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Abstract 

 

One of the nanowire characteristics is its preferred elongation direction. Here, we investigated the impact 

of Si substrate crystal orientation on the growth direction of GaAs nanowires. We first studied the self-

catalyzed GaAs nanowire growth on Si (111) and Si (001) substrates. SEM observations show GaAs 

nanowires on Si (001) are grown along four <111> directions without preference on one or some of them. 

This non-preferential nanowire growth on Si (001) is morphologically in contrast to the extensively reported 

vertical <111> preferred GaAs nanowire growth on Si (111) substrates. We propose a model based on the 

initial condition of an ideal Ga droplet formation on Si substrates and the surface free energy calculation 

which takes into account the dangling bond surface density for different facets. This model provides further 

understanding of the different preferences in the growth of GaAs nanowires along selected <111> directions 

depending on the Si substrate orientation. To verify the prevalence of the model, nanowires were grown on 

Si (311) substrates. The results are in good agreement with the three-dimensional mapping of surface free 

energy by our model. This general model can also be applied to predictions of nanowire preferred growth 

directions by the vapor-liquid-solid growth mode on other group IV and III-V substrates. 
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I. INTRODUCTION 

The use of nanowire (NW) structures as building blocks for optoelectronics integration and quantum 

computation has attracted a widespread interest due to their smaller footprint and hence the potential to 

realize a high density of devices per wafer. With continuous efforts on improving NW growth over the last 

decade, high-quality III-V NWs have been achieved, mostly on (111) substrates along the vertical growth 

direction.[1–10] Recently, the bottom-up NW networks deriving from the vertical NWs have been studied 

as promising candidates for applications in topological quantum computation.[11–14] Among several 

methods of NW networks formation, NW networks with spatial structures can utilize more spatial volume 

compared to planar NW networks. Currently, there are three methods to form NW networks with designed 

spatial structures. The first one is to grow branched NWs, whose successful demonstration is done by a 

multistep nanocluster-catalyzed VLS process. The difficulties are the controllability of the structural 

complexity, achieving composition uniformity, and higher yield.[15,16] The second one is based on the 

controlled tilting of the NW growth directions by tuning the growth conditions. However, this method is 

ineffective in producing NW networks. Since to form an interconnect, two adjacent NWs need to be tilted 

towards each other, which requires a non-rigorous condition allowing multiple growth directions to 

happen.[17,18] The diverse and less-controlled growth directions will lower the probability of the formation 

of NW networks. The third method is based on textured, i.e. patterned, substrates. On such substrates, the 

walls of patterned trenches face towards each other, which allows NWs with selected growth directions 

with high unity on both walls to cross and form networks. As a result, the third method has shown optimum 

reproducibility.[19–23] Therefore, the substrate/facet orientation-determined growth direction of NWs is 

of significance for the realization of rationally designed NW networks with an increased device density and 

enhanced spatial complexity. It will benefit from a systematic and exhaustive study of the influence of the 

Si substrate orientations on the III-V NW growth direction, including the technologically relevant on-axis 

Si (001) substrates. 

For a better understanding of NW growth directions on Si substrates, investigation of the interfaces of 

droplet/substrate and droplet/NW is crucial. At the interface, two critical factors influence the growth 

direction of semiconductor NWs by vapor-liquid-solid (VLS) growth mode: (1) The partial wetting and 

alloying of catalyst droplet with the underlying substrate determines the initial NW growth; (2) The surface 

free energy of the interface between the droplet and the substrate (or the droplet and the NW) determines 

the following NW growth as mentioned. There have been several demonstrations on controlling the growth 

direction of semiconductor NWs by careful tuning of the first factor mentioned above. For instance, UV–

ozone and HF etch treatments of the substrates can control the direction of Au-catalyzed GaAs NWs on 

GaAs (100) substrates by influencing the initial catalyst droplet wetting.[24] The direction and polarity of 

the Au-catalyzed GaAs NWs on GaAs(111) substrates are affected by the initial droplet conditions with 

different wetting angles as well.[25] It has also been reported that alloying of the Au-Si droplets during the 

heating of the substrate, causes roughness or ‘etching’ of Si substrate beneath the Au catalyst which renders 

the control of NW growth on Si difficult.[26] The second crucial factor, the surface free energy, usually 

refers to the total surface free energy, i.e. the energy of unpaired intermolecular bonds, known as the energy 

of dangling bonds. The dangling bonds occur when the NW side facets and droplet/NW interface are 

formed, quantification of which and the corresponding surface free energy is not straightforward. In 

addition, there are further complications, such as surface reconstructions, affecting the total surface free 

energy. However, it has been reported that the surface free energy at the interface between the NW and the 

catalyst is generally the dominant component determining the NW growth direction.[27]  
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In this work, self-catalyzed GaAs NWs were grown on differently oriented Si substrates, namely (111), 

(001) and (311). The microscopic observations followed by a statistical analysis of the data have 

confirmed the non-preferential growth of NWs in four <111> directions on the Si (001) substrates, 

and a preferential growth along the vertical <111> direction on the Si (111) substrates. A model is 

proposed to explain the non-preferential and unique-preference growth along the four <111> 

directions on Si (001) and Si (111). The model is based on the experimental results obtained by 

electron microscopy and surface free energy calculations at the droplet/NW interface. The surface 

free energy calculation is performed by considering the initial Ga droplet formation on the Si 

substrate and the areal dangling bond density for different facets. Furthermore, a detailed calculation 

of surface free energy mapping of the droplet/NW interface for NW growth is presented in three 

dimensions. It predicts selected <111> growth direction of GaAs NWs grown on Si (311) substrates, 

which further verifies the model. This general model could be applied to predict the NW growth 

direction on silicon wafers with other orientations. 

II. METHODS 

    The surface free energy of the interface between droplet/substrate or droplet/NW determines the 

following NW growth as mentioned and needs to be calculated. For the total surface free energy calculation, 

we consider only the surface free energy of the interface facet. As the surface free energy is directly 

proportional to the number of dangling bonds,[28] determination of the areal density of dangling bonds for 

different facets is key to estimate the total free energy at the droplet/NW or droplet/substrate interface. For 

that, the atomic structures of different facets are constructed by Vesta software at http://jp-

minerals.org/vesta/en/. 

Before the determination of dangling bond density for different facets, we need to account for any 

inconsistencies that may arise when counting the dangling bonds of the atoms on a (111) surface. In this 

case, (111) surfaces can be approached either from the top or from the bottom as shown in Figure 1(a), 

which represents a single dangling bond surface (SDB) and a triple dangling bond surface (TDB).  The 

(111) surface is commonly observed to be the SDB surface as it is more energetically stable. The surface 

atoms of the TDB surface have more dangling bonds, leading to much higher surface energy, thus making 

it unstable. Therefore, in order to reduce the total surface energy by reducing the total number of dangling 

bonds, these atoms on the TDB surface would rearrange themselves, i.e., reconstruct. However, even after 

reconstruction, the TDB surface energy is still higher than that of the SDB surface, due to the formation of 

weaker π-bonds at the TDB surface than those at the SDB surface.[29] Therefore the TDB (111) surface is 

not considered in most of the reports in the literature.[30,31] Consequently, to circumvent the dangling 

bonds inconsistency of the (111) surface as mentioned above, a rough effect of surface reconstruction is 

taken into consideration. During dangling bonds counting, two kinds of TDB surface are seen. In the first 

one, three dangling bonds are about to connect with a single atom as shown in Figure 1(a),  and the other 

one refers to the opposite side of TDB surface as shown in Figure 1(a), where we observe a single atom 

with one bond connected with an inner atom and three dangling bonds left outwards. The three dangling 

bonds in both cases for all facets will be counted as only one dangling bond. As this process reduces the 

total number of dangling bonds, it has the same physical consequence as surface reconstruction. Besides, 

due to its simplicity, it could be applied to any facets as we have done in the calculations below.  

With the aforementioned assumption, the calculation of areal dangling bonds density is based on the 

number of dangling bonds on a rectangular surface unit cell for a specific surface/facet. The general steps 
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followed when counting the dangling bonds and then calculating their areal density for any facet are: (1) 

Finding a front plane with a few facets intersecting perpendicularly. For example, viewing towards an (11-

1) front plane with an upward vector [011], (101), (314), (213), (112), (123), (134), and (011) facets can all 

be seen edge-on as shown in Figure 1(b). (2) Finding a side plane perpendicular to the front plane which 

gives a clear view of an atomic arrangement. For example, in Figure 1(c), a view towards a (1-10) side 

plane with an upward vector of [112] is given, for the same crystalline structure as in Figure 1(b), which 

can be used to determine the areal dangling bond density for all of the facets mentioned above. This way 

the repeated side unit for, e.g. (112) facet consists of three front layers from 1 to 3 in Figure 1(c). (3) To 

calculate the areal density of the dangling bonds, the counting should be separated for each of the front 

layers in a repeated side unit. Taking the (112) facet as an example, within the first front plane, red circles 

mark the two closest Ga atoms, which is the smallest front unit (see Figure 1(d)). The same locations are 

also marked for the second and third front layers in Figures 1(e) and 1(f). As a result, there are 4 dangling 

bonds in total per unit area of the (112) facet. The length between the marked circles is 
√2

4
𝑎𝐺𝑎𝐴𝑠 (see Figure 

1(d)) and the width of the three ‘side’ layers is 
√3

2
𝑎𝐺𝑎𝐴𝑠(see Figure 1(c), with 𝑎𝐺𝑎𝐴𝑠 being the GaAs lattice 

constant). Thus, the density of dangling bonds of the (112) facet is 4 / ( 
√2

4
𝑎𝐺𝑎𝐴𝑠 ×

√3

2
𝑎𝐺𝑎𝐴𝑠) = 

32

√6𝑎𝐺𝑎𝐴𝑠
2. 

The dangling bond densities of the other facets can be obtained the same way. The advantage of this 

calculation method is its suitability for even more complicated facets. Please see Supplementary 

information Part I for a more complicated example of calculations on facets (012), (138), and (114) and 

Supplementary information Part II for the detailed table of dangling bond densities of facets.   
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Figure 1. Assumptions and general steps for counting and calculating dangling bonds density. (a) A 

pyramid of Si atoms represented by grey points with facet (111) passing through the center of the pyramid 

as well as the body-center of the Si atom. With an extremely small shift or rotation, the broken dangling 

bonds on the surface of (111) facet will be either one or three corresponding to the SDB surface or the TDB 

surface. (b) A ‘front’ plane with observation towards [11-1] direction and upward vector [011], which 

allows facets (101), (314), (213), (112), (123), (134), and (011) to be seen as lines. (c) The ‘side’ plane of 

the same crystal shown in (b), towards [1-10] with an upward vector [112], exhibits a repeated period of 

three ‘front’ layers, i.e., the fourth layer is exactly the same as the first ‘side’ layer. (d-f) ‘Front’ layers 1,2 

and 3 from (c). Ga atoms are used as the starting atoms. The blue arrow is in the direction of the (112) facet. 

The closest Ga atoms in (d) are marked by red circles, and the corresponding locations of these two circles 

are also marked in (e) and (f). Ga atoms are purple and As atoms are green throughout the Figure. The 

atoms are treated as points for the facilitation of counting. Note that (b), and (d-f) share the same observation 

indicators. 

    The surface energy can be estimated by multiplying the dangling bond energy and the density of the 

dangling bonds as expressed by equation (1),[28] 

                                                            𝛾(ℎ𝑘𝑙) = 𝐸𝑤𝜌(ℎ𝑘𝑙)𝑧(ℎ𝑘𝑙)                                                               (1) 

where 𝛾(ℎ𝑘𝑙) is the surface free energy of facet (hkl), 𝐸𝑤 is the energy of a single dangling bond, 𝜌(ℎ𝑘𝑙) is 

the density of atoms on the crystal plane, and  𝑧(ℎ𝑘𝑙) is the number of dangling bonds per atom on the crystal 

plane.[28] The density of the dangling bonds for facets presented in the example above is the multiplication 

of  𝜌(ℎ𝑘𝑙) and 𝑧(ℎ𝑘𝑙) . Here we take the same energy for both bonds, which means the surface energy is 

proportional to the areal density of the dangling bonds on the crystal plane. It also indicates that we do not 

consider the polarity effects in our model which will be discussed later. 

Despite their simplicity, our calculations show the same trend as the surface free energy calculations 

which have considered the theoretical strength of the atomic dangling bonds at some specific surfaces in 

Ref 40 (Red curve in Figure 4(a)). Experimentally, the surface energy of discrete facets such as Si 

(001), (011), (111), (113) and GaAs (110), (001) are measured quantitatively.[32–37] Besides, there 

were theoretical calculations for semiconductors like Si, GaAs, InAs, AlAs, InP and others mainly 

on individual low-index facets like (001), (011), (111), (112), (113), as well as the surface energy 

plot of GaAs along the line from (001) to (110), some of which take surface reconstructions into 

consideration.[38–44] A summary of comparisons between our calculations and the literature are 

listed in Figure 2.    
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Figure 2. A comparison between our work and other publications. (a) The dangling bond density of 

GaAs facets (001), (011), (111), and (311) as calculated in this paper. (b) The surface energy for Si facets 

(001), (011), (111), and (311). (c) The surface energy for  GaAs facets (001), (011), and (111). 

Solid source III-V molecular beam epitaxy (MBE) is used for self-catalyzed GaAs NW growth on p-type 

on-axis Si (001), Si (111), and Si (311) substrates by the VLS growth mode. Ga beam pressure 

corresponding to a thin film growth rate of 0.6 monolayers per second is used with a V/III flux ratio of 17. 

The substrates are baked at 200 ºC overnight and 600 ºC for one hour. Ga source is open for 10 seconds to 

form the Ga droplet, then both Ga and As sources are open at the growth temperature of 610 ºC for 40 

minutes for all Si substrates. The growth is terminated by stopping both III and V solid sources 

simultaneously. 

Inspections of NWs morphology was done using a Zeiss XB 1540 Scanning Electron Microscope (SEM). 

TEM imaging and analysis were performed on NWs transferred to holey carbon grids using JEOL 2100 

and doubly corrected ARM200F microscopes, both operating at 200 kV. 

II. RESULTS AND DISCUSSIONS 

The possible observation of <111> NWs on Si (111) and Si (001) substrates is considered. The angle 

between the four available <111> directions of GaAs NWs and the Si (111) substrate surface are indicated 

in the schematics with bird’s-eye view and top view in Figure 3(a) and Figure 3(b). It shows that three of 

four <111> growth directions have the same projected angle of 19.6° with respect to the substrate surface 
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and 120º azimuth-angle from top-view projections, as well as the vertical <111> growth direction from the 

Si (111) substrate. However, the SEM images demonstrated that a high percentage of NWs are vertical to 

the substrate surface, i.e. there is only one preferred <111> direction out of all four <111> directions (see 

Figures 3(c-d)). Note that the bird’s-eye view is observed by rotating the SEM sample holder from the 

holder position used for top view observation clockwise by 30° towards <1-10> direction. While this 

observation is well-known, the preference on the vertical <111> direction has not been studied in detail so 

far. On the other hand, schematics in Figures 3(e-f) correspond to the four <111> growth directions on Si 

(001) with the same projected angle of 35.3° with respect to the substrate surface, and 90º azimuth-angle 

between them in the top view projections. The SEM images reveal that in contrast to the NWs grown on Si 

(111), the growth of NWs occurs along the four <111> directions on Si (001) (see Figures 3(g-h), also see 

Supplementary information Part III for the confirmation of <111> growth directions on Si (001)). Note that 

the four <111> directions on Si (001) are marked as left, right, up, and down in Figure 3(h). The verification 

of this non-preferential growth along the four <111> directions of NWs observed on Si (001) still requires 

further statistical analysis. The Annular Dark Field (ADF)-STEM image in Figure 3(i) reveals that the NWs 

are predominantly of zinc-blende crystal structure with occasional twin defects along the NW. The wurtzite 

section or zinc-blende/wurtzite polytypism just below the Ga droplet seen here has also been widely 

reported in other III-V NWs,[45,46] being attributed to the sudden change in the volume of the Ga droplet 

after finishing the source materials supply in the end of the growth.[47–49] The B-type polarity of NWs on 

Si (111) and Si (001) is confirmed in Supplementary information part IV. 

 

Figure 3. GaAs nanowires on on-axis Si (111) and Si (001) substrates. (a-b) Schematics drawn based on 

calculations, showing GaAs nanowires on Si (111) substrate with three <111> growth directions having 

projected angle of 19.6° respecting to the surface of the substrate and 120º azimuth-angle separation 

between top-view projections as well as the vertical <111> growth direction to the Si (111) substrate (c-d) 

SEM images of GaAs nanowires grown on Si (111) substrate from a 30° tilted angle and not tilted views, 

respectively. (e-f) The schematics drawn based on calculations, showing GaAs nanowires on Si (001) 

substrate with four <111> growth directions having an inclined angle of 35.3° to the surface of the substrate 

and 90º azimuth-angle separation. (g-h) SEM images of GaAs nanowires grown on on-axis Si (001) 

substrate from a 30° tilted angle and not tilted views, respectively. Note that the schematics are shown in 

the same angle of observation as the SEM images and the bird’s-eye view is obtained by rotating the SEM 

sample holder from the position used for top view observation by 30°. (i) High magnification ADF-STEM 

image of the red square area in the inset shows a WZ structure section below the Ga droplet. The rest of the 

inspection area has a pure ZB structure. The inset shows the ADF-STEM image of single GaAs nanowires 

grown on Si (001) substrate. 
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Statistical analysis of the NW growth direction has been carried out on samples grown on both Si (001) 

and Si (111) substrates. About a thousand NWs have been inspected for each substrate orientation, and the 

results are summarized in Table 1. Similar percentages of NWs were observed along the four <111> 

directions on Si (001), with 23.2%, 25.5%, 21.7% and 22.1% (in total 92.5%) corresponding to the left, 

right, up and down directions respectively (as marked in Figure 3(h)). It shows clear evidence of the non-

preference in growth direction between the four <111> directions when NWs are grown on Si (001). The 

same statistical analysis carried out on NWs grown on Si (111) shows that there is only one preferred <111> 

direction, perpendicular to the Si (111) substrate, accounting for 91.3% of the NWs. A small percentage of 

NWs grown along the other directions can be attributed to the multiple order twinned formation at the initial 

stage of NW growth.[50] Therefore, it can be concluded that, on Si (111), the growth of NWs along the 

other three <111> directions is less favorable compared to the main vertical  <111> growth direction.  

 

 

Table 1. The percentages of four major nanowires directions with inclined angles of 35.3° to the substrate 

surface are shown for GaAs nanowires grown on Si (001), and that of the major vertical <111> nanowires 

grown on Si (111) as well. For each sample, a thousand of nanowires are inspected from SEM images with 

the same observation setup.  

Our general model for determination of the NW growth direction is presented based on (1) an ideal partial 

wetting and regular shape of catalyst droplet and its alloying with the underlying substrate which determines 

the initial NW growth direction; (2) The surface free energy of the interface between droplet/substrate or 

droplet/NW which determines the preference of growth direction for the following NW growth. In Au-

catalyzed NW growth, it is relatively difficult to maintain the initial Au droplet in a stable condition at the 

beginning of the NW growth due to the formation of Au-Si alloy.[26]  In contrast, Ga droplets on Si 

substrate are more stable under heating with less etching and smaller and shallower pinholes.[51] In other 

words, using Ga-catalyst would have less possibility for pinhole sidewall to nucleate and grow NW on Si 

substrate. This difference can be explained by the phase diagram of Ga-Si and Au-Si. For example, around 

600°C,  the solubility of Si in Ga is negligible, but it is around 16% in Au.[52,53] Due to its stable liquid 

form over 30 Cº and low reactivity with Si substrate under NW growth temperature, these Ga droplets have 

partially wetting shapes and flat droplet/substrate interfaces, which reduces the influence of the initial 

droplet wetting on the growth direction to a minimum.[54] 

To construct a model predicting NW growth direction on Si (111) and Si (001), we investigated the 

surface energy of droplet/NW interfaces/facets that may occur during growth. In Figure 4(a), the surface 

free energy calculated using the method described above for different facets from (001) to (110) is shown 
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with the red line. This graph indicates that the (111) facet has the lowest surface free energy. This explains 

why most of the NWs on (111) substrate only grow along the vertical <111> direction: the first GaAs layer 

formation on (111) substrate already has the lowest surface free energy in Figure 4(a). In order to grow in 

one of the inclined <111> orientations on the (111) substrate, the interface has to overcome the higher 

surface free energy barriers. As a consequence, most of the NWs on Si (111) clearly show preferential 

growth along the vertical <111> direction.  

 

Figure 4. Model for nanowire growth on Si (001) and surface free energy of different surface facets. 

(a) The surface free energy of different facets from (100) to (011) is presented by the red line where (111) 

is the local minimum. Some of the possible transition facets like (115), (114), (113), (112) are marked. The 

green line represents the surface free energy of from (100) to (001), where (101) is the local minimum. 

Some of the possible transition facets like (401), (201), (101), (102), and (104) are marked. (b) A 

demonstration of the four <111> directions with regard to <001>. The red arrows indicate the tilting from 

(001) growth to two equivalent (111)B directions and the blue arrows indicate the tilting from (001) growth 

to the other two equivalent (111)B directions. (c-h) Growth modes schematics showing the different growth 

directions that GaAs nanowires grown on Si (001) substrates might experience before they turn into <111> 

direction. Please note that Ga atoms are purple, As atoms are green and Si atoms are blue. 
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On the other hand, it can be observed that the (001) facet has the highest surface free energy in Figure 

4(a).  If we move from the (001) towards the (111), we can observe how the surface free energy decreases 

with the inclined angle. Thus, the (115), (114), (113), (112) facets gradually decrease surface energies. To 

reach a facet with the lowest surface free energy, the formation of (11n) intermediate facets has to take 

place. Likewise, the energy curves for the transition from (001) facet to (1-11), (-111), and (-1-11), are the 

same as the red curve in Figure 4(a). Therefore, for NWs grown on Si (001), the tilting towards the lowest 

surface free energy is equivalent to the four <111> directions.  In this case, the four {111} facets have the 

same (and lowest) surface free energy and consequently, the same probability due to equivalent energy and 

crystallographic symmetry as shown in Figure 4(b).  

While this analysis is valid for non-polar semiconductors, e.g Si or Ge, for the III-V family it needs a 

slight modification to include the polarity effects. Taking polarity into account, four <111> directions on Si 

(001) can be differentiated into two <111>B and two <111>A. The two kinds of steps on Si (001) are shown 

in Figure 5(a) which allows two different arrangements for <111> directions of polar semiconductors. Take 

step 1 as an example, the arrangements of <111> directions on Si (001) are shown for step 1 in Figure 5(b). 

The atomic schematics for the two <111>B (namely, [111]B and [-1-11]B) and the two <111>A ([1-11]A 

and [111]A) corresponding to step 1 are shown in Figures 5(c-d). Since we know that (001) facets are the 

local maximum, and due to the crystallographic symmetry, it leads to the same probability of tilting from 

growth direction [001] towards [111] and [-1-11] (on step 1, it forms B-polar NW), and the same probability 

of tilting from [001] towards [-111] and [1-11] (on step 1, it forms A-polar NW). Following the same 

analysis, we can also show that this conclusion is valid for the situation of step 2 shown in Figures 5(e-g).  

Therefore four <111>B or four <111>A directions can be observed on the same Si (001) substrate. In 

addition, no A-polar NWs are found for the 20 NWs on Si (001). Thus overall, [111] and [-1-11] are 

equivalent while [-111] and [1-11] are equivalent on Si (001). This is also consistent with the SEM 

observations and analysis in Figures 3(g-h). The GaAs NWs marked [111] and [-1-11] are equivalent with 

similar percentages of 23.2% and 25.5%, respectively. Likewise, the NWs marked [-111] and [1-11] are 

equivalent with similar percentages of 21.7% and 22.1% out of 1000 NWs, respectively. However, it is 

noted that there are no necessary relations in terms of growth preference between the neighboring two 

<111> directions, e.g. [1-11] and [111], in the case of polar semiconductors and it should depend on the 

distribution of surface steps as well as the difference in the surface energy of A and B facets.  

Consequently, in our explanations for GaAs NWs on Si (001), the paths representing the transition from 

(001) facet to all four {111} facets in Figure 4(b) are divided into two pairs (indicated by blue-to-red 

arrows), as the diagonal <111> directions are equivalent. Taking all these factors into consideration, the 

NW growth on Si (001) substrate is described by the schematics in Figure 4(c). Blue dumbbells correspond 

to the Ga droplet on top of the Si (001) with [110] projection direction. Here, an As-terminated Si surface 

is presented as an example (purple atoms at the interface between Si and droplet in Figure 4(c)). The 

formation of GaAs NWs starts at the droplet/substrate interface which is the (001) facet. Since this facet is 

of high energy, the GaAs NWs will gradually grow inclined facets from (001) to either of (111)B facets, 

decreasing the total surface free energy of the interface shown in Figure 4(a). One of the possible scenarios 

is shown in Figures 4(c-h). The formation of GaAs NWs, starting from the substrate (001) surface, evolves 

through (115), (114), (113), and (112) facets, eventually reaching the (111) facet and continuing the growth 

along that direction.  
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Figure 5. The atomic schematics of four <111> directions on Si (001) with two kinds of steps. (a-c) The 

four available <111> directions for the first kind of step on Si (001) with atomic demonstrations. (d-f) The 

four available <111> directions for the other kind of step on Si (001) with atomic demonstrations. 

 

    To further verify the model, self-catalyzed GaAs NWs were grown on Si (311) (Figures 6(a-d)). There 

are four <111> directions on the Si (311) substrate, forming different angles with the substrate surface. Two 

of the <111> growth directions have the same 31.5º projected angle to the substrate surface, while the other 

two have projected angles of 60.5º and 10.0º to the substrate surface, respectively. Azimuth-angle 

differences between top view projections are 73.2º and 106.8º (Figures 6(a-b), see Supplementary 

Information Part III for the confirmation of major growth direction on Si (311). Similar to the observations 

on Si (111), a unique preference among four <111> growth directions is observed (Figures 6(c-d)). In this 

case, 932 out of 1000 NWs (93.2%) on Si (311), grow with a projected angle of 60.5º to the substrate. There 

are very few NWs along the other <111> directions. The crystal quality and polarity of the NWs grown on 

Si (311) are similar to those of NWs grown on Si (111) and Si (001), which is shown in Supplementary 

information Part IV. 
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Figure 6. Experimental observations and modeling for nanowire growth on Si (311). (a-b) The 

schematics drawn based on calculations, showing that nanowires at the four <111> growth directions have 

projected angles of 60.5°, 31.5°, 31.5° and 10° with respect to the surface of the substrate as well as 106.8º 

and 73.2º azimuth-angle separation between their top-view projections. (c-d) SEM images of GaAs 

nanowires grown on Si (311) substrates with a 30° tilt angle and no tilt, respectively. (e) A demonstration 

of nanowires growth directions in a three-dimensional coordinate system, where the red cut-off plane 

indicates growth directions from [311] to [111] and the green cut-off plane indicates growth direction from 

[001] [101] and then to [100]. (f) Each of the 55 black bullet points represents a specific surface and are 

used for the plotting of the top part of the colored 3D surface energy diagram. (g) A detailed surface free 

energy calculation for growth direction with positive miller index. The magnitude of surface free energy is 

indicated by a rainbow color system shown at right. (h-j) A growth model shows the different growth 

directions that GaAs NWs grown on Si (311) substrates might experience before they turn into <111> 

direction. Please note that Ga atoms are purple, As atoms are green and Si atoms are blue. 
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For the corroboration of the model, it is of significance to find out the general regulations behind the 

preferences in the <111> growth directions. As in this case, most of the NWs shifted preferentially from 

(311) to (111) growth plane, at a projection angle of 60.5º with respect to Si (311) substrate surface, instead 

of the other three <111> directions. The NW growth on Si (311) starts on the (311) interface between the 

Ga droplet and the substrate. To investigate a possible growth plane transition from the initial growth on Si 

(311), cross-sections written into three-dimensional (3D) coordinate system are shown in Figure 6(e). Thus, 

the red cross-section corresponds to possible growth planes for NWs when shifting from (311), through 

(211), and finally to (111), marked with red arrows. This transition is supported by the surface free energy 

calculation (see red line in Figure 4(a)). The surface energy transition from (113) to (111) and (311) to 

(111) are equivalent. This clearly shows that the surface free energy decreases from (311) towards (111) 

growth plane. On the other hand, for the NW to reach the (1-11) growth plane, it has to pass through one 

of the growth planes marked on the green cross-section, i.e., from (001) to (101) and to (100). The surface 

free energy calculated in that plane shows that the lowest surface free energy is at the (101) growth plane, 

marked with green vector (see green line in Figure 4(a)). With these calculations of surface free energy, it 

seems that there is a chance for the NW growth plane to shift from (311) to (101) then to (1-11). Thus, the 

construction of a complete surface energy profile is necessary. 

To form 3D surface energy mapping by detailed calculations of surface free energy, and confirm the 

local minimum, we present 10 groups of facets for surface energy of the facets (x y z) with positive integers 

(x ≥ 0, y ≥ 0, z ≥ 0) in detail. Each group of facets can be seen edge-on with specific observation orientations. 

Below, when we use (x y z), it translates to (x/z y/z 1) in the coordinate system. For example, the magnitude 

of surface energy/dangling bond density of facet (113) is represented by a colored point at coordinate (1/3 

1/3 1) in the 3D color mapping. We have counted and calculated the dangling bond density of the 55 facets 

(See Figure 6(f)) which are fully listed in Supplementary information Part II. 

Note that, due to crystallographic symmetry, the broken dangling bond density from facets (001) to (101) 

and (001) to (011) should be the same, which is also in accordance with our calculation. Therefore, we 

mark the lines that join (001) to (101) and (001) to (011) both in red. Other symmetric groups of facets are 

in the same color as well. In total, there are 55 individual facets, which are all highlighted by black bullet 

points in Figure 6(f), used to plot the top part of the colored 3D surface energy diagram. Likewise, the front 

part and side part can also be constructed, and eventually forms the full-colored 3D surface energy diagram 

shown in Figure 6(g). As a result, the (111) growth plane is the nearest local minimum for the (311) growth 

plane to reach. 

Apart from the surface energy, the growth of the NWs is also influenced and disturbed by factors such 

as growth temperature and beam flux, which further drives the (311) growth plane through the shortest path 

to reach the nearest local minimum. In other words, the probability for NWs to grow along <111> with an 

inclined angle of 60.5º is the highest and it can be predicted to be the dominant growth direction. It is 

consistent with the results from SEM observations and proves the validity of the proposed model. Although 

there are few NWs with other growth directions, they can be attributed to non-uniform Ga droplets with 

different wetting properties. They also might have taken alternative paths to other <111> directions. The 

atomic model of the transition discussed above is shown in Figures 6(h-j). The formation of GaAs NWs 

starts from the substrate facet (311), then switches to (211) and eventually to the (111) growth plane, which 

has the lowest local surface free energy and hence the growth continues along the <111> direction 

afterwards. 
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It is noted that a most intriguing phenomenon regarding epitaxial semiconductor NWs, which is 

encountered most frequently and reported very often, is that zinc-blende epitaxial NWs prefer to grow 

along <111> directions,[55,56] Conventionally, people assume that this phenomenon is attributed 

to the low surface energy of (111) surface. However, through a careful inspection of the literature, 

it is found that the current understandings on the surface energy could not lead us to the conclusive 

elucidation of this phenomenon as the surface energy measurements and calculations are based on 

merely a limited number of specific facets and directions. Our construction of the 3D surface energy 

mapping validates (111) surface has lower surface energy compared to all the other facets or at least the 

facets surrounding the (111) facet which strongly supports this assumption.  

Besides, our model could also be generalized to group IV NWs. Consequently, the model agrees with a 

large portion of results from the literature available on group IV and III-V NWs.[27,57–65] Although our 

model can predict the preferred <111> directions among all available <111> directions, there are still some 

issues outside the scope of the current model. For instance, NW growth along <110> and <100>, whose 

origins are claimed to be growth-temperature dependent or NW radius dependent, cannot be explained the 

same way.[59,66,67] The possible explanation is that when the diameter of the NW is smaller than a critical 

value, the side facets surface energy is contributing to the growth direction preference, i.e. the direction 

along <110> and <100> can be a local minimum of the total surface energy. The low-pressure Si supply is 

reported to result in a higher rate along <112> direction for Si NWs which is also out of our scope.[68] 

Additionally, it has been well acknowledged that epitaxial III-V NWs prefer <111>B growth direction. 

However, the predominance of the B-polar NWs over A-polar NWs cannot be fully understood from our 

model, which indicates improvements in the details of the calculations might be helpful. Moreover, there 

may be some other important factors influencing the growth direction than just the surface free energy. For 

instance, Ga droplet dissipates easier on A-surface, which might suppress the growth of <111>A NW.[69] 

Further improvements in the calculation of the surface free energy can be achieved by including other 

factors, e.g. the droplet influence, surface energy of side facets and polarity.  

 

III. CONCLUSIONS 

In conclusion, we observed preference and non-preference among the four <111> growth directions for 

the GaAs NWs on Si (111) and Si (001) substrates, respectively. With the help of SEM and TEM 

measurements, the preferential vertical [111] growth directions on Si (111) and the four non-preferential 

<111> NW growth directions on Si (001) were observed, leading to a practical model including detailed 

surface free energy calculations. The model is verified with a more detailed and visualized surface free 

energy mapping in the three-dimensional coordinate system by the calculation of areal dangling bond 

density of 55 facets, which explains the most representative observation, namely the <111> growth 

preference, with proper assumptions. More factors such as the growth conditions, droplet influence, surface 

energy of side facets, NW morphology and polarity can enhance the accuracy and universality of our model 

towards understanding the NW growth directions at complex conditions. 
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