

wave velocity-depth profile produced by the joint inversion. The initial model is in black and the final Vs-depth

profile produced by the inversion is shown in red. Models produced by 500 bootstrap iterations are displayed

in grey solid lines, indicating that Vs is generally constrained to within ±0.15 km/s. Dashed and dotted lines

are added at 4.0 and 4.3 km/s respectively to indicate the layers of likely mafic lower crust.

30



Figure 5: A summary of our Vs-depth profiles at each station, grouped by crustal block. We also group

stations in the Ellsworth Land (EWL) region, given the ambiguity as to which block these stations belong.

Each crustal column is coloured by modelled shear wave velocity, with red colours indicating likely felsic-

to-intermediate crust and blue representing likely mafic lower crust. Upper mantle is displayed in dark blue,

subglacial sediment in green, and ice in white. Our interpreted transition from felsic/intermediate crust to mafic

lower crust is indicated with a horizontal grey line at each station, and our interpreted Moho with a yellow line.

We include the ice thickness from Fretwell et al. (2013) and the subglacial sediment thickness identified in the

forward modelling stage.
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Figure 6: (Left) A map of our crustal thickness estimates at each station (circles) superimposed on the ambient

noise derived crustal thickness map of O’Donnell et al. (2019a). The crustal block boundaries of Dalziel and

Elliot (1982) are in dashed black except for the Thurston Island-WARS boundary which is dotted, here we have

redrawn the Thurston Island-WARS boundary to encompass the thinner crust we have imaged at stations PIG3,

PIG4 and MA01. (Right) A map of stations at which we infer subglacial sediment from forward modelling,

coloured by layer thickness over BEDMAP2 bedrock topography. All subglacial sediment that we identify in

this study lies in the WARS and Ellsworth Land, predominately at stations in the vicinity of the Byrd Subglacial

Basin and Bentley Subglacial Trench. Major ice streams roughly outlined in red dashed are the following:

Evans Ice Stream (EIS), Rutford Ice Stream (RIS), Pine Island Glacier (PIG) and Thwaites Glacier (TG).
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Figure 7: Shear wave velocity structure from the UKANET-POLENET/ANET Mini Array traverse stations

which sample the transition from the Thurston Island (TI) block into the WARS. Our interpreted Moho is

shown by a horizontal dashed black line at each station, and we add vertical dashed and dotted lines at 4.0 and

4.3 km/s respectively to indicate the transition from lower crustal to upper mantle velocities. We interpret the

Thurston Island-WARS transition to lie in the vicinity of PIG3 as shown by the dashed box. Within Thurston

Island we find a ∼28 km thick crust, whilst in the WARS we find a 3 − 5 km thinner crust with a higher

proportion of fast (4.0-4.3 km/s) lower crust.
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