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Efficient Parallel Generation of Partitioned, Unstructured Meshes

D C Hodgson & P K Jimack



Abstract

In this paper we introduce a method for generating unstructured meshes in parallel
which are partitioned in a “good” way. When solving a partial differential equation on a
parallel distributed memory machine, the mesh should be decomposed so that the commu-
nication requirement of the numerical solver is minimised and also the amount of work to
be performed on each processor is approximately equal. Most previous work in this area
has concentrated on partitioning a mesh that has already been generated. We introduce a
method which actually generates the partitioned mesh in parallel whilst producing a good

quality decomposition and compare this method with other approaches.

1 Introduction

In this paper we are concerned with the generation of unstructured meshes for use in the
finite element analysis of structural problems on parallel distributed memory computers.
At present the use of distributed memory computers, such as transputer arrays or the
Intel iPSC/860 for example, is less widespread than that of shared memory multiprocessor
machines (such as the Cray family) for solving very large problems. The main reason
for this is possibly because of the need to redesign “conventional” algorithms to take
full advantage of the features offered by distributed memory machines. However the
relative inexpensive of these machines together with their versatility means that their
use is beginning to grow.

The use of unstructured meshes has a number of advantages over structured meshes
but in particular they allow the straightforward representation of geometrically com-
plicated domains. In this paper we consider the parallel generation of unstructured
triangulations in 2-d however all of the concepts carry over to 3-d without difficulty. The
usual approach to solving finite element problems in parallel on a distributed memory
machine is to decompose the mesh into a number of subdomains and to allocate each
of these subdomains to one processor. This decomposition of the elements of the mesh
should have two main features. Each subdomain should contain approximately the same
number of node points so as to achieve “load-balancing” (note that the bulk of the work
in a typical code comes in solving linear systems of the form Ku = f and so the number
of nodes in the mesh is more significant than the number of elements). Also, the number
of node points which lie on the boundary between different subdomains (we will refer to
such points as “interpartition boundary vertices” or IBVs) should be kept to a minimum
since the amount of interprocessor communication required to solve the systems Ku = f
will depend heavily upon this number.

There has been a considerable amount of research into the problem of partitioning an
existing mesh across distributed memory in a manner compatible with the above (see for
example [1, 2] and references therein). However this is a far from ideal approach since if

we wish to solve very large problems in parallel we do not want the mesh generation itself
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to be a serial bottleneck. We therefore study the problem of generating a partitioned
mesh in parallel.

In order to create a mesh in parallel, the domain must be split up into subregions
which can then be meshed simultaneously. Some parallel mesh generators, such as [3,
4], simply farm out subregions for gridding without distributing these in an intelligent
manner for the solution procedure. If kept in a distributed fashion then the generated
elements may be unevenly shared amongst the processors and there is no guarantee that
any of the subregions allocated to a single processor will in fact be connected to one
another. Although such methods may be able to generate grids in parallel reasonably
efficiently they have the disadvantage that they cause the generation and partitioning
to be performed as separate stages with all the communication overheads associated
with such an approach. A more desirable technique is therefore to join these stages by
distributing subregions in such a way that the total number of node points generated
when triangulating each processor’s subregions will be approximately the same, and that
the union of the subregions allocated to each processor forms a “good” subdomain. We
describe such an approach and contrast it with the techniques of Topping and Khan ([5])
and Lohner et al ([6]), which have a similar philosophy.

In section 2 we describe how the parallel mesh generator works. Section 3 explains
implementation details and in section 4 we show how effective this technique is for a
number of test problems by comparing the results obtained against those when using the
traditional approach of partitioning an already generated mesh, applying a measure of

partition quality discussed in [1].

2 The Parallel Mesh Generator

Parallel mesh generation is usually performed by splitting the domain up into subregions
which can then be meshed simultaneously. There are numerous strategies for creating
subregions of the domain, such as simple Cartesian splitting, quadtree splitting or using
a background grid ([6]). We use the background grid method as this gives us an initial
mesh to solve on and use the code in an adaptive framework. Elements of the background
mesh are assigned to each processor which can then either be meshed individually or the
subregion defined by the union of the elements can be meshed. In order to load balance
the parallel mesh generation, the background grid elements should be distributed in such
a way that the amount of meshing that each processor has to perform is approximately the
same. By estimating the number of vertices which will be generated within each coarse
background element, the background grid can be decomposed so that the generated knot
points are evenly distributed amongst the subdomains/processors, so ensuring the load
balancing of the numerical solver.

When producing meshes in parallel it is essential to ensure that the generated vertices
2



coincide along interpartition boundaries, i.e. two processors sharing a common subdo-
main boundary should have non-conflicting information on the number and positions of
any vertices lying on that boundary. This may be achieved easily if the knot points are
generated along background element edges before the grid is distributed for the parallel
meshing. The information concerning the number of vertices along background grid edges
proves useful since it may be used to estimate the amount of communication required for
a given decomposition of the background mesh. It is therefore possible to distribute this
initial mesh so that the parallel p.d.e. solver will be load balanced and its communication

costs minimised when solving on the final generated grid.

2.1 The Mesh Generation Method

The mesh generator that our parallel technique is based upon is a two-dimensional version
of Weatherill’s algorithm ([7]). The method uses Delaunay triangulation to mesh points
that may be created in a number of ways. Mesh density is governed by point distribution
values associated with the generated vertices which define the desired spacing around each
point. Given a discretised boundary of a domain the algorithm can create internal points
driven by the distribution of the boundary vertices. The resulting mesh is boundary
conforming and has no additional points added along edges of the domain. This is the
method that is used to produce the initial, background grid.

In order to create the desired fine mesh, the point spacing is controlled by the back-
ground mesh. Each coarse grid vertex is given a point distribution value and the values
for generated nodes are obtained from the interpolated spacing from this background
mesh. If coarse mesh elements are to be treated as separate subdomains (and therefore
meshed individually) then this interpolation is simple. However, if the subregions are
defined by the union of the background elements allocated to each processor, the coarse
grid triangle in which the newly formed vertex is generated, must be first established
(See [8] for an efficient search algorithm).

Given a subdomain boundary and the necessary background grid information, Weath-
erill’s generation procedure can be used to mesh this subdomain, producing a suitable
point distribution throughout. Since the generator does not produce new points on the
boundary of the domain it meshes, boundary nodes must first be created either along
either all subdomain edges or all coarse grid edges (if each coarse grid element is to be
meshed) before invoking the mesher. For an edge, 7, of the background grid we determine

the number of fine mesh edges (N;) we require along it by using the formula

l.
N, = : 1
\‘Q(SI;&J ( )

in which [; is the length of the edge ¢, 61, 62 are the point distribution values at either end

of the edge and « is the value used to control global grid point density ([7]). In order to
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position the vertices along a coarse grid edge in accordance with the point distributions
at its ends, we use a similar technique to Khan & Topping [4] but force the number of
created edges to be NV;. The following C code is used to determine the length of each fine

mesh edge segment.

/* 1 = length of coarse element edge */

/* pdl = larger point distribution value */
/* pd2 = smaller point distribution value */
/* num = no. of fine edges to be generated */
/* ALPHA = global point density factor */

pdl *x= ALPHA;

pd2 *x= ALPHA;

dx = pdi;

12 = 1;

i=0;

while(i++ < num){
11 = 12 * dx / (12 + dx - pd2);
edgel[i] = 11; /* Save length of each edge */
12 -= 11;
dx = (pdl * 12 + pd2 * (1 - 12)) / 1;
b

The points are generated starting from the end which has the larger point distribution
value. Vertices are positioned so that the length of each corresponding edge is made equal
to the size of the interpolated point distribution value at that vertex. The edges generated
in this way do not extend the full length of the background edge. This problem is rectified
by distributing the remaining distance over the created edge segments in proportion to
their lengths.

Weatherill’s method was chosen to perform the mesh generation for a number of
reasons. A primary requisite was for a method which would not create additional points
on the subdomain boundary. This fact means that two processors, whose respective
subdomains share a common boundary, do not produce two different discretisations of the
same boundary. Another requirement this generator satisfies is that it can be controlled
to place vertices where most needed in the domain. The mesh generation technique also
proves to be very efficient and the run time grows approximately linearly with the number
of points generated ([7]). This means that if the coarse mesh can be distributed so that
each processor will create a similar number of vertices (see next section), the parallel

generation procedure should be well load balanced.



2.2 The Partitioner

The partitioning method should be able to decompose the background grid so that each
subdomain will have an equal number of vertices generated in it. This will not only
equalise each processor’s meshing time, but will also aid load balancing of the parallel
p.d.e. solver when solving on the final grid. In addition to this, the partitioner should
minimise the amount of communication required in the solution phase.

We may express this partitioning problem in terms of graph theory by looking at a
weighted dual graph of the background mesh. The dual graph represents each element
by a vertex and has neighbouring elements connected by an edge. Associated with
each graph node is a weight stating the number of mesh points that will be generated
in the corresponding coarse grid element. Obviously it is impossible to know a prior:
the number of vertices that will be created within a background element and so the
approach used here is to set the graph node weights by using an accurate prediction (see
section 2.3). The dual graph edges are weighted as well; with the value of the number
of fine mesh edges that are to be placed along the corresponding background edge (i.e.
N; from equation (1)). This weight will relate to communication costs when solving the
partial differential equation on the decomposed grid. The problem that must therefore
be solved is to split the weighted dual graph into subgraphs whose total nodal values are
approximately equal, while minimising the sum of edge weights cut (the cut-weight) by
the partition.

A common and well-liked approach to solving the unweighted graph partitioning prob-
lem is the recursive spectral bisection method (RSB [2]). Although extremely computa-
tionally expense (requiring the calculation of an eigenvector of an n x n matrix, where
n is the number of elements in the grid), the technique does perform better than most
algorithms in minimising the cut-weight. (In [9] & [10] two techniques are explained for
speeding up the method using a multi-grid type approach). This computational expense
is not considered to be problematic for our purposes however, since the partitioner will
only be required to decompose relatively coarse background meshes. In [11] Hendrickson
& Leland suggest an extension of the RSB method to be able to handle the weighted
partitioning problem and hence solve the background grid allocation stage for the parallel
mesh generator.

Hendrickson & Leland consider the bisection problem as that of a discrete optimisa-

tion, which may be written

1
minimise — Z wg, (T — z;)?

e—f

subject to E:z:ini =0,

where z; = £1, corresponding to element ¢ being in one or other subdomain, wy, are
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the nodal weights, wg,, the edge weights and the first summation is over the edges of
the dual graph whilst the second is over the V vertices. Defining the weighted Laplacian
matrix L of the dual graph as

L.~ { —wg,, if vertices 1 & j are connected
ij

ZX:1k¢i wg, ifi=7
the problem may be written in matrix terms as

... 1 i
minimise ZQTLQ subject to QTQN =0, z,==1.

Due to the complexity of this problem the variables z; are allowed to be continuous rather

than discrete. By introducing y , s and D, where

1
1 = Ly iy 91 — i d D=d — |
Y = T\ /Wy, , $i = /Wy, an iag ( ’wNi)

it can be rewritten as

minimise QTSQ subject to  yTs =0 (2)

(where S = DT LD), neglecting the factor of one quarter.

We can find a solution to (2) in a similar way to RSB, by finding the eigenvector
u, corresponding to the smallest positive eigenvalue Ay of S (see [11]). As with RSB
this computation is best performed by a version of the Lanczos algorithm ([12]). The

partitioning vector z we require is therefore given by

Uz,

x; = :
W,

We note that since the problem is solved using continuous variables, the property that
x; = £1 is lost and therefore the solution obtained will not be optimal. The partitioning
is made by sorting the V vertices of the dual graph according to the size of their entry
in z and placing elements represented by x!:¢=1...n in one subdomain (with z’ being
the sorted vector) and those by z!:n 4+ 1...V in the other, with n chosen so that

n 4

Zwﬁ\h o Z wﬁ\h‘

i=1 i=n+1
(where w. is the weight of the node represented by z!) is as small as possible. The effect
of this is to produce a decomposition of the mesh into two subdomains of approximately
equal weight which has a relatively small number of vertices lying on the boundary
between the two subdomains.

Rather than use a spectral technique, in [6] Lohner et al. employ a simple graph-

based, “wavefront” type of scheme to perform the background grid splitting. Although
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very computationally cheap, their method appears to have two inherent drawbacks. The
algorithm proceeds by choosing suitable elements until a subdomain’s total nodal weight
exceeds the desired value of & S¥, wy, ,where P is the required number of subdomains.
Clearly a subdomain’s weight could be significantly larger than desired if, for example, the
last element allocated to it has a very large weight, and the last subdomain to be created
is likely to have a much smaller total weight than the others. The spectral method should
not have such a drawback since the load balancing constraint is explicitly included in the
formulation of the partitioning problem, thus ensuring more evenly weighted subdomains.
Lohner’s partitioner creates background grid subdomains which have good aspect ratios
but fails to take into consideration the number of vertices that will be created along
interpartition boundaries and could therefore produce coarse grid decompositions which
lead to high communication costs for the solver.

Topping and Khan [5] use a genetic algorithm to tackle the background grid parti-
tioning problem. This method explicitly includes the load balancing constraint and also
takes into account interpartition boundary edges in order to minimise the cut-weight but
is, however, very computationally intensive. Due to this fact, their method is best used
with very coarse background meshes. Since the weighted RSB technique is much faster,
we may have much finer background grids which allows us to produce well-balanced par-
titions even when running on a large number of processors. Allowing finer background
meshes means being able to handle domains which have complex boundaries and also
gives greater control over mesh density of the final grid. Using a finer initial grid, when
creating a mesh of a particular size, means that each background element will contain
fewer generated triangles, thus increasing the likelyhood of being able to produce a par-
tition which contains a small number of IBV’s.

When scaling up to a massively parallel system the partitioning stage is likely to
become a bottleneck due to the fact that a sufficiently large background mesh will be
required. In order to avoid this problem the partitioner itself could be parallelised (see
[13] for a parallel implementation of standard RSB). It would then be necessary to de-
termine the number of processors required to perform the partitioning most efficiently.
An alternative approach is to employ a serial multi-level version of the weighted spectral

algorithm (see [10]) which proves to be reasonably inexpensive.

2.3 The Estimator for Vertex Weights

In order for the background grid to be decomposed so that the generated subdomains
contain an equal number of vertices, we need to know the number of points that will
be created within each background element (i.e. wy;). Since it is not possible to know
this information without actually performing the meshing, we must use an estimation

method to predict wy,. (We choose to load balance knot points rather than elements
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since a typical iterative FEM solver ([1]) requires this.)
The estimation method that we use is the 2-D equivalent of the formula used to decide

the number of points/edges to be placed along each background element edge (equation

(1)). For an element ¢ of area A; with point distribution values (p.d.v.’s) é;,, é;, and &;,

at its vertices, the formula
Ai
wN; = 2 (3)
8iy +6iy +6;
(a 1 32 3 )

(where « is the global point density control value) gives an estimate of the number of

knot points that will be generated within it. This method is not particularly designed to
predict the actual number of points created but instead to produce a value proportional to
the actual one, since this is all that is required. Experimentation shows that (3) accurately
predicts numbers of generated points when an element’s three point distribution values do
not differ too greatly. For example, figure 1 shows the performance of the estimator when
the point distribution values of all the coarse grid vertices of a test mesh are set to the
same constant. Due to the variation in the sizes of coarse grid elements, a wide ranging
number of fine mesh vertices are created in the background elements. The (almost) linear
plot shows that the predictions are proportional to the actual values. Using the same
coarse test grid, figure 2 shows the results when there is a large variance between the
point distribution values at the vertices of some of the elements. As can be seen the
performance of the estimator is severely impaired.

In order to make more accurate predictions where the point distribution values have a
great variance, the element in question can be “virtually” refined by placing an imaginary
vertex at its centroid and the value of wy, is then taken as the sum of the estimates for
the three child elements. It can be seen that this approach may help since the point
distribution values of each child element will vary less. By employing this technique and
“virtually” refining a background element a number of levels, the performance of the
estimator is greatly improved. The estimate for a coarse grid element when applying
increasing levels of virtual refinement does converge, as shown in figure 3 for a typical
example. Figure 4 shows the performance of the estimator when using virtual refinement
for the same test problem as shown in figure 2.

In their method Topping et al.[5] choose to use a neural network to predict the number
of fine mesh triangles which will be created within a particular background element. This
technique proves to be very accurate in its predictions but requires the neural net to be
trained with a number of test meshes. In [14] they find that the predictor becomes very
unreliable when having to predict values greater than those it had been given during
the training stage and so it is vital to train the neural net on similar sized problems to
those for which it is intended. It is also found that they require two neural networks
for the size of problems they are tackling, one to predict small numbers and the other

for the prediction of much larger values (up to 1,226 fine grid elements per background
8
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Figure 1: Performance of estimator when p.d.v.’s are constant: Each point in the graph repre-
sents a coarse grid element. The graph shows the actual number of vertices generated within

each coarse element plotted against the estimated value.
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element). The estimator we use, although not as accurate, appears to be able to handle
much larger predictions reasonably well, even when the background grid elements are
not well shaped. We emphasise that the most important feature of the predictor is to
produce an estimate which is proportional to the actual value (shown by the linear plot

of figure 4) rather than the accuracy of the prediction.

3 Implementation Details and Issues

In this section we address the issues concerning the implementation of the mesh genera-
tion method on a parallel machine and discuss details of our implementation.

Given the boundary points of a domain and the associated connectivities, an initial
coarse, or background, triangulation is obtained using the Delaunay mesher ([7]). This
meshing algorithm creates points in such a way that the boundary point distribution is
extended into the domain in a smooth manner. The number of elements produced can be
controlled by adjusting the global point density value « in order to create a background
grid of a suitable size. The background mesh should contain a sufficient number of
elements so that the partitioner is able to produce well balanced subdomains. As the
number of processors is increased, the number of background elements may also need to
be made greater if the partitioning is to remain well balanced.

To control the creation of the fine mesh each vertex of the background grid is assigned
a value which dictates the desired spacing about that point. These point distribution
values can be derived by various means. Using the generator in an adaptive context, the
distribution values can be determined by solving the finite element problem on the coarse
mesh and estimating the errors over each element ([4]). In order to generate a suitable
mesh for an initial value problem the point distribution values may be set based upon the
initial data. The generator can be used to produce meshes in which the point creation
is driven by the boundary point distribution by leaving the point distribution values as
they are after the background grid generation stage and applying a smaller value of «
for the subsequent production of the fine mesh. If the desired distribution of vertices in
the final grid is known a priort, then the point distribution values can be set by hand or
by using a suitable function. We use this latter approach for the purpose of testing the
method here.

In our implementation the background mesh creation, the prediction of numbers of
generated points and the partitioning stage are all carried out on a single, master pro-
cessor. Once the background grid decomposition is known, the coarse grid elements are
distributed to the processor to which they have been assigned. The discretisation of the
subdomain boundaries is performed in parallel with each processor generating the points
along its entire subdomain boundary. There is no problem with vertices generated by two

different processors not coinciding along the same background edge, since the method
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used to position the nodes (see section 2.1) creates a unique discretisation of that edge
as defined by the point distribution values at its ends. By generating vertices from the
end of the edge which has the larger point distribution value, or the end at which the
background node has the greater global node number if the distribution values are equal,
it is ensured that exactly the same floating point operations are performed by the proces-
sors in question, so producing no discrepancies in the coordinates of the shared vertices,
provided an homogeneous parallel system is used.

The fine grid vertices are numbered locally to the processor on which they are created.
This does not pose any problems since for a typical parallel finite element solver (see for
example [1]) a global numbering scheme of vertices and elements is not required, however,
a data structure must be built which gives information concerning data transfer across
interpartition boundaries. Using the parallel solver in [1] each processor needs a list of
local vertices which are shared with neighbouring subdomains. For the correct updating
of values associated with interpartition boundary vertices, two processors with a common
subdomain boundary must have the shared vertices listed in the same order. Such a
data structure can be built quite simply when using our mesh generation approach: two
processors sharing a common interpartition boundary have their IBVs listed with the
coarse grid vertices first followed by, for each background interpartition boundary edge,
the fine mesh vertices along it. To achieve consistent node orderings the coarse grid
vertices and edges on each processor are listed in the same order as the global node and
edge numberings respectively (this is performed on the master process) and the fine mesh
vertices created along subdomain interface edges are listed in order from the end which
has the greater coarse grid global node number.

The fine mesh created does not strictly conform to the Delaunay criterion because
of the constraint that the interpartition boundary edges must naturally appear in the
grid. However, each subregion (either a coarse grid element or a whole subdomain) is
Delaunay conforming. The complete Delaunay structure could be recovered once the
parallel meshing has taken place but would require a certain amount of inter-processor
communication. Doing this would also then create the need to assign the newly formed
elements to processors, thus causing extra computation and communication. Since the
original background mesh is Delaunay conforming, the subdomains produced should be
of a reasonable shape and therefore we do not bother to Delaunay triangulate across
subdomain boundaries or background grid edges.

The final stage of mesh generation is that of mesh smoothing. A Laplacian filter
([15]) is used to perform the smoothing which alters the position of each grid point (v,)

internal to the whole domain according to

m

w
n+l _ n n n
vt =0+ —> (of — 1)

=1
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where m is the number of neighbouring vertices and w is a relaxation parameter. In order
to perform the smoothing calculation for interpartition boundary vertices, communication
is required between processors sharing common subdomain boundaries. The amount of
communication is strongly related to the number of IBVs, so a good partitioning of the
background mesh will not only aid in minimising the amount of communication in the
parallel solver but will also lower the cost of the smoothing operation. An alternative
approach is to simply apply the smoothing calculation to those vertices on the interior
of each subdomain which has the advantage that no inter processor communication is
required. When choosing to mesh individual background grid elements, rather than the
subregion defined by the union of a processor’s elements, if the coarse grid/fine grid
hierarchy is required to be maintained (e.g. for domain decomposition preconditioning
purposes) then the smoothing should only be performed on the grid points internal to
each background element. Assuming the initial coarse grid is smoothed this should be

perfectly adequate.

4 Evaluation

To test our parallel mesh generator, the above algorithms have been impelmented on
an Intel iPSC/860. Two sample domains were chosen to test whether the method could
perform well on example geometries. The background grids created contain differing
numbers of elements depending on the number of processors the parallel mesh generation
was to be executed on. Different functions were used to assign the point distribution
values to coarse grid vertices in order to simulate regions of stress. Figures 5 and 6 show
example background and corresponding fine meshes for both test domains generated on
four processors. The example meshes shown here consist of only four subdomains in
order to aid clarity, however, an arbitrary number of subregions may be generated. The
first test is a straightforward example on a simple domain in which heavy refinement is
required in three of the corners. The second test is a more contrived example designed
to show that the method can work on difficult domain geometries.

A number of meshes of differing numbers of elements were generated on various num-
bers of processors in order to test the quality of the produced partitions. The two major
factors influencing the quality being the extent to which the partitioning is load balanced
and the cost of the communication required when solving on the distributed mesh.

These two issues are examined in this section together with the effect that any load-

imbalance has on a parallel finite element solver.
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Figure 5: Coarse and refined meshes of Geometry 1 generated on four processors.

14



Figure 6: Coarse and refined meshes of Geometry 2 generated on four processors.
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4.1 Load Balance

In a typical finite element code the largest computational cost in the solution phase is
the linear system solve or solves. Using a conjugate gradient technique, for example, the
cost of each iteration is governed by the number of unknowns, i.e. the mesh vertices.
When solving on a parallel machine each processor should be given the same number
of unknowns thus ensuring that the processors perform the same amount of work. We
therefore evaluate the quality of load balancing achieved with our parallel mesher by
considering the total number of vertices created on each processor. Tables 1 and 2 show
results for a number of large meshes of both test domains. Indicated in the tables are the
number of vertices generated by each processor, the time required for the meshing and
the percentage by which each subdomain’s number of vertices differs from the average.
In the creation of the smaller meshes the difference between the number of points
generated in the subdomains is reasonably small and also the corresponding meshing
times are well balanced. For the larger grids this is not the case. For example, in test
four on domain one there is a difference of 7500 vertices between the processors with
the maximum and minimum values. Although this number appears quite large, in terms
of the percentage it differs from the mean value over the eight subdomains (4+7.8%) it
is not so bad. The percentage differences obtained with our method are comparable in
size to those quoted by Khan [16]. The great variation in the meshing times observed in
the case of the larger meshes can be attributed to our inefficient implementation of the
Delaunay grid generator. Since the execution time of our mesher grows nonlinearly with
the number of vertices created (instead of the linear run-time suggested by Weatherill
[7]) the number of points generated within each background element becomes a factor.
Hence the generation times for two subdomains containing an equal number of mesh
points differ quite considerably if one of the subdomains generated consists of a large
number of coarse grid elements each containing reasonably few fine elements and the
second subdomain has fewer, more densely refined background elements. One would
expect that with a linear run-time implementation of the mesh generator the meshing
time on a processor will be proportional to the number of vertices it creates. Therefore
if the mesh is partitioned so that each subdomain generated contains approximately the
same number of mesh points, the processor’s meshing times should also be well load

balanced.
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Domain 1 Coarse mesh : 1052 elements
Test 1 Final mesh : 25942 elements

Sub. No. vts. | %age diff. | Gen. time

1 6776 +1.4 7.4

2 6595 -14 7.9
Domain 1 Coarse mesh : 1188 elements
Test 2 Final mesh : 79222 elements

Sub. No. vts. | %age diff | Gen. time

1 10235 +0.6 11.5

2 10117 -0.5 11.8

3 10262 +0.9 12.2

4 10077 -0.9 13.4
Domain 1 Coarse mesh : 1206 elements
Test 3 Final mesh : 168590 elements

Sub. No. vts. | %age diff | Gen. time

1 21772 +1.4 24.4

2 21338 -0.6 26.2

3 20917 -2.6 26.8

4 21867 +1.8 31.1
Domain 1 Coarse mesh : 1354 elements
Test 4 Final mesh : 836183 elements

Sub. No. vts. | %age diff | Gen. time

1 52254 -1.3 81.7

2 50071 -5.4 55.0

3 53507 +1.1 80.2

4 49508 -6.5 101.9

) 57097 +7.8 98.8

6 52764 -0.3 72.2

7 53645 +1.3 112.1

8 54685 +3.3 95.0

Table 1: Load balancing results for domain 1.

17




Domain 2 Coarse mesh : 1099 elements
Test 1 Final mesh : 24933 elements

Sub. No. vts. | %age diff | Gen. time

1 6542 +0.4 7.2

2 6484 -0.4 7.4
Domain 2 Coarse mesh : 1193 elements
Test 2 Final mesh : 85343 elements

Sub. No. vts. | %age diff | Gen. time

1 10895 -1.2 11.5

2 10826 -1.9 14.6

3 10778 -2.3 13.7

4 11629 +5.4 13.5
Domain 2 Coarse mesh : 1259 elements
Test 3 Final mesh : 151678 elements

Sub. No. vts. | %age diff | Gen. time

1 19710 +1.4 21.5

2 19660 +1.1 28.5

3 19833 +2.0 23.8

4 18552 -4.6 25.6
Domain 2 Coarse mesh : 1361 elements
Test 4 Final mesh : 615478 elements

Sub. No. vts. | %age diff | Gen. time

1 39757 +1.0 46.2

2 39581 +0.5 52.4

3 39880 +1.3 87.5

4 36569 -7.1 75.6

) 39584 +0.5 70.1

6 40357 +2.5 76.2

7 40950 +4.0 59.6

8 38303 -2.7 61.0

Table 2: Load balancing results for domain 2.
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4.2 Communication Costs

The second issue concerning the efficiency of the parallel solver is that of communication
cost. In order to maximise the efficiency of any parallel method it is required that the
overheads in the computation are kept to a minimum. The overhead is the time spent
not performing useful computation and includes communication and synchronisation ex-
pense. The cost of sending a message from one processor to another is proportional to its
length and therefore we aim to keep the size of any messages communicated down to a
minimum. In a typical parallel p.d.e. solver (e.g. see [1, 17]) communication is required
for any vertices which lie on the boundary between subdomains. A standard measure
of communication cost is thus the cut-weight of the dual graph of the partitioned mesh.
However, this metric fails to take into consideration that local communication between
adjacent subdomains occurs concurrently and so a more accurate figure for communica-
tion expense can be found by calculating the maximum number of IBVs that are held on
any processor (Max Ng) as shown in [1].

The cut-weights and values of Max Np for meshes created by the parallel mesh gen-
erator (PMG) are compared to those values obtained by applying standard partitioning
techniques (recursive spectral bisection, modified recursive graph bisection and recursive
node cluster bisection) to the fine meshes produced. Recursive spectral bisection (RSB)
[1, 2] is the un-weighted version of the partitioner which is employed to perform the
coarse grid partitioning stage of our parallel mesh generation technique. As noted in sec-
tion 2.2, this method is very computationally expensive but does produce superior results
compared to most other approaches. The modified recursive graph bisection (MRGB)
method [1] is a simple and cheap graph-based algorithm which is a modification of the
recursive graph bisection method discussed by Simon [2]. Each bisection begins by find-
ing two approximately extremal vertices of the dual graph and then builds a partition up
around them by forming two sets. Fach set first consists of those vertices which are at
most one edge from an “extremal” vertex, then at most two edges, etc., until all of the
vertices of the dual graph are claimed. Some exchange of data is then done at the end to
ensure that each set is the same size. Recursive node cluster bisection (RNCB) [1] is a
hybrid of RSB and MRGB. It uses the concept of node clusters ([18]) to reduce the size
of the partitioning problem and so decrease the execution time. Two clusters of nodes
are formed by partitioning a fixed percentage of the elements of the grid using the graph
algorithm described above. The two groups of elements which have been built up around
each “extremal” node of the dual graph are then treated as single, high degree, nodes
of a modified graph which may be partitioned spectrally. If necessary extra constraints
can be added to the continuous optimisation problem to ensure that the two high degree
nodes, which represent clusters of finite elements, are forced into different halves of the

partition.
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Problem Cut-weight of final mesh Max Npg in final mesh

Domain | Test || PMG | RSB | RNCB | MRGB | PMG | RSB | RNCB | MRGB
1 1 131 102 116 148 130 101 115 147
1 2 588 - 472 652 423 - 337 453
2 1 99 | 237 298 402 97 | 235 296 400
2 2 591 - 1383 1068 408 - 829 858

Table 3: Partitioning results.

Table 3 shows the cut-weight and Max N values for test cases one and two on both
domains. The RSB results for test two are not obtainable due to the high computation
time and the amount of memory required to perform the calculation. Because of the
vast amount of disk space required to store the larger meshes, the partitioners are not
run on these grids. We note that since the RSB, RNCB and MRGB partitioners balance
elements rather than vertices as the PMG does, these experiments can only give a good
estimate of how the methods compare.

The results show that in terms of minimising communication costs the decompositions
produced by the parallel mesher are competitive with partitions generated by the other
methods. Results on domain one are characteristic of those that we have found through-
out the testing of the method, in that the partitionings are slightly worst than those
produced by RSB and RNCB but are better than the MRGB results. In the tests on
domain two the PMG method, somewhat surprisingly, out-performs all the other meth-
ods by a considerable margin. This may be due to the fact that the imbalance in the
allocation of subdomain elements which the PMG produces allows a partitioning with a
smaller cut-weight to be made.

As larger meshes are produced, and assuming the initial background mesh is kept
the same, there is a possibility that the results obtained using the parallel method may
compare not so favourably since in decomposing the coarse grid the partitioner will have
much less freedom in determining the best bisections compared to a method working on
the final mesh. Hence it may be necessary to increase the density of the background

mesh in order to produce good quality partitions.

4.3 Effect of Load Imbalance on Parallel Solver

In section 4.1 it was seen that our parallel mesh generation method often produces par-
titionings in which the unknowns are allocated unevenly amongst the processors. (We
note that although the decomposition is not perfect, the unknowns are roughly equidis-

tributed.) Here we determine what effect this load imbalance has on a typical parallel
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finite element solver. We look at a parallel Poisson solver (introduced in [1]) which
uses the partitioned matrix method (PMM) to solve the system of linear simultaneous
equations. The PMM ([19]) consists of applying an iterative method, in our case precon-
ditioned conjugate gradients, to the linear system in which the unknowns are reordered
to produce a block-arrowhead matrix. The solver uses diagonal scaling as the precon-
ditioner and is implemented on the iPSC/860. Current research is looking into more
effective parallel preconditioning techniques for use on unstructured grids.

The execution times when solving on the distributed meshes created in test 2 on both
domains are compared against those obtained using the RNCB and MRGB partitionings.
Both the RNCB and MRGB decompositions will be load balanced (exactly in terms of
elements and reasonably well balanced in vertices) but will induce different solution times
due to the extent to which the number of IBVs has been minimised. The following table

shows the results.

Problem Soln. Time (seconds) | No. of
Domain | Test || PMG | RNCB | MRGB Its.

1 2 86.1 84.8 87.6 574

2 2 96.1 96.8 97.5 574

In test two on domain one the RNCB partitioning gives a small reduction in the solution
time over that using the PMG decomposition. The PMG partitioning actually proves
to be better than that of MRGB since the load imbalance in this case is quite small
(40.9% maximum) and the amount of communication required is smaller. In the second
example the PMG decomposition has a much greater imbalance (4+5.4% maximum) but
manages to out-perform the other partitionings because of its much lower communication
requirement. These results show that a reasonable amount of load imbalance is not
prohibitive and that the balance in load is not the sole factor here since communication
requirements in the solver also make a contribution.

Other experimentation has shown this load imbalance to be more significant as is
illustrated below for a mesh of similar size (82376 elements) where the maximum positive

deviation is 19% (which is the worst case we have encountered).

Soln. Time No. of
PMG | MRGB Its.
159.8 150.6 900

Even though the value of Max Np in the PMG decomposed mesh is half that of the
MRGB figure, there is a large difference in the solution times caused by the imbalance
in load. In cases where many more solution iterations are required, for example in non-
linear problems, this degradation in performance will become much more apparent and

therefore needs to be rectified. We shall discuss this briefly in the next section.
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Since with our method the subdomain grids are generated in parallel rather than
by generating the whole mesh in serial and then partitioning it, any small increase in
the solution time when solving on the PMG decomposition over other partitionings is
outweighed by the smaller cost required to generate the distributed mesh. This becomes

particularly apparent when larger meshes are created using more processors.

5 Discussion

The method presented in this paper is able to produce large meshes of complex geometries
in parallel in which the partitions obtained are suitable for efficient parallel finite element
solution. The mesh generation should itself be well load balanced. As we have noted the
method may produce partitions in which some subdomains contain many more vertices
than the others. Such mesh decompositions may, on occasions, degrade the performance
of the parallel solver, as shown in section 4.3, in which case it may be sensible to rebalance
the partitions. The same problem of load imbalance occurs in parallel adaptive remeshing
codes and a number of repartitioning methods have been proposed to solve this dynamic
load balancing problem (e.g., [18, 20, 21, 22]). An additional requirement of such a
method is to keep to a minimum the number of elements which need to be moved from
one processor to another and hence minimise computation and communication overheads.
Since meshes generated with our method are reasonably well partitioned in terms of load
balance and communication requirements, any repartitioning will be achievable relatively
cheaply. In many circumstances exact load balancing may be accomplished by simple
element migration across subdomain boundaries at very little expense.

By meshing individual coarse elements a two level mesh hierarchy is obtained which
may be used for preconditioning purposes. This mesh hierarchy allows the problem to
be structured in such a way that unstructured domain decomposition preconditioners
may be applied in the solution phase. Issues concerning load balancing and rates of
convergence of such techniques are at present being addressed.

Overall we conclude that the proposed method performs as well as any decomposition
approach that we have considered but has the advantage of allowing the generation of
the mesh to be performed in parallel in such a way that the entire mesh never has to be
stored on a single processor and without the need for a large amount of interprocessor

communication.
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